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Abstract
We study the parameterized complexity of MinCSP for so-called equality languages, i.e., for finite
languages over an infinite domain such as N, where the relations are defined via first-order formulas
whose only predicate is =. This is an important class of languages that forms the starting point of
all study of infinite-domain CSPs under the commonly used approach pioneered by Bodirsky, i.e.,
languages defined as reducts of finitely bounded homogeneous structures. Moreover, MinCSP over
equality languages forms a natural class of optimisation problems in its own right, covering such
problems as Edge Multicut, Steiner Multicut and (under singleton expansion) Edge Multiway
Cut. We classify MinCSP(Γ) for every finite equality language Γ, under the natural parameter,
as either FPT, W[1]-hard but admitting a constant-factor FPT-approximation, or not admitting a
constant-factor FPT-approximation unless FPT=W[2]. In particular, we describe an FPT case that
slightly generalises Multicut, and show a constant-factor FPT-approximation for Disjunctive
Multicut, the generalisation of Multicut where the “cut requests” come as disjunctions over
O(1) individual cut requests si ≠ ti. We also consider singleton expansions of equality languages,
enriching an equality language with the capability for assignment constraints (x = i) for either a
finite or infinitely many constants i, and fully characterize the complexity of the resulting MinCSP.
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1 Introduction

Let D be a fixed domain, and let Γ be a finite set of finitary relations over D. Γ is referred
to as a constraint language. A constraint over Γ is a pair (R, X), less formally written R(X),
where R ∈ Γ is a relation of some arity r and X = (x1, . . . , xr) is a tuple of variables. It
is satisfied by an assignment α if (α(x1), . . . , α(xr)) ∈ R. For a constraint language Γ, the
constraint satisfaction problem over Γ, CSP(Γ), is the problem where an instance I is a
collection of constraints over Γ, on some set of variables V , and the question is if there
is an assignment satisfying all constraints in I. In the optimization variant MinCSP(Γ),
the input also contains an integer k and the question is whether there is an assignment
such that all but at most k constraints are satisfied. Less formally, a constraint language
Γ determines the “type of constraints” allowed in an instance of CSP(Γ) or MinCSP(Γ),
and varying the constraint language defines problems of varying complexity (such as k-SAT,
k-Colouring, st-Min Cut, etc.). After decades-long investigations, dichotomy theorems
have been established for these problems: for every constraint language over a finite domain,
CSP(Γ) and MinCSP(Γ) is either in P or NP-complete, and the characterizations are
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known [16, 40, 38, 31]. For fixed cases, such as the Boolean domain D = {0, 1}, parameterized
dichotomies are also known, characterizing every problem MinCSP(Γ) as either FPT or
W[1]-hard [29], and similarly for approximate FPT algorithms [12]. This work represents
significant advancements of our understanding of tractable and intractable computational
problems (classical or parameterized).

But as highlighted by Bodirsky [3, 9], there are also many problems from a range
of application domains that do not lend themselves to a formulation in the above CSP
framework, yet which can be formulated via CSPs over structures with infinite domains.
Unfortunately, CSPs with fixed templates over infinite domains are not as well-behaved
as over finite domains; it is known that the problem CSP(Γ) over an infinite domain can
have any computational complexity (including being intermediate), making any dichotomy
impossible [6, 9]. There are also questions of how an arbitrary infinite-domain relation would
be represented. The approach used by Bodirsky, which is the standard approach for the
study of infinite-domain CSPs, is to consider a language Γ as a reduct of a finitely bounded
homogeneous structure. Less technically, consider a structure, for example (Q, <) or (Z, <),
and let Γ be a finite language where every relation in Γ has a quantifier-free first-order
definition over the structure; i.e., Γ is a first-order reduct of the structure. For such languages
a dichotomy is plausible, and many cases have been settled, including temporal CSPs, i.e.,
first-order reducts of (Q, <) [8]; discrete temporal CSPs, i.e., first-order reducts of (Z, <) [10];
CSPs over the universal random graph [11]; and many more.

Our goal is to study the parameterized complexity of MinCSPs over such structures.
Many important problems in parameterized complexity, which are not well handled by CSP
optimization frameworks over finite-domain CSPs, can be expressed very simply in this
setting. For example, the MinCSP with domain Q and the single relation < is equivalent
to the Directed Feedback Arc Set problem, i.e., given a digraph D and an integer
k, find a set X of at most k arcs from D such that D −X is acyclic. (Here, the vertices
of D become variables, the arcs constraints, and the topological order of D −X becomes
an assignment which violates at most |X| constraints.) Other examples include Subset
Directed Feedback Arc Set, which corresponds to MinCSP(<,≤), and Symmetric
Directed Multicut which corresponds to MinCSP(≤, ̸=). The former is another important
FPT problem [18], while FPT status of the latter is open [23].

The structure we study in this paper is (N, =). The relations definable over this structure
are called equality constraint languages. Here, N is an arbitrary, countably infinite domain;
first-order reducts of (N, =) are simply relations definable by a quantifier-free first-order
formula whose only predicate is =. Equivalently, relations in an equality language accept or
reject an assignment to their arguments purely based on the partition that the assignment
induces. Since every first-order formula is allowed to use equality in this framework, equality
languages are contained in every other class of languages studied in the framework. Hence,
characterizing the complexity of equality languages is a prerequisite for studying any other
structure.

