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Abstract
Phase estimation, due to Kitaev [arXiv’95], is one of the most fundamental subroutines in quantum
computing, used in Shor’s factoring algorithm, optimization algorithms, quantum chemistry al-
gorithms, and many others. In the basic scenario, one is given black-box access to a unitary U , and an
eigenstate |ψ⟩ of U with unknown eigenvalue eiθ, and the task is to estimate the eigenphase θ within
±δ, with high probability. The repeated application of U and U−1 is typically the most expensive
part of phase estimation, so for us the cost of an algorithm will be that number of applications.

Motivated by the “guided Hamiltonian problem” in quantum chemistry, we tightly characterize
the cost of several variants of phase estimation where we are no longer given an arbitrary eigenstate,
but are required to estimate the maximum eigenphase of U , aided by advice in the form of states (or
a unitary preparing those states) which are promised to have at least a certain overlap γ with the
top eigenspace. We give algorithms and matching lower bounds (up to logarithmic factors) for all
ranges of parameters. We show a crossover point below which advice is not helpful: o(1/γ2) copies of
the advice state (or o(1/γ) applications of an advice-preparing unitary) are not significantly better
than having no advice at all. We also show that having knowledge of the eigenbasis of U does not
significantly reduce cost. Our upper bounds use the subroutine of generalized maximum-finding of
van Apeldoorn, Gilyén, Gribling, and de Wolf [Quantum’20], the state-based Hamiltonian simulation
of Lloyd, Mohseni, and Rebentrost [Nature Physics’13], and several other techniques. Our lower
bounds follow by reductions from a fractional version of the Boolean OR function with advice, which
we lower bound by a simple modification of the adversary method of Ambainis [JCSS’02]. As an
immediate consequence we also obtain a lower bound on the complexity of the Unitary recurrence
time problem, matching an upper bound of She and Yuen [ITCS’23] and resolving an open question
posed by them.

Lastly, we study how efficiently one can reduce the error probability in the basic phase-estimation
scenario. We show that an algorithm solving phase estimation to precision δ with error probability
at most ε must have cost Ω

(
1
δ

log 1
ϵ

)
, matching the obvious way to error-reduce the basic constant-

error-probability phase estimation algorithm. This contrasts with some other scenarios in quantum
computing (e.g. search) where error-reduction costs only a factor O(

√
log(1/ϵ)). Our lower bound

technique uses a variant of the polynomial method with trigonometric polynomials.
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81:2 Tight Bounds for Quantum Phase Estimation and Related Problems

1 Introduction

1.1 Phase estimation
Kitaev [19] gave an elegant and efficient quantum algorithm for the task of phase estimation
nearly 30 years ago. The task is easy to state: given black-box access to a unitary and an
eigenstate, estimate the phase of the associated eigenvalue. Roughly speaking, the standard
algorithm for this task sets up a superposition involving many different powers of the unitary
to extract many different powers of the eigenvalue, and then uses a quantum Fourier transform
to turn that into an estimate of the eigenphase.1 Many of the most prominent quantum
algorithms can either be phrased as phase estimation, or use phase estimation as a crucial
subroutine. Some examples are Shor’s period-finding algorithm [30] as presented in [10];
approximate counting [6] can be done using phase estimation on the unitary of one iteration
of Grover’s search algorithm [16], which also recovers the O(

√
N) complexity for searching

an N -element unordered search space; the HHL algorithm for solving linear systems of
equations estimates eigenvalues in order to invert them [17]. Applications of phase estimation
in quantum chemistry are also very prominent, as discussed below.

More precisely, we are given black-box access to an N -dimensional unitary U (and a
controlled version thereof) and a state |ψ⟩ that satisfies U |ψ⟩ = eiθ|ψ⟩. Our goal is to output
(with probability at least 2/3) a θ̃ ∈ [0, 2π) such that |θ̃ − θ| is at most δ in R mod 2π. In
the basic scenario we are given access to one copy of |ψ⟩, and are allowed to apply U and
its inverse. Since the repeated applications of U and U−1 are typically the most expensive
parts of algorithms for phase estimation, the cost we wish to minimize is the number of
applications of U and U−1. We are additionally allowed arbitrary unitaries that do not
depend on U , at no cost. Kitaev’s algorithm has cost O(1/δ).

1.2 Phase estimation with advice
One of the core problems in quantum chemistry is the following: given a classical description
of some Hamiltonian H (for instance an “electronic structure” Hamiltonian in the form
of a small number of local terms), estimate its ground state energy, which is its smallest
eigenvalue. If H is normalized such that its eigenvalues are all in [0, 2π) and we define
the unitary U = eiH (which has the same eigenvectors as H, with an eigenvalue λ of H
becoming the eigenvalue eiλ for U), then finding the ground state energy of H is equivalent
to finding the smallest eigenphase of U . If we are additionally given a ground state |ψ⟩ (i.e.,
an eigenstate corresponding to the smallest eigenphase), then phase estimation is tailor-made
to estimate the ground state energy. However, in quantum chemistry it is typically hard to
prepare the ground state of H, or even something close to it. What can sometimes be done
is the preparation of some quantum state that has some non-negligible “overlap” γ with
the ground space, for instance the “Hartree-Fock state”. We will call such a state an advice
state. In the complexity-theoretic context, this problem of ground state estimation for a local
Hamiltonian given an advice state, is known as the “guided local Hamiltonian problem”,
and has received quite some attention recently [13, 8, 12, 32] because of its connections with
quantum chemistry as well as deep complexity questions such as the PCP conjecture. These
complexity-theoretic results typically focus on the BQP-completeness of certain special cases

1 An added advantage of the standard algorithm for phase estimation is that it can also work with a
quantum Fourier transform that is correct on average rather than in the worst case [23]. However, there
are also approaches to phase estimation that avoid the QFT altogether, see e.g. [28].
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of the guided local Hamiltonian problem, and don’t care about polynomial overheads of the
cost in the number of qubits logN and in the parameters δ and γ. In contrast, we care here
about getting essentially optimal bounds on the cost of phase estimation in various scenarios.

