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Abstract
Optimal packing of objects in containers is a critical problem in various real-life and industrial
applications. This paper investigates the two-dimensional packing of convex polygons without
rotations, where only translations are allowed. We study different settings depending on the type of
containers used, including minimizing the number of containers or the size of the container based on
an objective function.

Building on prior research in the field, we develop polynomial-time algorithms with improved
approximation guarantees upon the best-known results by Alt, de Berg and Knauer, as well as
Aamand, Abrahamsen, Beretta and Kleist, for problems such as Polygon Area Minimization, Polygon
Perimeter Minimization, Polygon Strip Packing, and Polygon Bin Packing. Our approach utilizes a
sequence of object transformations that allows sorting by height and orientation, thus enhancing
the effectiveness of shelf packing algorithms for polygon packing problems. In addition, we present
efficient approximation algorithms for special cases of the Polygon Bin Packing problem, progressing
toward solving an open question concerning an O(1)-approximation algorithm for arbitrary polygons.
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1 Introduction

Many real-life situations require us to make decisions about optimally packing a collection
of objects into a specific container. One particular category of these packing problems is
two-dimensional packing, which is encountered in everyday scenarios like arranging items
on a shelf and in industrial applications such as cutting cookies from rolled-out dough
or manufacturing sets of tiles from standard-sized panels made of wood, glass, or metal.
Another intriguing example involves cutting fabric pieces for clothing production. In this
case, the pieces often cannot be rotated freely, as they must adhere to a desired pattern
in the final product, which is tailored of multiple elements. The widespread applicability
of two-dimensional packing problems has led to a surge of interest in designing efficient
algorithms to address them. In this paper, we follow the line of research and study the
problem of packing convex polygons without rotations in various settings depending on the
type of containers used.

Past research focusing on theoretical considerations of two-dimensional packings mainly
concentrates on the scenario when all objects are axis-parallel rectangles. In this paper, we
will discuss packing without rotations, in which only translations are permitted. There are
two main classes of the problem depending on whether the size of the container is fixed and
we want to minimize the number of containers used or whether we want to minimize the
container’s size with respect to some objective function.
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A seminal example of the first class is the Geometric Bin Packing problem in which
a number of unit size squared bins to pack is to be minimized. The problem is arguably
the most natural generalization of the regular (1D) Bin Packing to two dimensions, and
its absolute approximability has been fully understood. Unless P = N P, the best possible
efficient constant factor approximation is 2 [15], and such an algorithm is known [10].

In the second class, there are several variants to be considered. An example is the
Strip Packing Problem which is concerned with packing objects into a strip of width
1 and infinite height in such a way that the maximum of all the heights of the placed
objects is minimized. Like Geometric Bin Packing, Strip Packing generalizes (1D)
Bin Packing. The best known efficient constant factor approximation for Strip Packing
has approximation factor (5/3 + ϵ) [9]. It is known that there can not exist a polynomial
time algorithm with an approximation ratio of (3/2 − ϵ) for any ϵ > 0 unless P = N P , which
follows directly from the approximation hardness of (1D) Bin Packing. Both classes of
problems have been also considered in the asymptotic setting, see e.g. [11, 5, 12].

In younger time, there was also an increase of interest in cases where the objects in
question are general convex polygons. Alt, de Berg and Knauer [2, 3] considered the problem
of packing an instance consisting of a number of convex polygons of the form p ⊂ [0, 1]2 into
a minimum area axis-parallel rectangular container. We refer to this problem as Polygon
Area Minimization throughout this paper. In the special case where the instance consists
of rectangles only, the problem is known to admit a PTAS [4]. They proved the existence of
the following efficient algorithm:

A 23.78-approximation for Polygon Area Minimization.
Recently, Aamand, Abrahamsen, Beretta and Kleist [1] showed that the algorithm of Alt,
de Berg and Knauer can be leveraged to obtain also efficient approximation algorithms of
further problems:

A 7-approximation for Polygon Perimeter Minimization.
A 51-approximation for Polygon Strip Packing.
An 11-approximation for Polygon Bin Packing for polygons with diameter at most 1

10 .