Moreover, the setting also covers problems that are important in their own right, as it
captures undirected graph separation problems. In particular, (Vertex/Edge) Multicut
is defined as follows. The input is a graph G, an integer k, and a set of cut requests
T ⊆

(
V (G)

2
)
, and the task is to find a set X of at most k vertices, respectively edges, such

that for every cut request st ∈ T , vertices s and t are in different connected components in
G−X. Multicut is FPT parameterized by k – a breakthrough result, settling a long-open
question [37, 14]. As with the above examples, there appears to be no natural way of
capturing Multicut as a finite-domain CSP optimization problem. However, it naturally
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corresponds to MinCSP(=, ̸=) over domain N, where edges correspond to soft =-constraints
and cut requests to crisp ̸=-constraints. Another classic problem is Multiway Cut, which
is the special case of Multicut where the cut requests are T =

(
T
2
)

for a set T of terminal
vertices in the graph. Multiway Cut was among the first graph separation problems
shown to be FPT [36], and remains a relevant problem, e.g., for the question of polynomial
kernelization [32, 39]. While Multiway Cut is not directly captured by an equality CSP, it
is captured by the singleton expansion of the setting, i.e., allowing “assignment constraints”
of the form x = i for all i ∈ N.

Related work. Bodirsky and Kara [7] characterized CSP(Γ) as in P or NP-hard for every
equality language Γ. Bodirsky, Chen and Pinsker [5] characterized the structure of equality
languages up to pp-definitions (primitive positive definitions, see Section 2); these are too
coarse to preserve the parameterized complexity of a problem, but their results are very
useful as a guide to our search. For much more material on CSPs over infinite domains, see
Bodirsky [4]. Singleton expansions (under different names) are discussed by Bodirsky [4] and
Jonsson [25]. We have taken the term from Barto et al. [1].

Many variations on cut problems have been considered, and have been particularly
important in parameterized complexity [20] (see also [19]). We cover Multicut, Multiway
Cut and Steiner cut. Given a graph G and a set of terminals T ⊆ V (G), a Steiner
cut is an edge cut in G that separates T , i.e., a cut Z such that some pair of vertices in
T is disconnected in G − Z. Steiner Cut is the problem of finding a minimum Steiner
cut. This can clearly be solved in polynomial time; in fact, using advanced methods, it can
even be computed in near-linear time [33, 17]. Steiner Multicut is the generalization
where the input contains a set T = {T1, . . . , Tt} of terminal sets and the task is to find a
smallest-possible cut that separates every set Ti. Since Multiway Cut with 3 terminals
is NP-hard, Steiner Multicut is NP-hard if t ≥ 3. Bringmann et al. [15] considered
parameterized variations of this and showed, among other results, that Edge Steiner
Multicut is FPT even for terminal sets Ti of unbounded size, if the parameter includes
both t and the cut size k. On the other hand, parameterized by k alone, Steiner Multicut
is W[1]-hard for terminal sets of size |Ti| = 3.

Other parameterized CSP dichotomies directly relevant to our work are the dichotomies
for Boolean MinCSP as having constant factor FPT-approximations or being W[1]-hard to
approximate [12] (with additional results in a later preprint [13]) and the recent FPT/W[1]-
hardness dichotomy [29].

The area of FPT approximations has seen significant activity in recent years, especially
regarding lower bounds on FPT approximations [24, 26, 2, 34]. In particular, we will need
that there is no constant-factor FPT-approximation for Nearest Codeword in Boolean
codes unless FPT=W[1] [13, 2], or for Hitting Set unless FPT=W[2] [34]. Lokshtanov
et al. [35] considered fast FPT-approximations for problems whose FPT algorithms are
slow; in particular, our result for Steiner Multicut builds on their algorithm giving an
O∗(2O(k))-time 2-approximation.

Our Results
We study the classical and parameterized complexity of MinCSP(Γ) for every finite equality
language Γ, as well as for singleton expansions over equality languages. We consider both
exact FPT-algorithms and constant-factor FPT-approximations, and for every finite Γ classify
whether MinCSP(Γ) is in FPT, MinCSP(Γ) is W[1]-hard but admits constant-factor FPT-
approximation, or MinCSP(Γ) is W[1]-hard to approximate within any constant. To describe
the cases in more detail, we need some definitions.

ESA 2023
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Unsurprisingly, MinCSP(Γ) for an equality language Γ is NP-hard except in trivial cases,
since MinCSP(=, ̸=) already corresponds to Edge Multicut. Specifically, MinCSP(Γ)
is in P if Γ is constant, in which case every relation in Γ contains the tuple (1, . . . , 1), or
strictly negative, in which case every relation in Γ contains every tuple (1, . . . , r) where all
values are distinct (proper definitions of the terms are found in Section 3). In all other cases,
MinCSP(Γ) is NP-hard by reduction from Edge Multicut. Moreover, under the Unique
Games Conjecture [27], NP-hard MinCSP(Γ) does not admit polynomial-time constant-factor
approximation.

To describe constraint languages Γ that give rise to fixed-parameter tractable MinCSP(Γ),
let NEQ3 be the ternary relation which contains all tuples with three distinct values, and let
a split constraint be a constraint R of some arity p + q for p, q ≥ 0, defined (up to argument
order) by

R(x1, . . . , xp, y1, . . . , yq) ≡
∧

i,j∈[p]

(xi = xj) ∧
∧

i∈[p],j∈[q]

(xi ̸= yj).

We note that MinCSP(Γ) with split constraints reduces to Vertex Multicut. A split
constraint R(u1, . . . , up, v1, . . . , vq) can be represented by introducing a new vertex c, adding
edges cui for every i ∈ [p] and cut requests cvj for every i ∈ [q]. However, a constraint
NEQ3(u, v, w) cannot be handled by a gadget. Hence, we introduce the following auxiliary
graph problem, and show that it is in FPT.

Vertex Multicut with Deletable Triples (aka Triple Multicut)

Instance: A graph G, a collection T ⊆
(

V (G)
3

)
of vertex triples, and integer k.

Parameter: k.

