
Connectivity Queries Under Vertex Failures: Not
Optimal, but Practical
Evangelos Kosinas #

Department of Computer Science & Engineering, University of Ioannina, Greece

Abstract
We revisit once more the problem of designing an oracle for answering connectivity queries in
undirected graphs in the presence of vertex failures. Specifically, given an undirected graph G with
n vertices and m edges and an integer d⋆ ≪ n, the goal is to preprocess the graph in order to
construct a data structure D such that, given a set of vertices F with |F | = d ≤ d⋆, we can derive
an oracle from D that can efficiently answer queries of the form “is x connected with y in G \ F ?”.
Very recently, Long and Saranurak (FOCS 2022) provided a solution to this problem that is almost
optimal with respect to the preprocessing time, the space usage, the update time, and the query
time. However, their solution is highly complicated, and it seems very difficult to be implemented
efficiently. Furthermore, it does not settle the complexity of the problem in the regime where d⋆

is a constant. Here, we provide a much simpler solution to this problem, that uses only textbook
data structures. Our algorithm is deterministic, it has preprocessing time and space complexity
O(d⋆m log n), update time O(d4 log n), and query time O(d). These bounds compare very well with
the previous best, especially considering the simplicity of our approach. In fact, if we assume that
d⋆ is a constant (d⋆ ≥ 4), then our algorithm provides some trade-offs that improve the state of the
art in some respects. Finally, the data structure that we provide is flexible with respect to d⋆: it
can be adapted to increases and decreases, in time and space that are almost proportional to the
change in d⋆ and the size of the graph.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity problems;
Theory of computation → Graph algorithms analysis

Keywords and phrases Graphs, Connectivity, Fault-Tolerant, Oracles

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.75

Related Version Full Version: https://arxiv.org/abs/2305.01756

Funding The research work was supported by the Hellenic Foundation for Research and Innovation
(HFRI) under the 3rd Call for HFRI PhD Fellowships (Fellowship Number: 6547.).

Acknowledgements I want to thank my advisor, Loukas Georgiadis, for helpful comments on this
manuscript. I also want to thank the anonymous reviewers for their useful suggestions.

1 Introduction

In this paper we deal with the following problem. Given an undirected graph G with n

vertices and m edges, and a fixed integer d⋆ (d⋆ ≪ n), the goal is to construct a data
structure D that can be used in order to answer connectivity queries in the presence of at
most d⋆ vertex-failures. More precisely, given a set of vertices F , with |F | ≤ d⋆, we must be
able to efficiently derive an oracle from D, which can efficiently answer queries of the form
“are the vertices x and y connected in G \ F?”. In this problem, we want to simultaneously
optimize the following parameters: (1) the construction time of D (preprocessing time), (2)
the space usage of D, (3) the time to derive the oracle from D given F (update time), and
(4) the time to answer a connectivity query in G \ F . This problem is very well motivated;
it has attracted the attention of researchers for more than a decade now, and it has many
interesting variations. The reader is referred to [5] or [7] for the details on its history and its
variations.

© Evangelos Kosinas;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 75;
pp. 75:1–75:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ekosinas@cs.uoi.gr
https://doi.org/10.4230/LIPIcs.ESA.2023.75
https://arxiv.org/abs/2305.01756
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 Connectivity Queries Under Vertex Failures: Not Optimal, but Practical

1.1 Previous work
Despite being extensively studied, it is only very recently that an almost optimal solution was
provided by Long and Saranurak [7]. Specifically, they provided a deterministic algorithm
that has Ô(m) + Õ(d⋆m) preprocessing time, uses O(m log∗ n) space, and has Ô(d2) update
time and O(d) query time.1 This improves on the previous best deterministic solution by
Duan and Pettie [5], that has O(mn log n) preprocessing time, uses O(d⋆m log n) space,
and has O(d3 log3 n) update time and O(d) query time. We note that there are more
solutions to this problem, that optimize some parameters while sacrifising others (e.g., in
the solution of Pilipczuk et al. [9], there is no dependency on n in the update time, but this
is superexponential in d⋆, and the preprocessing time is O(mn222O(d⋆))). We refer to Table
1 in reference [7] for more details on the best known (upper) bounds for this problem. We
also refer to Theorem 1.2 in [7] for a summary of known (conditional) lower bounds, that
establish the optimality of [7].

1.2 Our contribution
The bounds that we mentioned are the best known for a deterministic solution. In practice,
one would prefer the solution of Long and Saranurak [7], because that of Duan and Pettie [5]
has preprocessing time O(mn log n), which can be prohibitively slow for large enough graphs.
However, the solution in [7] is highly complicated, and it seems very difficult to be implemented
efficiently. This is a huge gap between theory and practice. Furthermore, the (hidden)
dependence on n in the time-bounds of [7] is not necessarily optimal if we assume that d⋆ is
a constant for our problem. We note that this is a problem with various parameters, and
thus it is very difficult to optimize all of them simultaneously.

Considering that this is a fundamental connectivity problem, we believe that it is important
to have a solution that is relatively simple to describe and analyze, compares very well with
the best known bounds (even improves them in some respects), opens a new direction to
settle the complexity of the problem, and can be readily implemented efficiently.

