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Abstract
Due to the exponential growth of genomic data, constructing dedicated data structures has become
the principal bottleneck in common bioinformatics applications. In particular, the Burrows-Wheeler
Transform (BWT) is the basis of some of the most popular self-indexes for genomic data, due to its
known favourable behaviour on repetitive data.

Some tools that exploit the intrinsic repetitiveness of biological data have risen in popularity, due
to their speed and low space consumption. We introduce a new algorithm for computing the BWT,
which takes advantage of the redundancy of the data through a compressed version of matching
statistics, the CMS of [Lipták et al., WABI 2022]. We show that it suffices to sort a small subset of
suffixes, lowering both computation time and space. Our result is due to a new insight which links
the so-called insert-heads of [Lipták et al., WABI 2022] to the well-known run boundaries of the
BWT.

We give two implementations of our algorithm, called CMS-BWT, both competitive in our experi-
mental validation on highly repetitive real-life datasets. In most cases, they outperform other tools
w.r.t. running time, trading off a higher memory footprint, which, however, is still considerably
smaller than the total size of the input data.
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1 Introduction

The Burrows-Wheeler Transform (BWT) [6] is a reversible permutation of the characters
of the input text that can be computed in linear time and space. It is closely related to
the suffix array, a permutation of the indices of T which is based on the lexicographic order
of the suffixes. It is known that the BWT, when applied to repetitive texts, results in an
easier-to-compress string, especially when using simple run-length encoding.

Another virtue of the BWT is that it can be used as a self-index to replace the original
text. It can support pattern matching queries, more specifically, it counts how many times
a pattern P occurs in T using time proportional to |P |. It can be incorporated into more
elaborate indexes [11, 13, 14, 27] to support locating queries (finding the positions in T where
P occurs) and more complex queries such as finding Maximal Exact Matches (MEMs) and
Maximal Unique Matches (MUMs). MEMs and MUMs are of key importance, especially
in the field of bioinformatics, where they are used for read alignment (e.g. MUMmer [23]).
Widely used tools such as BowTie2 [18] and BWA [20] are based on the BWT for aligning
short reads to a reference genome.

Nowadays, the amount of biological data that is publicly available is too big for most
BWT construction algorithms. A key observation is that, even though the size of these
datasets is massive, the information contained within them is highly redundant. This is why

© Francesco Masillo;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 83;
pp. 83:1–83:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.masillo@univr.it
https://orcid.org/0000-0002-2078-6835
https://doi.org/10.4230/LIPIcs.ESA.2023.83
https://github.com/fmasillo/CMS-BWT
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


83:2 Matching Statistics Speed up BWT Construction

tools such as big-BWT [5], r-pfBWT [26] and grlBWT [10] have emerged. These tools exploit
the intrinsic repetitiveness of the input data to build large BWTs fast and in compressed
space.

Recently, Lipták et al. [22] devised a variant of matching statistics [8] called compressed
matching statistics (CMS). This data structure has been proven to be effective in expressing
the redundancy of sets of highly similar strings and being used in the process of suffix sorting.
Cunial et al. [9] work with a compact representation of matching statistics, i.e. a bitvector
of length 2|P | storing the differentially encoded lengths of the matches. They also present
several ways of compressing the bitvector based on both lossless and lossy methods. This
representation is fundamentally different from that of [22] due to the fact that the CMS, and
more prominently its enhanced version, packs more information than just the length of the
matches. This additional information can then be used for other applications such as suffix
sorting.

In this paper, we are going to show that the CMS of [22] not only can be used to
build the generalized suffix array of a collection of strings but can also be highly useful in
building large BWTs, due to the fact that it uses considerably less space than the input
data. Experimental results show that our implementation, CMS-BWT, is competitive, if not
better, than the state-of-the-art tools for constructing the BWT, although heavier on the
space consumption side.

Our algorithm is based on a new insight that allows us to find the run boundaries of
the BWT within special buckets of suffixes, which are closely connected to the fundamental
element of the compressed matching statistics, the so-called insert-heads.

The paper is organized as follows. In Section 2, we give definitions and notations used
in the remainder of the paper. Section 3 contains an overview of the compressed matching
statistics. In Section 4, we present our contribution, describing the algorithm used for
constructing the BWT. In Section 5, we describe details of our implementation and then
report experimental results in Section 6. Finally, in Section 7, conclusions and future work
are discussed.