Question: Are there subsets XV ⊆ V (G) and XT ⊆ T such that |XV | + |XT | ≤ k and
every connected component of G − XV intersects every triple in T \ XT in at
most one vertex?

MinCSP(Γ) for Γ with only split relations and NEQ3 easily reduces to Triple Multicut.
To complement this result with hardness, we prove the following.

▶ Theorem 1. Let Γ be an equality constraint language that is neither constant nor strictly
negative. Then MinCSP(Γ) is FPT if every relation in Γ is either split or NEQ3, and
W[1]-hard otherwise.

Next, we describe the cases with constant-factor FPT-approximations. Consider relation

Rd = (x1 ̸= y1 ∨ · · · ∨ xd ̸= yd)

and let Γ be a constraint language where every relation is defined by conjunction of relations
Rd and =. We show that MinCSP(Γ) for such Γ is constant-factor fpt-approximable, with
the factor depending on d. Again, we introduce a new graph problem to capture this case. Let
G be a graph; a subset L ⊆

(
V (G)

2
)

of pairs is a request list, and a set of vertices X ⊆ V (G)
satisfies L if there is a pair st ∈ L separated by X. For a graph G and a collection of request
lists L, let cost(G,L) be the minimum size of a set X ⊆ V (G) that satisfies all lists in L.

Disjunctive Multicut
Instance: A graph G, a collection L of request lists, each of size at most d, and an

integer k.
Parameter: k.

Question: Is cost(G, L) ≤ k?
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Our main algorithmic contribution is an FPT-approximation for Disjunctive Multicut.
Note that Steiner Multicut is the special case of Disjunctive Multicut where each
request list is L =

(
Ti

2
)

for some terminal set Ti. Here we obtain an improved algorithm with
approximation factor 2 and running time O∗(2O(k)).

This precisely describes the FPT-approximable cases of MinCSP(Γ): For every equality
constraint language Γ such that CSP(Γ) is in P, either MinCSP(Γ) reduces to Disjunctive
Multicut in an immediate way (up to a constant-factor approximation loss), implying a
constant-factor FPT-approximation, or there is a cost-preserving reduction from Hitting
Set to MinCSP(Γ). We refer to the latter as MinCSP(Γ) being Hitting Set-hard.

▶ Theorem 2. Let Γ be an equality constraint language such that CSP(Γ) is in P. Then
either MinCSP(Γ) reduces to Disjunctive Multicut and has a constant-factor FPT-
approximation, or MinCSP(Γ) is Hitting Set-hard.

We can summarize the main result in the following way: for every finite equality constraint
language Γ, either MinCSP(Γ) is FPT by reduction to Triple Multicut, MinCSP(Γ) is
FPT-approximable by reduction to Disjunctive Multicut, or MinCSP(Γ) is Hitting
Set-hard. A more technical description in terms of the allowed relations can be found in
Section 3.

Singleton Expansion. In addition to the above (main) results, we also investigate the
effect of adding constants to an equality language motivated by the problem Multiway
Cut. More precisely, for an equality language Γ, we investigate the effect of adding some
number of unary singleton relations {(i)} to Γ. This is equivalent to allowing “assignment
constraints” (x = i) in MinCSP(Γ). We consider adding either a finite number of singletons,
or every singleton relation. For an equality language Γ and an integer c ∈ N, c ≥ 1, we define
Γ+

c = Γ ∪ {{(i) | i ∈ [c]} as the language Γ with c different singletons added, and let Γ+

denote Γ with every singleton {(i)}, i ∈ N added. Edge Multiway Cut corresponds to
MinCSP(Γ+) over the language Γ = {=}, and s-Edge Multiway Cut, the special case
with s terminals, corresponds to MinCSP(Γ+

s ). By a singleton expansion of Γ we refer to
either the language Γ′ = Γ+ or Γ′ = Γ+

c for some c ∈ N.
As the first step of the characterization, we observe that if Γ can express = and ̸=, then

the singleton expansion adds no power, i.e., MinCSP(Γ+) reduces back to MinCSP(Γ) by
introducing variables c1, . . . , cm for arbitrarily many constants, adding constraints ci ̸= cj

whenever i ̸= j, and using constraints x = ci in place of assignments x = i. For the rest of
the characterization, we thus study the cases that either cannot express equality, or cannot
express disequality. In the former case, MinCSP(Γ′) is always FPT and constant-factor
approximable; the latter case is more involved. We defer the full case description to the
full paper, but in summary, for any singleton expansion Γ′ of a finite equality language Γ,
we characterize MinCSP(Γ′) as being in P or NP-hard, being FPT or W[1]-hard, and with
respect to the existence of polynomial-time or FPT constant-factor approximations. Overall,
the positive cases in the characterization follow without difficulty, but completing the picture
with negative results requires significant additional work, building on the structural results
of Bodirsky, Chen and Pinsker [5].

Roadmap. Section 2 contains technical preliminaries. Section 3 gives an overview of the
classification proof. Section 4 shows the FPT algorithm for Triple Multicut. Section 5 gives
the FPT approximation algorithms. This version omits several proofs, the approximation
result for Steiner Multicut, and the classification of CSP and MinCSP for equality
constraint languages under singleton expansion. These can be found in the full version.

ESA 2023
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2 Preliminaries

Graph Separation. Let G be an undirected graph. Denote the vertex set of G by V (G)
and the edge set by E(G). For a subset of edges/vertices X in G, let G − X denote the
graph obtained by removing the elements of X from G, i.e. G − X = (V (G), E(G) \ X)
if X ⊆ E(G) and G −X = G[V (G) \X] if X ⊆ V (G). A cut request is a pair of vertices
st ∈

(
V (G)

2
)
, and an st-cut/st-separator is a subset of edges/vertices X such that G − X

contains no path connecting s and t. We write that X fulfills st if X is an st-cut/st-separator.
We implicitly allows the inputs to cut problems such as Multiway Cut and Multicut to
contain undeletable edges/vertices: for edges, with a parameter of k, we can include k + 1
parallel copies; for vertices, we can replace a vertex v with a clique of size k + 1, where every
member of the clique has the same neighbourhood as v.

