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Abstract
Amiri and Wargalla proved the following local-to-global theorem about shortest paths in directed
acyclic graphs (DAGs): if G is a weighted DAG with the property that for each subset S of 3 nodes
there is a shortest path containing every node in S, then there exists a pair (s, t) of nodes such that
there is a shortest st-path containing every node in G. We extend this theorem to general graphs.
For undirected graphs, we prove that the same theorem holds (up to a difference in the constant 3).
For directed graphs, we provide a counterexample to the theorem (for any constant). However, we
prove a roundtrip analogue of the theorem which guarantees there exists a pair (s, t) of nodes such
that every node in G is contained in the union of a shortest st-path and a shortest ts-path.

The original local-to-global theorem for DAGs has an application to the k-Shortest Paths with
Congestion c ((k, c)-SPC) problem. In this problem, we are given a weighted graph G, together with
k node pairs (s1, t1), . . . , (sk, tk), and a positive integer c ≤ k, and tasked with finding a collection
of paths P1, . . . , Pk such that each Pi is a shortest path from si to ti, and every node in the graph
is on at most c paths Pi, or reporting that no such collection of paths exists. When c = k, there
are no congestion constraints, and the problem can be solved easily by running a shortest path
algorithm for each pair (si, ti) independently. At the other extreme, when c = 1, the (k, c)-SPC
problem is equivalent to the k-Disjoint Shortest Paths (k-DSP) problem, where the collection of
shortest paths must be node-disjoint. For fixed k, k-DSP is polynomial-time solvable on DAGs
and undirected graphs. Amiri and Wargalla interpolated between these two extreme values of c, to
obtain an algorithm for (k, c)-SPC on DAGs that runs in polynomial time when k − c is constant.

In the same way, we prove that (k, c)-SPC can be solved in polynomial time on undirected graphs
whenever k − c is constant. For directed graphs, because of our counterexample to the original
theorem statement, our roundtrip local-to-global result does not imply such an algorithm (k, c)-SPC.
Even without an algorithmic application, our proof for directed graphs may be of broader interest
because it characterizes intriguing structural properties of shortest paths in directed graphs.
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1 Introduction

An intriguing question in graph theory and algorithms is: “can we understand the structure of
shortest paths in (directed and undirected) graphs?” More specifically: “can we understand
the structure of the interactions between shortest paths in graphs?” This question has been
approached from various angles in the literature. For instance, Bodwin [12] characterizes
which sets of nodes can be realized as unique shortest paths in weighted graphs, and Cizma
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8:2 A Local-To-Global Theorem for Congested Shortest Paths

and Linial investigate the properties of graphs whose shortest paths satisfy or violate certain
geometric properties [19, 20]. Additionally, there is a large body of work on distance
preservers, where the goal is to construct a subgraph that preserves distances in the original
graph (see [11] and the references therein). There are also numerous computational tasks in
which structural results about shortest paths inform the creation and analysis of algorithms,
including distance oracle construction [15], the k-disjoint shortest paths problem, [8], and
the next-to-shortest path problem [35] (the cited papers are the most recent publications in
their respective topics).

The angle of our work is inspired by the following local-to-global theorem1 of Amiri and
Wargalla [3] concerning the structure of shortest paths in directed acyclic graphs (DAGs):

▶ Theorem 1 ([3]). Let G be a weighted DAG with the property that, for each set S of 3
nodes, there is a shortest path containing every node in S. Then, there exists a pair (s, t) of
nodes such that there is a shortest st-path containing every node in G.

Note that in the statement of Theorem 1, the condition that “for each set S of 3 nodes,
there is a shortest path containing every node in S” is equivalent to the condition that one
of the 3 nodes is on a shortest path between the other two.

Theorem 1 is “local-to-global” in the sense that from a highly congested local structure
(every small subset of nodes is contained in a shortest path) we deduce a global structure
(all nodes in the graph live on a single shortest path).

At first glance, Theorem 1 may appear rather specialized, since the existence of shortest
paths through all triples of nodes is a rather strong condition. However, Amiri and Wargalla
[3] show that Theorem 1 has applications to the k-Shortest Paths with Congestion c ((k, c)-SPC)
on problem on DAGs: in this problem we are given a DAG, and are tasked with finding a
collection of shortest paths between k given source/sink pairs, such that each node in the
graph is on at most c of the paths. We discuss this application in detail in Section 1.2.

Amiri and Wargalla [3] raised the question of whether their results can be extended to
general graphs, both undirected and directed. Our work answers this question.

1.1 Structural Results
We ask the following question:

Is Theorem 1 true for general (undirected and directed) graphs?

Our first result answers this question affirmatively for undirected graphs (with constant 4
instead of 3).

▶ Theorem 2 (Undirected graphs). Let G be a weighted undirected graph with the property
that, for each set S of 4 nodes, there is a shortest path containing every node in S. Then,
there exists a pair (s, t) of nodes such that some shortest st-path contains every node in G.

The constant 4 in the statement of Theorem 2 cannot be replaced with 3, as seen by
considering an undirected cycle on four vertices.

Theorem 2 implies a faster algorithm for (k, c)-SPC on undirected graphs, answering an
open question raised in [3, Section 4]. We discuss the background of this problem and our
improvement in Section 1.2.