2 Basics

Let Σ be an ordered alphabet of size σ. A string T over Σ is a finite sequence of characters
from Σ. The ith character of T is denoted T [i], its length is |T | = n, and T [i..j] denotes the
substring T [i] · · ·T [j]. If i > j, then T [i..j] is the empty string ε. The suffix T [i..] = T [i..n]
is referred to as the ith suffix sufi(T ), and T [..i] = T [1..i] is the ith prefix prefi(T ). When T
is clear from the context, we write sufi for sufi(T ).

We assume that the last character of T is the sentinel character $. It is set to be smaller
than any other character in Σ and appears only once as the end-of-string character.

The suffix array SA of a string T is a permutation of the set {1, . . . , n} such that
SA[i] = j if sufj(T ) is the ith in lexicographic order among all suffixes. Numerous suffix
array construction algorithms (SACAs) exist in the literature [25, 24, 1, 21, 15]. SA-IS [25]
is by far the most popular linear time SACA, being both simple and fast in practice.

The inverse suffix array ISA is the inverse permutation of SA, namely ISA[SA[i]] = i.
The longest common prefix (lcp) of a pair of strings T and S is the longest string U

which is the prefix of both T and S. The longest-common-prefix array LCP is another array
closely related to the SA. It is given by: LCP[1] = 0, and for i > 1, LCP[i] is the length
of the longest common prefix of the two suffixes sufSA[i−1] and sufSA[i]. This array can be
computed in linear time, too [17].
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The Burrows-Wheeler Transform BWT [6] is a reversible permutation of the input text
T . It is defined as BWT[i] = $ if SA[i] = 1, and BWT[i] = T [SA[i]− 1] otherwise.

Let R and S be two strings. The matching statistics MS of S w.r.t. R is an array of
length |S| in which every entry is a pair of integers defined as follows. Fix i, let Ui be the
longest prefix of suffix sufi(S) which occurs as a substring in R. Then, entry MS[i] = (pi, ℓi),
where pi is an occurrence of Ui in R, or −1 if Ui = ε, and ℓi = |Ui|. We will call Ui matching
factor and the character ci = S[i + ℓi] will be referred to as mismatch character of position i.
We set the end-of-string character of R to be smaller than the one of S (# < $).

For an integer array A of length n and an index i, the previous and next smaller values
are defined as follows: PSV(A, i) = max{i′ < i : A[i′] < A[i]}, NSV(A, i) = min{i′ > i :
A[i′] < A[i]}. The minimum of the empty set is −∞ and the maximum is +∞. There exists
a data structure of size n log(3 + 2

√
2) + o(n) bits that can be built in O(n) time and answers

both PSV and NSV queries in constant time [12].
Given a set of integers X and an integer x, the predecessor of x is the largest element in X

less than or equal to x. In other words, predX(x) = max{y ∈ X : y ≤ x}. Predecessor queries
can be answered in O(log log |X|) time using the y-fast trie data structure of Willard [29]
which uses O(|X|) space.

Let C = {S1, S2, . . . , Sm} be a collection of strings not necessarily distinct, i.e. C is a
multiset. The total length of C will be denoted by N , where we use end-of-string characters to
delimit the strings, i.e. N =

∑m
d=1 |Sd|+m. From now on, we will treat C as this concatenated

string, slightly abusing notation.

Our problem is defined as follows:

Problem Statement: Given a string collection C = {S1, . . . , Sm} and a reference
string R, compute the Burrows-Wheeler Transform BWT of C.

The end-of-string character # of R is assumed to be smaller than any of C. Moreover, in
our setting, we assume that each Si ∈ C is highly similar to R.

3 Compressed Matching Statistics

Recently, the authors of [22] introduced a new data structure called Compressed Matching
Statistics (CMS). This data structure exploits the redundancy of plain MS, where we have
the following property: if ℓi > 0, then ℓi+1 ≥ ℓi − 1. We can identify sequences of the
form (x, x− 1, x− 2, . . .) where x = ℓi, called decrement runs. A decrement run ends when
ℓj > ℓj−1 − 1, and j is the starting position of a head. For an example see Figure 1.

▶ Definition 1 (Compressed matching statistics, [22]). Let R, S be two strings over Σ, and
MS be the matching statistics of S w.r.t. R. The compressed matching statistics (CMS)
of S w.r.t. R is a data structure storing (j, MS[j]) for each head j, and a predecessor data
structure on the set of heads H.

It was shown in [22] that it is possible to recover each individual value MS[i] for any i

using the following formula: MS[i] = (pi + k, ℓi − k), where j = predH(i) and k = j − i. This
can be done in O(log log χ) time and O(χ) space, where χ = |H|.

It was shown in [22] that storing the matching statistics information only for heads leads
to a compression ratio of up to 100 times on real-life data.

