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Abstract
Ranking and Balance are arguably the two most important algorithms in the online matching
literature. They achieve the same optimal competitive ratio of 1 − 1/e for the integral version
and fractional version of online bipartite matching by Karp, Vazirani, and Vazirani (STOC 1990)
respectively. The two algorithms have been generalized to weighted online bipartite matching prob-
lems, including vertex-weighted online bipartite matching and AdWords, by utilizing a perturbation
function. The canonical choice of the perturbation function is f(x) = 1 − ex−1 as it leads to the
optimal competitive ratio of 1 − 1/e in both settings.

We advance the understanding of the weighted generalizations of Ranking and Balance in this
paper, with a focus on studying the effect of different perturbation functions. First, we prove
that the canonical perturbation function is the unique optimal perturbation function for vertex-
weighted online bipartite matching. In stark contrast, all perturbation functions achieve the optimal
competitive ratio of 1 − 1/e in the unweighted setting. Second, we prove that the generalization of
Ranking to AdWords with unknown budgets using the canonical perturbation function is at most
0.624 competitive, refuting a conjecture of Vazirani (2021). More generally, as an application of
the first result, we prove that no perturbation function leads to the prominent competitive ratio
of 1 − 1/e by establishing an upper bound of 1 − 1/e − 0.0003. Finally, we propose the online
budget-additive welfare maximization problem that is intermediate between AdWords and AdWords
with unknown budgets, and we design an optimal 1 − 1/e competitive algorithm by generalizing
Balance.
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1 Introduction

Online bipartite matching has been extensively studied since the seminal work of Karp,
Vazirani, and Vazirani [22]. Two remarkable algorithms, Ranking of Karp et al. [22] and
Balance of Kalyanasundaram and Pruhs [19], achieve the same optimal competitive ratio of
1 − 1/e for the integral (randomized) and fractional (deterministic) version of the problem
respectively.

AdWords and Vertex-weighted. Motivated by the display of advertising on the Internet,
Mehta et al. [25] generalized the online bipartite matching problem so that it allows weighted
graphs. Consider an underlying bipartite graph G = (L ∪ R, E) with L, R being offline and
online vertices. Each vertex u ∈ L is associated with a budget Bu, and each edge (u, v) ∈ E

is associated with a bid wuv. The offline vertices and their corresponding budgets are known
in advance. The online vertices arrive one at a time, with their incident edges and associated
bids, and have to be matched immediately and irrevocably to some u ∈ L. An offline vertex
u ∈ L can be matched to multiple online vertices. Let Su be the set of online vertices
matched to u and then, the revenue of u equals min{Bu,

∑
v∈Su

wuv}, that is, the revenue
cannot exceed the budget. The goal is to maximize the total revenue and to compete against
the optimal revenue of an offline algorithm that knows the whole graph.

Mehta et al. [25] established an optimal (1 − 1/e)-competitive algorithm for the fractional
version1 of the problem by generalizing Balance to Perturbed-Balance. Later, Aggarwal et
al. [1] considered a restricted setting of AdWords, called vertex-weighted online bipartite
matching, in which all edges incident to u have the same weight of wu = Bu. They generalized
Ranking to Perturbed-Ranking and obtained the same 1 − 1/e competitive ratio for the
integral version of the problem.

The two generalizations are both greedy-based algorithms with a careful perturbation of
the weights. Specifically, upon the arrival of each vertex v, the algorithm matches it with
the offline vertex u with the maximum perturbed weight f(xu) · wuv, among those neighbors
whose budgets have not yet been exhausted. Here, xu corresponds to the random rank
of u in Perturbed-Ranking and the fraction of budget spent so far in Perturbed-Balance.
The canonical choice of the perturbation function is f(x) = 1 − ex−1, applied by Mehta
et al. [25] and Aggarwal et al. [1]. Notably, Devanur, Jain, and Kleinberg [7] provided a
unified primal-dual analysis for Perturbed-Ranking and Perturbed-Balance, in which the
perturbation function plays a critical role even for the unweighted online bipartite matching
problem.

Despite the above successful generalizations of Ranking and Balance from unweighted to
weighted graphs, we lack an understanding of the extra difficulty introduced by weighted
graphs. In this paper, we revisit the two classic algorithms and focus on the perturbation
function. Notice that for unweighted graphs, Perturbed-Ranking (resp. Perturbed-Balance)
with an arbitrary perturbation function degenerates to the same Ranking (resp. Balance)
algorithm and achieves the optimal competitive ratio of 1 − 1/e. We examine the importance
of perturbation functions by studying the performance of Perturbed-Ranking and Perturbed-
Balance on weighted graphs with an arbitrary perturbation function.

Our first result confirms the importance of the perturbation function, proving that the
canonical perturbation function f(x) = 1 − ex−1 is the unique optimal perturbation function
for vertex-weighted online bipartite matching.