1.1 Our results
The results of Alt, de Berg and Knauer [2, 3] and Aamand et al. [1] are heavily based on
so-called shelf packing algorithms. In shelf packing algorithms, the objects are first placed
on the shelves, possibly ordered by height, which are later stacked on one another to build
a final solution. Compared to axis-parallel rectangles, the main challenge in designing an
approximation algorithm for polygon packing problems is that objects cannot be sorted by
height and orientation simultaneously. As a result, the algorithm and its analysis in [2, 3]
have such a large approximation guarantee. In this paper, we provide new insight into how
shelf packing algorithms should be applied to polygon packing problems. We introduce a
sequence of transformations of the objects that allow us first to sort them by height and later
by orientation to build a solution of a much better approximation guarantee. More precisely,
we design polynomial-time algorithms with the following factors:

A 9.45-approximation for Polygon Area Minimization.
Using this algorithm as a subroutine, we build upon the methods from Aamand et al. [1] to
obtain the following efficient approximation algorithms:

A (3.75 + ϵ)-approximation for Polygon Perimeter Minimization.
A 21.89-approximation for Polygon Strip Packing.
A 5.09-approximation for Polygon Bin Packing for polygons which have their diameter
bounded by 1

10 .
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The results are proved in Sections 4, 5, 6, and 7 respectively. Furthermore, concerning
Polygon Bin Packing, in the full version of this paper we show the following results,
which make progress towards solving an open question of a O(1)-approximation algorithm
for Polygon Bin Packing for arbitrary polygons.

There is an efficient O( 1
δ )-approximation algorithm for Polygon Bin Packing for

instances where each polygon has width or height at most 1 − δ.
There is an efficient O(1)-approximation algorithm for Polygon Bin Packing for
instances with the property that all polygons share a spine (up to translation) with height
at least 3

4 .

2 Preliminaries

We start out considerations by recalling a classical and well-known problem in theoretical
computer science, the Bin Packing problem: Given a list of numbers s1, . . . , sn ∈ (0, 1] ∩ Q,
representing the sizes of n objects, the goal is to find the minimum number of bins of size 1,
so that we can pack all objects into them. Bin Packing can be seen as the task of packing
(1-dimensional) intervals into as few intervals of length 1 as possible. This definition can be
extended to the two dimensional case. To do so we introduce several definitions.

Throughout the paper, for a set subset A of the domain of a function f , f(A) is a shorthand
notation for

∑
a∈A f(a). A packing instance is defined by a finite set I containing objects

to pack, a countable set R containing bins to pack the objects into and a set Φ of allowed
transformations. A shape is a compact connected set s ⊂ R2

≥0. We denote a rectangular
shape r ⊂ R2

≥0 by a tuple r = (w, h) ∈ R2
>0, which has width w and height h. An object o is

an element of I and has a shape s ⊂ [0, 1]2. Furthermore, we define I and I to be the sets
which contain all finite sets I with objects consisting of axis-parallel rectangles and convex
polygons, respectively. We will usually denote |I| by n. In order to ensure computability, we
assume that each object in I and I is defined by finitely many vertices.

A bin R ∈ R is also characterized by having a shape. In this paper, we always assume that
the shape of a bin R is an axis-parallel rectangle. That is, it is a rectangle with each of its sides
being parallel to one of the primal axes in R2, and normally, its lower left corner is at the origin
(0, 0) ∈ R2. We write width(R) and height(R) for the width and the height of a bin R ∈ R.
If R = [0, 1]2, we say that R is a unit bin. In this study, the set of allowed transformations
Φ is the set of all translations, i.e. Φ = {ϕ : R2 → R2 | ∃x0 ∈ R2 ∀x ∈ R2 : ϕ(x) = x + x0}.
Note that we consider the setting where rotations or reflections of objects are not allowed.
We denote the width and the height of an object o (the length of the projection on the x-axis
or y-axis respectively) by width(o) and height(o). The maximum width and height of a
shape of an object in I, we denote by wmax(I) and hmax(I) respectively. We will also use
the notation width(S) and height(S) for arbitrary subsets S ⊂ R2

A packing P of I is defined as a set of pairwise disjoint placements of all o ∈ I with
respect to the set of translations Φ. Given a bin R ∈ R, we say that we can pack I into R

if there is a packing P of I so that P ⊂ R. In this case, we also say that P is a packing of
I into R. If we can pack the objects I into the bin R, we call R a bounding box of I. If
we have an at most countable collection of bins R := {Rj}j∈J , we say that we can pack I

into R, if there is a partition I =
⊔

j∈J Ij so that we can pack the objects Ij into Rj for all
j ∈ J . In such case, if for all j ∈ J , Pj is a packing of Ij into Rj , we refer to P := {Pj}j as
a multi-packing. For any j ∈ J , we say that o is in the packing Pj , if o ∈ Ij . We define
the area(P ) to be the area of the smallest axis-parallel rectangle containing P .