In this paper, we exhibit a solution that has precisely those characteristics. We present a
deterministic algorithm that has preprocessing time O(d⋆m log n), uses space O(d⋆m log n),
and has O(d4 log n) update time and O(d) query time.2 Our approach is arguably the simplest
that has been proposed for this problem. The previous solutions rely on sophisticated tree
decompositions of the original graph. Here, instead, we basically rely on a single DFS-tree,
and we simply analyze its connected components after the removal of a set of vertices. It
turns out that there is enough structure to allow for an efficient solution (see Section 3.2).

The bounds that we provide compare very well with the previous best, especially con-
sidering the simplicity of our approach. (See Tables 1 and 2.) In fact, as we can see in
Table 1, our solution is the best choice for implementations, considering that the algorithm
of Long and Saranurak is very difficult to be implemented within the claimed time-bounds.
Furthermore, if we assume that d⋆ is a constant (d⋆ ≥ 4), then, as we can see in Table 2, our
algorithm provides some trade-offs, that improve the state of the art in some respects.

1 The symbol Ô hides subpolynomial (i.e. no(1)) factors, and Õ hides polylogarithmic factors. The hidden
expressions in the time-bounds are not specified by the authors in their overview. Also, the description
for the log∗ n function that appears in the space complexity is that it “can be substituted with any
slowly growing function”. One thing that is explicitly stated, however, is that the hidden subpolynomial
factors are worse than polylogarithmic. We must emphasize that the difficulty in stating the precise
bounds is partly due to there being various trade-offs in the functions involved, and is partly indicative
of the complexity of the techniques that are used.

2 The log factors in the space usage and the time for the updates can be improved with the use of more
sophisticated 2D-range-emptiness data structures, such as those in [2].

E. Kosinas 75:3

Table 1 Comparison of the best-known deterministic bounds. We note that m can be replaced
with m̄ = min{m, d⋆n}, using the sparsification of Nagamochi and Ibaraki [8]. The data structure
of Pilipczuk et al. does not support an update phase, but answers queries directly, given a set of (at
most d⋆) failed vertices and two query vertices.

Preprocessing Space Update Query

Pilipczuk et al. [9] O(22O(d⋆)
mn2) O(22O(d⋆)

m) − O(22O(d⋆)
)

Duan and Pettie [5] O(mn log n) O(d⋆m log n) O(d3 log3 n) O(d)

Long and Saranurak [7] Ô(m) + Õ(d⋆m) O(m log∗ n) Ô(d2) O(d)

This paper O(d⋆m log n) O(d⋆m log n) O(d4 log n) O(d)

Table 2 Comparison of the best-known deterministic bounds, when d⋆ is a fixed (small) constant.
Although the algorithm of Pilipczuk et al. has the best space and query-time bounds, it has very
large preprocessing time. Our solution has the best preprocessing time, and also better update time
compared to the solutions of [5] and [7]. Furthermore, our space usage is almost linear.

Preprocessing Space Update Query

Pilipczuk et al. [9] O(mn2) O(m) − O(1)

Duan and Pettie [5] O(mn log n) O(m log n) O(log3 n) O(1)

Long and Saranurak [7] Ô(m) + Õ(m) O(m log∗ n) Ô(1) O(1)

This paper O(m log n) O(m log n) O(log n) O(1)

Finally, the data structure that we provide is flexible with respect to d⋆: it can be adapted
to increases and decreases, in time and space that are almost proportional to the change
in d⋆ and the size of the graph (see Corollary 3). We do not know if any of the previous
solutions has this property. It is a natural question whether we can efficiently update the
data structure so that it can handle more failures (or less, and thereby free some space). As
far as we know, we are the first to take notice of this aspect of the problem.

2 Preliminaries

We assume that the reader is familiar with standard graph-theoretical terminology (see,
e.g., [4]). The notation that we use is also standard. Since we deal with connectivity under
vertex failures, it is sufficient to consider simple graphs as input to our problem (because
the existence of parallel edges does not affect the connectivity relation). However, during
the update phase, we construct a multigraph that represents the connectivity relationship
between some connected components after removing the failed vertices (Definition 9). The
parallel edges in this graph are redundant, but they may be introduced by the algorithm
that we use to construct it, and it would be costly to check for redundancy throughout.

It is also sufficient to assume that the input graph G is connected. Because, otherwise, we
can initialize a data structure on every connected component of G; the updates, for a given
set of failures, are distributed to the data structures on the connected components, and the
queries for pairs of vertices that lie in different connected components of G are always false.
We use G to denote the input graph throughout; n and m denote its number of vertices and
edges, respectively. For any two integers x, y, we use the interval notation [x, y] to denote
the set {x, x + 1, . . . , y}. (If x > y, then [x, y] = ∅.)

ESA 2023

75:4 Connectivity Queries Under Vertex Failures: Not Optimal, but Practical

2.1 DFS-based concepts

Let T be a DFS-tree of G, with start vertex r [10]. We use p(v) to denote the parent of every
vertex v ̸= r in T (v is a child of p(v)). For any two vertices u, v, we let T [u, v] denote the
simple tree path from u to v on T . For every two vertices u and v, if the tree path T [r, u] uses
v, then we say that v is an ancestor of u (equivalently, u is a descendant of v). In particular,
a vertex is considered to be an ancestor (and also a descendant) of itself. It is very useful to
identify the vertices with their order of visit during the DFS, starting with r ← 1. Thus, if v

is an ancestor of u, we have v < u. For any vertex v, we let T (v) denote the subtree rooted
at v, and we let ND(v) denote the number of descendants of v (i.e., ND(v) = |T (v)|). Thus,
we have that T (v) = [v, v + ND(v)− 1], and therefore we can check the ancestry relation in
constant time. Two children c and c′ of a vertex v are called consecutive children of v (in
this order), if c′ is the minimum child of v with c′ > c. Notice that, in this case, we have
T (c) ∪ T (c′) = [c, c′ + ND(c′)− 1].