1 The paper states their result with the small-bid assumption, i.e., γ = maxu,v wuv/Bu is small. We
consider the fractional AdWords problem, corresponding to the case when γ → 0. See our discussion in
Section 2.
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▶ Theorem 1. The perturbation function f(x) = 1 − ex−1 is unique (up to a scale
factor) for Perturbed-Ranking and Perturbed-Balance to achieve the optimal compet-
itive ratio of 1 − 1/e for vertex-weighted online bipartite matching.

It is surprising that this question has been overlooked by the online matching community.
We introduce a new family of hard instances that heavily exploits the power of weighted
graphs. Noticeably, prior to our work, the only 1 − 1/e impossibility result by Karp et al. [22]
is established for unweighted graphs. This advanced understanding is also the starting point
for us to explore the limitation of Perturbed-Ranking in a more general model, i.e., AdWords
with unknown budgets.

AdWords with Unknown Budgets. A major open question left by Mehta et al. [25] is the
competitive ratio of Perturbed-Ranking for the fractional AdWords problem. In addition
to obvious theoretical interests, the Perturbed-Ranking algorithm has a merit of budget-
obliviousness, as pointed out by Vazirani [28] and Udwani [27]. I.e., the algorithm does not
need to know the budget of each vertex, in contrast to the Perturbed-Balance algorithm.
Formally, consider the setting of AdWords with unknown budgets: the algorithm has no
prior knowledge of the budgets and only learns the budget of each vertex u when the total
revenue of u first exceeds its budget. Observe that Perturbed-Balance is not applicable in
this setting, since its decision at each step depends on the fraction of budget spent on each
offline vertex.

Perturbed-Ranking is the only known algorithm for AdWords with unknown budgets
so far. Using the canonical perturbation function f(x) = 1 − ex−1, Vazirani [28] proved
Perturbed-Ranking is (1 − 1/e)-competitive assuming a no-surpassing property. Udwani [27]
proved that the algorithm is 0.508-competitive in the general case and is 0.522-competitive
with a different perturbation function f(x) = 1 − e1.15(x−1).

It is natural to ask if other perturbation functions can lead to a better competitive
ratio, or even 1 − 1/e. In this paper, we give a limitation of all perturbation functions,
showing a separation between vertex-weighted online bipartite matching and AdWords on
the performance of Perturbed-Ranking.

We first show that Perturbed-Ranking with the canonical perturbation function can
only achieve a competitive ratio of at most 0.624 < 1 − 1/e. Then, together with the
family of instances we constructed in the proof of Theorem 1, we manage to prove that any
perturbation function cannot lead to the prominent competitive ratio of 1 − 1/e:

▶ Theorem 2. The competitive ratio of Perturbed-Ranking algorithm with any
perturbation function f(x) on fractional AdWords is at most 1 − 1/e − 0.0003. In
particular, using the canonical function f(x) = 1 − ex−1, the competitive ratio is at
most 0.624.

Our result refutes the conjecture of Vazirani [28] that Perturbed-Ranking is 1 − 1/e

competitive. Moreover, our construction is clean and simple, suggesting that the no-surpassing
assumption might be too strong to hold in reality. Such result leads to the conjecture that
there is no 1 − 1/e competitive algorithm for AdWords with unknown budgets.

ESA 2023
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Remark. Very recently, independently by our work, Udwani [27] updated his paper and
proved that a specific perturbation function family f(x) = 1 − eβ(x−1) is at most 0.624-
competitive for any β > 0. Our result provides a stronger observation by another approach
that shows all perturbation functions cannot achieve the competitive ratio of 1 − 1/e.

Online Budget-additive Welfare Maximization. The above upper bound of the competitive
ratio for Perturbed-Ranking suggests that AdWords with unknown budgets should be strictly
harder than AdWords, in terms of the worse-case competitive ratio. Unfortunately, our
current construction is specific to the Perturbed-Ranking algorithm and does not serve as a
problem hardness.

Inspired by the online submodular welfare maximization problem (that we discuss below
in the related work section), we consider a variant which we call online budget-additive
welfare maximization problem, that lies in between the original AdWords and AdWords
with unknown budgets. Specifically, we assume that 1) the algorithm has no information
of the budgets at the beginning, 2) at each step, the algorithm can query for each vertex
u, the value of wu(S) = min{Bu,

∑
v∈S wuv} for any subset S of arrived vertices. Notice

that AdWords with unknown budgets can be interpreted in a similar way, except that the
algorithm can only query those sets S that are subsets of S(u) ∪ {v} where S(u) is the set of
current matched vertices to u.

Our final result is an optimal algorithm for the fractional version of the problem. We
hope it would shed some light on designing online algorithms beyond Perturbed-Ranking in
the AdWords with unknown budgets setting and designing algorithms beyond greedy (with
unrestricted computational power) in the online submodular welfare maximization setting.

▶ Theorem 3. There exists a fractional algorithm that achieves the competitive ratio
of (1 − 1/e) for the Online Budget-Additive Welfare Maximization problem.