To be more precise, suppose our input unitary is U =
∑N−1

j=0 eiθj |uj⟩⟨uj | with each
θj ∈ [0, 2π). Let θmax = maxj∈{0,1,...,N−1} θj denote the maximum eigenphase, and let S
denote the space spanned by all eigenstates with eigenphase θmax, i.e., the “top eigenspace”.
Advice is given in the form of a state |α⟩ whose projection on S has squared norm at least γ2:
∥PS |α⟩∥2 ≥ γ2. Note that if S is spanned by a single eigenstate |umax⟩, then this condition
is the same as |⟨α|umax⟩| ≥ γ, which is why we call γ the overlap of the advice state with
the target eigenspace. The task maxQPEN,δ is to output, with probability at least 2/3, a
δ-precise (in R mod 2π) estimate of θmax.2

We will distinguish between the setting where the advice is given in the form of a number
of copies of the advice state |α⟩, or the potentially more powerful setting where we can apply
(multiple times) a unitary A that prepares |α⟩ from some easy-to-prepare initial state, say |0⟩.
We would have such a unitary A for instance if we have a procedure to prepare |α⟩ ourselves
in the lab. We can also distinguish between the situation where the eigenbasis |u0⟩, . . . , |uN ⟩
of U is known (say, the computational basis where |uj⟩ = |j⟩) and the potentially harder
situation where the eigenbasis is unknown. These two binary distinctions give us four different
settings. For each of these settings we determine essentially optimal bounds on the cost of
phase estimation, summarized in Table 1.

Table 1 Our results for the cost of maxQPEN,δ. We assume γ > 1/
√
N since a random state has

overlap 1/
√
N with the target eigenspace with high probability, and such a state can be prepared

at no cost. The “Basis” column indicates whether the eigenbasis of U is known; “Access to advice”
indicates whether we get copies of the advice state or a unitary to prepare it; “Number of accesses”
refers to the number of accesses to advice that we have. The last two columns show our bounds with
references to the lemmas where they are stated and proved. The Õ(·) in the upper-bound column
hides a factor logN for the odd-numbered rows, and log(1/γ) for the even-numbered rows.

Row Basis Access to advice Number of accesses Upper bound Lower bound

1 known state o
(

1
γ2

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 13

2 known state Ω
(

1
γ2

)
Õ

(
1

γδ

)
, Lemma 22 Ω

(
1

γδ

)
, Lemma 14

3 unknown state o
(

1
γ2

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 13

4 unknown state Ω
(

1
γ2

)
Õ

(
1

γδ

)
, Lemma 22 Ω

(
1

γδ

)
, Lemma 14

5 known unitary o
(

1
γ

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 15

6 known unitary Ω
(

1
γ

)
Õ

(
1

γδ

)
, Lemma 21 Ω

(
1

γδ

)
, Lemma 16

7 unknown unitary o
(

1
γ

)
Õ

( √
N
δ

)
, Lemma 20 Ω

( √
N
δ

)
, Lemma 15

8 unknown unitary Ω
(

1
γ

)
Õ

(
1

γδ

)
, Lemma 21 Ω

(
1

γδ

)
, Lemma 16

Let us highlight some interesting consequences of our results. First, a little bit of advice
is no better than no advice: the upper bounds in the odd-numbered rows of Table 1 are
actually obtained by algorithms that don’t use the given advice (o(1/γ2) copies of |α⟩ or
o(1/γ) applications of A and A−1) at all, yet their costs essentially match the lower bounds
for algorithms that use advice.

2 It doesn’t really matter, but we focus on the maximum rather than minimum eigenphase of U because
eigenphase 0 (i.e., eigenvalue 1) is a natural baseline, and we are looking for the eigenphase furthest
away from this baseline.

ESA 2023
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We remark here that the same proofs yield the same asymptotic lower bounds for
algorithms with access to at most c/γ2 advice states for Theorem 12, Rows 1 and 3 of Table 1,
and for algorithms with access to at most c/γ advice unitaries for Rows 5 and 7 of Table 1,
where c is a suitably small constant. We chose to use o(·) to avoid clutter.

A second interesting consequence is that too much advice is no better than a moderate
amount of advice: the upper bounds in Rows 2 and 4 use O(1/γ2) advice states, and the
upper bounds in Rows 6 and 8 use O(1/γ) advice unitaries, and using more advice does not
reduce the cost further. Thirdly, it turns out that knowledge of the eigenbasis of U doesn’t
really help in reducing the cost: the costs in row 1 and row 3 are the same, and similarly for
rows 2 vs. 4, 5 vs. 7 and 6 vs. 8.

Our upper bounds use the subroutine of generalized maximum-finding of van Apeldoorn,
Gilyén, Gribling, and de Wolf [2] which allows us to find maximum values in the second
register of a two-register superposition even when the first of these two registers has an
unknown basis. We derive the upper bound of row 4 from the upper bound of row 8 by
using roughly 1/γ copies of |α⟩ to simulate one reflection around the state |α⟩ = A|0⟩, using
the techniques of Lloyd, Mohseni, and Rebentrost [24].3 Our lower bounds follow from
reductions from a fractional version of the Boolean OR function with advice. We show a
lower bound for this by a simple modification of the adversary method [1] taking into account
the input-dependent advice in the initial state.