ESA 2023
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The definition already demonstrates the more difficult nature of multi-dimensional
packings compared to one dimensional packings. Even if the objects to pack are axis-
parallel rectangles, it is no longer sufficient to consider in which bin to pack which rectangle,
but the exact position in the bin also matters.

In this paper we consider problems consisting in packing convex polygonal shapes into
axis-parallel rectangular bins under translational transformations. More precisely we consider
the following problems.

▶ Problem 1 (Polygon Packing).
Input: Convex polygons I ∈ I .
Goals:

Bin Packing: Find the minimum number B ∈ N so that we can pack I into B unit bins.
Strip Packing: Find the minimum height H ∈ Q>0 so that we can pack I into a bin of
width 1 and height H.
Area Minimization: Find a bounding box R ∈ R2

>0 of I so that f(R) = width(R) ·
height(R) is minimal.
Perimeter Minimization: Find a bounding box R ∈ R2

>0 of I so that f(R) =
2(width(R) + height(R)) is minimal.
Minimum Square: Find a bounding box R ∈ R2

>0 so that f(R) = max{width(R),
height(R)} is minimal.

Throughout the paper for the problems under consideration, we denote the optimal value of
an instance I ∈ I by opt(I).

3 Shelf Packing Algorithms

Introducing well-known shelf-packing algorithms involves basic (1D)-Bin Packing algorithms,
such as NextFit (NF), FirstFit (FF), and BestFit (BF). These place items s1, . . . , sn

into bins sequentially, with si+1 placed according to specific rules. If no placement adheres
to the rule, a new bin is opened. The rules differ for each algorithm.

NF, places si+1 into the most recently opened bin, if it has enough space.
FF, places si+1 in the earliest opened bin in which it fits.
BF, places si+1 in the bin with least free space among bins in which si+1 fits.

NF and FF are often preprocessed by sorting the items in non-increasing size, which are
called NextFitDecreasing (NFD) and FirstFitDecreasing (FFD). It is not hard to
show that NF is a 2-approximation for the Bin Packing problem [14]. Moreover, NF packs
it into at most 1 + 2

∑n
i=1 si bins. BF and FF both have an approximation ratio of 1.7 [7, 8],

which are tight. Furthermore, as shown in [13], if si ≤ 1
m for all i ∈ [n] and some m ≥ 2, FF

packs this instance into at most 1 + (1 + 1
m )

∑n
i=1 si bins. 1

Variants of NF, FF and BF exist for 2D rectangle packing problems, called NextFitDe-
creasingHeight (NFDH), FirstFitDecreasingHeight (FFDH), and BestFitDecreas-
ingHeight (BFDH). These shelf-packing algorithms were introduced for Strip Packing,
placing rectangles r1, . . . , rn ∈ I into a bin R = [0, 1]×[0, ∞) with infinite height. The three
algorithms order rectangles r1, . . . , rn in non-increasing height and place them sequentially

1 In fact they show that FF packs such instance in 2 + (1 + 1
m )

∑n

i=1 si bins. With a strategy analogous
to the one from the proof of Theorem 3 in [6] in the two-dimensional case, however, one can show that
an additive factor of 1 is sufficient.
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into shelves in R. A shelf is a horizontal strip, and rectangles can open new shelves. A
shelf-packing algorithm places ri+1 in an existing shelf according to a rule or opens a new
shelf. The placement is bottom-left without intersecting other rectangles.

NFDH places ri+1 in the most recently opened shelf, if it fits.
FFDH places ri+1 in the lowest possible shelf which has enough space.
BFDH, as FFDH, allows for placing rectangles in a lower shelf than the most recently
opened one. Here, ri+1 is placed in the one which has minimal free horizontal space at
the right end of the shelf among all shelves, while still having at least width(ri+1) of it.

Since NFDH and FFDH are of particular interest in our paper, we present the following
two absolute approximability results for axis-parallel rectangle Strip Packing problem.

▶ Theorem 2 (Theorem 1 [6]). Let I ∈ I . The packing P obtained by NFDH satisfies

height(P ) ≤ hmax(I) + 2 area(I) ≤ 3 opt(I).

▶ Theorem 3 (Theorem 3 [6]). Let m ∈ N and I ∈ I be satisfying that wmax(I) ≤ 1
m . The

packing P of I obtained by FFDH satisfies

height(P ) ≤ hmax(I) +
(

1 + 1
m

)
area(I) ≤

(
2 + 1

m

)
opt(I).