ESA 2023
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3.1 Enhanced Compressed Matching Statistics
In [22], the CMS was refined with additional information to get the enhanced compressed
matching statistics (eCMS). Assuming that all characters occurring in S also occur in R at
least once, the information of pi can be made more specific, namely, one can compute the
position that a suffix from S would have if it was present in SAR the SA of R. This position
is called insert point of i:

ip(i) =


1 if Ui = ε,

max{j | Ui is a prefix of R[SAR[j]..] and R[SAR[j]..] < Uic} if this set is
non-empty,

min{j | Ui is a prefix of R[SAR[j]..]} otherwise.

The first case is satisfied only for the end-of-string characters of the collection C, because
the sentinel character of R is smaller than any other character (# < $). In the other two
cases, the insert point is the lexicographic rank of suffix i among all suffixes of R. Suffix i

ideally points to the next smaller occurrence of Ui in R, if it exists (case 2). Otherwise, it
coincides with the smallest occurrence of Ui in R (case 3).

For the eCMS, the positions for which the MS information is saved are called insert-heads
and are defined as follows: j is an insert-head if SAR[ip(j)] ̸= SAR[ip(j − 1)] + 1. Some
additional information is also stored in each insert-head: ci, the mismatching character,
and xi, a boolean value associated with ci. This value is set to be smaller (S = 0) if
ci < R[SA[ip(i)] + ℓi] or larger (L = 1) otherwise. Referring to the definition of ip, xi = 1
whenever we are in case 2, xi = 0 when we are in case 3.

▶ Definition 2 (Enhanced compressed matching statistics, [22]). Let R, S be two strings over
Σ. Define the enhanced matching statistics of S w.r.t. R as follows: for 1 ≤ i ≤ |S|, let
ems(i) = (qi, ℓi, xi, ci), where qi = SAR[ip(i)], ℓi is the length of the matching factor U of
i, ci is the mismatch character, and xi ∈ {S, L} indicates whether Uici is smaller (S) or
greater (L) than R[qi..]. The enhanced compressed matching statistics (eCMS) of S w.r.t. R

is a data structure storing (j, ems(j)) for each insert-head j, and a predecessor data structure
on the set of insert-heads K.

The size of K is denoted by |K| = κ. The time for recovering MS[i] becomes O(log log κ),
while the space becomes O(κ) [22].

By definition, the number of insert-heads is larger than the number of heads. Although
in [22] the difference in numbers is noticeable, the compression effect is still very strong. For
actual numbers see Section 6.2, more specifically Table 1.

For an example of eCMS refer to Figure 1.

3.2 Comparing two suffixes using eCMS
The additional information of insert-heads helps bucketing suffixes with respect to the insert
point. We will call these buckets insert-buckets. Assessing the order of any two suffixes
having different insert point has been proven in the following lemma:

▶ Lemma 3 ([22]). Let 1 ≤ i, j ≤ N . If ip(i) < ip(j), then sufi < sufj.

On the other hand, when two suffixes belonging to the same insert-bucket are compared
the following lemma refines the order:

▶ Lemma 4 ([22]). Let 1 ≤ i, j ≤ N , and ip(i) = ip(j).
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i 1 2 3 4 5 6 7 8 9 10 11 12
R C A T T A G A T T A G #

S T A G A G A T T A T T $
pi 4 5 6 5 6 7 8 9 2 3 4 -1
ℓi 4 3 2 6 5 4 3 2 3 2 1 0

head ✓ ✓ ✓

qi 4 5 6 5 6 2 3 4 7 8 9 12
insert-

head ✓ ✓ ✓ ✓ ✓

ci G T T $ $
xi S L L S L

Figure 1 An example for matching statistics and corresponding CMS and eCMS. In rows 1 and
2, we report MS[i] = (pi, ℓi) of S w.r.t. R. In row 3, we mark the starting positions of the heads
(CMS). In row 4, for each index, we give the special position qi = SAR[ip(i)], where ip(i) is the insert
point of sufi in SAR. In row 5, we mark insert-heads (eCMS). In the last two rows, we complete the
information stored in insert-heads, namely the mismatch character ci and xi, the associated boolean
value (S = smaller, L = larger).

1. If ℓi < ℓj and xi = S, then sufi < sufj.
2. If ℓi < ℓj and xi = L, then sufj < sufi.
3. If ℓi = ℓj and xi = S and xj = L, then sufi < sufj.
4. If ℓi = ℓj and xi = xj and ci < cj, then sufi < sufj.