Comparison with related work

Some of the results in our table were already (partially) known. A cost-Õ(
√
N/δ) algorithm

for the adviceless setting with unknown eigenbasis (implying the upper bounds of rows 1, 3, 5,
7) was originally due to Poulin and Wocjan [27], and subsequently improved in the log-factors
by van Apeldoorn et al. [2]; the latter algorithm is basically our proof of Lemma 20. Lin
and Tong [21] (improving upon [11]) studied the situation with an advice-preparing unitary.
Their setting is slightly different from ours, they focus on preparing the ground state4 of a
given Hamiltonian without a known bound on its spectrum, but [21, Theorem 8] implies a
cost-O(log(1/γ) log(1/δ) log log(1/δ)/γδ) algorithm for our row 8. Their follow-up paper [22]
further reduces the number of auxiliary qubits with a view to near-term implementation, but
does not reduce the cost further. Our cost-O(log(1/γ)/γδ) algorithm is slightly better in the
log-factors than theirs, and uses quite different techniques ([21] uses quantum singular value
transformation [15]).

On the lower-bound side, Ω(1/δ) for the cost of phase estimation has long been known to
hold when the success probability is required to be a constant, this follows for instance from
the approximate counting lower bound of Nayak and Wu [26] (see also [4]). Lin and Tong [21,
Theorem 10] proved lower bounds of Ω(1/γ) and Ω(1/δ) on the cost for the setting with
known eigenbasis and advice unitary (our row 6, and hence also row 8). This is subsumed by
our stronger (and essentially optimal) Ω(1/γδ) lower bound in row 6. As far as we are aware,
ours is the first paper to systematically tie together these different results and to complete
the table with tight upper and lower bounds for the cost in all 8 cases.

3 We only stated the cost (number of applications of U and U−1) of our algorithms here in the upper-bound
column of Table 1. However, one can verify that the gate-complexities of our algorithms are only worse
by log-factors: they use three main subroutines, all of which have only small overheads in gate-complexity.
These subroutines are basic quantum phase estimation [19], generalized maximum-finding [2], and the
simulation of a unitary reflecting about the state |α⟩ given a small number of copies of |α⟩.

4 Because generalized maximum-finding (Lemma 17) actually outputs a state in addition to an estimate,
our algorithms can be modified to also output a state that is close to the top eigenspace of U .
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Let us also mention some recent work that is not directly covered by our results. First,
lower bounds for the slightly unusual small-success-probability regime were recently studied
by Lin [20]. Second, there has been work to make phase estimation more efficient in the
important special case where the unitary U = eiH is induced by a Hamiltonian H given
classically as the sum of relatively simple terms, when the cost of phase estimation interacts
with the cost of Hamiltonian simulation. See for instance the recent paper by Wan, Berta,
and Campbell [31] and references therein.

Application

She and Yuen [29, Theorems 1.6 and 1.7] studied the (t, δ)-Unitary recurrence time problem,
which is to distinguish whether an input unitary U satisfies U t = I or ∥U t −I∥ ≥ δ, promised
that one of these is the case (see Definition 7). They proved non-matching upper and lower
bounds for the cost of quantum algorithms for this problem (see Theorem 8 in this paper).
As an immediate application of our lower bound for fractional OR with advice, we also obtain
improved lower bounds for the unitary recurrence time problem that match the upper bound
of She and Yuen and answer one of their open problems [29, Section 2].

▶ Theorem 1 (Lower bound for Unitary recurrence time). Any quantum algorithm solving the
(t, δ)-recurrence time problem for N -dimensional unitaries has cost Ω(t

√
N/δ).

Interestingly, our lower bound uses the adversary method as opposed to their usage of the
polynomial method.

1.3 Phase estimation with small error probability

For our results in this subsection we revert to the original scenario of phase estimation,
where an algorithm is given the actual eigenstate |ψ⟩ as input and the goal is to estimate its
eigenphase θ. However, we now consider the regime where we want small error probability ε
rather than constant error probability 1/3. Let QPEN,δ,ε denote the task of computing, with
error probability ≤ ε, a δ-approximation of θ. By repeating Kitaev’s O(1/δ)-cost phase
estimation algorithm O(log(1/ε)) times and taking the median of the answers, we have the
following ε-dependent upper bound.

▶ Theorem 2 (Kitaev + standard error-reduction). For all integers N ≥ 2 and all ε ∈
(0, 1/2), δ ∈ [0, 2π), there exists an algorithm that solves QPEN,δ,ε with cost O

( 1
δ log 1

ε

)
.

Grover’s algorithm [16] can compute the ORN function with error probability ≤ 1/3
using O(

√
N) queries to its N input bits. Interestingly, there exists an ε-error quantum

algorithm for ORN with only O(
√
N log(1/ε)) queries, which is asymptotically optimal [7],

and similarly one can reduce error from 1/3 to ε for all symmetric Boolean functions at
the expense of only a factor

√
log(1/ε) in the query complexity [33]. This is a speed-up

over the naive O(log(1/ε)) multiplicative overhead. Since optimal quantum algorithms with
error probability 1/3 for ORN and for all symmetric functions can be derived from phase
estimation, one may ask if one can achieve such an efficient error-reduction for quantum
phase estimation as well: is there an algorithm for QPEN,δ,ε of cost O

(
1
δ

√
log(1/ε)

)
? We

answer this in the negative, showing Theorem 2 is tight.

ESA 2023



81:6 Tight Bounds for Quantum Phase Estimation and Related Problems

▶ Theorem 3. For integers N ≥ 2 and ε, δ ∈ (0, 1/2),5 every algorithm that solves QPEN,δ,ε

has cost Ω
( 1

δ log 1
ε

)
.