A DFS-tree has the following extremely convenient property: the endpoints of every
non-tree edge of G are related as ancestor and descendant [10], and so we call those edges
back-edges. Our whole approach is basically an exploitation of this property, which does not
hold in general rooted spanning trees of G (unless they are derived from a DFS traversal,
and only then [10]). To see why this is relevant for our purposes, consider what happens
when we remove a vertex f ̸= r from T . Let c1, . . . , ck be the children of f in T . Then, the
connected components of T \ f are given by T (c1), . . . , T (ck) and T (r) \ T (f). A subtree
T (ci), i ∈ {1, . . . , k}, is connected with the rest of the graph in G \ f if and only if there is
a back-edge that stems from T (ci) and ends in a proper ancestor of f . Now, this problem
has an algorithmically elegant solution. Suppose that we have computed, for every vertex
v ≠ r, the lowest proper ancestor of v that is connected with T (v) through a back-edge. We
denote this vertex as low(v). Then, we may simply check whether low(ci) < f , in order to
determine whether T (ci) is connected with T (r) \ T (f) in G \ f .

We extend the concept of the low points, by introducing the lowk points, for any k ∈ N.
These are defined recursively, for any vertex v ̸= r, as follows. low1(v) coincides with
low(v). Then, supposing that we have defined lowk(v) for some k ∈ N, we define lowk+1(v)
as min({y | ∃ a back-edge (x, y) such that x ∈ T (v) and y < v} \ {low1(v), . . . , lowk(v)}).
Notice that lowk(v) may not exist for some k ∈ N (and this implies that lowk′(v) does not
exist, for any k′ > k). If, however, lowk(v) exists, then lowk′(v), for any k′ < k, also exists,
and we have low1(v) < low2(v) < · · · < lowk(v). Notice that the existence of lowk(v) implies
that there is a back-edge (x, lowk(v)), where x is a descendant of v.

▶ Proposition 1 ([6]). Let T be a DFS-tree of a simple graph G, and assume that the
adjacency list of every vertex of G is sorted in increasing order w.r.t. the DFS numbering.
Suppose also that, for some k ∈ {0, . . . , n− 1}, we have computed the low1, . . . , lowk points
of all vertices (w.r.t. T), and the set {low1(v), . . . , lowk(v)} is stored in an increasingly
sorted array for every v ≠ r. Then we can compute the lowk+1 points of all vertices in
O(n log(k + 1)) time.3

▶ Corollary 2 ([6]). For any k ∈ {1, . . . , n− 1}, the low1, . . . , lowk points of all vertices can
be computed in O(m + kn log k) time.

3 We make the convention that log(1) = 1, so that the time to compute the low1 points is O(n).

E. Kosinas 75:5

3 The algorithm for vertex failures

3.1 Initializing the data structure
We will need the following ingredients in order to be able to handle at most d⋆ failed vertices.

(i) A DFS-tree T of G rooted at a vertex r. The values ND and depth (w.r.t. T) must be
computed for all vertices. We identify the vertices of G with the DFS numbering of T .

(ii) A level-ancestor data structure on T .
(iii) A 2D-range-emptiness data structure on the set of the back-edges of G w.r.t. T .
(iv) The lowi points of all vertices, for every i ∈ {1, . . . , d⋆}.
(v) For every i ∈ {1, . . . , d⋆}, a DFS-tree Ti of T rooted at r, where the adjacency lists of

the vertices are given by their children lists sorted in increasing order w.r.t. the lowi

point.
(vi) For every i ∈ {1, . . . , d⋆}, a 2D-range-emptiness data structure on the set of the

back-edges of G w.r.t. Ti.

The depth value in (i) refers to the depths of the vertices in T . This is defined for
every vertex v as the size of the tree path T [r, v]. (Thus, e.g., depth(r) = 1.) It takes O(n)
additional time to compute the depth values during the DFS.

The level-ancestor data structure in (ii) is used in order to answer queries of the form
QueryLA(v, δ) ≡ “return the ancestor of v that lies at depth δ”. We use those queries in order
to find the children of vertices that are ancestors of other vertices. (I.e., given that u is a
descendant of v, we want to know the child of v that is an ancestor of u.) For our purposes,
it is sufficient to use the solution in Section 3 of [1], that preprocesses T in O(n log n) time
so that it can answer level-ancestor queries in (worst-case) O(1) time.

The 2D-range-emptiness data structure in (iii) is used in order to answer queries of the
form 2D_range([X1, X2] × [Y1, Y2]) ≡ “is there a back-edge (x, y) with x ∈ [X1, X2] and
y ∈ [Y1, Y2]?”.4 We can use a standard implementation for this data structure, that has
O(m log n) space and preprocessing time complexity, and can answer a query in (worst-case)
O(log n) time (see, e.g., Section 5.6 in [3]). The m factor here is unavoidable, because the
number of back-edges can be as large as m− n + 1. However, we note that we can improve
the log n factor in the space and the query time if we use a more sophisticated solution, such
as [2].