4 An Efficient 9.45-Approximation for Polygon Area Minimization and
7-Approximation when all Polygons are x-Parallelograms

In this section, we prove that there is an efficient 9.4-approximation algorithm for Polygon
Area Minimization, which improves the previous best approximation factor for polynomial
time algorithms of 23.78 by Alt et al. [2, 3]. Based on that result, we also show a 7-
approximation in the special case when all polygons are x-parallelograms, a special type of
parallelograms we will introduce in Definition 5.

4.1 An Efficient 9.45-Approximation for Polygon Area Minimization
To start the discussions, we introduce the following definition.

▶ Definition 4. Let p ⊂ [0, 1]2 be a polygon. A spine s of p is a (straight) line segment
connecting a point in argmin(x,y)∈p y with a point in argmax(x,y)∈p y. We call the angle
between the x-axis in increasing direction and s the angle of s. We say that s is tilted to
the right or leans to the right, if this angle is in (0, π

2 ] and is tilted to the left or leans
to the left, if it is in [ π

2 , π).

Sometimes we also talk about “the” spine of a polygon, implicitly assuming that one has
been fixed. The algorithm of Alt et al. is a shelf-packing algorithm and ordering polygons by
the angle of their spines is a crucial step. Our algorithm shares these two characteristics. A
key difference is that our algorithm first packs the polygons into parallelograms that have
two of their sides parallel to the x-axis. We give such parallelograms their own definition:

▶ Definition 5. An x-parallelogram is a parallelogram q ⊂ R2 that has two of its sides
parallel to the x-axis. Of those two sides, we call the one with lower y-coordinate the base
of q. We write base(q) for the length of the base of q and wside(q) for the width of one of
the sides of q which is not parallel to the x-axis. Similar as to the definition for spines of
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polygons, we say that q is tilted to the right or leans to the right, if the angle between
its right side and the increasing direction of the x-axis is in (0, π

2 ] and is tilted to the left
or leans to the left, if it is in [ π

2 , π). We refer to this angle simply as angle of q.

For packing polygons into x-parallelograms, we prove the following result, which is a
refined version of the discussions of Aamand et al. [1] in Subsection 5.2.4 of their paper.

▶ Lemma 6. Let p be a convex polygon. Then there exists an x-parallelogram q that contains
p and satisfies

(i) height(q) = height(p)
(ii) base(q) ≤ width(p)
(iii) wside(q) ≤ width(p)
(iv) area(q) ≤ 2 area(p).

Proof. First, we construct a bounding x-parallelogram as the one that can be seen in Figure
1. Let lb and lt be lines parallel to the x-axis and tangent to p, touching the bottom of p

and the top of p respectively. Choose pb ∈ p ∩ lb and pt ∈ p ∩ lt and define s to be the line
connecting pb and pt. Note that s is a spine of p. Let sl and sr be tangent to p and parallel
to s, lying on the left and on the right of p. Let pl ∈ p ∩ sl and pr ∈ p ∩ sr. We now define q

to be the set bounded by lb, lt, sl and sr. Note that q is an x-parallelogram that satisfies
(i). As the left and right sides of q are just translations of s, it also satisfies (iii), because of
course s ⊂ p by convexity of p.

Figure 1 The construction of a bounding parallelogram q from the proof of Lemma 6 on an
example polygon p. Note that here, it holds that base(q) > width(p).

To see that q also satisfies (iv), we consider the triangle with vertices pt, pb and pl. We
note that it is contained in p due to convexity and contains exactly half the area of the part
of q that lies on the left of s. Analogously, the triangle with vertices pt, pb and pr has half
the area of the part of q that lies on the right of s. So q does indeed also satisfy (iv).

However, q does not necessarily satisfy (ii) (see the polygon in Figure 1). If it does, then
q satisfies all assumptions of the lemma and we are done.

So we consider now the case when base(q) > width(p). Consider the axis-parallel
rectangle r bounding p. That is, r contains p and each of its sides has non-empty intersection
with p. Surely r satisfies (i), (ii) and (iii). To see that it also satisfies (iv), note that
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area(r) = width(r) height(r)
= width(p) height(p)
< base(q) height(q)
= area(q)
≤ 2 area(p).

So whenever base(q) > base(p), we showed that r satisfies all requirements (i) − (iv) of the
lemma instead. Since r is also an x-parallelogram, we conclude. ◀

With the help of Lemma 6, we can now present the main result of this chapter.