1 This is slightly different from the statement of the theorem in [3], where the authors write present their
result in the context of the Shortest Paths with Congestion problem, which we discuss in detail later.
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Our second result is for directed graphs. First, we observe that there is actually a
counterexample to Theorem 1 for general directed graphs: let a be the constant for which we
desire a counterexample (i.e., the constant that is 3 in Theorem 1, and 4 in Theorem 2). Let
G be a cycle with bidirectional edges, where all clockwise-pointing edges have weight 1 and
all counterclockwise-pointing edges have weight a. One can verify that the precondition of
the theorem holds: for each set S of a nodes there is a shortest path containing every node
in S, just by taking the shortest clockwise path through all nodes in S. However, no single
shortest path contains every node in G, so the theorem does not hold.

Even though a direct attempt at generalizing Theorem 1 to all directed graphs fails, one
might hope for some analogue of Theorem 1 that does hold. One interpretation of the above
counterexample is that the exact statement of Theorem 1 is not the “right” framework for
getting a local-to-global shortest path phenomenon in general directed graphs. To that end,
we consider the roundtrip analogue of Theorem 1, where the final path through every node
is a shortest roundtrip path, i.e., the union of a shortest st-path and a shortest ts-path
(roundtrip distances are a common object of study in directed graphs, with there being
much research, for example, in roundtrip routing [21], roundtrip spanners [33], and roundtrip
diameter computation [1]). Note that the above counterexample does not apply to the
roundtrip analogue of Theorem 1 since there exists a pair (s, t) of nodes such that the union
of a shortest st-path and a shortest ts-path are both in the clockwise direction and thus
contain all nodes in the graph.

For our second result, we present a roundtrip analogue of Theorem 1 which holds true for
general directed graphs (with the constant 11 instead of 3):

▶ Theorem 3 (Directed graphs). Let G be a weighted directed graph with the property that,
for each set S of 11 nodes, there is a shortest path containing every node in S. Then, there
exists a pair (s, t) of nodes such that the union of a shortest st-path and a shortest ts-path
contains every node in G.

Proving Theorem 3 requires overcoming a number of technical challenges involving the c
omplex structure of shortest paths in directed graphs. Due to its roundtrip nature, unlike
Theorem 2, Theorem 3 does not appear to have any immediate algorithmic applications.

1.2 Disjoint and Congested Shortest Path Problems
In this section we introduce the k-Shortest Paths with Congestion c ((k, c)-SPC) problem and
state the implications of our work for this problem.

1.2.1 Background
We begin by discussing the related k-Disjoint Shortest Paths (k-DSP) problem. For more
related work on disjoint path problems in general, see the full version.

Disjoint Shortest Paths

Formally, the k-Disjoint Shortest Paths (k-DSP) problem is defined as follows:

k-Disjoint Shortest Paths (k-DSP): Given a graph G and k node pairs (s1, t1), . . . , (sk, tk),
find a collection of node-disjoint paths P1, . . . , Pk such that each Pi is a shortest path
from si to ti, or report that no such collection of paths exists.

ESA 2023



8:4 A Local-To-Global Theorem for Congested Shortest Paths

The k-DSP problem was introduced in the 90s by Eilam-Tzoreff [22], who gave a
polynomial-time algorithm for undirected graphs when k = 2, and conjectured that there is a
polynomial-time algorithm for any fixed k in both undirected and directed graphs. Recently,
Lochet [30] proved Eilam-Tzoreff’s conjecture for undirected graphs by showing that k-DSP
can be solved in polynomial time for any fixed k. Subsequently, the dependence on k in the
running time was improved by Bentert, Nichterlein, Renken, and Zschoche [8]. It is known
that k-DSP on undirected graphs is W[1]-hard [8, Proposition 36], so this problem is unlikely
to be fixed-parameter tractable.

For directed graphs, Bérczi and Kobayashi [9] showed that 2-DSP can be solved in
polynomial time. For k ≥ 3 however, determining the complexity of k-DSP on directed
graphs remains a major open problem. This problem is only known to be polynomial-time
solvable for special classes of directed graphs, such as DAGs and planar graphs [9].

Shortest Paths with Congestion

The k-Shortest Paths with Congestion c ((k, c)-SPC) problem is the variant of k-DSP where
some amount of congestion (paths overlapping at nodes) is allowed. In general, problems of
finding paths with limited congestion are well-studied studied in both theory and practice.
For instance, there is much work on the problem in undirected graphs where the goal is to
find a maximum cardinality subset of node pairs (si, ti) that admit (not necessarily shortest)
paths with congestion at most c [32, 28, 7, 6, 5, 17, 4, 26, 16, 18]. As another example, [27]
provides, for fixed k, a polynomial-time algorithm for the problem on directed graphs of
determining that either there is no set of disjoint paths between the node pairs (si, ti), or
finding a set of such paths with congestion at most 4. Another example for directed graphs
is the problem of finding paths between the node pairs (si, ti) where only some nodes in the
graph have a congestion constraint [31].

Formally, the k-Shortest Paths with Congestion c ((k, c)-SPC) problem is defined as follows:

k-Shortest Paths with Congestion c ((k, c)-SPC): Given a graph G, along with k node pairs
(s1, t1), . . . , (sk, tk), and a positive integer c ≤ k, find a collection of paths P1, . . . , Pk

such that each Pi is a shortest path from si to ti, and every node in V (G) is on at most
c paths Pi, or report that no such collection of paths exists.