In particular, this means that the optimal complexity of ORN with small error probability ε
of [7] cannot be derived from a phase estimation routine, in contrast to the case of ORN

(and search) with constant error probability. To show Theorem 3 we first argue that a
cost-C algorithm for QPEN,δ,ε gives us a cost-C algorithm that distinguishes U = I versus
U = I − (1 − eiθ)|0⟩⟨0| where θ /∈ [−3δ, 3δ] mod 2π. We then note that the acceptance
probability of such an algorithm can be written as a degree-2C trigonometric polynomial
in θ, and invoke a known upper bound on the growth of such trigonometric polynomials in
order to lower bound their degree.

2 Preliminaries

We state the required preliminaries in this section. All logarithms are taken base 2. For a
positive integer N , U(N) denotes the space of N -dimensional unitaries, and I denote the
N -dimensional Identity matrix (we drop the subscript if the dimension is clear from context).

For a positive integer N ≥ 2 and a value θ ∈ [0, 2π), define the N -dimensional unitary
Uθ as Uθ = I − (1 − eiθ)|0⟩⟨0|. In other words, Uθ is the diagonal matrix with all 1’s except
the first entry, which is eiθ. For an integer j ∈ {0, 1, . . . , N − 1} and δ ∈ [0, 2π), define
Mj,δ = I − (1 − eiδ)|j⟩⟨j|.

2.1 Model of computation
Here we give a description of our model of computation for all tasks considered in this paper.
All problems considered in this paper have the following properties:

Input: An N -dimensional unitary U . We have access to the input as described below.
State space: The state space of an algorithm comprises two registers: the first register
is N -dimensional, and the second register is an arbitrarily large workspace.
Access to input and allowed operations: An algorithm A may apply U and U−1

to the first register, and unitaries independent of U to the whole space. It performs a
POVM at the end to determine the classical output.
Cost of an algorithm: Total number of applications of U and U−1.

Depending on the specific problem under consideration, the following properties are variable.
Initial state: The initial state is assumed to be |0⟩|0⟩ unless mentioned otherwise.
Input promise: The subset of U(N) (possibly the full set) from which the input is
taken.
Output: The output requirement.
Advice: We may be given access to a specific number of “advice states” |α⟩, or access
to a specific number of applications of a unitary A that prepares an advice state (e.g.,
A|0⟩ = |α⟩).

2.2 Problems of interest
We list our problems of interest here. All problems fit in the framework of the previous
subsection, so we skip descriptions of the input, access to the input and allowed operations,
and the workspace.

5 We require δ < 2π/5 for our proof of Claim 23 to work. This requirement can be strengthened a little
to δ < 2π/3, but we state our theorem with δ < 1/2 for ease of notation.
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▶ Definition 4 (Phase Estimation). Let N ≥ 2 be an integer and ε, δ > 0. The task QPEN,δ,ε

is:
Advice: We are given a single state |ψ⟩ (in other words, our starting state is |ψ⟩|0⟩) with
the promise that U |ψ⟩ = eiθ|ψ⟩.
Output: With probability at least 1 − ε, output θ̃ ∈ [0, 2π) such that |θ̃ − θ| ≤ δ mod 2π.

▶ Definition 5. Let N ≥ 2 be an integer and ε, δ ∈ (0, 1). The task distN,δ,ε is:
Input promise: U ∈ {I, {Uθ : θ /∈ [δ, δ] mod 2π}}.
Output: With probability at least 1 − ε, output 1 if U = I, and output 0 otherwise.

We next define the natural variant of phase estimation that we consider when an algorithm
need not be given a state from the target eigenspace.

▶ Definition 6 (Maximum phase estimation). Let N ≥ 2 be an integer and δ > 0. The task
maxQPEN,δ is:

Input promise: We consider two cases: one where the eigenbasis of U is known, and
the other where it is unknown. In the former case, we may assume U =

∑N−1
j=0 eiθj |j⟩⟨j|.

Define θmax = maxj∈{0,1,...,N−1} θj ∈ [0, 2π).
Advice: We consider two cases:

In one case we are given access to advice in the form of a state |α⟩ such that
∥PS |α⟩∥2 ≥ γ2, where PS denotes the projection on S, the space of all eigenstates
with eigenphase θmax. If S is spanned by one |umax⟩, this requirement is the same as
|⟨α|umax⟩| ≥ γ.
In the other case, we have black-box access to a unitary A that prepares such a state |α⟩.
We can apply A and A−1. As before, γ is the overlap of |α⟩ with the target eigenspace.

Number of accesses to advice: We either have ‘few’ accesses to advice as defined
above (o(1/γ2) advice states or o(1/γ) advice unitaries), or ‘many’ accesses to advice
(Ω(1/γ2) advice states or Ω(1/γ) advice unitaries).
Output: With probability at least 2/3, output a value in [θmax − δ, θmax + δ] mod 2π.

▶ Definition 7 (Unitary recurrence time, [29, Definition 1.5]). For integers N ≥ 2, t ≥ 1 and
δ ∈ (0, 1), the (t, δ)-recurrence time problem is:

Input promise: Either U = I, or ∥U t − I∥ ≥ δ in spectral norm.
Output: With probability at least 2/3: output 1 if U = I, and 0 otherwise.

The following are the non-matching upper and lower bounds for this problem of She and
Yuen [29].

▶ Theorem 8 ([29, Theorems 1.6 and 1.7]). Let δ ≤ 1
2π . Every quantum algorithm solving

the (t, δ)-recurrence time problem for d-dimensional unitaries has cost Ω
(

max
(
t/δ,

√
d
))

.
The (t, δ)-recurrence time problem can be solved with cost O(t

√
d/δ).

2.3 Trigonometric polynomials and their growth
▶ Definition 9 (Trigonometric Polynomials). A function p : R → is said to be a trigonometric
polynomial of degree d if there exist complex numbers {ak : k ∈ {−d, . . . , d}} such that for
all θ ∈ R,

p(θ) =
d∑

k=−d

ake
ikθ.