▶ Theorem 7. There is a polynomial time 9.4-approximation algorithm for Polygon Area
Minimization. Moreover, there is such algorithm with running time O(n2 + N), where n is
the number of polygons and N the total number of vertices in a given input I ∈ I , assuming
that each polygon p ∈ I is given as a list of its vertices.

Proof. Let I ∈ I . We construct a packing P as the one depicted in Figure 2.
Pack each polygon p ∈ I into an x-parallelogram q as in Lemma 6. Call the instance

of all so-obtained x-parallelograms IQ. The idea of our algorithm is to use FFDH to pack
straightened, axis-parallel versions of the x-parallelograms IQ and to then use this packing
to obtain one for IQ and hence also I which is not much bigger.

So, define yet another instance IR which, for each q ∈ IQ, contains a rectangle r =
(base(q), height(q)). With FFDH, we now pack IR into a strip of width cwmax(I), where
c ≥ 1 is to be determined later. Call the so-obtained packing PR. By Theorem 3 it follows

height(PR)(cwmax(I)) ≤
(

1 + 1
m

)
area(IR) + chmax(IR)wmax(I), (1)

where m = ⌊c⌋, as wmax(IR) = maxq∈IQ
base(q) ≤ wmax(I) by Lemma 6.

Let S ⊂ IQ be the parallelograms corresponding to the rectangles in a certain shelf in the
packing PR. We can pack S into a new shelf of width (c + 2)wmax(I) by first ordering the
parallelograms S by decreasing angle. Indeed, if we, after this ordering, place them all next
to each other in the shelf, we note that now all bases of the parallelograms are connected to
each other and hence the overlap on either side is at most maxq∈S wside(q) ≤ wmax(I) by
Lemma 6. Put all such shelves on top of each other and call the so-obtained packing PQ.
Note that PQ has the same height as PR, but c+2

c times its width. Finally, we pack each
polygon into its respective parallelogram in the packing PQ. Call this packing P . Then

area(P ) ≤ area(PQ)

≤ c + 2
c

height(PR)(cwmax(I))

≤ c + 2
c

(
1 + 1

m

)
area(IR) + (c + 2)hmax(IR)wmax(I)

= c + 2
c

m + 1
m

area(IQ) + (c + 2)hmax(IQ)wmax(I)

≤ 2c + 2
c

m + 1
m

area(I) + (c + 2)hmax(I)wmax(I)

≤
(

2c + 2
c

m + 1
m

+ (c + 2)
)

opt(I).
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One can check that the minimum is attained at c = 3, in which case we get a 9.4-
approximation.

Figure 2 A packing computed with the algorithm from the proof of Theorem 7, here with
parameter c = 15. For each polygon, also its computed bounding x-parallelogram is drawn.

We now note that the claimed running times of the above algorithm follows by observing
that: Constructing IQ from I can be done in O(N) time, constructing IR from IQ can be
done in O(n) time, constructing PR can be done in O(n2) time, constructing PQ from PR

can be done by sorting in O(n log(n)) time, and finally, constructing P from PQ can be done
in O(N) time. ◀

The algorithm of Alt et al. runs in time O(N log(N)) and thus for certain instances faster
than our algorithm. If, in our algorithm, the use of FFDH for packing IR is replaced by
NFDH, one can show using Theorem 2 that for an optimal choice of c = 2

√
2, the algorithm

has an approximation guarantee of 11.66 while having a running time of O(n log(n) + N),
thus obtaining an algorithm that runs faster than the algorithm of Alt et al., while still
having a greatly improved approximation ratio.

4.2 An Efficient 7-Approximation for Polygon Area Minimization when
all Polygons are x-Parallelograms

In the algorithm presented in the previous subsection, we first pack general polygons into
x-parallelograms and afterwards pack these x-parallelograms. One would expect that if
one wants to pack x-parallelograms from the start, one should be able to obtain a better
approximation factor. Showing that this is indeed the case is the content of this brief section.

▶ Theorem 8. There is a polynomial time 7-approximation algorithm for Polygon Area
Minimization, when all input polygons are x-parallelograms.

The proof follows along the lines of the proof of Theorem 7.

Proof. Let I ∈ I be so that every p ∈ I is an x-parallelogram. As in the proof of Theorem 7,
we define the set IR ∈ I that for every p ∈ I contains some r ∈ IR with width(r) = base(p)
and height(r) = height(p). Again, we pack IR with FFDH into a strip of width cwmax(I)
and call the so-obtained packing PR.