To achieve the final correct order of two suffixes having the same insert-head information,
in [22] it was suggested sorting only the insert-heads. Then, using the new rank for each
head, the total order of two suffixes can be established.

If two arbitrary suffixes from C are being compared, one needs to perform two predecessor
queries to get the insert-head of each suffix. This implies that the time spent for a single
comparison is O(log log κ). As we will see in Section 4, we can avoid the predecessor queries
when scanning the collection left to right, resulting in constant time comparisons. This is
because we will only perform comparisons of suffixes of one insert-head at a time with other
insert-heads of the same insert-bucket.

3.3 Computing the eCMS
We will use the procedure outlined in [22].

The data structures needed to compute the eCMS of C w.r.t. R are the suffix array
SAR, the inverse suffix array ISAR, the LCP-array LCPR, and the RMQ data structure for
PSV-NSV queries on LCPR. Every data structure can be constructed in O(|R|) time and
space.

This procedure takes O(N log |R|) time and O(|R|) space and outputs the set of insert-
heads of size O(κ).

To speed up the practical running time, we will use also the following proposed heuristic
of [22]. Because we work with highly similar strings, it is common to have a singleton interval
(an interval of size one) after the failure of a sequence of right extensions. A key insight
is that also after the subsequent left contraction, the interval remains of size one. This
means that the matching factor Ui lies within a leaf branch in a hypothetical suffix tree of
R. In order to detect these cases, we can compare ℓi to the maximum value in LCPR. If
ℓi − 1 > max(LCPR), then it means that there is no other suffix in R with a prefix equal

ESA 2023
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to Ui. This means that we are in a leaf branch. Computing the left contraction is now
equal to accessing ISA[pi + 1]. This bypasses the PSV and NSV queries on LCPR, avoiding
the corresponding cache misses. Computing a single maximum can be too restricting for
some datasets, so a refinement of this strategy is to divide LCPR into blocks and compute a
maximum value for each of them.

The practical speedup can be of an order of magnitude when using this last strategy on
sets of highly repetitive strings, as it was shown in [22].

4 Computing the BWT with enhanced Compressed Matching
Statistics

In this section, we are going to outline the procedure used to compute the BWT of C using
only data structures built on R and the eCMS of C w.r.t. R.

We will use the following heuristic in order to speed up the computation of BWT(C):
suffixes in text order between two insert-heads are preceded by the same character present
in the reference. This can be intuitively explained by looking at the way eCMS is built:
any position between two consecutive insert-heads is consecutive in text order both in R

and C. Therefore, by knowing the insert point of each suffix we know what its position
is in the previously computed SAR, and consequently which is the preceding character
stored in BWTR. This insight tells us that we just have to “expand” BWTR based on the
number of suffixes with the same insert-point while taking care of insert-heads. The suffixes
corresponding to the starting positions of insert-heads are the only ones that need to be
sorted inside each insert-bucket. See Figure 2 for an example.

▶ Lemma 5. Let sufi and sufj be two suffixes of C. If ip(i) = ip(j) and the two suffixes
are not the start of an insert-head, then sufi and sufj are preceded by the same character
c = R[SA[ip(i)]− 1], i.e. C[i− 1] = C[j − 1] = c = R[SA[ip(i)]− 1].

Proof. By assumption we know that ip(i) = ip(j), therefore SA[ip(i)] = SA[ip(j)]. Because
sufi and sufj are not the starting positions of any insert-head, it is true that SA[ip(i− 1)] =
SA[ip(i)]− 1 and SA[ip(j − 1)] = SA[ip(j)]− 1. Therefore, SA[ip(i− 1)] = SA[ip(j − 1)] and
also ip(i− 1) = ip(j − 1). Since Ui−1, Uj−1 ̸= ε it follows that the first character of Ui−1 and
Uj−1 is the same. ◀

While computing the eCMS of C w.r.t. R, we can simultaneously count how many suffixes
fall in each insert-bucket. We recall that we can have at most |R| insert-buckets, so the size
of the array of counters called bucket-counters is |R| log N bits. By Lemma 5 we know that
suffixes in the same insert-bucket have different preceding character only if one of them is
an insert-head. By scanning again the collection, we just need to count how many suffixes
belonging to the same insert-bucket come before each insert-head. In a sense, insert-heads
work as run boundaries inside their insert-bucket, because they are preceded by a character
that is different from the one preceding other non-insert-head suffixes. Therefore, we only
need an additional counter for each insert-head to keep track of this quantity. We will store
the counters in an array called head-counters. Inside a given insert-bucket we already know
the total order of insert-heads, because we have sorted the whole set K after the computation
of eCMS, as mentioned in Section 3.2.