The (k, c)-SPC problem was introduced by Amiri and Wargalla [3]. Before that, the
version of (k, c)-SPC where the paths are not restricted to be shortest paths was studied by
Amiri, Kreutzer, Marx, and Rabinovich [2].

When c = 1, the (k, c)-SPC problem is equivalent to the k-DSP problem. At the other
extreme, when c = k, there are no congestion constraints, so the problem can be easily solved
in polynomial time by simply finding a shortest path for each pair (si, ti) independently.
Amiri and Wargalla [3] asked the following question: can we interpolate between these
two extremes? In particular, can we get algorithms for (k, c)-SPC where the exponential
dependence on k for k-DSP can be replaced with some dependence on O(k − c) instead?

Amiri and Wargalla [3] achieved this goal for DAGs. In particular, they gave a reduction
from (k, c)-SPC on DAGs to k-DSP on DAGs of the following form: letting d = k − c, if
k-DSP on DAGs can be solved in time f(n, k), then (k, c)-SPC on DAGs can be solved in
time O

((
k
3d

)
· f(2dn, 3d)

)
. The essential aspect of this running time is that the second input

to the function f is not k but rather an O(d) term. A key tool in their reduction is Theorem 1
(stated in a different way).
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Since k-DSP can be solved in nO(k) time on DAGs [9], the above result implies that
(k, c)-SPC can be solved in

(
k
3d

)
· (2dn)O(d) time on DAGs. That is, (k, c)-SPC on DAGs is

polynomial-time solvable for arbitrary k whenever d is constant. We note that for for every
c, the (k, c)-SPC problem on DAGs is W[1]-hard with respect to d, so the problem is unlikely
to be fixed-parameter tractable with respect to d [3, Proof of Theorem 3].

1.2.2 Algorithmic Results
Similarly to Amiri and Wargalla’s result for DAGs, our result for undirected graphs, The-
orem 2, implies a reduction from (k, c)-SPC to k-DSP on undirected graphs.

▶ Lemma 4. If k-DSP can be solved in f(n, k) time on undirected graphs, then (k, c)-SPC
can be solved in O

((
k
4d

)
· f(3dn, 4d)

)
time on undirected graphs.

Lemma 4 follows from Theorem 2 using an argument nearly identical to the one presented
for DAGs in [3] (up to a difference in constants). For completeness, we include a full proof of
this result in the full version.

Since it is known that k-DSP can be solved in undirected graphs in time nO(k·k!) [8],
applying Theorem 2 together with Lemma 4, we deduce the following result.

▶ Corollary 5. (k, c)-SPC on undirected graphs can be solved in
(

k
4d

)
· (3dn)O(d·(4d)!) time.

Thus (k, c)-SPC on undirected graphs is in polynomial time whenever d = k−c is constant;
that is, it is in the complexity class XP with respect to the parameter d. Prior to our work,
no polynomial-time algorithm for this problem appears to have been known in this regime,
even for simple cases such as (k, k − 1)-SPC on undirected graphs.

In contrast, our structural result for directed graphs, Theorem 3, does not imply a faster
algorithm for (k, c)-SPC in directed graphs. This is because Theorem 3 does not appear to
imply a reduction from (k, c)-SPC to k-DSP in the manner of Lemma 4. Moreover, even if
such a reduction did exist, this would not imply an algorithm for directed graphs analogous
to Corollary 5. This is because while k-DSP is polynomial-time solvable for constant k in
undirected graphs, it remains open whether even 3-DSP over directed graphs can be solved
in polynomial time.

1.3 The Structure of Shortest Paths in Directed Graphs
Although our result for directed graphs, Theorem 3, does not appear to have immediate
algorithmic applications, we believe it is still interesting from a graph theoretic perspective,
especially in light of the current scarcity of results for shortest disjoint path problems in
directed graphs. In this section, we expand upon this idea with some remarks, and then
state a lemma from our proof concerning the structure of shortest paths in directed graphs.

We currently have a poor understanding of the complexity of the k-DSP problem in
directed graphs: for fixed k ≥ 3, it is still not known if this problem is either polynomial-time
solvable or NP-hard. In fact, even the complexity of the seemingly easier (3, 2)-SPC problem
on directed graphs is open. In this context, Theorem 3 is compelling because it presents an
example of interesting behavior which holds for collections of shortest paths in DAGs, and
then continues to hold, under suitable generalization, for systems of shortest paths in general
directed graphs. This sort of characterization appears to be rare in the literature.

More generally, the methods we use to establish Theorem 3 involve combinatorial observa-
tions about the structure of shortest paths in directed graphs, and the interactions between
them. We believe our analysis could offer more insight into resolving other problems that

ESA 2023



8:6 A Local-To-Global Theorem for Congested Shortest Paths

concern systems of shortest paths in directed graphs. There are many such problems, where
the undirected case is well-understood, but in the directed case not much is known. This
barrier is in-part due to the relatively complex patterns of shortest paths which can appear
in directed graphs. We hope that our analysis of directed shortest paths may shed light on
problems for which the structural complexity of directed shortest paths is the bottleneck
towards progress.