After ordering them by angle, we can pack the parallelograms S ⊂ I corresponding to the
rectangles in some shelf in PR into a new shelf of width (c + 2)wmax(I), because of course
wside(p) ≤ wmax(I). Therefore, calling the so-obtained packing P ,
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area(P ) ≤ c + 2
c

area(PR)

≤ c + 2
c

m + 1
m

area(I) + (c + 2)hmax(I)wmax(I)

≤
(

c + 2
c

m + 1
m

+ (c + 2)
)

opt(I),

which, for c = 2, is minimized and equal to 7. ◀

5 An Efficient (3.75 + ϵ)-Approximation for Polygon Perimeter
Minimization and (3.56 + ϵ)-Approximation for Polygon Minimum
Square

In this section, we show how to leverage the algorithm from Theorem 7 to obtain an
approximation-algorithm for Polygon Perimeter Minimization. We improve on the
polynomial time 7.3-approximation algorithm obtained by Aamand et al. [1] and present an
efficient (3.75 + ϵ)-approximation. Moreover, we show how to leverage that result to obtain
an (3.56 + ϵ)-approximation-algorithm for Polygon Minimum Square.

5.1 An Efficient (3.75 + ϵ)-Approximation for Polygon Perimeter
Minimization

▶ Theorem 9. For every ϵ > 0, there is an efficient (3.75 + ϵ)-approximation algorithm for
Polygon Perimeter Minimization.

Proof. Let I ∈ I . Note that for the perimeter objective, it surely holds that

opt(I) ≥ 2(wmax(I) + hmax(I)). (2)

Furthermore, since a bounding box of I has area at least area(I) and the minimum perimeter
rectangle having area area(I) is a square, it also is true that

opt(I) ≥ 4
√

area(I).

It follows from Inequality 2 that

min{hmax(I), wmax(I)} ≤ 1
4 opt(I)

and without loss of generality, we assume that wmax(I) ≤ 1
4 opt(I). Otherwise we are making

the following argument by packing into vertical shelves instead.
Let P be the packing obtained from the algorithm in Theorem 7, leaving c as a free

parameter. Then P satisfies

width(P ) ≤ (c + 2)wmax(I)

and by dividing the inequality (1) by the width of the strip used for the rectangle packing
obtained by FFDH, cwmax(I), we see that

height(P ) ≤ 2m + 1
m

area(I)
cwmax(I) + hmax(I) ≤ 1

8
m + 1

m

opt(I)2

cwmax(I) + hmax(I).

ESA 2023
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We restrict the domain of c so that c ≥ opt(I)
4wmax(I) ≥ 1 and write c = l opt(I)

4wmax(I) for some l ≥ 1.
Then

width(P ) ≤ l

4 opt(I) + 2wmax(I), height(P ) ≤ 1
2l

m + 1
m

opt(I) + hmax(I).

The perimeter of P is hence bounded by

2(width(P ) + height(P )) ≤ 2
((

l

4 + m + 1
2lm

)
opt(I) + 2wmax(I) + hmax(I)

)
≤ 2

(
1
4

(
l + 2(m + 1)

lm

)
+ 1

)
opt(I)

= 1
2

(
l + 2(m + 1)

lm
+ 4

)
opt(I),

which is minimized and equal to 3.75 opt(I) when l is equal to l := 2, where we used that
m = ⌊c⌋ ≥ ⌊l⌋.

Now since the value of opt(I) is not known beforehand and since l depends on it, we need
to guess an optimal value for l. This can be done as follows. Compute the packing from the
algorithm in Theorem 7 for c = 1, (1 + ϵ), . . . , (1 + ϵ)K , where K = log(n)

log(1+ϵ) and denote the
packing obtained for c = (1 + ϵ)k by Pk for all k ∈ {0, 1, . . . , n}. Over all those packings,
choose the one that has minimum perimeter. Say this perimeter is z > 0. Let k ∈ {1, . . . , K}
be so that

(1 + ϵ)k−1 ≤ c ≤ (1 + ϵ)k,

where c := l opt(I)
4wmax(I) . Then, for lk := (1 + ϵ)k 4wmax(I)

opt(I) , it holds that

lk = (1 + ϵ)k 4wmax(I)
opt(I) ≤ (1 + ϵ)c4wmax(I)

opt(I) = (1 + ϵ)l.