The low1, . . . , lowd⋆
points of all vertices can be computed in O(m + d⋆n log d⋆) =

O(m + d⋆n log n) time (Corollary 2). We obviously need O(d⋆n) space to store them.
For (v), we just perform d⋆ DFS’s on T , starting from r, where each time we use a

different arrangement of the children lists of T as adjacency lists. This takes O(d⋆n) time
in total, but we do not need to actually store the trees. (In fact, the parent pointer is
the same for all of them.) What we actually need here is the DFS numbering of the i-th
DFS traversal, for every i ∈ {1, . . . , d⋆}, which we denote as DFS i. We keep those DFS
numberings stored, and so we need O(d⋆n) additional space. The usefulness of performing
all those DFS’s will become clear in Section 3.4. Right now, we only need to mention that,
for every i ∈ {1, . . . , d⋆}, the ancestry relation in Ti is the same as that in T . Thus, the
low1, . . . , lowd⋆

points for all vertices w.r.t. Ti are the same as those w.r.t. T .
The 2D-range-emptiness data structures in (vi) are used in order to answer queries of

the form 2D_range_i([X1, X2]× [Y1, Y2]) ≡ “is there a back-edge (x, y) with x ∈ [X1, X2]
and y ∈ [Y1, Y2]?”, where the endpoints of the query rectangle refer to the DFS i numbering,

4 The input to 2D_range is just the endpoints X1, X2, Y1, Y2 of the query rectangle; we use brackets
around them, and the symbol ×, just for readability.

ESA 2023

75:6 Connectivity Queries Under Vertex Failures: Not Optimal, but Practical

for i ∈ {1, . . . , d⋆}. Since the ancestry relation is the same for Ti and T , we have that the
queries 2D_range([X1, X2]× [Y1, Y2]) and 2D_range_i([X1, X2]i × [Y1, Y2]i) are equivalent,
where the i index below the brackets means that we have translated the endpoints in the
DFS i numbering.

The construction of the 2D-range-emptiness data structures w.r.t. the DFS-trees
T1, . . . , Td⋆

takes O(d⋆m log n) time in total. In order to keed those data structures stored, we
need O(d⋆m log n) space. Thus, the construction and the storage of the 2D-range-emptiness
data structures dominate the space-time complexity overall.

It is easy to see that the list of data structures from (i) to (vi) is flexible w.r.t. d⋆. Thus,
if d⋆ increases by 1, then we need to additionally compute the lowd⋆+1 points of all vertices,
the Td⋆+1 DFS-tree, and the corresponding 2D-range-emptiness data structure. Computing
the lowd⋆+1 points takes O(n log(d⋆ + 1)) = O(n log n) time, and demands an additional
O(n) space, assuming that we have sorted the adjacency lists of G in increasing order, and
that we have stored the low1, . . . , lowd⋆ points, for every vertex, in an increasingly sorted
array (see Proposition 1).

▶ Corollary 3. Suppose that we have initialized our data structure for some d⋆, and we want
to get a data structure for d⋆ + k. Then we can achieve this in O(km log n) time, using extra
O(km log n) space.

If d⋆ decreases by k, then we just have to discard the lowd⋆−k+1, . . . , lowd⋆
points, the

Td⋆−k+1, . . . , Td⋆ DFS-trees, and the corresponding 2D-range-emptiness data structures. This
will free O(km log n) space.

3.2 The general idea

Let F be a set of failed vertices. Then T \ F may consist of several connected components,
all of which are subtrees of T . It will be necessary to distinguish two types of connected
components of T \ F . Let C be a connected component of T \ F . If no vertex in F is a
descendant of C, then C is called a hanging subtree of T \ F . Otherwise, C is called an
internal component of T \ F . (See Figure 1 for an illustration.) Observe that, while the
number of connected components of T \ F may be as large as n− 1 (even if |F | = 1), the
number of internal components of T \F is at most |F |. This is an important observation, that
allows us to reduce the connectivity of G \ F to the connectivity of the internal components.

More precisely, we can already provide a high level description of our strategy for answering
connectivity queries between pairs of vertices. Let x, y be two vertices of G \ F . Suppose
first that x belongs to an internal component C1 and y belongs to an internal component C2.
Then it is sufficient to know whether C1 and C2 are connected in G \ F . Otherwise, if either
x or y lies in a hanging subtree C, then we can substitute C with any internal component
that is connected with C in G \ F . If no such internal component exists, then x and y are
connected in G \ F if and only if they lie in the same hanging subtree.

Thus, after the deletion of F from G, it is sufficient to make provisions so as to be able
to efficiently answer the following:
(1) Given a vertex x, determine the connected component of T \ F that contains x.
(2) Given two internal components C1 and C2 of T \ F , determine whether C1 and C2 are

connected in G \ F .
(3) Given a hanging subtree C of T \F , find an internal component of T \F that is connected

with C in G \ F , or report that no such internal component exists.