Parameterized Deletion. A parameterized problem is a subset of Σ∗ × N, where Σ is the
input alphabet. The parameterized complexity class FPT contains problems decidable in
f(k) · nO(1) time, where f is a computable function and n is the bit-size of the instance. Let
L1, L2 ⊆ Σ∗ × N be two parameterized problems. A mapping F : Σ∗ × N → Σ∗ × N is an
FPT-reduction from L1 to L2 if

(x, k) ∈ L1 if and only if F ((x, k)) ∈ L2,
the mapping can be computed in f(k) · nO(1) time for some computable function f , and
there is a computable function g : N→ N such that for all (x, k) ∈ Σ∗ × N, if (x′, k′) =
F ((x, k)), then k′ ≤ g(k).

The classes W[1] and W[2] contains all problems that are FPT-reducible to Clique and
Hitting Set, respectively, parameterized by the solution size. These problems are not in
FPT under the standard assumptions FPT̸=W[1] and FPT ̸=W[2]. For a thorough treatment
of parameterized complexity we refer to [20].

Constraint Satisfaction. Fix a domain D. A relation R of arity r is a subset of tuples in
Dr, i.e. R ⊆ Dr. We write = and ̸= to denote the binary equality and disequality relations
over D, i.e. {(a, b) ∈ D2 : a = b} and {(a, b) ∈ D2 : a ̸= b}, respectively. A constraint
language Γ is a set of relations over a domain D. A constraint is defined by a relation R

and a tuple of variables x = (x1, . . . , xr), where r is the arity of R. It is often written
as R(x) or R(x1, . . . , xr). An assignment α : {x1, . . . , xr} → D satisfies the constraint if
α(x) = (α(x1), . . . , α(xr)) ∈ R, and violates the constraint if α(x) /∈ R.

Constraint Satisfaction Problem for Γ (CSP(Γ))

Instance: An instance I, where V (I) is a set of variables and C(I) is a multiset of
constraints using relations from Γ.

Question: Is there an assignment α : V (I) → D that satisfies all constraints in C(I)?

MinCSP is an optimization version of the problem seeking an assignment that minimizes
the number of violated constraints. In this constraints are allowed to be crisp and soft. The
cost of assignment α in an instance I of CSP is infinite if it violates a crisp constraint, and
equals the number of violated soft constraints otherwise. The cost of an instance I denoted
by cost(I) is the minimum cost of any assignment to I.

MinCSP(Γ)

Instance: An instance I of CSP(Γ) and an integer k.
Question: Is cost(I) ≤ k?
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Next, we recall a useful notion that captures local reductions between CSPs.

▶ Definition 3. Let Γ be a constraint language over D and R ⊆ Dr be a relation. A primitive
positive definition (pp-definition) of R in Γ is an instance CR of CSP(Γ, =) with primary
variables x, auxiliary variables y and the following properties:
(1) if α satisfies CR, then it satisfies R(x),
(2) if α satisfies R(x), then there exists an extension of α to y that satisfies CR.

Informally, pp-definitions can be used to simulate R using the relations available in Γ and
equality: every constraint using R can be replaced by a gadget based on the pp-definition,
resulting in an equivalent instance. The type of reductions captured by pp-definitions is
however incompatible with MinCSP because the reductions do not preserve assignment
costs. This motivates the following definition.

▶ Definition 4. Let Γ be a constraint language over D and R ⊆ Dr be a relation. An
implementation of R in Γ is a pp-definition of R with primary variables x, auxiliary variables
y and an additional property: if α violates R(x), there exists an extension of α to y of cost
one.

Although pp-definitions do not preserve costs, they can be used to simulate crisp con-
straints in MinCSP instances.

▶ Proposition 5 (Proposition 5.2 in [30]). Let Γ be a constraint language over a domain D

and R be a relation over D. Then the following hold.
1. If Γ pp-defines R, then there is an FPT-reduction from MinCSP(Γ, R) restricted to

instances with only crisp R-constraints to MinCSP(Γ, =).
2. If Γ implements R, there is an FPT-reduction from MinCSP(Γ, R) to MinCSP(Γ, =).

Approximation. A minimization problem over an alphabet Σ is a triple (I, sol, cost), where
I ⊆ Σ∗ is the set of instances, sol : I → Σ∗ is a function such that maps instances I ∈ I to the
sets of solutions sol(I), and cost : I×Σ∗ → Z≥0 is a function that takes an instance I ∈ I and
a solution X ∈ sol(I) as input, and returns a non-negative integer cost of the solution. Define
cost(I) := min{cost(I, X) : X ∈ cost(I)}. A constant-factor approximation algorithm with
factor c ≥ 1 takes an instance x ∈ I and an integer k ∈ N, and returns “yes” if cost(I) ≤ k

and “no” if cost(I) > c · k. A cost-preserving reduction from a problem A = (IA, solA, costA)
to B = (IB , solB , costB) is a pair of polynomial-time computable functions F and G such
that (1) for every I ∈ IA, we have F (I) ∈ IB with costA(I) = costB(F (I)), and (2) for every
I ∈ IA and Y ∈ sol(F (I)), we have G(I, Y ) ∈ sol(I), and costA(I, G(I, Y )) ≤ costB(F (I), Y ).
If there is a cost-preserving reduction from A to B, and B admits a constant-factor polynomial-
time/fpt approximation algorithm, then A also admits a constant-factor polynomial-time/fpt
approximation algorithm.