In particular, as of course also l ≤ lk, it holds that

z ≤ 2(width(Pk) + height(Pk))

≤ 1
2

(
lk + 2(m + 1)

lkm
+ 4

)
opt(I)

≤ (1 + ϵ)1
2

(
l + 2(m + 1)

lm
+ 4

)
opt(I)

≤ (1 + ϵ)3.75 opt(I),

which shows the statement. ◀

5.2 An Efficient (3.56 + ϵ)-Approximation for Polygon Minimum Square
In this section, we show how to leverage the algorithm from Theorem 7 to obtain an
approximation-algorithm for Polygon Minimum Square.

▶ Theorem 10. For every ϵ > 0, there is an efficient (3.56 + ϵ)-approximation algorithm for
Polygon Minimum Square.

The proof is similar to the proof of Theorem 9.
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Proof. Let I ∈ I . Note that

opt(I) ≥ max{wmax(I), hmax(I)}

and also

opt(I) ≥
√

area(I).

Analogously to the proof of Theorem 9, but substituting c = l opt(I)
wmax(I) for some l ≥ 1 instead,

we can construct a packing P with

width(P ) ≤ l opt(I) + 2wmax(I), height(P ) ≤ 2
l

m + 1
m

opt(I) + hmax(I).

Then

max{width(P ), height(P )} ≤ max
{

l + 2,
2(m + 1)

lm
+ 1

}
opt(I).

The minimum is attained for l = l := 1
2 (

√
17 − 1) in which case m = 1 and the approximation

factor is equal to to 1
2 (

√
17 + 3) ≈ 3.56. As in the proof of Theorem 9, we can guess the

value of l to obtain a (3.56 + ϵ)-approximation algorithm. ◀

6 An Efficient 21.89-Approximation for Polygon Strip Packing

In this section, we show how to obtain a polynomial time 21.8-approximation for Polygon
Strip Packing, improving on the previous best known approximation factor for efficient
algorithms of 51 by Aamand et al. [1]. The idea is to construct vertical shelves with the
algorithm from Theorem 7 and then to stack such vertical shelves horizontally into the
strip. This idea comes from [1]. We slightly improve their procedure using the following
observation.

▶ Lemma 11. Let I ∈ I and let P ⊂ [0, (c+2)wmax(I)]× [0, ∞) be a shelf-packing obtained
by the algorithm from Theorem 7 for some c ≥ 1. Let I ⊂ I be the polygons in one of the
shelves of P and define the packing P := {P (p)}p∈I . Then there is a shelf-packing P ′ of I

into two shelves with width(P ′) ≤ 1
2 (c + 3)wmax(I) and height(P ′) ≤ 2 height(P ).

Proof. The idea is to simply split the shelf in half in its middle as follows. Let xmid :=
(c+2)wmax(I)

2 and partition I into the two sets

IL :=
{

p ∈ I | width
(
P (p) ∩ (R≥xmid ×R)

)
≤ width(p)

2

}
and IR = I\IL. Note that

IR ⊂
{

p ∈ I | width
(
P (p) ∩ (R≤xmid ×R)

)
<

width(p)
2

}
.

We can now pack IL and IR into separate shelves while respecting the ordering of the
polygons in P . We denote the packing where both of those shelves are stacked on each other
by P ′. Both shelves have width at most

xmid + wmax(I)
2 ≤ xmid + wmax(I)

2 = 1
2(c + 3)wmax(I).

and hence P ′ does as well. ◀

ESA 2023
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Making use of the lemma, we can show the following result.

▶ Theorem 12. There is a polynomial time 21.8-approximation algorithm for Polygon
Strip Packing.

Proof. Let I ∈ I . We apply the algorithm from Theorem 7, for some c which we will fix
later, to construct vertical shelves. More precisely, we rotate each item by an angle of π/2,
apply the algorithm to the rotated instance, and then rotate the whole packing back by π/2.
Let P be the so obtained packing and let S1, . . . , Sk be the vertical shelves of this packing.

We now stack S1, . . . , Sk horizontally into the (vertical) strip. That is, we pack the
{Si}i∈[k] into horizontal shelves T1, . . . , Tl themselves. Note that since each shelf Si, where
i ∈ [k], has the same height, the problem reduces to (1D)-Bin Packing. In particular,
stacking the {Si}i∈[k] greedily, each except for possibly the last horizontal shelf is covered by
at least half by the Si. If the last shelf Tl is covered by half, we need at most l ≤ 2 area(P )

(c+2)hmax(I)

horizontal shelves to pack S1, . . . , Sk. Otherwise, we need at most l ≤ 2 area(P )
(c+2)hmax(I) +1 shelves.