Roadmap. Section 2 presents the formal definitions of the Perturbed-Ranking and Perturbed-
Balance algorithms. We prove Theorem 1 in Section 3 and Theorem 2 in Section 4. Due to
space limit, we provide the proof of Theorem 3 in the full version.

1.1 Related Work
The seminal work of Karp et al. [22] studied the unweighted and one-sided online bipartite
matching model and proposed the optimal (1 − 1/e)-competitive algorithm: Ranking. The
analysis of Ranking has been refined and simplified by a series of works [2, 7, 11, 8].
Kalyanasundaram and Pruhs studied the b-matching model and designed Balance (fractional)
that also achieves the competitive ratio of 1 − 1/e. The model has been generalized to
many weighted variants, e.g., vertex-weighted [1, 14, 15, 18], edge-weighted [3, 9, 10], and
AdWords [6, 25, 17]. Besides the aforementioned generalization of Ranking and Balance to the
vertex-weighted and AdWords settings, Huang et al. [15] generalized Ranking to the vertex-
weighted setting with random arrival order, by utilizing a two-dimensional perturbation
function. They achieved a competitive ratio of 0.653 that is subsequently improved to
0.662 by Jin and Williamson [18]. Another line of work adapts Ranking and Balance to
other matching problems, including online bipartite matching with random arrivals [21, 24],
oblivious matching [5, 26] and fully online matching [12, 13, 16].

The most general extension of online bipartite matching is the online submodular welfare
maximization problem. It captures most of the weighted variants of online bipartite matching
discussed above. In this problem, a set of n offline vertices are given, each associated with a
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monotone submodular function wu. Upon the arrival of an online vertex, it must be assigned
to one of the offline vertices and the goal is to maximized the welfare

∑
u wu(Su), where Su

is the set of vertices received by u. The algorithm is assumed to have value oracles for the
functions. I.e., an algorithm can query the value of wu(S) for an arbitrary subset S of arrived
online vertices. Kapralov et al. [20] proved that the 0.5-competitive greedy algorithm is
optimal with restricted computational powers. For the unknown i.i.d. setting, they provided
an optimal (1 − 1/e)-competitive algorithm. In the random arrival model, Korula et al. [23]
proved that greedy is at least 0.5052-competitive, and the ratio is improved to 0.5096 by
Buchbinder et al. [4]. Our budget-additive welfare maximization problem is a special case of
the submodular welfare maximization problem where every wu is a budget-additive function
and admits an (1 − 1/e)-competitive algorithm.

Moreover, the AdWords with unknown budgets problem suggests us to study a more
restricted oracle access for online submodular welfare maximization. We call it marginal
oracle, that on the arrival of an online vertex v, the algorithm can only query the value of
wu(S) for S ⊆ Su(v) ∪ {v}, where Su(v) is the current matched vertex set to u. Based on
our discoveries in this paper, we make the following three conjectures for future work:

Online submodular welfare maximization with marginal oracles does not admit a 1 − 1/e

competitive algorithm.
AdWords with unknown budgets does not admit a 1 − 1/e competitive algorithm.
Online submodular welfare maximization admits a 0.5 + Ω(1) competitive algorithm.

All the three conjectures assume unlimited computational powers so that the third conjecture
does not violate the impossibility result of [20]. Observe that if the second conjecture holds,
it automatically confirms the first conjecture, and implies a price of budget-obliviousness for
AdWords.

2 Preliminaries

We first give the formal definitions of Perturbed-Ranking and Perturbed-Balance for the
vertex-weighted online bipartite matching problem and then discuss their extensions to the
fractional AdWords problem. Both algorithms depends on a perturbation function.
▶ Definition 4 (Perturbation Function). A perturbation function is a non-increasing and right
continuous function f(x) : [0, 1] → [0, 1].

2.1 Vertex-weighted
Given a perturbation function f , the two algorithms are defined as below. Observe that
Perturbed-Ranking is a randomized algorithm and Perturbed-Balance is a deterministic
algorithm.
▶ Definition 5 (Perturbed-Ranking [1]). Sample a rank yu for each offline vertex u ∈ L

independently from a uniform distribution on [0, 1]. On the arrival of an online vertex v, we
match v to the unmatched neighbor u with maximum perturbed weight f(yu) · wu.
▶ Definition 6 (Perturbed-Balance). On the arrival time of an online vertex v, we continuously
match v to the offline neighbor u with maximum perturbed weight f(xu) · wu, where xu is the
current matched portion of u.

We remark that in the context of Perturbed-Ranking, a perturbation function can be
interpreted as an alternative representation of a [0, 1]-bounded random variable, in which
f(x) corresponds to the value of a quantile x. Moreover, the right continuity is necessary for
the Perturbed-Balance algorithm to be well-defined.