Since we are scanning C left-to-right, we know MS[i] for every suffix, without the need
of using predecessor queries as we explain next. By saving the eCMS in text order, we
start from the first insert-head k1. Every suffix i before the starting position of k2 have
MS[i] = (q1 + (i− j1), ℓ1 − (i− j1)), where j1 = 1 is the starting position of k1. Then, when
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R . . . . . .C

BWTR SAR

. . .
. . .

. . .

. . .
. . .
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$ $ $ $

i

i+1

C
N

G

A

A

A

T

A

T

A
T
A

. . .

A
A N

C

Figure 2 Example showcasing the proposed heuristic. Solid coloured lines under C are matching
factors for insert-heads, while solid black lines are matching factors for suffixes inbetween insert-heads.
Dotted red lines are for suffixes inbetween insert-heads that share the same insert-point as the first
solid red line (an insert-head). Suffixes inbetween insert-heads share the same preceding character
(red A) with the reference R, while the red-coloured insert-head is preceded by a different character
(purple T). Zooming in on the insert-bucket, we see that it can happen that the purple T goes
between the red As, breaking what would have been a run of only red As.

we reach the starting position of k2, we just have to repeat this procedure until every couple
of insert-heads has been processed. We will compare suffix i only with insert-heads stored in
the corresponding insert-bucket, therefore we do not need to perform any predecessor query.
Ultimately, the comparisons are made in constant time. Given sufi, we can perform a binary
search in the bucket corresponding to ip(i) taking O(log Ki) time, where Ki is the set of
insert-heads in the bucket with ip(i). After finding the correct index using Lemma 4 and, if
necessary, resorting to the rank of the sorted insert-heads, we increment the counter for that
insert-head. The array of head-counters takes κ log N bits of space.

Building the BWT of C is then just a matter of interleaving bucket-counters and head-
counters. For 1 ≤ i ≤ |R|, let x = bucket-counter[i] be the number of suffixes in that bucket.
If no insert-heads are present in the bucket, write c = R[SA[i]− 1] in the output BWT(C) x

times. Otherwise, if at least one insert-head is in the bucket, for each head-counter in the
current insert-bucket write c repeated as many times as indicated in the head-counter. Then,
after the head-counter is processed, write the character that precedes the insert-head itself,
namely C[j − 1], where j is the starting position of the insert-head. Each time we write a
character from either the head-counter or the head itself, we subtract one from x. If at the
end of this procedure, x is not equal to 0, it means we still need to write that number of c

characters in the output BWT. This is because this amount of suffixes was bigger than any
insert-head in their insert-bucket.

The main procedure is outlined in Algorithm 1 and the running time and space consump-
tion are reported in Proposition 6. A full example can be found in Figure 3.

▶ Proposition 6. Given R and C, we can compute BWT(C) in O(N log κ + N log |R|+ |R|)
time and O(κ + |R|) space.

ESA 2023
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1 2 3 4 5 6 7 8 9
1
0 1 2

R CATTAGATTAG#

1 2 3 4 5 6 7 8 9
1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4

C T
•

AGA
•

GA
•

TTA
•

TT$1
•

G
•

ATTAC
•

ATTAG$2
•

q 4 5 6 5 6 2 3 4 7 8 912 6 7 8 9101 2 3 4 5 6 12

i eCMS
1 ( 1, 4,4, G,S)
2 ( 4, 5,6, T,L)
3 ( 6, 2,4, T,L)
4 ( 9, 7,3,$1,S)
5 (12,12,0,$1,L)
6 (13, 6,5, C,S)
7 (18, 1,6,$2,S)
8 (24,12,0,$2,L)

i BWTR[i] SAR[i] bucket-counter[i]
1 G 12 2
2 T 10 1
3 T 5 3
4 G 7 2
5 C 2 2
6 # 1 1
7 A 11 0
8 A 6 4
9 T 9 2

10 T 4 3
11 A 8 2
12 A 3 2

i sorted eCMS head-counter[i] prev. char.
1 (12,12,0,$1,L) 0 T
2 (24,12,0,$2,L) 0 G
3 ( 4, 5,6, T,L) 2 G
4 ( 9, 7,3,$1,S) 0 T
5 ( 6, 2,4, T,L) 1 G
6 (18, 1,6,$2,S) 0 A
7 (13, 6,5, C,S) 2 $2