One example of a problem where the undirected case is well-understood while the directed
case remains poorly understood is, as discussed previously, the k-DSP problem. Another
curious example is the Not-Shortest Path problem, where the goal is to find an st-path that
is not a shortest path. Although Not-Shortest Path can be solved over undirected graphs in
polynomial time [29], no polynomial time algorithm is known for this problem in directed
graphs. A third example is the problem of approximating the diameter of a graph. For
undirected graphs there is an infinite hierarchy of algorithms that trade off between time
and accuracy [14], while only two points on the hierarchy are known for directed graphs.
Additionally, the roundtrip variant of diameter is the least understood of any studied variant
of the diameter problem [34]. Another example is the construction of approximate hopsets: for
directed graphs there is there a polynomial gap between upper and lower bounds [25, 10, 13],
while for undirected graphs the gap is subpolynomial [23, 24]. The preponderance of such
examples motivates proving results like Theorem 3, which characterize interesting behavior
of shortest paths in directed graphs.

Structural Lemma for Directed Shortest Paths

One of the lemmas we establish on the way to proving Theorem 3 is a general statement
about the structure of shortest paths in directed graphs. It can be stated independently of
the context of the proof of Theorem 3 and we highlight it here.

We categorize any shortest path P into one of two main types, based on the ways that
other shortest paths intersect with it. The following simple definition will be useful for
defining our path types.

▶ Definition 6. For any nonnegative integer ℓ and set of ℓ nodes, v1, v2, . . . , vℓ, we say that
the order v1 → v2 → · · · → vℓ is a shortest-path ordering if there is a shortest path containing
all of the nodes v1, v2, . . . , vℓ in that order.

In addition to our two main path types, there is a third path type which we call a trivial
path because it is easy to handle:

▶ Definition 7 (Trivial Path). Given a directed graph, nodes a and b, and a shortest path P

from a to b, we say P is a trivial path if P contains at least one node w such that a → w → b

is the only shortest-path ordering of a, w, b.

Now we are ready to state our two main types of shortest paths. The first type is a
reversing path:

▶ Definition 8 (Reversing path). Given a directed graph, nodes a and b, and a non-trivial
shortest path P from a to b, P is reversing if P contains at least one node w such that w

falls on some shortest path from b to a. A non-reversing path is a non-trivial path that is
not reversing.

We prove a lemma that characterizes the structure of reversing and non-reversing paths
in terms of the possible shortest-path orderings of each node on the path and the endpoints
of the path. See Figures 1a and 1b for a depiction of the structure enforced by the lemma.
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▶ Lemma 9 (Reversing/Non-Reversing Lemma). Let P be a non-trivial shortest path and let
a and b be the first and last nodes of P respectively. Then P can be partitioned into three
contiguous ordered segments with the following properties (where a is defined to be in Segment
1, b is defined to be in Segment 3, and Segment 2 could be empty).

Segment 1 consists of nodes w such that the shortest-path orderings of a, w, b are precisely
a → w → b, and b → a → w.

Segment 2 consists of nodes w such that the shortest-path orderings of a, w, b are precisely{
a → w → b, and b → w → a if P is a reversing path
a → w → b, and b → a → w, and w → b → a if P is a non-reversing path.

Segment 3 consists nodes w such that the shortest-path orderings of a, w, b are precisely
a → w → b, and w → b → a.

a b

Segment 1 Segment 2 Segment 3

(a) Reversing Path. The structure of a reversing
path, as given by Lemma 9. The blue dashed path,
pink solid path, and purple dotted path are examples
of the allowed orderings for nodes in segments 1, 2,
and 3 respectively.

a b

Segment 1 Segment 2 Segment 3

(b) Non-Reversing Path. The structure of a non-
reversing path, as given by Lemma 9. The possible
shortest-path orderings for nodes in segment 2 are
represented by pink and light blue solid paths, while
the orderings allowed for nodes in segments 1 and 3
are represented by blue dashed and purple dotted
segments respectively.

Figure 1 Possible orderings of vertices on shortest paths in the reversing and non-reversing cases.
The blue circles are representative examples of the types of nodes on the path from a to b (in general
this path will contain more than just five nodes).

In the proof of Theorem 3 we employ the strategy of categorizing shortest paths as
reversing or non-reversing (or trivial), and applying Lemma 9 to glean some structure. We
note, however, that Lemma 9 itself is not the main technical piece of the proof.

2 Preliminaries

All graphs are assumed to have positive edge weights. Graphs are either undirected or
directed, depending on the section. For any pair of nodes (u, v), we use dist(u, v) to denote
the shortest path distance from u to v. Given a path P and two nodes u and v occurring on
P in that order, we let P [u, v] denote the subpath of P with u and v as endpoints.

For the (k, c)-SPC problem, we always let d denote the difference d = k − c. When
considering a particular solution to a (k, c)-SPC instance, we refer to the paths P1, . . . , Pk

between (s1, t1), . . . , (sk, tk) respectively as solution paths. Any node in the graph which lies
in c of the solution paths is referred to as a max-congestion node.

ESA 2023



8:8 A Local-To-Global Theorem for Congested Shortest Paths

2.1 Subpath Swapping
In our proofs, we will frequently modify collections of shortest paths by “swapping subpaths”
between intersecting paths. This procedure is depicted in Figure 2, and we formally describe
it below.