ESA 2023



80:6 Perturbation Function for Weighted Online Bipartite Matching

2.2 AdWords
In Section 4, we shall work on the fractional version of AdWords (and its variant) that
is (slightly) more relaxed than the AdWords problem with small bid assumption. See e.g.
Udwani [27] for a more detailed discussion.

Fractional AdWords. The fractional AdWords problem allows each edge (u, v) to be
fractionally matched by an amount of xuv ∈ [0, 1], as long as the total matched portion of
each online vertex v is no more than a unit, i.e.,

∑
u xuv ≤ 1.

Consider the following generalizations of Perturbed-Ranking and Perturbed-Balance for
the fractional AdWords problem:
▶ Definition 7 (Perturbed-Ranking [28, 27]). Sample a rank yu for each offline vertex u ∈ L

independently from a uniform distribution on [0, 1]. On the arrival of an online vertex v, we
continuously match v to the neighbor u with maximum perturbed weight f(yu) · wuv, among
those neighbors whose budgets have not been exhausted yet.
▶ Definition 8 (Perturbed-Balance (a.k.a. MSVV [25])). On the arrival time of an online
vertex v, we continuously match v to the offline neighbor u with maximum perturbed weight
f(xu/Bu) · wuv, where xu is the current used budget of u.

3 Vertex-Weighted

In this section, we consider vertex-weighted online bipartite matching. We prove that to
achieve the optimal competitive ratio of Γ = 1 − 1/e, the canonical choice of the perturbation
function f(x) = 1 − ex−1 is unique (up to a scale factor).

Our result holds for both Perturbed-Ranking and Perturbed-Balance. Indeed, we establish
a dominance of Perturbed-Balance over Perturbed-Ranking in terms of worst-case competitive
ratio.
▶ Lemma 9. For any perturbation function f , the competitive ratio of Perturbed-Ranking
is at most the competitive ratio of Perturbed-Balance for vertex-weighted online bipartite
matching.

We sketch our proof below and provide the detailed proof in the full version.

Proof Sketch. Given an arbitrary instance G = (L ∪ R, E, w), we construct an instance
G′ so that the competitive ratio of Perturbed-Balance for G and the competitive ratio of
Perturbed-Ranking for G′ are approximately the same.

For each offline vertex u ∈ L, create N duplicates {u(i)}N
i=1 in G′ and with weights

wu(i) = wu.
For each online vertex v ∈ R, create N duplicates {v(i)}N

i=1 in G′ that arrive in a sequence.
For each (u, v) ∈ E, let there be a complete bipartite graph between {u(i)} and {v(i)} in
G′.

Now, we consider the behavior of Perturbed-Ranking on G′. Intuitively, although the ranks
are drawn independently for each offline vertex, the set of N ranks of {u(i)}N

i=1 should be
“close” to

{ 1
N , 2

N , . . . , 1
}

with high probability when N is sufficiently large. Formally, we
prove the following mathematical fact in the full version.

▶ Lemma 10. Let x1, . . . , xn be i.i.d. random variables sampled from [0, 1] uniformly. Let yi

be the i-th order statistics of {x1, . . . , xn}, for i = 1, . . . , n. Then for any parameter ε with
4n−1/4 < ε < 1, we have

Pr
x1,...,xn

[∣∣∣∣yi − i

n

∣∣∣∣ ≤ ε, ∀i ∈ [n]
]

≥ 1 − 2ne−
√

n/6. (3.1)



J. Liang, Z. G. Tang, Y. E. Xu, Y. Zhang, and R. Zhou 80:7

For now, we assume the set of ranks of {u(i)} is { 1
N , 2

N , . . . , 1} for each vertex u. Then,
upon the arrival of {v(i)}, we are basically running a discretized version of the Perturbed-
Balance algorithm, with a step size of 1

N . To formalize this intuition, we can introduce
a family of ε-approximate Perturbed-Balance algorithms that approaches the behavior of
Perturbed-Balance when ε → 0. Moreover, we prove that the Perturbed-Ranking algorithm
can be interpreted as an ε-approximate Perturbed-Balance algorithm when the ranks of
{u(i)} behave nicely (which is of high probability). Finally, we conclude the proof of the
lemma by letting N go to infinity. The detail is provided in the full version. ◀

Equipped with the above lemma, we hereafter focus on the easy-to-analyze Perturbed-
Balance algorithm, since it is deterministic while Perturbed-Ranking is randomized.

Our main construction is a family of instances that strongly restricts the shape of the
perturbation function. Naturally, our construction is built upon the classical upper triangle
graph that gives the tight 1 − 1/e competitive ratio for unweighted online bipartite matching.
On the other hand, our construction consists of a few novel gadgets that might be useful for
other weighted online matching problems. The following lemma also serves as a stepping
stone of our result for the AdWords with unknown budget problem in Section 4.