ESA 2023
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▶ Theorem 10 ([5, Theorem 5.1.2]). Let t be a degree-n real-valued trigonometric polynomial
and s ∈ (0, π/2] be such that µ({θ ∈ [−π, π) : |t(θ)| ≤ 1}) ≥ 2π − s, where µ denotes the
Lebesgue measure on R. Then, supx∈R |t(x)| ≤ exp(4ns).

3 Lower bounds for maximum phase estimation and Unitary
recurrence time

In this section we show lower bounds on the quantum complexity of maximum phase
estimation obtained by varying all its parameters (see Section 2.1 and Definition 6). In this
section and the next, we refer to the row numbers of Table 1 when stating and proving our
bounds.

Recall that for an integer j ∈ {0, 1, . . . , N − 1} and δ ∈ [0, 2π) we define Mj,δ = I − (1 −
eiδ)|j⟩⟨j|. Our lower bounds will be by reduction from the following “Fractional OR with
advice” problem, which fits in the framework of the model described in Section 2.1.

▶ Definition 11 (Fractional OR with advice). Let N ≥ 2 be integer, δ > 0. The task frORN,δ,t

is:
Input promise: U ∈ {I, {Mj,δ : j ∈ {1, 2, . . . , N − 1}}}.
Advice: When U = I we are given t copies of |0⟩ as advice. When U = Mj,δ, we
are given t copies of the state γ|j⟩ +

√
1 − γ2|0⟩, i.e., part of our starting state is

(γ|j⟩ +
√

1 − γ2|0⟩)⊗t.
Output: With probability at least 2/3: output 1 if U = I, and 0 if U ̸= I.

We first show a lower bound on the cost of computing frORN,δ,t when t = o(1/γ2). All
of our lower bounds in Table 1 as well as our lower bound for the Unitary recurrence time
problem will use this lower bound. We refer the reader to the full version of the paper [25,
Appendix A] for the proof. The proof follows along the same lines as Ambainis’ adversary
lower bound [1, Theorem 4.1] of Ω(

√
N) queries for the N -bit Search problem, but now we

additionally take into account the initial advice states and the fact that our input unitaries
are only fractional versions of phase queries.

▶ Theorem 12. For an integer N ≥ 2, real numbers γ ≥ 1/
√
N , δ ∈ [0, π] and t = o(1/γ2),

every algorithm solving frORN,δ,t has cost Ω(
√
N/δ).

▶ Lemma 13 (Lower bound for Rows 1,3). Row 1 (and hence Row 3) has a lower bound of
Ω(

√
N/δ).

Proof. A cost-C algorithm A for maxQPEN,δ with t advice states and known eigenbasis of U
immediately yields a cost-C algorithm A′ for frORN,3δ,t: run A on the input unitary, output
1 if the output phase is in [−δ, δ] modulo 2π, and output 0 otherwise. When U = I, the
correctness of A guarantees that with probability at least 2/3, the value output by A is in
[−δ, δ] mod 2π. When U = Mj,3δ, the correctness of A guarantees that with probability at
least 2/3, the value output by A is in [2δ, 4δ]. For δ < 2π/5, we have [−δ, δ] mod 2π∩ [2δ, 4δ]
mod 2π = ∅. Thus, A′ solves frORN,3δ,t and has cost C. Theorem 12 yields the bound
C = Ω

(√
N/δ

)
when t = o(1/γ2), giving the desired result. ◀

▶ Lemma 14 (Lower bound for Rows 2,4). Row 2 (and hence Row 4) has a lower bound of
Ω (1/γδ).

Proof. We prove the required lower bound for maxQPEN,δ with inputs satisfying the promise
that U ∈

{
IN ,

{
Mj,3δ : j ∈

{
1, 2, . . . , 1/γ2 − 1

}}}
. Because of this assumption, we may take

the uniform superposition over the first 1/γ2 computational basis states as our advice state:
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the algorithm should work with such an advice state, since it has overlap γ with the top
eigenspace for each of the possible U . However, an algorithm can prepare such advice states
at no cost, so we may assume that the algorithm has no access to advice at all. As in the
previous proof, this gives an algorithm of the same cost for frOR1/γ2,3δ,0 (ignoring all other
dimensions). Theorem 12 with N = 1/γ2 and t = 0 yields the required lower bound of
Ω(1/γδ). ◀

▶ Lemma 15 (Lower bound for Rows 5,7). Row 5 (and hence Row 7) has a lower bound of
Ω(

√
N/δ).

Proof. Towards the required lower bound, consider a cost-C algorithm A solving maxQPEN,δ

with inputs satisfying the promise U ∈ {IN , {Mj,3δ : j ∈ {1, 2, . . . , N − 1}}}, and with t =
o(1/γ) accesses to a unitary that prepares an advice state that has overlap at least γ with
the target eigenspace. We want to construct an algorithm A′ for maxQPEN,δ with the same
promised inputs that uses no advice, and with cost not much larger than that of A. Note
that we may assume γ = o(1), since otherwise t = 0, so then A itself already uses no advice.