▶ Definition 10 (Subpath Swap). Let R be a collection of shortest paths in a directed graph.
Let P and Q be two paths in R. Let a, b ∈ P ∩ Q be nodes in these paths, such that a appears
before b in both P and Q. We define swapping the subpaths of P and Q between a and b to
be updating the set of paths R by simultaneously replacing P with (P \ P [a, b]) ∪ Q[a, b] and
Q with (Q \ Q[a, b]) ∪ P [a, b]. We often refer to this process simply as “swapping P [a, b] and
Q[a, b].”

si a b ti

tjsj

si a b ti

tjsj

Figure 2 A simple subpath swap, where the subpaths from a to b of the green path (from si to
ti) and pink path (from sj to tj) are switched.

▶ Observation 11 (Subpath Swap). Let R be the solution to some (k, c)-SPC problem. Then
swapping subpaths in R produces a new solution to the same (k, c)-SPC instance with the
same set of max-congestion nodes.

Proof. This observation holds because swapping subpaths does not change the number of
solution paths any given node is contained in, does not change the endpoints of any solution
path, and all solution paths remain shortest paths. ◀

2.2 Correspondence Between Our Results and (k, c)-SPC
In this section we detail some nuances regarding the correspondence between the statement
of our results and the (k, c)-SPC problem. For the sake of generality and simplicity, we stated
Theorems 1-3 independently of the (k, c)-SPC problem. In contrast, the original result of
Amiri and Wargalla, corresponding to Theorem 1, was stated as follows:

▶ Lemma 12 ([3]). If k > 3d, then any instance of (k, c)-SPC on DAGs either has no
solution, or has a solution where some solution path Pi passes through all max-congestion
nodes.

Although the statement of Lemma 12 may initially seem unrelated to the statement of
Theorem 1, their correspondence becomes clearer with the following observation, which is a
simple generalization of an observation from [3]:

▶ Observation 13. Let N be a positive integer. Suppose k > Nd, and let R be a solution to
an arbitrary (k, c)-SPC instance. Then for any set S of N max-congestion nodes in R, there
exists some solution path in R which contains every node in S.

We defer the proof of Observation 13 to the appendix.
To prove our results for the (k, c)-SPC problem in undirected graphs (Lemma 4 and Co-

rollary 5), we need to prove a lemma analogous to Lemma 12 but for undirected graphs:
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▶ Lemma 14. If k > 4d, then any instance of (k, c)-SPC either has no solution, or has a
solution where some solution path Pi passes through all max-congestion nodes.

The following generalizes Theorem 2 and Lemma 14.

▶ Lemma 15 (General Undirected Result). Given an undirected graph and subset W of nodes,
let R be a collection of shortest paths with the following property:

for every set S ⊆ W of 4 nodes, some path in R contains every node in S. (⋆)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of shortest paths that still has property (⋆). Then starting from R, there exists a sequence
of subpath swaps that results in a collection of shortest paths in which some path P passes
through all nodes in W .

We note that the quantity O(n3) is an unimportant technicality used in the proof of the
following observation, and is chosen as a loose upper bound on the number of subpath swaps
we will perform.

▶ Observation 16. Lemma 15 generalizes both Theorem 2 and Lemma 14.

We defer the proof of Observation 16 to the appendix.
We also prove an analogue of Lemma 12 and Lemma 15 for directed graphs:

▶ Lemma 17 (General Directed Result). Given a directed graph and subset W of nodes, let
R be a collection of shortest paths with the following property:

for every set S ⊆ W of 11 nodes, some path in R contains every node in S. (†)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of paths that still has property (†). Then starting from R, there exists a sequence of subpath
swaps that results in a collection of shortest paths in which either:
1. some path P passes through all nodes in W , or
2. the union of two paths P, P ′ contain all nodes in W , and the first and last nodes on P

from W are the same as the last and first nodes on P ′ from W , respectively.
Lemma 17 generalizes Theorem 3, in exactly the same way as Lemma 15 generalizes Theorem 2
for undirected graphs. In the same way that Lemma 15 generalizes Lemma 14 for undirected
graphs, Lemma 17 implies the following lemma:

▶ Lemma 18. If k > 11d, then any instance of (k, c)-SPC on directed graphs either has no
solution, or has a solution where the union of some two solution paths Pi and Pj contains
all max-congestion nodes.

Although Lemma 18 does not immediately lead to an algorithm for (k, c)-SPC on directed
graphs, it specifies some structure which may be useful for future work on (k, c)-SPC and
related problems.

One might wonder whether Lemma 18 can be modified to have only one solution path Pi

that contains all max-congestion nodes, like for DAGs (Lemma 12) and undirected graphs
(Lemma 14), since this would imply interesting algorithms for (k, c)-SPC on directed graphs.
Unfortunately, the answer to this question turns out to be no. Similar to the counterexample
against extending Theorem 2 to directed graphs, we present a counterexample in the full
version which rules out replacing two solution paths with a single solution path in Lemma 18.

ESA 2023
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3 Technical Overview

3.1 Prior Work on DAGs

As a starting point for our proofs for general graphs, we use Amiri and Wargalla’s proof of
Theorem 1 for DAGs [3]. We describe their proof differently than they do for the sake of
comparison to our work. We actually describe their proof of the following lemma (which
they do not explicitly state), which is analogous to the statements of our general results
(Lemmas 15 and 17).