▶ Lemma 11. If the Perturbed-Balance algorithm achieves a competitive ratio of Γ for
vertex-weighted online bipartite matching, then the perturbation function f satisfies the
following:

(
β + 1 − eβ−1 − Γ

)
· f(α) ≥ (1 − (1 − Γ) · eα) ·

∫ β

0
f(x)dx, ∀α, β ∈ [0, 1]. (3.2)

We defer its proof till the end of the section and proceed by first proving our main
theorem.

▶ Theorem 1. The perturbation function f(x) = 1 − ex−1 is unique (up to a scale factor)
for Perturbed-Ranking and Perturbed-Balance to achieve the optimal competitive ratio of
1 − 1/e for vertex-weighted online bipartite matching.

Proof. By Lemma 9, it suffices to prove the theorem for Perturbed-Balance. By Lemma 11
with Γ = 1 − 1/e, the perturbation function f(x) satisfies the following:

f(α)
1 − eα−1 ≥

∫ β

0 f(x)dx

β − eβ−1 + e−1 , ∀α, β ∈ (0, 1).

Let M
def== infα∈(0,1)

f(α)
1−eα−1 . We must then have

f(α) ≥ M(1 − eα−1), ∀α ∈ [0, 1], (3.3)∫ β

0
f(x)dx ≤ M(β − eβ−1 + e−1), ∀β ∈ [0, 1]. (3.4)

Taking the integral of f(x) and applying (3.3), we have∫ β

0
f(x)dx ≥ M

∫ β

0
(1 − ex−1)dx = M(β − eβ−1 + e−1).

Together with (3.4), we conclude that f(x) = M(1 − ex−1) for all x ∈ [0, 1] according
to the right-continuity of function f . Specifically, if there exists an x∗ ∈ [0, 1), that
f(x∗) = M(1 − ex∗−1) + ε for some ε > 0, then there exists a sufficiently small δ > 0 such
that for any x ∈ [x∗, x∗ + δ], f(x) ≥ M(1 − ex−1) + ε

2 . Then we can see by (3.3) that

ESA 2023
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∫ 1

0
f(x)dx ≥

∫ 1

0

(
M(1 − ex−1) + 1[x∗ ≤ x ≤ x∗ + δ] · ε

2

)
dx = M

e
+ εδ

2 ,

which violates the statement of (3.4),
∫ 1

0 f(x)dx ≤ M
e . Therefore, ∀x ∈ [0, 1), f(x) =

M(1 − ex−1). Also, for f(1), note that f(x) is decreasing, so f(1) ≤ limx→1− f(x) = 0. Then
f(1) = 0.

This shows that ∀x ∈ [0, 1], f(x) = M(1−ex−1), concluding the proof of the theorem. ◀

3.1 Proof of Lemma 11
Fix α, β ∈ [0, 1]. Let n, m be sufficiently large numbers. Refer to Figure 3.1 for our instance.

Offline Vertices

Onine Vertices

U1,1
βeαn Vertices

Weight = f(β/m)

V2,1
βn Vertices

V1,1
β(eα-1)n+1 

Vertices ...

U1,m
βeαn Vertices
Weight = f(β)

V2,m
βn Vertices

V1,m
β(eα-1)n+1 

Vertices

m Groups

U2,1
n Vertices

Weight = f(α)

U2,m
n Vertices

Weight = f(α)

...
V3,1

n Vertices

V3,m
n Vertices

V1 U1 V2 U2 V3

Figure 3.1 Instance 1.

Our construction consists of m groups of vertices, and each group consists of 5 parts. We
use V1,i, V2,i, V3,i to denote the three online parts of group i and U1,i, U2,i to denote the two
offline parts of group i. Let Vj = ∪i∈mVj,i for j ∈ {1, 2, 3} and Uj = ∪i∈mUj,i for j ∈ {1, 2}.
We first define the vertices of the graph: for each i ≤ m,

U1,i consists of (βeαn + 1) offline vertices2 with the same weight of f( i
m · β).

U2,i consists of n offline vertices with the same weight of f(α).
V1,i, V2,i, V3,i consist of β(eα − 1)n, βn, n online vertices, respectively.

The arrival order of the vertices is the following:

V1,1 → V1,2 → · · · → V1,m → V2,1 → V2,2 → · · · → V2,m → V3,1 → V3,2 → · · · → V3,m.

Next, we define the edges of the graph:
V1,i and U1,i are connected as an upper triangle. I.e., the j-th vertex of V1,i is connected
to the k-th vertex of U1,i if and only in k ≥ j.
V2,i and the last βn vertices in U1,i are fully connected.
V2 and U2 are fully connected.

2 When βeαn is a fraction, let there be ⌈βeαn⌉ vertices. Since we are interested in the case when n, m are
sufficiently large, we safely omit the ceiling function for the simplicity of notation. We apply a similar
treatment for fractions throughout the paper.
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V3 and U2 are connected as a upper triangle. I.e., the j-th vertex of V3 is connected to
the k-th vertex of U2 if and only in k ≥ j.