3 Classification Overview

We now give an overview of the complexity dichotomy. Details are deferred to the full paper.
We begin with a definition of the relevant language classes. Recall that an equality language
is a constraint language over N whose relations can be defined via Boolean formulas over
the equality predicate. More precisely, for a set of variables X = {x1, . . . , xn}, let a positive
literal be a term (xi = xj) and a negative literal a term (xi ̸= xj), i, j ∈ [n]. A clause is a
disjunction of literals. Then every equality relation has a CNF definition as a conjunction of
clauses. A relation (respectively language) is Horn if it (respectively every relation in the

ESA 2023
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Table 1 Selected Horn relations R and the complexity of MinCSP(R, =, ≠). FPA refers to
fixed-parameter approximation.

Name CNF Formula Tuples Complexity

EQ3 (x1 = x2) ∧ (x2 = x3) ∧ (x1 = x3) (1, 1, 1) FPT
NEQ3 (x1 ̸= x2) ∧ (x2 ̸= x3) ∧ (x1 ̸= x3) (1, 2, 3) FPT

— (x1 = x2) ∧ (x1 ̸= x3) ∧ (x2 ̸= x3) (1, 1, 2) FPT

ODD3
(x1 = x2 ∨ x1 ̸= x3) ∧ (x1 = x2 ∨
x2 ̸= x3) ∧ (x1 ̸= x2 ∨ x2 ̸= x3) (1, 1, 1), (1, 2, 3) Hitting Set-hard

NAE3 (x1 ̸= x2 ∨ x2 ̸= x3) excludes (1, 1, 1) W[1]-hard, FPA

R∨
̸=,̸=

(x1 ̸= x2 ∨ x3 ̸= x4) ∧ (x1 ̸= x3) ∧
(x1 ̸= x4) ∧ (x2 ̸= x3) ∧ (x2 ̸= x4) (1, 2, 3, 3), (1, 1, 2, 3), (1, 2, 3, 4) W[1]-hard, FPA

R∧
=,= (x1 = x2) ∧ (x3 = x4) (1, 1, 1, 1), (1, 1, 2, 2) W[1]-hard, FPA

R∧
̸=,̸= (x1 ̸= x2) ∧ (x3 ̸= x4) – too many too list here – W[1]-hard, FPA

R∧
=,̸= (x1 = x2) ∧ (x3 ̸= x4) (1, 1, 1, 2), (1, 1, 2, 1), (1, 1, 2, 3) W[1]-hard, FPA

language) has a CNF definition where every clause has at most one positive literal, negative
if positive literals only occur in singleton clauses (xi = xj), strictly negative if there are no
positive literals, and conjunctive if all clauses are singletons. Note that split relations and
NEQ3 are both conjunctive.

Bodirsky and Kara [7] showed that for an equality language Γ, CSP(Γ) is in P if Γ is Horn
or constant, and NP-hard otherwise. We note that MinCSP(Γ) is trivial if Γ is constant
or strictly negative, and also show that if Γ is Horn but not constant or strictly negative
then Γ implements the relations = and ̸=. Hence we focus on this case and assume that Γ is
Horn and =, ̸= ∈ Γ. The polynomial-time complexity classification then follows since Edge
Multicut reduces to MinCSP(=, ̸=). For the remaining steps, we show that
1. MinCSP(Γ, =, ̸=) admits a constant-factor FPT-approximation if Γ is negative, otherwise

it is Hitting Set-hard;
2. MinCSP(R, =, ̸=) is W[1]-hard if R is negative but not conjunctive;
3. MinCSP(R, =, ̸=) is W[1]-hard if R is conjunctive but neither split nor NEQ3;
4. MinCSP(Γ, =, ̸=) is in FPT if Γ is conjunctive and all relations in Γ are split or NEQ3.
Table 1 lists a number of Horn relations and the associated complexity of MinCSP.

Towards hardness of approximation, we recall a result of Bodirsky, Chen and Pinsker [5]
that every equality language that is not negative can define ODD3 (see Table 1). We show
that MinCSP(ODD3, =, ̸=) is Hitting Set-hard.

▶ Lemma 6. There is a cost-preserving reduction from Hitting Set to MinCSP(ODD3, =
, ̸=) where every ODD3-constraint is crisp.

Proof Sketch. Let the input be (V, E , k), V = {1, . . . , n}. Create an instance (I, k) of
MinCSP(ODD3, =, ̸=) starting from variables x1, . . . , xn and z, with soft constraints xi = z

for all i ∈ [n]. For every set e = {a1, . . . , aℓ} ∈ E , add auxiliary variables y2, . . . , yℓ and crisp
constraints ODD3(xa1 , xa2 , y2), ODD3(yi−1, xai

, yi) for all 3 ≤ i ≤ ℓ, and xa1 ̸= yℓ. These
constraints are satisfiable if and only if not all variables xi, i ∈ e are equal, so to satisfy them
it is sufficient to break a soft constraint xai

= z. Thus, X ⊆ V is a hitting set if and only if
I − {xi = z : i ∈ X} is consistent. ◀

As noted, this implies that MinCSP(Γ) is W[1]-hard to even approximate in FPT time.
Now assume that Γ is negative. Then every relation R ∈ Γ is defined by a conjunction of
positive singleton clauses and strictly negative clauses. For a constant-factor approximation,
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Figure 1 An illustration of a choice gadget for t = 3. Black arcs correspond to equality constraints,
dashed red edges to soft disequality constraints, and the bold red edge to a crisp disequality constraint.

by [12, Lemma 10] we may split these definitions into separate constraints, so we may assume
that an instance of MinCSP(Γ) uses constraint types (xi = xj) and (x1 ̸= y1∨ . . .∨xr ̸= yr),
of lengths r ≤ d for some constant d. Then MinCSP(Γ) reduces to Disjunctive Multicut,
and since d = O(1) we get an FPT approximation. This settles the cases where MinCSP(Γ)
has a constant-factor FPT approximation.