We first show how an algorithm can itself implement a good-enough advice unitary A

quite cheaply. Assuming without loss of generality that 1/3δ is an integer, U1/3δ is actually a
“phase query”: if U = Mj,3δ, then we have U1/3δ = I − 2|j⟩⟨j|, which is the diagonal matrix
with 1’s everywhere except a −1 in the jth entry; and if U = I then U1/3δ = I. Thus A
can start by mapping |0⟩ to a uniform superposition over all indices, and then use Grover’s
algorithm with U1/3δ as our query operator to amplify the amplitude of |j⟩ to ≥ γ. We
know that O(γ

√
N) “Grover iterations” suffice for this (see, for example, [34, Section 7.2] for

details). Each Grover iteration would use one phase-query U1/3δ, so the overall cost (number
of applications of U and U−1) of this advice unitary is O(γ

√
N/δ). If U = I, the state just

remains the uniform superposition.
We now have all components to describe A′: Run A, and whenever A invokes an advice

unitary, use the above A. Since A uses at most t advice unitaries, the cost of A′ is at most
C + t ·O(γ

√
N/δ). Note that A′ uses no advice at all anymore, and solves maxQPEN,δ under

the promise that the input unitary satisfies U ∈ {IN , {Mj,3δ : j ∈ {1, 2, . . . , N − 1}}}. Again,
this immediately yields an algorithm of the same cost for frORN,3δ,0 as in the previous two
proofs. Theorem 12 now implies

C +O(tγ
√
N/δ) = Ω(

√
N/δ),

and hence C = Ω(
√
N/δ) since t = o(1/γ) (t ≤ c/γ for sufficiently small constant c also

suffices). ◀

▶ Lemma 16 (Lower bound for Rows 6,8). Row 6 (and hence Row 8) has a lower bound of
Ω (1/γδ).

Proof. Just as in the proof of Lemma 14, we may assume N = 1/γ2 by only allowing input
unitaries of the form U ∈

{
IN ,

{
Mj,3δ : j ∈

{
1, 2, . . . , 1/γ2 − 1

}}}
. With this assumption,

we may assume that we have no access to advice (i.e., t = 0) since an algorithm can prepare
a good-enough advice state (namely the uniform superposition over all 1/γ2 basis states) at
no cost. This yields the required lower bound of Ω(1/γδ) by Lemma 15. ◀

Finally we prove an optimal lower bound for the Unitary recurrence time problem, match-
ing She and Yuen’s upper bound (Theorem 8) and resolving one of their open problems [29,
Section 2].
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Proof of Theorem 1. Consider an algorithm A solving the (t, δ)-recurrence time problem.
Restrict to inputs of the form U ∈

{
IN ,

{
Mj,3δ/t : j ∈ {1, 2, . . . , N − 1}

}}
. When U = I we

have U t = I. When U = Mj,3δ/t, we have ∥U t − I∥ = |1 − e3iδ| ≥ δ for all δ ∈ [0, 1]. Thus,
A solves frORN,3δ/t,0. Theorem 12 yields the required lower bound of Ω(t

√
N/δ). ◀

4 Upper bounds for maximum phase estimation

In this section we show upper bounds on the quantum complexity of our 8 variants of
maximum phase estimation (see Section 2.1, Definition 6 and Table 1). We require the
following generalized maximum-finding procedure, adapted from [2, Lemma 48]; we changed
their wording a bit and modified it from minimum-finding to maximum-finding.

▶ Lemma 17 ([2, Lemma 48]). There exists a quantum algorithm M and constant C > 0
such that the following holds. Suppose we have a q-qubit unitary V such that

V |0⟩ =
K−1∑
k=0

|ψk⟩|xk⟩,

where x0 > x1 > · · · > xK−1 are distinct real numbers (written down in finite precision),
and the |ψk⟩ are unnormalized states. Let X be the random variable obtained if we were to
measure the last register, so Pr[X = xk] = ∥|ψk⟩∥2. Let M ≥ C/

√
Pr[X ≥ xj ] for some j.

Then M uses at most M applications of V and V −1, and O(qM) other gates, and outputs an
xi ≥ xj with probability at least 3/4 (in particular, if j = 0 then M outputs the maximum).

▶ Remark 18. It may be verified by going through [2, Lemma 48] that the only applications
of V and V −1 used by M are to prepare V |0⟩ starting from |0⟩, and to reflect about V |0⟩.
We can use generalized maximum-finding to approximate the largest eigenphase starting
from the ability to prepare a superposition of eigenstates (possibly with some additional
workspace qubits):

▶ Lemma 19. There exists a quantum algorithm B such that the following holds. Suppose we
have an N -dimensional unitary U with (unknown) eigenstates |u0⟩, . . . , |uN−1⟩ and associated
eigenphases θ0, . . . , θN−1 ∈ [0, 2π). Suppose we also have a unitary A such that

A|0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩,

where
∑

j:θj=θmax
|αj |2 ≥ γ2 and the |ϕj⟩ are arbitrary (normalized) states. Then B uses at

most O(1/γ) applications of A and A−1, and O(log(1/γ)/γδ) applications of U and U−1,
and with probability at least 2/3 outputs a number θ ∈ [θmax − δ, θmax + δ] mod 2π.

Proof. Let Ṽ be the unitary that applies phase estimation with unitary U , precision δ, and
small error probability η (to be determined later), on the first register of the state A|0⟩,
writing the estimates of the phase in a third register. Then

Ṽ |0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩|θ̃j⟩,

where, for each j, |θ̃j⟩ is a superposition over estimates of θj , most of which are δ-close to θj .
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For the purposes of analysis, we would like to define a “cleaned up” unitary V (very close
to Ṽ ) that doesn’t have any estimates with error > δ. Let |θ̃j

′⟩ be the state obtained from |θ̃j⟩
by removing the estimates that are more than δ-far from θj , and renormalizing. Because we
ran phase estimation with error probability ≤ η, it is easy to show that

∥∥∥|θ̃j
′⟩ − |θ̃j⟩

∥∥∥ = O(√η).
Then there exists6 a unitary V such that

∥∥Ṽ − V
∥∥ = O(√η) and

V |0⟩ =
N−1∑
j=0

αj |uj⟩|ϕj⟩|θ̃j
′⟩ =

K−1∑
k=0

|ψk⟩|xk⟩,

where the xk are the distinct estimates that have support in the last register, and the |ψk⟩
are (unnormalized) superpositions of the |uj⟩|ϕj⟩’s that are associated with those estimates.