We first calculate the optimum matching of the graph. That is, matching together (V3, U2)
and (V1 ∪ V2, U1). Therefore, we have

OPT = nm · f(α)︸ ︷︷ ︸
(V3,U2)

+
m∑

i=1
βeαn · f

(
i

m
· β

)
︸ ︷︷ ︸

(V1∪V2,U1)

= nm ·

(
f(α) + eα

∫ β

0
f(x)dx + o(1)

)
, (3.5)

where the second equality holds when m goes to infinity.
Next, we analyze the the performance of Perturbed-Balance. We split the whole instance

into three stages, corresponding to the arrivals of V1, V2, V3 respectively.

First stage (V1). Upon the arrival of each vertex in V1, it matches uniformly to its
neighbours in U1. The behavior of Perturbed-Balance is the same for different groups. We
analyze the matched portion of the last βn vertices of each group after the first stage:

xu = 1
βeαn

+ 1
βeαn − 1 + · · · + 1

βn
= ln

(
βeαn

βn

)
+ o(1) = α + o(1),

where the equality holds when n goes to infinity.

Second Stage (V2). Upon the arrival of each vertex v of V2,i, it will be weighing the
perturbed weights from U1,i and U2:

f(xu1) · wu1 = f(α + o(1)) · f

(
i

m

)
, for u1 ∈ U1,i ∩ N(v),

and f(xu2) · wu2 ≥ f

(
i

m

)
· f(α), for u2 ∈ U2.

Notice that the perturbed weights from U2 is always larger than the perturbed weights from
U1,i. We claim that in the second stage, all vertices of V2 would be fully matched to U2 by
Perturbed-Balance. Thus, at the end of the second stage, all vertices in U2 have matched
portion β.

Third stage (V3). The behavior of the last stage is similar to the behavior of the first stage,
except that all vertices in U2 start with a matched portion of β. After the arrival of the k-th
vertex in V3, the matched portion of its neighbor equals

β + 1
nm

+ 1
nm − 1 + · · · + 1

nm − k + 1 ≥ β + ln
(

nm

nm − k + 1

)
.

Consequently, only the first (1 − eβ−1)nm + 1 vertices from V3 can be matched. For the rest
of the online vertices, all their neighbors would be fully matched before their arrivals.

To sum up, we calculate the performance of Perturbed-Balance.

ALG ≤
m∑

i=1
(β(eα − 1)n + 1) · f

(
i

m
· β

)
︸ ︷︷ ︸

(V1,U1)

+ βnm · f(α)︸ ︷︷ ︸
(V2,U2)

+
(
(1 − eβ−1)nm + 1

)
· f(α)︸ ︷︷ ︸

(V3,U2)

= nm ·

(
(eα − 1)

∫ β

0
f(x)dx + (β + 1 − eβ−1) · f(α) + o(1)

)
. (3.6)
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Together with (3.5) and the assumption that Perturbed-Balance is Γ-competitive, we
conclude the proof by letting n, m → ∞:

(eα − 1)
∫ β

0
f(x)dx + (β + 1 − eβ−1) · f(α) ≥ Γ ·

(
f(α) + eα

∫ β

0
f(x)dx

)

⇐⇒
(
β + 1 − eβ−1 − Γ

)
· f(α) ≥ (1 − (1 − Γ) · eα) ·

∫ β

0
f(x)dx, ∀α, β ∈ [0, 1].

4 AdWords with Unknown Budget

In this section, we prove Theorem 2.

▶ Theorem 2. The competitive ratio of Perturbed-Ranking algorithm with any perturbation
function f(x) on fractional AdWords is at most 1 − 1/e − 0.0003. In particular, using the
canonical function f(x) = 1 − ex−1, the competitive ratio is at most 0.624.

We first construct a hard instance for which Perturbed-Ranking with f(x) = 1 − ex−1

only achieves a competitive ratio of 0.624. Recall that the vertex-weighted online bipartite
matching problem is a special case of the AdWords problem. Together with Theorem 1,
it should be convincing that Perturbed-Ranking (with any perturbation function) cannot
achieve the prominent competitive ratio of 1 − 1/e.

Our construction for general perturbation functions has a similar structure as the con-
struction for the canonical perturbation function. On the other hand, general perturbation
functions introduce extra technical difficulties to our argument that we shall discuss soon.

4.1 Canonical Perturbation Function f(x) = 1 − ex−1

We prove the result by the following lemma.

▶ Lemma 12. If Perturbed-Ranking with perturbation function f(x) = 1 − ex−1 achieves a
competitive ratio of Γ on AdWords, then

(1 − Γ) · f(α) ≥ (Γ − α) ·
∫ α

0
f(x)dx + Γ ·

∫ 1

α

f(x)dx, ∀α ∈ [0, 1]. (4.1)

Proof. Fix α ∈ [0, 1]. Let n be a sufficiently large number. Refer to Figure 4.1 for our
instance.