▶ Lemma 19 ([3]). Given a DAG and subset W of nodes, let R be a collection of shortest
paths with the following property:

for every set S ⊆ W of 3 nodes, some path in R contains every node in S. (∗)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of paths that still has property (∗). Then starting from R, there exists a sequence of subpath
swaps that results in a collection of shortest paths in which some path P passes through all
nodes in W .

The proof of Lemma 19 is as follows. Let a and b be the first and last nodes in W

(respectively) in a topological ordering of the DAG. Let v1, . . . v|W |−2 be the remaining nodes
in W in order topologically. For ease of notation, we consider R to be changing over time
via subpath swaps, and we will let R denote the current value of R.

The argument is inductive. For the base case, by property (∗) there is a path in R
that contains a and b. Suppose inductively that a path P ∈ R currently contains a, b, and
v1, . . . , vℓ for some ℓ. We would like to perform a subpath swap to augment P by adding
vℓ+1 to P . To do so, we consider a path P ′ ∈ R that contains vℓ, vℓ+1, and b, where such
a path exists by property (∗). Importantly, because the graph is a DAG, vℓ, vℓ+1, and b

appear in that order on both P and P ′. Thus, according to the definition of a subpath swap
(Definition 10) we can swap P [vℓ, b] with P ′[vℓ, b], as shown in Figure 3. As a result of this
subpath swap, P now contains vℓ+1 in addition to all of the nodes in W that P originally
contained. By induction, this completes the proof.

a v1 vℓ b

vℓ+1

. . .. . . . . . Pj

Pj′

a v1 vℓ b

vℓ+1

. . .. . . . . . Pj

Pj′

Figure 3 In a DAG, the topological ordering of the nodes allows us to perform a sequence of
subpath swaps, each adding the next node in W in order to a path P .



S. Akmal and N. Wein 8:11

3.2 Undirected Graphs
Recall that our goal for undirected graphs is to prove the following theorem:

▶ Lemma 15 (General Undirected Result). Given an undirected graph and subset W of nodes,
let R be a collection of shortest paths with the following property:

for every set S ⊆ W of 4 nodes, some path in R contains every node in S. (⋆)

Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of shortest paths that still has property (⋆). Then starting from R, there exists a sequence
of subpath swaps that results in a collection of shortest paths in which some path P passes
through all nodes in W .

The essential property that enables the subpath swapping in the above argument for
DAGs is the fact that for any triple of nodes in a DAG, there is only one possible order
this triple can appear on any path. This property is not exactly true for general undirected
graphs, but we observe that a similar “consistent ordering” property is true: if there is
a shortest path containing nodes u, v, w in that order, then any shortest path containing
these nodes, has them in that order (or in the reverse order w, v, u, but since the graph is
undirected we can without loss of generality assume they are in the order u, v, w). This
property is true simply because dist(u, w) is larger than both dist(u, v) and dist(v, w), so v

must appear between u and w on any shortest path.
To perform subpath swapping on undirected graphs, we need an initial pair of nodes in

W such that the rest of the nodes in W will be inserted between this initial pair (in the DAG
algorithm, this initial pair a, b was the first and last nodes in W in the topological order). For
undirected graphs, our initial pair is the pair a, b of nodes in W whose distance is maximum.
We order the rest of the nodes in W by their distance from a, to form v1, . . . , v|W |−2.

Now, our consistent ordering property from above implies the following: for any shortest
path P containing a, all nodes in W ∩ P are ordered as a subsequence of a, v1, v2, . . . , vm, b

on P . As a result, we can perform the same type of iterative subpath swapping argument as
the DAG algorithm.

3.3 Roundtrip Paths in Directed Graphs
The situation for directed graphs is significantly more involved than the previous cases.
There are several challenges that are present for directed graphs that were not present for
either undirected graphs or DAGs. These difficulties stem from the fact that the interactions
between shortest paths is much more complicated in directed graphs than in DAGs or
undirected graphs.

We first outline these challenges, and then provide an overview of how we address them.
Our techniques for addressing these issues exemplify that despite the possibly complex
arrangement of shortest paths in directed graphs, there still exists an underlying structure to
extract. We hope that our methods might illuminate some structural properties of shortest
paths in directed graphs in a way that could apply to other directed-shortest-path problems.

Recall that our goal is to prove the following theorem:

▶ Lemma 17 (General Directed Result). Given a directed graph and subset W of nodes, let
R be a collection of shortest paths with the following property:

for every set S ⊆ W of 11 nodes, some path in R contains every node in S. (†)
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Further suppose that applying any sequence of O(n3) subpath swaps to R yields a collection
of paths that still has property (†). Then starting from R, there exists a sequence of subpath
swaps that results in a collection of shortest paths in which either:
1. some path P passes through all nodes in W , or
2. the union of two paths P, P ′ contain all nodes in W , and the first and last nodes on P

from W are the same as the last and first nodes on P ′ from W , respectively.