E. Kosinas 75:7

r

f1

f2

f3

f5=p(f6)

f6

f1

f2

f3

f5

f6

f4

f4

C1

C2

C3

C4

H3

(a)

(b)

H2
H1

Figure 1 (a) A set of failed vertices F = {f1, . . . , f6} on a DFS-tree T , and (b) the corresponding
F-forest, which shows the parentF relation between failed vertices. Notice that T \ F is split into
several connected components, but there are only four internal components, C1, C2, C3 and C4. The
hanging subtrees of T \ F are shown with gray color (e.g., H1, H2 and H3). The internal components
C2 and C3 remain connected in G \ F through a back-edge that connects them directly. C1 and
C4 remain connected through the hanging subtree H3 of f6. We have ∂(C1) = {f1}, ∂(C2) = {f2},
∂(C3) = {f3, f4} and ∂(C4) = {f5}. Notice that f6 is the only failed vertex that is not a boundary
vertex of an internal component, and it has parentF (f6) = p(f6).

Actually, the most difficult task, and the only one that we provide a preprocessing for
(during the update phase), is (2). We explain how to perform (1) and (3) during the process
of answering a query, in Section 3.5. An efficient solution for (2) is provided in Section 3.4.

The general idea is that, since there are at most d = |F | internal components of T \ F ,
we can construct a graph with O(d) nodes, representing the internal components of T \ F ,
that captures the connectivity relation among them in G \ F (see Lemma 10). This is
basically done with the introduction of some artificial edges between the (representatives
of the) internal components. In the following subsection, we state some lemmas concerning
the structure of the internal components, and their connectivity relationship in G \ F . All
omitted proofs are contained in the full version of our paper [6].

3.3 The structure of the internal components
We will use the roots of the connected components of T \ F (viewed as rooted subtrees of T)
as representantives of them. Now we introduce some terminology and notation. If C is a
connected component of T \ F , we denote its root as rC . If C is a hanging subtree of T \ F ,
then p(rC) = f is a failed vertex, and we say that C is a hanging subtree of f . If C, C ′ are
two distinct connected components of T \ F such that rC′ is an ancestor of rC , then we say
that C ′ is an ancestor of C. Furthermore, if v is a vertex not in C such that v is an ancestor
(resp., a descendant) of rC , then we say that v is an ancestor (resp., a descendant) of C. If
C is an internal component of T \ F and f is a failed vertex such that p(f) ∈ C, then we say
that f is a boundary vertex of C. The collection of all boundary vertices of C is denoted as
∂(C). Notice that any vertex b ∈ ∂(C) has the property that there is no failed vertex on the
tree path T [p(b), rC]. Conversely, a failed vertex b such that there is no failed vertex on the
tree path T [p(b), rC] is a boundary vertex of C. Thus, if b1, . . . , bk is the collection of the
boundary vertices of C, then C = T (rC) \ (T (b1) ∪ · · · ∪ T (bk)).

ESA 2023

75:8 Connectivity Queries Under Vertex Failures: Not Optimal, but Practical

The following lemma is a set of properties that are satisfied by the internal components.

▶ Lemma 4 ([6]). Let C be an internal component of T \ F . Then:
(1) Either rC = r, or p(rC) ∈ F .
(2) For every vertex v that is a descendant of C, there is a unique boundary vertex of C that

is an ancestor of v.
(3) Let f1, . . . , fk be the boundary vertices of C, sorted in increasing order. Then C is the

union of the following subsets of consecutive vertices: [rC , f1 − 1], [f1 + ND(f1), f2 −
1], . . . , [fk−1 + ND(fk−1), fk − 1], [fk + ND(fk), rC + ND(rC)− 1]. (We note that some
of those sets may be empty.)

We represent the ancestry relation between failed vertices using a forest which we call the
failed vertex forest (F-forest, for short). The F-forest consists of the following two elements.
First, for every failed vertex f , there is a pointer parentF (f) to the nearest ancestor of f (in
T) that is also a failed vertex. If there is no ancestor of f that is a failed vertex, then we let
parentF (f) = ⊥. And second, every failed vertex f has a pointer to its list of children in the
F-forest.

The F-forest can be easily constructed in O(d2) time: we just have to find, for every
failed vertex f , the maximum failed vertex f ′ that is a proper ancestor of f ; then we set
parentF (f) = f ′, and we append f to the list of the children of f ′ in the F-forest.

The next lemma shows how we can check in constant time whether a failed vertex belongs
to the boundary of an internal component, and how to retrieve the root of this component.

▶ Lemma 5 ([6]). A failed vertex f is a boundary vertex of an internal component if and
only if parentF (f) ̸= p(f). Now let f be a boundary vertex of an internal component C.
Then, if parentF (f) exists, we have that the root of C is the child of parentF (f) that is an
ancestor of f . Otherwise, the root of C is r.

Thus, according to Lemma 5, if f is a boundary vertex of an internal component C with
rC ≠ r, we can retrieve rC in constant time using a level-ancestor query: i.e., we ask for
the ancestor of f (in T) whose depth equals that of parentF (f) + 1. We may use this fact
throughout without mention.

The following lemma shows that there are two types of edges that determine the con-
nectivity relation in G \ F between the connected components of T \ F .

▶ Lemma 6 ([6]). Let e be an edge of G \ F whose endpoints lie in different connected
components of T \ F . Then e is a back-edge and either (i) both endpoints of e lie in internal
components, or (ii) one endpoint of e lies in a hanging subtree H, and the other endpoint
lies in an internal component C that is an ancestor of H.