However, in this case we can reduce the height of Tl, which is filled less than half by the
{Si}i∈[k], to 1

2 (c + 3)hmax(I) by using Lemma 11 on every shelf S in Tl.
In particular, for such packing P ′ it holds that

height(P ′) ≤
(

2 area(P )
(c + 2)hmax(I)

)
(c + 2)hmax(I) + 1

2(c + 3)hmax(I)

= 2 area(P ) + 1
2(c + 3)hmax(I)

≤
(

4c + 2
c

m + 1
m

+ 5
2c + 11

2

)
opt(I)

= 21.8 opt(I),

which is attained for c = 3. ◀

7 Efficient Approximation Algorithms for Polygon Bin Packing for
Polygons of Width Upper Bounded by 1/M

In this section, we present polynomial time approximation algorithms for Polygon Bin
Packing for the case when polygons have their width bounded by a fraction of the form 1

M

and also improved approximations if their height is bounded as well.
To the best of our knowledge, the only presently published polynomial time approximation

algorithm for Polygon Bin Packing is an 11-approximation in the case when the diameter
of the input polygons is bounded by 1

10 , see [1]. For this case, we obtain an efficient
5.09-approximation.

We prove the following theorem.

▶ Theorem 13. Let I ∈ I and assume that there is some M ∈ N≥2 with wmax(I) ≤ 1
M .

Then one can pack I into{
32 opt(I) + 5 if M = 2
4M(M−1)

(M−2)2 opt(I) + 3 if M ≥ 3

bins efficiently. If additionally hmax(I) ≤ 1
M , then we can even efficiently pack I into{

24 opt(I) + 3 if M = 2
2(M+1)(M−1)

(M−2)2 opt(I) + 2 if M ≥ 3

bins.
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In particular, for inputs where both width and height of all polygons are upper bounded
by 1

10 , we get a 5.09-approximation.

Proof. Assume first that M ≥ 3. We use the algorithm from Theorem 7 for c = 1
wmax(I) −2 ≥

M − 2 to obtain a packing P with shelves S1, . . . , Sk. The packing P satisfies

width(P ) ≤ (c + 2)wmax(I) = 1,

and hence a shelf Si, i ∈ [k], fits into a unit bin. Note that m = ⌊c⌋ ≥ M − 2, since M − 2 is
an integer. Since cwmax(I) = 1 − 2wmax(I) ≥ M−2

M , it holds that

height(P ) ≤ 2
(

1 + 1
m

)
area(I)

cwmax(I) + hmax(I) ≤ 2
(

1 + 1
M − 2

)
area(I)

(M − 2)/M
+ hmax(I).

We can now use NF to distribute the shelves into unit bins. Since hmax = 1, this uses at
most 2 height(P ) + 1 bins, see Section 3. But

2 height(P ) + 1 ≤ 4
(

1 + 1
M − 2

)
area(I)

(M − 2)/M
+ 2hmax(I) + 1 ≤ 4M(M − 1)

(M − 2)2 opt(I) + 3.

If hmax(I) ≤ 1
M as well, we can use FF instead of NF to distribute the shelves into bins,

which needs at most (1 + 1
M ) height(P ) + 1 bins, see again Section 3. This way, the number

of needed bins is bounded by(
1 + 1

M

)
height(P ) + 1 ≤ 2(M + 1)(M − 1)

(M − 2)2 opt(I) + 2,

as claimed.
Now we consider the case when M = 2. Partition I into two sets IL and IR, where a

polygon p ∈ I belongs to IL if its chosen x-parallelogram in the proof of Theorem 7 is tilted
to the left and to IR if it is tilted to the right. We now proceed with the algorithm in the
proof of Theorem 7 for c = 1

wmax(I) − 1 ≥ 1, but for IL and IR separately. Call the obtained
packings PL and PR, respectively. Note that since all are tilted to one side only,

width(PL), width(PR) ≤ (c + 1)wmax(I) = 1

and, using m = |c| ≥ 1 and cwmax(I) = 1 − wmax(I) ≥ 1
2 ,

height(PL) ≤ 2
(

1 + 1
m

)
area(IL)

cwmax(IL) + hmax(IL) ≤ 8 area(IL) + hmax(I),

as well as analogously height(PR) ≤ 8 area(IR) + hmax(I).
Hence, for the packing P , where PR is stacked on top of PL, it holds that

width(P ) ≤ 1 and height(P ) ≤ 16 area(I) + 2hmax(I).

From here, with the same arguments as for M ≥ 3, we obtain the desired bounds. ◀
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