The largest xk’s are good estimates of θmax. Algorithm B now applies the maximum-
finding algorithm M of Lemma 17 with the unitary Ṽ . Let us first analyze what would
happen if B used the cleaned-up V instead of Ṽ . Let X denote the random variable obtained
if we measure the last register, and note that Pr[X ≥ θmax − δ] ≥

∑
j:θj=θmax

|αj |2 ≥ γ2

because all estimates in V |0⟩ have error ≤ δ. Hence B would use O(1/γ) applications of
V and V −1 to find a θ ∈ [θmax − δ, θmax + δ] with success probability ≥ 3/4. Algorithm
B will actually use Ṽ and Ṽ −1 instead of V and V −1, which (because errors in quantum
circuits add at most linearly) incurs an overall error in operator norm of ≤ O(√η) ·O(1/γ).
Choosing η ≪ γ2, this overall error can be made an arbitrarily small constant. The success
probability of the algorithm can drop slightly below 3/4 now, but is still ≥ 2/3.

It remains to analyze the cost of B. Each Ṽ uses 1 application of A, and O(log(1/η)/δ) =
O(log(1/γ)/δ) applications of U and U−1 for phase estimation (Theorem 2), so B uses O(1/γ)
applications of A and A−1, and O(log(1/γ)/γδ) applications of U and U−1 in total. ◀

The upper bounds for our 8 variants of phase estimation (see Table 1) will all follow
from this. We start with the 4 odd-numbered rows, where it turns out the advice is not
actually needed to meet our earlier lower bounds. The next proof is basically the same as
[2, Lemma 50] about estimating the minimal eigenvalue of a Hamiltonian (this improved
slightly upon [27]; see also [14, Lemma 3.A.4]).

▶ Lemma 20 (Upper bound for Rows 1, 3, 5, 7). There is an algorithm that uses no advice and
solves the case in Row 3 (and hence in Rows 1, 5, and 7 as well) with cost O(

√
N log(N)/δ).

Proof. Let A be the unitary that maps |0⟩ to the maximally entangled state in N dimensions.
This state can be written in any orthonormal basis, including the (unknown) eigenbasis of U :

A|0⟩ = 1√
N

N−1∑
j=0

|j⟩|j⟩ = 1√
N

N−1∑
j=0

|uj⟩|uj⟩,

where |uj⟩ denotes the entry-wise conjugated version of |uj⟩. Applying Lemma 19 with this
A, |ϕj⟩ = |uj⟩, and γ = 1/

√
N gives the result. ◀

The next two lemmas cover the 4 cases where the advice states/unitaries are helpful.

▶ Lemma 21 (Upper bound for Rows 6, 8). There is a quantum algorithm that uses O(1/γ)
applications of the advice unitary (and its inverse) and solves the case in Row 8 (and hence
the case in Row 6 as well) with cost O(log(1/γ)/γδ).

6 This is fairly easy to show, see e.g. [9, proof of Theorem 2.4 in Appendix A].
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Proof. Apply Lemma 19 with the unitary A that maps |0⟩ to |α⟩, with empty states |ϕj⟩. ◀

▶ Lemma 22 (Upper bound for Rows 2, 4). There is a quantum algorithm that uses O(1/γ2)
copies of the advice state and solves the case in Row 4 (and hence in Row 2) with cost
O(log(1/γ)/γδ).

Proof. We will build upon the algorithm for Row 8 of Lemma 21. By Remark 18 and the
algorithm in Lemma 21, its O(1/γ) applications of the advice unitary A and its inverse A−1

are only used there for two purposes: (1) to prepare a copy of the advice state A|0⟩ = |α⟩,
and (2) to reflect about |α⟩. We now want to replace these applications of A by using
copies of the advice state. For (1) this is obvious. Assume the algorithm for Row 8 uses
(2) at most C/γ times, for some constant C. To implement these reflections, we will invoke
the result of Lloyd, Mohseni, and Rebentrost [24] (see also [18]), who showed that given
a number t > 0 and O(t2/η) copies of a mixed quantum state ρ, one can implement the
unitary eitρ up to error η (in diamond-norm difference between the intended unitary and the
actually-implemented channel). We will use this result with ρ = |α⟩⟨α|, t = π, η = γ/(100C),
noting that the implemented unitary eiπ|α⟩⟨α| = I − 2|α⟩⟨α| is a reflection about |α⟩ (up to a
global minus sign that doesn’t matter).

Accordingly, we can implement the ≤ C/γ reflections used by the algorithm for Row 8
using O(1/γ2) copies of |α⟩, each reflection implemented with error ≤ η. Because errors in
quantum circuits add at most linearly, the overall error between the algorithm of Row 8 and
our simulation of it (using copies of |α⟩) is at most η · C/γ ≤ 1/100. Hence we obtain an
algorithm for Row 4 that uses O(1/γ2) copies of |α⟩ and has the same cost O(log(1/γ)/γδ)
as the algorithm of Row 8. ◀

5 Tight bounds for phase estimation with small error probability

Here we prove our lower bound for quantum algorithms solving phase estimation with
precision δ and error probability at most ε, Theorem 3, which follows from Claims 23 and 24
below.

▷ Claim 23. For all integers N ≥ 2 and all ε, δ ∈ (0, 1/2), if there is a cost-d algorithm
solving QPEN,δ,ε, then there is a cost-d algorithm solving distN,δ,ε.