▶ Corollary 7 ([6]). Let C, C ′ be two distinct connected components of T \F that are connected
with an edge e of G \ F . Assume w.l.o.g. that rC′ < rC . Then C ′ is an ancestor of C.

The following lemma provides an algorithmically useful criterion to determine whether a
connected component of T \ F – a hanging subtree or an internal component – is connected
with an internal component of T \ F through a back-edge.

▶ Lemma 8 ([6]). Let C, C ′ be two connected components of T \F such that C ′ is an internal
component that is an ancestor of C, and let b be the boundary vertex of C ′ that is an ancestor
of C. Then there is a back-edge from C to C ′ if and only if there is a back-edge from C

whose lower end lies in [rC′ , p(b)].

E. Kosinas 75:9

▶ Definition 9 (Connectivity graph). Let R be a multigraph where V (R) is the set of the
roots of the internal components of T \ F , and E(R) satisfies the following three properties:

(1) For every back-edge connecting two internal components C and C ′, there is an edge
(rC , rC′) in R.

(2) Let H be a hanging subtree of a failed vertex f , and let C1, . . . , Ck be the internal com-
ponents that are connected with H through a back-edge. (By Lemma 6, all of C1, . . . , Ck

are ancestors of H.) Assume w.l.o.g. that Ck is an ancestor of all C1, . . . , Ck−1. Then
R contains the edges (rC1 , rCk

), (rC2 , rCk
), . . . , (rCk−1 , rCk

).
(3) Every edge of R is given by either (1) or (2), or it is an edge of the form (rC , rC′), where

C, C ′ are two internal components that are connected in G \ F .

Then R is called a connectivity graph of the internal components of T \ F . The edges of
(1) and (2) are called Type-1 and Type-2, respectively.

The following lemma shows that a connectivity graph captures the connectivity relation-
ship of the internal components of T \ F in G \ F .

▶ Lemma 10 ([6]). Let R be a connectivity graph of the internal components of T \F . Then,
two internal components C, C ′ of T \ F are connected in G \ F if and only if rC , rC′ are
connected in R.

3.4 Handling the updates: construction of a connectivity graph for the
internal components of T \ F

Given a set of failed vertices F , with |F | = d ≤ d⋆, we will show how we can construct a
connectivity graph R for the internal components of T \ F , using O(d4) calls to 2D-range-
emptiness queries. Recall that V (R) is the set of the roots of the internal components of
T \ F .

Algorithm 1 shows how we can find all Type-1 edges of R. The idea is basically to
perform 2D-range-emptiness queries for every pair of internal components, in order to
determine the existence of a back-edge that connects them. More precisely, we work as
follows. Let C be an internal component of T \F . Then it is sufficient to check every ancestor
component C ′ of C, in order to determine whether there is a back-edge from C to C ′ (see
Corollary 7). Let f1, . . . , fk be the boundary vertices of C, sorted in increasing order. Let
also f ′ be the boundary vertex of C ′ that is an ancestor of C, and let I = [rC′ , p(f ′)]. Then
we perform 2D-range-emptiness queries for the existence of a back-edge on the rectangles
[rC , f1 − 1]× I, [f1 + ND(f1), f2 − 1]× I, . . . , [fk + ND(fk), rC + ND(rC)− 1]× I. We know
that there is a back-edge connecting C and C ′ if and only if at least one of those queries is
positive (see Lemma 4(3) and Lemma 8). If that is the case, then we add the edge (rC , rC′)
to R.

Observe that the total number of 2D-range-emptiness queries that we perform is O(d2),
because every one of them corresponds to a triple (C, f, C ′), where C, C ′ are internal
components, C ′ is an ancestor of C, and f is a boundary vertex of C, or rC . And if
C1, . . . , Ck are all the internal components of T \ F , then the number of those triples is
bounded by (|∂(C1)| + 1) · d + · · · + (|∂(Ck)| + 1) · d = (|∂(C1)| + · · · + |∂(Ck)| + k) · d ≤
(d + k) · d ≤ (d + d) · d = O(d2).

▶ Proposition 11 ([6]). Algorithm 1 correctly computes all Type-1 edges to construct a
connectivity graph for the internal components of T \ F . The running time of this algorithm
is O(d2 log n).

ESA 2023

75:10 Connectivity Queries Under Vertex Failures: Not Optimal, but Practical

Algorithm 1 Compute all Type-1 edges to construct a connectivity graph R for the internal
components of T \ F .

1 foreach internal component C of T \ F do
2 let f1, . . . , fk be the boundary vertices of C, sorted in increasing order
3 // process every internal component C ′ that is an ancestor of C

4 set f ′ ← p(rC)
5 while f ′ ̸= ⊥ do
6 if p(f ′) ̸= parentF (f ′) then
7 let C ′ be the internal component of T \ F with f ′ ∈ ∂(C ′)
8 set I ← [rC′ , p(f ′)]
9 if at least one of the following queries is positive:

10 2D_range([rC , f1 − 1]× I)
11 2D_range([f1 + ND(f1), f2 − 1]× I)
12 . . .