8 ( 1, 4,4, G,S) 1 $1

i BWTC [i]
1 T
2 G
3 T
4 T
5 T
6 G
7 T
8 G
9 C

10 G
11 A
12 A
13 A
14 $2

15 A
16 T
17 T
18 T
19 $1

20 T
21 A
22 A
23 A
24 A

Figure 3 Example of the construction of BWT(C). The colour purple is used to indicate a
relationship with insert-heads, whereas red is used to indicate a relationship with R and BWTR.
On the left, under C we mark insert-heads with a purple circle and highlight with the same colour
qj when j is an insert-head. In the middle part of the figure, entries of bucket-counter highlighted
in red contains a positive number, meaning that no insert-head is contained within that bucket. On
the other hand, entries coloured in purple tell us that we have at least one insert-head in that bucket.
On the right, we show the full BWT of C, where we use the same colour code. We also show with
horizontal lines insert-buckets, highlighting how we interleaved information from bucket-counters
and head-counters.

Proof. Computing all data structures for R can be done in linear time and space in |R|.
Computing the eCMS of C takes O(N log |R|) time and O(|R|) space using the approach
described in Section 3.3. The computation of BWT(C) is bounded by the time of counting
how many suffixes are smaller than each insert-head in a bucket with the same ip(i). More
specifically,

∑
1≤i≤|R| Bi log Ki ≤ |C| log κ, where Bi is the set of suffixes belonging to

insert-bucket i and Ki the set of insert-heads within the same insert-bucket i. The space
consumption is dominated by the number of insert-heads and the size of the data structures
on R. ◀

Because we are working with highly similar strings, we expect to have few insert-heads,
having long matches between any string of C and R. This makes the sorting part of
insert-heads very fast in practice, due to κ being small. Also, the process of binary searching
is conducted bucket by bucket, so the number of heads in the same bucket is expected to be
smaller than κ.

Moreover, if the insert-heads are concentrated in a few insert-buckets we can entirely
skip the computation for each bucket without insert-heads. More information on real-life
datasets related to this insight can be found in Section 6.2.

5 Implementation details

The algorithm starts by first augmenting the reference with characters that occur in C but
not in R so that we have a well-defined insert point for each suffix of the collection.
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Algorithm 1 CMS-BWT.

Input: reference R, collection C
Output: BWT(C)

1 compute SAR, ISAR, LCPR, PSV−NSV(LCPR)
2 bucket-counters ← [0] ∗N

3 eCMS ← [ ]
4 pprev ← −∞
5 for i← 1 to N do
6 ⟨i, pi, ℓi, ci, xi⟩ ← computeMS(R, C, i)
7 if pi ̸= pprev + 1 then
8 eCMS.add(⟨i, pi, ℓi, ci, xi⟩)
9 mark bucket-counter[pi] // insert-bucket has an insert-head

10 bucket-counter[pi] + +
11 pprev ← pi

12 else
13 bucket-counter[pi] + +
14 end
15 end
16 sort eCMS
17 head-counters ← [0] ∗K

18 for i← 1 to N do
19 if bucket-counters[pi] is marked then
20 j ← binary-search correct position of sufi in Kpi

21 head-counters[j] + +
22 end
23 end
24 for i← 1 to |R| do
25 x← bucket-counters[i]
26 if i > 1 then char ← R[SAR[i− 1]]
27 else char ← R[|R|]
28 if bucket-counter[i] is marked then
29 for j ∈ indices(Ki) do // set of indices of Ki

30 write char head-counters[j] times
31 write character preceding jth head
32 x = x− head-counters[j]− 1
33 end
34 if x > 0 then
35 write char x times
36 end
37 else
38 write char bucket-counter[i] times
39 end
40 end
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Then, we use libsais [16] to build SAR and LCPR. We chose this tool because it has
been experimentally proven to be one of the fastest tools for general-purpose suffix array
construction. For the LCP array it uses the Φ method [17]. The data structure for PSV-NSV
queries on the LCPR is based on the work of Cánovas and Navarro [7].

For sorting the eCMS, we first rename each insert-head with a metacharacter based on
the rank of the partial lexicographic order of the substrings associated with each insert-head.
Then, by rearranging these metacharacters in text order we use again libsais to compute
the suffix array of this metacharacter string.