Our construction consists of n + 1 offline vertices u0, u1, . . . , un and 2n online vertices
v1, v2, . . . , v2n. The budgets of u1, u2, . . . , un are all 1 and the budget of u0 is unlimited. The
online vertices arrive in ascending order of their indices, i.e. vi is the i-th arriving online
vertex. Next, we define the edges of the graph:

v1, v2, . . . , vn are connected to u0, with edge weights b1, b2, . . . , bn respectively.
v1, v2, . . . , v2n are fully connected to u1, u2, . . . , un with edge weights 1.

Before we define the weights, we make an extra assumption to simplify our analysis:

∀1 ≤ i ≤ n, the rank of ui is yi = i/n.

Indeed, by Lemma 10, we would have that the set of ranks {y1, . . . , yn} are “close” to
{ 1

n , 2
n , · · · , 1}. Moreover, all vertices u1, . . . , un are symmetric in our graph. This assumption

would significantly simplify our analysis and can be removed by a more conservative choice
of the edge weights. We omit the tedious details for simplicity.
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Offline Vertices

Onine Vertices

b1

bn

1

1

1

1
n Vertices n Verticesn Vertices

Budget = 1

Budget = +∞
u0

u1, u2, ..., unv1, v2, ..., vn vn+1, vn+2, ..., v2n

Figure 4.1 Instance 2.

Let bi = f(i/n)
f(α) . The offline optimum is to match v1, v2, . . . , vn to u0 and to match

vn+1, vn+2, . . . , v2n to u1, u2, . . . , un, respectively. Consequently,

OPT = n +
n∑

i=1
bi = n ·

(
1 + 1

f(α)

∫ 1

0
f(x)dx + o(1)

)
.

With the assumption, the only randomness of Perturbed-Ranking is the rank y0 of u0.

Case 1. (y0 ≥ α) For each online vertex vi, the perturbed weight of (u0, vi) is

bi · f(y0) = f(y0)
f(α) · f

(
i

n

)
≤ f

(
i

n

)
,

while the perturbed weight of (ui, vi) is f(yi) = f
(

i
n

)
. Therefore, Perturbed-Ranking matches

(ui, vi) for all 1 ≤ i ≤ n and we have ALG(y0) = n.

Case 2. (y0 < α) In this case, some of the v1, v2, . . . , vn would be matched to u0. However,
the number of vertices matched to u0 should be no more than αn. The reason is as follows.
For each online vertex vi, suppose the number of previous vertices matched to u0 is larger
than αn, then the perturbed weight of (u0, vi) is f(y0)

f(α) · f
(

i
n

)
, while the perturbed weight of

(ui−αn, vi) is f
(

i
n − α

)
. Notice that f(x) = 1 − ex−1 is a log-concave function. Hence,

f(y0)
f(α) · f

(
i

n

)
≤ f(0)

f(α) · f

(
i

n

)
≤ f

(
i

n
− α

)
.

In other words, vi will not match u0. This concludes the proof that the number of vertices
matched to u0 is no more than αn. Notice that bi’s are non-increasing, we have

ALG(y0) ≤
αn∑
i=1

bi + n =
αn∑
i=1

f(i/n)
f(α) + n = n ·

(
1

f(α)

∫ α

0
f(x)dx + 1 + o(1)

)
.

Putting the two cases together and assuming that Perturbed-Ranking algorithm is
Γ-competitive, we conclude the proof of the lemma.

Γ ≤ E[ALG]
OPT =

α · n ·
(

1
f(α)

∫ α

0 f(x)dx + 1 + o(1)
)

+ (1 − α) · n

n ·
(

1 + 1
f(α)

∫ 1
0 f(x)dx + o(1)

) =
α ·
∫ α

0 f(x)dx + f(α)∫ 1
0 f(x)dx + f(α)

⇐⇒ (1 − Γ) · f(α) ≥ (Γ − α) ·
∫ α

0
f(x)dx + Γ ·

∫ 1

α

f(x)dx. ◀
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▶ Corollary 13. Perturbed-Ranking with f(x) = 1 − ex−1 is at most 0.624-competitive for
AdWords.

Proof. Plugging in α = 0.1 and f(x) = 1 − ex−1 in equation (4.1), we have

Γ ≤
α ·
∫ α

0 f(x)dx + f(α)∫ 1
0 f(x)dx + f(α)

=
0.1 ·

(
0.1 − e−0.9 + e−1)+ 1 − e−0.9

e−1 + 1 − e−0.9 < 0.624 . ◀

4.2 General Perturbation Functions
Before we delve into the detailed proof, we explain the technical difficulty introduced by
general perturbation functions. Our plan is to generalize Lemma 12: if we are able to prove
equation (4.1) for an arbitrary function f , we would then conclude our theorem by combining
it with equation (3.2).

However, our argument of the second case (y0 < α) of Lemma 12 crucially relies on the
specific formula of f(x). I.e., to upper bound the performance of Perturbed-Ranking, we use
the fact that f(0) · f(x) ≤ f(α) · f(x − α).