13 2D_range([fk−1 + ND(fk−1), fk − 1]× I)
14 2D_range([fk + ND(fk), rC + ND(rC)− 1]× I) then
15 add the Type-1 edge (rC , rC′) to R
16 end
17 end
18 f ′ ← parentF (f ′)
19 end
20 end

The construction of Type-2 edges is not so straightforward. For every failed vertex f ,
and every two internal components C and C ′, such that C is an ancestor of f and C ′ is an
ancestor of C, we would like to know whether there is a hanging subtree of f , from which
stem a back-edge e with an endpoint in C and a back-edge e′ with an endpoint in C ′. The
straightforward way to determine this is the following. Let b (resp., b′) be the boundary
vertex of C (resp., C ′) that is an ancestor of f . Then, for every hanging subtree of f with
root c, we perform 2D-range-emptiness queries on the rectangles [c, c + ND(c)− 1]× [rC , p(b)]
and [c, c + ND(c)− 1]× [rC′ , p(b′)]. If both queries are positive, then we know that C and
C ′ are connected in G \ F through the hanging subtree with root c.

Obviously, this method is not efficient in general, because the number of hanging subtrees
of f can be very close to n. However, it is the basis for our more efficient method. The
idea is to perform a lot of those queries at once, for large batches of hanging subtrees. More
specifically, we perform the queries on consecutive hanging subtrees of f (i.e., their roots
are consecutive children of f), for which we know that the answer is positive on C ′ (i.e., for
every one of those subtrees, there certainly exists a back-edge that connects it with C ′). In
order for this idea to work, we have to rearrange properly the lists of children of all vertices.
(Otherwise, the hanging subtrees of f that are connected with C ′ through a back-edge may
not be consecutive in the list of children of f .) In effect, we maintain several DFS trees
(specifically: d⋆), and several 2D-range-emptiness data structures, one for every different
arrangement of the children lists.

Let us elaborate on this idea. Let H be a hanging subtree of f that connects some internal
components, and let C ′ be the lowest one among them (i.e., the one that is an ancestor of
all the others). Then we have that the lower ends of all back-edges that stem from H and
end in ancestors of C ′ are failed vertices that are ancestors of C ′. Thus, since there are at

E. Kosinas 75:11

most d failed vertices in total, we have that at least one among low1(rH), . . . , lowd(rH) is
in C ′. In other words, rH is one of the children of f whose lowi point is in C ′, for some
i ∈ {1, . . . , d}. Now, assume that for every i ∈ {1, . . . , d⋆}, we have a copy of the list of the
children of f sorted in increasing order w.r.t. the lowi point; let us call this list Li(f), and
let it be stored in way that allows for binary search w.r.t. the lowi point. Then, for every
internal component C that is an ancestor of f , we can find the segment Si(C) of Li(f) that
consists of the children of f whose lowi point lies in C, by searching for the leftmost and the
righmost child in Li(f) whose lowi point lies in [rC , p(b)], where b is the boundary vertex of
C that is an ancestor of f .

Now let i ∈ {1, . . . , d} be such that lowi(rH) ∈ C ′. Then we have that rH ∈ Si(C ′).
Furthermore, we have that every child of f that lies in Si(C ′) and is the root of a hanging
subtree H ′ of f has the property that H ′ is also connected with C ′ through a back-edge.
Thus, we would like to be able to perform 2D-range-emptiness queries as above on the subset
S of Si(C ′) that consists of roots of hanging subtrees, in order to determine the connectivity
(in G \ F) of C ′ with all internal components C that are ancestors of f and descendants of
C ′. We could do this efficiently if we had the guarantee that S consists of large segments of
consecutive children of f . We can accommodate for that during the preprocessing phase:
for every i ∈ {1, . . . , d⋆}, we perform a DFS of T , starting from r, where the adjacency list
of every vertex v is given by Li(v).5 Let Ti be the resulting DFS tree, and let DFS i be the
corresponding DFS numbering. Then, with the DFS numbering of Ti, we initialize a data
structure 2D_range_i, for answering 2D-range-emptiness queries for back-edges w.r.t. Ti in
subrectangles of [1, n]× [1, n].

Now let us see how everything is put together. Let H be a hanging subtree of f that
connects two internal components C1 and C2, and let b1 and b2 be the boundary vertices of
C1 and C2, respectively, that are ancestors of f . Let C ′ be the lowest internal component
that is connected through a back-edge with H. Then there is an i ∈ {1, . . . , d} such that
lowi(rH) ∈ C ′. Let S be the maximal segment of Si(C ′) that contains rH and consists
of roots of hanging subtrees, let L be the minimum of S and let R be the maximum
of S.6 Then the 2D-range-emptiness queries on [L, R + ND(R) − 1]i × [rC1 , p(b1)]i and
[L, R + ND(R)− 1]i × [rC2 , p(b2)]i with 2D_range_i are both positive, and so we will add
the edges (rC1 , rC′) and (rC2 , rC′) to R. This will maintain in R the information that C ′,
C1 and C2, are connected with the same hanging subtree of f .

The algorithm that constructs enough Type-2 edges to make R a connectivity graph of the
internal components of T \ F is given in Algorithm 2. Our result is stated in Proposition 12.

▶ Proposition 12 ([6]). Algorithm 2 computes enough Type-2 edges to construct a connectivity
graph R for the internal components of T \ F (supposing that R contains all Type-1 edges).
The running time of this algorithm is O(d4 log n).

3.5 Answering the queries
Assume that we have constructed a connectivity graph R for the internal components of
T \ F , and that we have computed its connected components. Thus, given two internal
components C and C ′, we can determine in constant time whether C and C ′ are connected
in G \ F , by simply checking whether rC and rC′ are in the same connected component of R
(see Lemma 10).