Proof. Consider an algorithm A of cost d that solves QPEN,δ,ε. We construct below an
algorithm A′ of cost d solving distN,δ,ε. Let U ∈ U(N) be the input. The following is the
description of A′:
1. Run A with inputs U and |0⟩.
2. Output 1 if the output of A is in [−δ, δ] mod 2π, and output 0 otherwise.
Clearly A′ is a valid algorithm, as far as access to input and allowed operations are concerned,
since its initial state is |0⟩, it applies U,U−1, some unitaries independent of U , and finally
performs a two-outcome projective measurement to determine the output bit. The cost of
A′ is d.

The correctness follows along the same lines as the proofs in Section 3. We prove
correctness here for completeness. First note that |0⟩ is an eigenstate of all U ∈ {I} ∪
{Uθ : θ /∈ [−3δ, 3δ] mod 2π}. When U = I, the correctness of A guarantees that with
probability at least 1 − ε, the value output by A is in [−δ, δ] mod 2π. When U = Uθ, the
correctness of A guarantees that with probability at least 1 − ε, the value output by A is
in [θ − δ, θ + δ] mod 2π. For θ /∈ [−3δ, 3δ] mod 2π we have [−δ, δ] mod 2π ∩ [θ − δ, θ + δ]
mod 2π = ∅ since δ < 1/2 < 2π/5, and hence A′ solves distN,δ,ε. ◁
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We next show a lower bound for the cost of algorithms computing distN,δ,ε.

▷ Claim 24. For all integers N ≥ 2, ε, δ ∈ (0, 1/2), every algorithm for distN,δ,ε has cost
Ω

( 1
δ log 1

ε

)
.

In order to prove Claim 24, we first show that amplitudes of basis states in low-cost
algorithms that run on Uθ are low-degree trigonometric polynomials in θ. This is analogous
to the fact that amplitudes of basis states in query algorithms for Boolean functions are
low-degree (algebraic) polynomials in the input variables [3, Lemma 4.1], and our proof is
inspired by theirs.

▷ Claim 25. Let t > 0 be a positive integer and let θ ∈ [0, 2π]. Consider a quantum
circuit that has starting state |0⟩, uses an arbitrary number of θ-independent unitaries, uses
t applications of controlled-Uθ and controlled-U−1

θ in total, and performs no intermediate
measurements. Then the amplitudes of basis states before the final measurement are degree-t
trigonometric polynomials in θ.

Proof. We prove this by induction on t. The claim is clearly true when t = 0 since all
amplitudes are constants in this case. For the inductive step, suppose the claim is true for
t = d. Let |ψd⟩ denote the state of the circuit just before the application of the (d+ 1)th
application of Uθ (the argument for U−1

θ is similar, and we skip it). By the inductive
hypothesis, we have

|ψd⟩ =
∑

w

∑
b∈{0,1}

N−1∑
j=0

pj,b,w(θ)|j⟩|b⟩|w⟩,

where the first register is where Uθ and U−1
θ act, the second register is the control qubit, and

the last register represents the workspace (i.e., Uθ and U−1
θ do not act on this register), and

each pj,b,w is a trigonometric polynomial of degree at most d in θ. For a basis state |j⟩|b⟩|w⟩,
we have

Uθ|j⟩|b⟩|w⟩ =
{
eiθ|0⟩|b⟩|w⟩ if j = 0 and b = 1

|j⟩|b⟩|w⟩ otherwise.

In both cases, the amplitudes of the basis states after the application of Uθ are degree-(d+ 1)
trigonometric polynomials in θ. After the last application of Uθ the algorithm will apply an
input-independent unitary. The amplitudes after that unitary are linear combinations of
the amplitudes before, which won’t increase degree. This concludes the inductive step, and
hence the theorem. ◁

Proof of Claim 24. Consider a cost-t algorithm A′ solving distN,δ,ε. Claim 25 implies that
on input Uθ, the amplitudes of the basis states before the final measurement are degree-t
trigonometric polynomials in θ. The acceptance-probability polynomial p : R → R given
by p(θ) := Pr[A′(Uθ) = 1] is a degree-2t trigonometric polynomial, because it is the sum of
squares of moduli of certain amplitudes, and each of these squares is a degree-2t trigonometric
polynomial. The correctness of the algorithm ensures that p(0) ∈ [1 − ε, 1] and p(θ) ∈ [0, ε]
for all θ /∈ [−3δ, 3δ] mod 2π. See Figure 1 for a visual depiction of the behaviour of p for
θ ∈ [−π, π).

Scaling by a global factor of 1/ε, we obtain a trigonometric polynomial q of degree 2t
satisfying:
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θ

p = 0

p = 1

−→
0−π π−3δ 3δ

ε

p(0) ≥ 1 − ε

Figure 1 Acceptance probability p of A′ as a function of θ in the proof of Claim 24.

q(0) ≥ (1 − ε)/ε > 1/(2ε), and
q(θ) ∈ [0, 1] for all θ ∈ [−π, π) \ [−3δ, 3δ].

Thus, Theorem 10 is applicable with s = 6δ, which implies 1/(2ε) ≤ supx∈R |q(x)| ≤
exp(24tδ). By taking logarithms and rearranging we get t = Ω

( 1
δ log 1

ε

)
, proving the theorem.

◀

6 Conclusion

In this paper we considered several natural variants of the fundamental phase estimation
problem in quantum computing, and proved essentially tight bounds on their cost in each
setting. As an immediate application of one of our bounds, we resolved an open question
of [29, Section 2].

We mention two interesting questions in the first variant of phase estimation we considered,
where an algorithm is given a number of copies of advice states/unitaries instead of black-box
access to a perfect eigenstate as in the basic phase estimation setup. First, are the logarithmic
overheads in the input dimension N and the inverse of the overlap γ in our upper bounds
(see Table 1) necessary, or can we give tighter upper bounds? Second, can we show the
log(1/ε)-dependence on the error probability also in the advice-guided case, like we did for
basic phase estimation (Theorem 3)?
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