When profiling the implementation, we found that the number of distinct insert-heads, i.e.
the number of different tuples in K, grows even slower than the total set. For example, looking
at the dataset consisting of 333 copies of Human Chromosome 19 described in Section 6.2, we
have only 4,355,600 unique insert-heads versus κ = 174, 532, 868. Moreover, when performing
binary search comparisons, more than 60% of the total number of comparisons were resolved
by comparing the length plus xi information stored in the eCMS. Combining these two
insights led us to another heuristic based on a two-layered binary search. First, we compare
the length information ℓi = ℓki

− (i − j) along with xki
of a suffix i with insert-head

predK(i) = ki starting at position j with the set of unique insert-heads of its insert-bucket.
Then, if the pair ℓi and xki

is different from any other insert-head we increment the counter
for the insert-head pointed to by this first binary search. Otherwise, we have to refine the
search by comparing sufi with the whole set of insert-heads having ip(i), ℓ = ℓi and xki

.
This technique led to a speedup in the binary search phase of between 10% and 20%.

To avoid continuous cache misses due to loading different subsets of insert-heads with
different insert points during binary searching, we put a number of suffixes in a buffer divided
into insert-buckets. After the buffer is at its full capacity, we proceed to process in bulk
suffixes in the same insert-bucket, easing the loading in cache of subsets of insert-heads. For
all of our experiments, we set this buffer to 2GB, but it can be arbitrarily chosen by the user.

Lastly, we also implemented a variant of CMS-BWT trading off space for running time. This
was achieved by writing to disk some of the data structures involved in different phases of the
algorithm. This version saves roughly a third of the space used by the non-memory-saving
implementation.

6 Experiments

We implemented our algorithm for computing the BWT in C++. Our implementation,
CMS-BWT, is available at https://github.com/fmasillo/CMS-BWT. The experiments were
conducted on a desktop equipped with 64GB of RAM DDR4-3200MHz and an Intel(R)
Core(R) i9-11900 @ 2.50GHz (with turbo speed @ 5GHz) with 16 MB of cache. The
operating system was Ubuntu 22.04 LTS, the compiler used was g++ version 11.3.0 with
options -std=c++20 -O3 -funroll-loops -march=native enabled.

6.1 Tools compared

We compared two different implementations of CMS-BWT (simple and memory-saving) to the
following four tools:
1. big-BWT [5], a tool which computes both the BWT and the suffix array. It is specifically

made for highly repetitive data. We used the default parameters (-w = 10, -p = 100)
and the -f flag to parse fasta files as input. We chose the default parameters in order to
be consistent with the literature [5, 3, 4]. This tool outputs the entire BWT.

https://github.com/fmasillo/CMS-BWT
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To double-check the choice of parameters, we performed further experiments on each
combination of w ∈ {6, 8, 10} and p ∈ {50, 100, 200, 400, 800} as reported in [5]. On the
basis of these experiments, we concluded that the default parameters w = 10 and p = 100
lead to the best combination of memory and time for the two datasets evaluated. It should
be noted that the variation in memory and time between the different parameters is
non-negligible, reaching a 7 times larger peak memory consumption and a 40% slowdown
in running time for the sars-cov2 dataset (data not shown).

2. r-pfBWT [26], is a tool improving on plain PFP. It has been shown to be both faster and
to use less space than big-BWT for big enough dataset sizes. We run the experiments
using --bwt-only --w1 10 --w2 5 as flags. This tool outputs the run-length encoded
BWT.

3. grlBWT [10], a tool computing the BCR BWT [2] again with a focus on highly repetitive
data. We used the default parameters. This tool outputs the run-length encoded BWT.

4. ropeBWT2 [19], a highly optimized tool to compute the BCR BWT on DNA data. We
used the flag -R to skip the reverse complement. We also compare the effect of adding
the -P flag, which limits the software to execute in single-threaded mode at all times.
This tool outputs the entire BWT.

6.2 Datasets

In our experiments, we used two publicly available datasets. The first dataset, called chr19
contains copies of the Human Chromosome 19 from the 1000 Genomes Project [28]. The
second dataset, named sars-cov2, consists of copies of SARS-CoV2 genomes taken from
COVID-19 Data Portal 1. Some additional metadata can be found in Table 1.

The total size of both datasets is 60GB. We took increasing prefixes of size 1GB, 10GB,
20GB, 40GB, and 60GB. For the explicit number of sequences contained in each dataset see
Table 2.

For example, looking at 20GB of chr19 data, where we have around 333 copies of Human
Chromosome 19, we have insert-heads only in 6% of the buckets. This means that around
94% of the suffixes will not be compared against any insert-head, speeding up the whole
process.

Table 1 Datasets used in experiments. In column 3, we specify the alphabet size σ, in column 4
the number r of runs of the BWT, in column 5 the number of insert-heads, and in column 6 the
number of unique insert-heads. In our experiments, we use prefixes of each dataset up to 60GB. The
last three columns refer to the 20GB prefix.