5 I.e., it is necessary that the vertices in the adjacency list of v appear in the same order as in Li(v).
6 Notice that, due to the construction of Ti, we have that DFS i(L) and DFS i(R) are also the minimum

and the maximum, respectively, of DFS i(S).

ESA 2023

75:12 Connectivity Queries Under Vertex Failures: Not Optimal, but Practical

Algorithm 2 Compute enough Type-2 edges to construct a connectivity graph for the internal
components of T \ F .

1 foreach failed vertex f do
2 // process all pairs of internal components that are ancestors of f

3 set f ′ ← parentF (f)
4 while f ′ ̸= ⊥ do
5 let C ′ be the internal component with f ′ ∈ ∂(C ′)
6 // skip the following if C ′ does not exist, and go immediately

to Line 26
7 foreach i ∈ {1, . . . , d} do
8 let Si be the collection of all maximal segments of Li(f) that consist of

roots of hanging subtrees with their lowi point in C ′

9 end
10 // process all internal components C that are ancestors of f

and descendants of C ′

11 set f ′′ ← f

12 while f ′′ ̸= f ′ do
13 let C be the internal component with f ′′ ∈ ∂(C)
14 // skip the following if C does not exist, and go

immediately to Line 24
15 // check if C is connected with C ′ through at least one

hanging subtree of f

16 foreach i ∈ {1, . . . , d} do
17 foreach S ∈ Si do
18 let L← min(S) and R← max(S)
19 if 2D_range_i([L, R + ND(R)− 1]i × [rC , p(f ′′)]i) = true then
20 add the Type-2 edge (rC , rC′) to R
21 end
22 end
23 end
24 f ′′ ← parentF (f ′′)
25 end
26 f ′ ← parentF (f ′)
27 end
28 end

Now let x, y be two vertices in V (G)\F . In order to determine whether x, y are connected
in G \ F , we try to substitute x, y with roots of internal components of T \ F , and then we
reduce the query to those roots. Specifically, if x (resp., y) belongs to an internal component
C of T \ F , then the connectivity between x and y is the same as that between rC and y

(resp., x and rC). Otherwise, if x (resp., y) belongs to a hanging subtree H of T \ F , then
we try to find an internal component that is connected with H through a back-edge. If such
an internal component C exists, then we can substitute x (resp., y) with rC . Otherwise, x, y

are connected in G \ F if and only if they belong to the same hanging subtree of T \ F . This
idea is shown in Algorithm 3.

▶ Proposition 13 ([6]). Given two vertices x, y in V (G)\F , Algorithm 3 correctly determines
whether x, y are connected in G \ F . The running time of Algorithm 3 is O(d).

E. Kosinas 75:13

Algorithm 3 query(x, y).

1 if x lies in an internal component C and y lies in an internal component C ′ then
2 if rC is connected with rC′ in R then return true
3 return false
4 end
5 // at least one of x, y lies in a hanging subtree
6 if x lies in a hanging subtree H then
7 // check whether H is connected with an internal component through

a back-edge
8 for i ∈ {1, . . . , d} do
9 if lowi(rH) ̸= ⊥ and lowi(rH) /∈ F then

10 return query(lowi(rH), y)
11 end
12 end
13 // there is no internal component that is connected with H in G\F

14 if y lies in H then return true
15 return false
16 end
17 return query(y, x)

References
1 Michael A. Bender and Martin Farach-Colton. The level ancestor problem simplified. Theor.

Comput. Sci., 321(1):5–12, 2004. doi:10.1016/j.tcs.2003.05.002.
2 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on

the ram, revisited. In Proceedings of the 27th ACM Symposium on Computational Geometry,,
pages 1–10, 2011. doi:10.1145/1998196.1998198.

3 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.
worldcat.org/oclc/227584184.

4 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

5 Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. SIAM
J. Comput., 49(6):1363–1396, 2020. doi:10.1137/17M1146610.

6 Evangelos Kosinas. Connectivity queries under vertex failures: Not optimal, but practical.
arXiv version, 2023. arXiv:2305.01756.

7 Yaowei Long and Thatchaphol Saranurak. Near-optimal deterministic vertex-failure connectiv-
ity oracles. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pages 1002–1010, 2022. doi:10.1109/FOCS54457.2022.00098.

8 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.
doi:10.1007/BF01758778.

9 Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alexandre
Vigny. Algorithms and data structures for first-order logic with connectivity under vertex
failures. In 49th International Colloquium on Automata, Languages, and Programming, ICALP,
volume 229 of LIPIcs, pages 102:1–102:18, 2022. doi:10.4230/LIPIcs.ICALP.2022.102.

10 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

ESA 2023

https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1145/1998196.1998198
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.1137/17M1146610
https://arxiv.org/abs/2305.01756
https://doi.org/10.1109/FOCS54457.2022.00098
https://doi.org/10.1007/BF01758778
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1137/0201010

	1 Introduction
	1.1 Previous work
	1.2 Our contribution

	2 Preliminaries
	2.1 DFS-based concepts

	3 The algorithm for vertex failures
	3.1 Initializing the data structure
	3.2 The general idea
	3.3 The structure of the internal components
	3.4 Handling the updates: construction of a connectivity graph for the internal components of T setminus F
	3.5 Answering the queries