For a general perturbation function f(x), if we stick to the same property that no more
than αn vertices can be matched to u0 when y0 < α, we could achieve it by setting the
weights bi to be smaller. Indeed, if f

(
i
n − α

)
≥ f(0) · bi holds, the previous analysis can be

easily generalized. Hence, a natural attempt is to modify the instance as the following.

bi =
{ 1

f(α) · f
(

i
n

)
i < αn,

min
{

1
f(α) · f

(
i
n

)
, 1

f(0) · f
(

i
n − α

)}
i ≥ αn.

Unfortunately, this modification is not strong enough to give a constant strictly smaller
than 1 − 1/e. The reason is that the function f may have a steep drop in the neighborhood
of 0, which leads to negligible bi’s in the above construction.

On the other hand, the failure of the analysis comes from our coarse and brutal relaxation
by establishing a single upper bound for all y0 < α. For instance, if the function steeply
drops at some β ∈ [0, α], then we could resolve the issue by considering two cases of y0 < β

or y0 ∈ [β, α). Formally, we prove the following lemma that is slightly weaker than (4.1).

▶ Lemma 14. If Perturbed-Ranking with perturbation function f(x) achieves a competitive
ratio of Γ on AdWords, then

(1 − Γ) · f(α) ≥ (Γ − α) ·
∫ α

0
f(x)dx + (Γ − β) ·

∫ 1

α

min
{

f(x), f(α)
f(β)f(x − α)

}
dx,

∀α, β ∈ [0, 1], α ≥ β. (4.2)

Proof. We apply the same construction as in Lemma 12 and make the same assumption
that yi = i

n for the simplicity of presentation. We modify the instance by setting the weights
bi differently:

∀1 ≤ i ≤ n, bi =
{ 1

f(α) · f
(

i
n

)
i < αn,

min
{

1
f(α) · f

(
i
n

)
, 1

f(β) · f
(

i
n − α

)}
i ≥ αn.

The optimal solution equals

OPT = n+
n∑

i=1
bi = n·

(
1 + 1

f(α)

∫ α

0
f(x)dx +

∫ 1

α

min
{

f(x)
f(α) ,

f(x − α)
f(β)

}
dx + o(1)

)
. (4.3)

Next, we consider the performance of Perturbed-Ranking depending on the value of y0.
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Case 1. (y0 < β) We use OPT as a trivial upper bound of ALG, i.e., ALG(y0) ≤ OPT.

Case 2. (y0 ≥ α) For each online vertex vi, the perturbed weight of (u0, vi) is

bi · f(y0) ≤ f(y0)
f(α) · f

(
i

n

)
≤ f

(
i

n

)
,

while the perturbed weight of (ui, vi) is f(yi) = f
(

i
n

)
. Therefore, Perturbed-Ranking matches

(ui, vi) for all 1 ≤ i ≤ n and we have ALG(y0) = n.

Case 3. (y0 ∈ [β, α)) We prove that the number of vertices matched to u0 is no more
than αn. This can be similarly argued as follows. For each online vertex i (i > αn),
suppose the number of vertices matched to u0 is already αn, the perturbed weight for u0
is f(y0) · bi ≤ f(y0)

f(β) · f
(

i
n − α

)
, while the perturbed weight for ui−αn is f

(
i
n − α

)
. So that

f
(

i
n − α

)
≥ f(y0) · bi and thus vi will not choose u0 again. Therefore, as the number of

vertices matched to u0 is no more than αn, we have

ALG ≤ n +
αn∑
i=1

bi = n ·
(

1 + 1
f(α)

∫ α

0
f(x)dx + o(1)

)
.

Taking expectation over the randomness of y0, we conclude that

E[ALG] ≤ n ·
(

α − β

f(α)

∫ α

0
f(x)dx + 1 − β + o(1)

)
+ β · OPT. (4.4)

Finally, we conclude the proof by plugging in (4.3) and (4.4) to E[ALG] ≥ Γ · OPT and
letting n goes to infinity. ◀

Recall that the vertex-weighted online bipartite matching problem is a special case
of AdWords. We conclude the proof of Theorem 2 by Lemma 11, 14 and the following
mathematical fact. We provide the proof of the following lemma in the full version.

▶ Lemma 15. If a perturbation function f and Γ > 0 satisfy the following conditions:

(
α + 1 − eα−1 − Γ

)
· f(β) ≥

(
1 − (1 − Γ) · eβ

)
·
∫ α

0
f(x)dx, ∀α, β ∈ [0, 1], (4.5)

(1 − Γ)f(α) ≥ (Γ − α)
∫ α

0
f(x)dx + (Γ − β)

∫ 1

α

min
{

f(x), f(α)
f(β)f(x − α)

}
dx,

∀α, β ∈ [0, 1], α ≥ β,

(4.6)

then Γ < 1 − 1/e − 0.0003.
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