Towards delineating FPT and W[1]-hard cases, assume that Γ is negative but not
conjunctive, and let R ∈ Γ be a relation such that every CNF definition of R contains a
non-singleton clause. We show that in this case {R, =, ̸=} pp-defines R∨

̸=,̸= or NAE3, and
that MinCSP(R′, =, ̸=) is W[1]-hard with crisp R′-constraints, where R′ is either R∨

̸=,̸= or
NAE3. The problem MinCSP(NAE3, =) with crisp NAE3-constraints naturally corresponds
to Steiner Multicut, which is W[1]-hard [15]. For the remaining proofs, we will need
a choice gadget. Let S = {s1, . . . , st} be a set. Define an instance W (S) of CSP(=, ≠)
as follows. Introduce 2t + 1 variables v0, . . . , v2t and identify indices modulo 2t + 1, e.g.
v0 = v2t+1. Connect variables in a cycle of equalities, i.e. add soft constraints vi = vi+1 for
all 0 ≤ i ≤ 2t. The forward partner of a variable vi is f(vi) := vi+t, i.e. the variable that is t

steps ahead of vi on the cycle. Add soft constraints vi ̸= f(vi) for all 0 ≤ i ≤ 2t, and make
the constraint v0 ̸= vt crisp. See Figure 1 for an illustration.

▶ Lemma 7. Let S be a set of size at least two and W (S) be the choice gadget. Then
cost(W (S)) = 3. Moreover, if X ⊆W (S), |X| = 3, W (S)−X is consistent and X contains
vi ̸= f(vi), then X also contains vi−1 = vi and f(vi) = f(vi+1).

Proof Sketch. Since v0 ̸= vt is a crisp constraint, we need to remove one link from the top
and one from the the bottom chain of equality constraints connecting v0 and vt. After this
deletion, at least one chain of length ⌈ 2t+1−2

2 ⌉ = t remains, which connects a vertex vi with
its forward partner f(vi). Thus, we either need to disconnect vi and f(vi), or remove the
constraint vi ̸= f(vi). Observe that it is sufficient to delete vi−1 = vi, f(vi) = f(vi+1) and
vi ̸= f(vi) to satisfy W (S). Moreover, if a deletion set X of size 3 contains vi ̸= f(vi), the
only pair of vertices vj and f(vj) that may remain connected in W (S)−X is the pair with
j = i. Out of the two compatible choices, only deleting vi−1 = vi and f(vi) = f(vi+1) leaves
no constraint unsatisfied. ◀

Intuitively, deleting vi−1 = vi, f(vi) = f(vi+1) and vi ̸= f(vi) from W (S) corresponds
to choosing element si from the set S. We note a simple reduction from Multicoloured
Independent Set to MinCSP(R∨

̸=,̸=, =). Let the input be a graph G with k colour classes
V (G) = V1 ∪ . . . Vk. Create a choice gadget for every Vi without soft ̸=-constraints (but
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keeping the crisp one), and set the budget to 2k. For every pair u ∈ Vi, v ∈ Vj for i ̸= j such
that uv ∈ E(G), add a crisp constraint R∨

̸=,̸=(u, f(u), v, f(v)). Due to the budget, u = f(u)
holds for at least one u ∈ Vi for every Vi, corresponding to a selection, and the R-constraint
prevents that u = f(u) and v = f(v), thereby blocking the combination of u ∈ Vi and v ∈ Vj .
We defer the details.

Having shown that MinCSP(Γ, =, ≠) is W[1]-hard if Γ is non-conjunctive, it remains
to show hardness for languages which are conjunctive but not NEQ3 or split. We use the
following W[1]-hard problem (see [22, Lemma 6.1]).

Split Paired Cut
Instance: Graphs G1, G2, vertices s1, t1 ∈ V (G1), s2, t2 ∈ V (G2), a family of disjoint

edge pairs P ⊆ E(G1) × E(G2), and an integer k.
Parameter: k.

Question: Is there a subset X ⊆ P of size at most k such that for both i ∈ {1, 2},
{ei : {e1, e2} ∈ X} is an st-cut in Gi?

Assuming Γ is conjunctive, associate with a relation R(x1, . . . , xr) a graph where for
each pair i, j ∈ [r] there is a blue edge xixj if i ̸= j and R implies xi = xj , and a red edge
xixj if R implies xi ̸= xj . Then the graph of a split relation R(X, Y ), X = {x1, . . . , xp}
and Y = {y1, . . . , yq} is a blue clique on X and a red biclique of (X, Y ), and the graph
of NEQ3 is a red triangle. The remaining cases are precisely the cases when the graph
contains two disjoint edges x1x2, x3x4 with no blue edges connecting their endpoints (such
as R∧

=,=, R∧
=,̸= or R∧

̸=,̸=). There is a curious parallel to the characterization of FPT cases
of Boolean MinCSP, in terms of 2CNF-definable relations whose Gaifman graph is 2K2-
free [29]. We show hardness for all such cases. If both x1x2 and x3x4 are blue, a reduction is
immediate from Split Paired Cut. We sketch the reduction for a more interesting case of
MinCSP(R∧

̸=,̸=, =, ̸=), and note that the reduction for MinCSP(R∧
=,̸=, =, ≠) is a variant of

the above, and hence omitted in this version of the paper.