Name Description σ r no. of i-heads no. unique i-heads
(20 GB) (20 GB) (20 GB)

chr19 Human Chromosome 19 5 36 723 404 174 532 868 4 355 600
sars-cov2 SARS-CoV2 genome 14 19 075 277 253 188 521 1 466 183

1 We used the following command to download in bulk the data using the CDP File Downloader:
java -jar cdp-file-downloader.jar - -domain=VIRAL_SEQUENCES - -datatype=SEQUENCES -
-format=FASTA - -location=/home/data/ - -email=xxx@xxx.xx - -protocol=FTP
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Table 2 Number of sequences present in each dataset.

Name 1GB 10GB 20GB 40GB 60GB
chr19 17 167 333 666 1 000
sars-cov2 36 204 332 209 659 441 1 312 058 1 966 237

14000

9000

chr19_1GB
chr19_10GB

chr19_20GB
chr19_40GB

chr19_60GB
0

1000

2000

3000

4000

5000

tim
e 

(s
)

Algorithm running time comparison on chr19

CMS-BWT
CMS-BWT (memory saving)
big-bwt
rope-bwt
rope-bwt-no-p

(a) Running time comparison on different subsets of
copies of Chromosome 19.

covid_1GB
covid_10GB

covid_20GB
covid_40GB

covid_60GB
0

1000

2000

3000

4000

5000

tim
e 

(s
)

Algorithm running time comparison on covid

CMS-BWT
CMS-BWT (memory saving)
big-bwt
rope-bwt
rope-bwt-no-p

(b) Running time comparison on different subsets of
copies of SARS-CoV2 genomes.

Figure 4 Running time comparison of tools outputting the full BWT.

6.3 Results

As already pointed out in Section 6.1, the output of the tools can either be the full BWT or
the run-length encoded BWT. This can be a non-negligible time overhead. Therefore, when
comparing to tools that output the whole BWT we will also write this version of the BWT
to disk. On the other hand, when comparing CMS-BWT to r-pfBWT and grlBWT we will write
to disk the run-length encoded BWT.

In Figures 4a, 4b, 5a and 5b, we report the comparison of the running time of the five
tools divided by dataset and output type.

On the chr19 dataset, we are always the fastest tool compared to other tools that
output the uncompressed BWT. More specifically, comparing the non-memory-saving
implementation at 60GB of data, we are 57% faster than big-BWT and 10 times faster than
ropeBWT2 with and without -P. Compared to the tools that output the run-length encoded
BWT, our fastest implementation is always the winner, while at 60GB, our memory-saving
implementation takes 12% more time than r-pfBWT. Both implementations outperform
grlBWT, e.g. at 60GB of data they take a fourth of the time.

On the sars-cov2 dataset we are always the fastest tool in both settings. For example,
at 60GB of data, we are faster than: big-BWT by 17%, ropeBWT2 with -P by 114%, ropeBWT2
with no -P by 35%, r-pfBWT by 445% and grlBWT by 53%.

In Figure 6a and 6b we show the memory footprint of the five tools. As one can notice, our
tool has the highest memory requirement. However, it can be noted that the memory-saving
variant of CMS-BWT on bigger sizes of both datasets requires always less than half of the input
size in space. On the sars-cov2 dataset we have a higher memory footprint than on chr19
because for the same size of the datasets we have a significantly higher number of strings in
the collection, leading to more insert-heads.
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Figure 6 Peak memory measured as maximum resident set size in GB.

7 Conclusions

We presented a new algorithm for constructing the BWT of a collection of highly similar
strings in compressed space. An experimental evaluation of two different implementations
shows that our algorithm is competitive with state-of-the-art tools. Most of the time, both
implementations outperform the other tools in terms of running time, but they are also the
heaviest w.r.t. space consumption.

Future work will focus on parallelizing the implementation to allow taking advantage of
multicore CPUs that are widespread nowadays. It is fairly straightforward to assign distinct
sequences to a pool of multiple threads to compute the matching statistics. Another phase
that would directly benefit from multi-threading is the for-loop at line 18 in Algorithm 1.
With careful handling of locks for each head-counter, this is easily parallelizable, dividing
the for-loop into equal parts. Moreover, we are going to investigate other ways of reducing
memory consumption to close the gap between CMS-BWT and competing tools.

ESA 2023
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We are also working on extending our algorithm to incorporate the computation of
SA-samples. This will allow us to build the r-index. With careful implementation, our tool
can be extended to compute SA-samples along with bucket- and head-counters, without
changing either the time or space bounds given in Proposition 6.
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