Challenges for directed graphs
Challenge 1: No “extremal” nodes

In the proofs for DAGs and undirected graphs, to begin building the path P containing all
nodes in W , we chose two initial extremal nodes a, b ∈ W and added the rest of the nodes of
W between a and b. These nodes a, b were straightforward to choose because there was only
one pair of nodes in W that could possibly appear first and last on a path containing all
nodes in W (for DAGs a and b were the first and last nodes in a topological ordering of W ,
and for undirected graphs a and b were the pair of nodes in W with largest distance).

For directed graphs however, it is entirely unclear how to pick these two initial extremal
nodes. For instance, choosing the pair of nodes a, b ∈ W with largest directed distance
dist(a, b) does not work because there could be a shortest path Q containing a and b, where
a and b are not the first and last nodes in W on Q (in particular, if b appears before a on
the shortest path).

To circumvent this issue for directed graphs, we avoid selecting a pair of initial nodes at
all. Without initial nodes as an anchor, we cannot build our path P in order from beginning
to end as we did for DAGs and undirected graphs. Instead, our goal is to ensure the following
weaker property: as we iteratively transform the overall collection of shortest paths R, the
set of nodes in W on the path in R containing the most nodes in W grows over time. That
is, the path of R containing the most nodes in W might currently be P , but at the previous
iteration, the path of R with the most nodes in W might have been a different path P ′. In
this case, our weaker property ensures that P currently contains a superset of the nodes in
W that P ′ contained at the previous iteration.

To perform a single iteration with this guarantee, we may need to significantly reconfigure
many different paths of R via many subpath swaps. As a result, our path building procedure
is much more intricate than the procedures employed for DAGs and undirected graphs.

Challenge 2: No consistent ordering of nodes on shortest paths

In the proof for DAGs and undirected graphs, we were able to perform subpath swaps due
to the following crucial property: consider an arbitrary set of nodes v1, . . . , vℓ (for any ℓ) in
a DAG or an undirected graph. If there is a shortest path containing the nodes v1, . . . , vℓ in
that order, then every shortest path containing these nodes has them in that same order.

For directed graphs, however, this property is not even close to being true. In fact, given
that the nodes v1, . . . , vℓ appear in that order on some shortest path, there are exponentially
many other possible orderings of these nodes on other shortest paths. For instance, when
ℓ = 4, given that the nodes v1, v2, v3, v4 appear in that order on some shortest path, there are
eight possible orderings of these nodes on shortest paths, as depicted in Figure 4 (note that
despite the large number of possible orderings, not all orderings are possible; for instance the
ordering v1, v2, v4, v3 is not possible, as this would imply that dist(v1, v4) < dist(v1, v3), which
contradicts our assumption that some shortest path contains v1, v2, v3, v4 in that order).



S. Akmal and N. Wein 8:13

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4 v1 v2 v3 v4

Figure 4 If nodes v1, v2, v3, v4 appear in that order on some shortest path, they can still appear
on different shortest paths in up to seven other distinct possible orders.

Because directed graphs have no consistent ordering of nodes on shortest paths, it becomes
much more difficult to perform subpath swaps like those in the algorithms for DAGs and
undirected graphs.

To address this challenge, we provide a structural analysis of the ways in which shortest
paths in directed graphs can interact with each other. First, as introduced in Section 1.3,
we categorize shortest paths into two main types, reversing paths and non-reversing paths,
and we prove the Reversing/Non-Reversing Path Lemma (Lemma 9). Roughly speaking,
this lemma is useful because it helps us construct sets of nodes that exhibit some sort of
consistent ordering property. This, in turn, enables us to perform sequences of subpath swaps.
Defining these consistently ordered sets of nodes and the corresponding subpath swaps is the
most involved part of the proof, and works differently for each of the two path types.

Proof structure

Our proof is structured as follows. Initially, we define P to be the path in R that contains
the most nodes in W (breaking ties arbitrarily). Then we proceed with the following two
cases:

(Case 1) We first check whether, roughly speaking, P is contained in a cycle that contains
all nodes in W . In this case, we can use a sequence of subpath swaps to build a second
path P ′ so that the union of P and P ′ contains all nodes in W and have the “roundtrip”
structure specified in the theorem statement, in which case we are done.
(Case 2) If we are not in Case 1, our goal is to augment some path in R so that the set of
nodes of W on the path in R with the most nodes in W grows (the goal introduced in
the discussion of Challenge 1).

After going through these cases, if we are not done we redefine P as the path in R containing
the most nodes in W and repeatedly apply the appropriate case, until we are done. Most
technical details of our proof are in the path augmentation procedure of Case 2. We elaborate
on the main ideas for this procedure next.

Handling Case 2: Path Augmentation

Recall that our goal is the following: Let P be the path in R containing the most nodes in
W , and let W ′ = W ∩ P . Fix a node u ∈ W \ W ′. We wish to perform subpath swaps to
yield a path P ′ that contains every node in W ′ ∪ {u}.

We begin with a few warm-up cases to motivate our general approach.
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8:14 A Local-To-Global Theorem for Congested Shortest Paths

Warm-up cases

Let a and b be the first and last nodes on P that are in W , respectively. By property (†)
there exists a path in R containing a, b, and u. We will suppose in all of the subsequent
examples, that for all paths in R containing the nodes a, b, and u, the node u is always the
last node in W on the path; this is not a conceptually important assumption and it makes
the description simpler.