▶ Lemma 8. MinCSP(R∧
̸=, ̸=, =) is W[1]-hard.

Proof sketch. Let (G1, G2, s1, t1, s2, t2,P, k) be an instance of Split Paired Cut. By the
construction of [28, Lemma 5.7], assume k = 2ℓ, and Fi for i ∈ {1, 2} are siti-maxflows in
Gi partitioning E(Gi) into k pairwise edge-disjoint paths. Construct an instance (I, k′) of
MinCSP(R, =, ̸=) with k′ = 5ℓ as follows. Start by creating a variable for every vertex in
V (G1) ∪ V (G2) with the same name as the vertex. For each i ∈ {1, 2}, consider a path
P ∈ Fi, and let p be the number of edges on P . Create a choice gadget W (P ) for every P

with variables vP
0 , . . . , vP

p following the path, and fresh variables vP
j for p < j ≤ 2p added

to the instance. Observe that variables may appear on several paths in Fi. In particular,
vP

0 = si and vP
p = ti for every P ∈ Fi, so we have crisp constraints si ≠ ti. Furthermore,

since Fi partitions E(Gi), the construction contains a copy of graphs G1 and G2 with equality
constraints for edges. Now we pair up edges according to P . For every pair {e1, e2} ∈ P, let
P ∈ F1 and Q ∈ F2 be the paths such that e1 ∈ P and e2 ∈ Q, and suppose e1 = vP

i−1vP
i and

e2 = vQ
j−1vQ

j . Pair up soft constraints vP
i ≠ f(vP

i ) and vQ
j ≠ f(vQ

j ), i.e. replace individual
constraints with one soft constraint R(vP

i , f(vP ), vQ
j , f(vQ

j )). Finally, if an edge uv ∈ E(G)
does not appear in any pair of P, make constraint u = v crisp in I. This completes the
construction.

The proof of correctness is deferred to the full paper. ◀
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For all remaining cases, as noted, every R ∈ Γ is either split or NEQ3, and there is a simple
reduction from MinCSP(Γ) to Triple Multicut. Since the latter is FPT (Theorem 10)
the classification is complete.

We omit the details of the classification for singleton expansion cases. The proofs are
somewhat more intricate, explicitly using the algebraic method as employed by Bodirsky,
Chen and Pinsker [5], but ultimately both the hardness proofs and algorithmic cases are less
interesting than for the above.

4 Triple Multicut

We show that Triple Multicut is in FPT, thus proving Theorem 10. The algorithm works
by a reduction to Boolean MinCSP, i.e. MinCSP(∆) for a constraint language ∆ over
the binary domain {0, 1}. Parameterized complexity of Boolean MinCSP was completely
classified by [29]. As a result of our reduction, we obtain an instance where ∆ is bijunctive,
i.e. every relation in ∆ can be defined by a Boolean formula in CNF with at most two literals
in each clause. Define the Gaifman graph of a bijunctive relation R with vertices {1, . . . , r},
where r is the arity of R, and edges ij for every pair of indices such that R(x1, . . . , xr) implies
a 2-clause involving xi and xj . A graph is 2K2-free if no four vertices induce a subgraph
with two independent edges.

▶ Theorem 9 (Theorem 1.2 of [29]). Let ∆ be a finite bijunctive Boolean constraint language
such that the Gaifman graphs of all relations in ∆ are 2K2-free. Then MinCSP(∆) is in
FPT.

We are ready to present the algorithm.

▶ Theorem 10. Triple Multicut is fixed-parameter tractable.

Proof Sketch. Let (G, T , k) be an instance of Triple Multicut. By iterative compression,
we obtain XV ⊆ V (G) and XT ⊆ T such that |XV |+ |XT | ≤ k + 1 and all components of
G−XV intersect triples in T \XT in at most one vertex. Moreover, by branching on the
intersection, we can assume that a hypothetical optimal solution (ZV , ZT ) to (G, T , k) is
disjoint from (XV , XT ). Let X = XV ∪

⋃
uvw∈XT

{u, v, w} and guess the partition of the
vertices in X into connected components of G−ZV . Identify vertices that belong to the same
component, and enumerate them via the bijective mapping α : X → {1, . . . , d}. Observe
that for every triple uvw ∈ XT , values α(u), α(v) and α(w) are distinct since XT ∩ ZT = ∅.
Create an instance Iα of Boolean MinCSP as follows.
1. Introduce variables vi and v̂i for every v ∈ V (G) and i ∈ [d].
2. For every vertex v ∈ V (G), add soft constraint

∧
i<j(¬vi ∨ ¬vj) ∧

∧
i(vi → v̂i).

3. For every vertex v ∈ X, add crisp constraints vα(v), v̂α(v), and ¬vj , ¬v̂j for all j ≠ α(v).
4. For every edge uv ∈ E(G) and i ∈ [d], add crisp constraints ûi → vi and v̂i → ui.
5. For every triple uvw ∈ T and i ∈ [d], add soft constraints (¬ûi ∨ ¬v̂i) ∧ (¬v̂i ∨ ¬ŵi) ∧

(¬ûi ∨ ¬ŵi).
This completes the reduction. We defer the correctness proof to the full version. ◀

5 Disjunctive Multicut

We show that Disjunctive Multicut is constant-factor fpt-approximable. Section 5 presents
the main loop of the Disjunctive Multicut algorithm, while Section 5 is dedicated to the
most technical subroutine of the algorithm that involves randomized covering of shadow [37].
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Main Loop of the Disjunctive Multicut Algorithm
Let G be a graph with vertices V (G) = V ∞(G) ⊎ V 1(G) partitioned into undeletable and
deletable, respectively. A subset L ⊆

(
V (G)

2
)

of pairs is a request list, and a set of vertices
X ⊆ V (G) satisfies L if there is a pair st ∈ L separated by X. This includes the possibility
that s ∈ X or t ∈ X. For a graph G and a collection of request lists L, we let cost(G,L) be
the minimum size of a set X ⊆ V 1(G) that satisfies all lists in L. Disjunctive Multicut
asks, given an instance (G,L), whether cost(G,L) ≤ k.