We claim that if there is a path P ′ ∈ R containing a, b, and u, such that a appears before
b, then we are done. Indeed, as depicted in Figure 5a, in this case we can simply swap the
subpath P [a, b] with P ′[a, b], to form a new solution where P ′ contains W ′ ∪ {u}.

a b

vℓ+1

. . . . . . Pi

Pj
u

a b

vℓ+1

. . . . . . Pi

Pj
u

(a) If a appears before b on P ′, a subpath
swap lets P ′ pass through u together with all
of the nodes in W ′.

a v1 vℓ vℓ+1 Pi

Pj

b

u

a v1 vℓ vℓ+1 Pi

Pj

b

u

(b) More generally, when P ′ passes through vℓ+1, b, a, vℓ

in that order, we can perform two subpath swaps to get P ′

to pass through the rest of W ′. Here, the dotted segments
indicate portions of the paths which pass through the
nodes of W ′ that are not labeled in the figure.

Figure 5 The two warm-up cases.

Now we will slightly generalize this warm-up case. Let a, v1, v2, . . . , b be the nodes in
W ′ in the order they appear on P . Consider vℓ and vℓ+1 for any ℓ. By property (†) there
exists a path in R containing a, b, u, vℓ, and vℓ+1. We know from the previous warm-up
case that if there is a pathin R containing these nodes such that a appears before b, then
we are done. We also claim that if there exists a path P ′ ∈ R containing these nodes such
that vℓ+1, b, a, vℓ appear in that order, then we are done. This is because as depicted in
Figure 5b, we can swap the subpath P [a, vℓ] with P ′[a, vℓ], and swap the subpath P [vℓ+1, b]
with P ′[vℓ+1, b]. Now, P ′ contains W ′ ∪ {u}.

General Approach: “Critical nodes”

We will motivate our general approach in the context of the above warm-up cases. In the
second warm-up case, we considered 5 nodes (a, b, u, vℓ, and vℓ+1) in W ′, and argued that if
there is a path P ′ ∈ R containing these 5 nodes in one of several “good” orders, then we are
done because we can perform subpath swaps to reroute P ′ through all of W ′ ∪ {u}. Thus,
our goal is to choose these 5 (or in general, at most 11) nodes carefully, to guarantee that
they indeed fall into a “good” order on some path in R. We refer to these at most 11 nodes
as critical nodes:

▶ Definition 20 (Critical Nodes (Informal)). Given a path P ∈ R, a set of nodes T ⊆ W of
size |T | ≤ 11 are critical nodes of P if there exists a path P ′ ∈ R containing the nodes of T

in an order that allows us to perform subpath swaps to reroute some path in R through all of
W ′ ∪ {u} (where W ′ = W ∩ P ).
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Our general approach is to show that any path P ∈ R contains a set of at most 11 critical
nodes. We remind the reader that this section only concerns Case 2, so our goal is to show
that P contains a set of critical nodes only if P does not already fall into Case 1. After
showing that P contains a set of critical nodes, we are done, because performing subpath
swaps to yield a path containing W ′ ∪ {u} was our stated goal.

It is not at all clear a priori that any P should contain a set of critical nodes. Indeed, the
critical nodes need to be chosen very carefully. Specifically, they need to be chosen based on
the structure of the path P .

This is where the definitions from Section 1.3 come into play. We categorize P based on
whether it is reversing or non-reversing, (or trivial). Then we construct the critical nodes of
P using a different procedure specialized for which type of path P is.

If P is a reversing path, then we argue that a valid choice of critical nodes are a, b, and u,
along with the two nodes at the two boundaries between the segments defined in Lemma 9
(and a few other nodes for technical reasons). To make this argument, which we will not
detail here, we construct an involved series of subpath swaps to reroute some path through
all of W ′ ∪ {u}.

On the other hand, if P is a non-reversing path, the critical nodes are less straightforward to
define than if P is a reversing path. Indeed, defining the critical nodes for non-reversing paths
is the most conceptually difficult part of our proof. The high-level reason for this difficulty is
the fact that the nodes of Segment 2 of a non-reversing path are quite unconstrained because
they admit 3 possible shortest-path orderings instead of only 2.

To be more concrete, suppose every node on P falls into Segment 2. For simplicity,
suppose we were to choose critical nodes a, b, w, where a and b are the endpoints of P

and also happen to be in W ′, and w is any other node in W ′. Consider the path P ′ ∈ R
containing a, b, and w, which exists by property (†). By the definition of Segment 2, there
are 3 possible orderings of a, b, w on P ′ (a → w → b, or b → a → w, or w → b → a). Note
that these 3 orderings are cyclic shifts of one another. Suppose, as an illustrative example,
that P ′ has the ordering b → a → w. We would like to reroute P ′ through all of W ′ ∪ {u},
but we have a problem. For any node s ∈ W ′ that appears between a and w on P , we can
reroute P ′ through s by swapping the subpath P [a, w] with P ′[a, w]; however, for a node
s ∈ W ′ that appears between w and b on P , we cannot do this because there is no path
segment from w to b on P ′, since b appears before w on P ′. Thus, we cannot reroute P ′

through s. That is, no matter how we choose the critical nodes, if we do not impose extra
structural constraints, we can always identify a segment of the path that we cannot reroute
P ′ through. Overcoming this issue is our main technical challenge, and we defer it to the full
proof.
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