Disjunctive Multicut problem generalizes not only Multicut (which is a special
case with d = 1) but also d-Hitting Set. To see the latter, take an edgeless graph G and
make every request a singleton, i.e. a pair ss for a vertex s ∈ V (G). The only way to satisfy
a singleton ss is to delete the vertex s itself, and the only way to satisfy a list of singletons
is to delete one of the vertices in it.

The intuitive idea behind the approximation algorithm for Disjunctive Multicut is
to iteratively simplify the instance (G,L, k), making it closer to Bounded Hitting Set
after each iteration. Roughly, we make progress if the maximum number of non-singleton
requests in a list decreases. In each iteration, the goal is to find a set of O(k) vertices whose
deletion, combined with some branching steps, simplifies every request list. This process can
continue for O(d) steps until we obtain an instance of Bounded Hitting Set, which can
be solved in fpt time by branching. The instance may increase in the process, but finally we
obtain a solution of cost f(d) · k for some function f . We do not optimize for f in our proofs.
Observe also that in the context of constant-factor fpt approximability, some dependence on
d is unavoidable since the problem with unbounded d generalizes Hitting Set.

Formally, for a request list L, let µ1(L) and µ2(L) be the number of singleton and
non-singleton cut requests in L, respectively. Define the measure for a list L as µ(L) =
µ1(L) + 3µ2(L) = |L| + 2µ2(L), and extend it to a collection of list requests L by taking
the maximum, i.e. µ(L) = maxL∈L µ(L). Observe that µ(L) ≤ 3d for any instance of
Disjunctive Multicut. Further, let V (L) =

⋃
st∈L{s, t} denote the set of vertices in a

list L, and ν(L) = µ1(L) + 2µ2(L) be an upper bound on the maximum number of variable
occurrences in a list of L. The workhorse of the approximation algorithm is the following
lemma.

▶ Lemma 11. There is a randomized algorithm Simplify that takes an instance (G,L, k) of
Disjunctive Multicut as input, and in O∗(2O(k)) time produces a graph G′ and a collection
of requests L′ such that |V (G′)| ≤ |V (G)|, ν(L′) ≤ ν(L), |L′| ≤ k2|L|, and µ(L′) ≤ µ(L)− 1.
Moreover, the following holds.

If cost(G,L) ≤ k, then, with probability 2−O(k2), we have cost(G′,L′) ≤ 2k.
If cost(G,L) > 3k, then we have cost(G′,L′) > 2k.

Randomization in Lemma 11 comes from the use of the random covering of shadow
of [37, 18]. They also provide a derandomized version of this procedure, so our algorithm can
be derandomized as well. We postpone the proof of Lemma 11 until Section 5 since it requires
introduction of some technical machinery. For now, we show how to prove Theorem 12 using
the result of the lemma.

▶ Theorem 12. Disjunctive Multicut is fixed-parameter tractable.

Proof. Let (G,L, k) be an instance of Disjunctive Multicut. Repeat the following steps
until µ2(L) = 0. Apply the algorithm of Lemma 11 to (G,L, k), obtaining a new graph
G and a new collection of lists L, and let (G,L, k) := (G′,L′, 2k). When µ2(L) = 0, let
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Algorithm 1 Main Loop.

1: procedure SolveDJMC(G,L, k)
2: while µ2(L) > 0 do
3: (G,L)← Simplify(G,L, k)
4: if Simplify rejects then
5: reject
6: k ← 2k

7: W ← {vv : v ∈ V (G)}
8: if SolveHittingSet(W,L, k) accepts then
9: accept

10: else
11: reject

W = {vv : v ∈ V (G)} be the set of singleton cut requests for every vertex in V (G). Check
whether (W,L, k) is a yes-instance of Hitting Set – if yes, accept, otherwise reject. See
Algorithm 1 for the pseudocode.

To argue correctness, let (G,L, k) be the input instance and (G′,L′, k′) be the instance
obtained after simplification. By induction and Lemma 11, we have |V (G′)| ≤ |V (G)| and
ν(L′) ≤ ν(L). Since ν(L′) ≤ ν(L) ≤ 2d and µ2(L) = 0, every list in L has at most 2d

requests. Let r be the number of calls to Simplify performed by the algorithm. Note
that r ≤ µ(L) ≤ 3d since the measure decreases by at least one with each iteration, and
define k′ = 2rk. The lists in L′ only contain singletons, thus (G′,L′, k′) is essentially an
instance of Hitting Set with sets of size 2d. Moreover, |L′| ≤ k2r|L|, so the number of
lists is polynomial in |L|. We can solve (G′,L′, k′) in O∗((2d)k′) time by branching (see, for
example, Chapter 3 in [20]). For the other direction, suppose cost(G,L) ≤ k. By Lemma 11
and induction, we have cost(G′,L′) ≤ 2rk ≤ k′ with probability 2−O(rk2), and the algorithm
accepts. If cost(I) > 3k, then cost(G′,L′) > k′ and the algorithm rejects. ◀

Simplification Procedure
In this section we prove Lemma 11. We start by iterative compression and guessing. Then
we delete at most k vertices from the graph and modify it, obtaining an instance amenable
to the main technical tool of the section – the shadow covering technique.

Initial Phase

Let (G,L, k) be an instance of Disjunctive Multicut. By iterative compression, assume
we have a set X ⊆ V (G) that satisfies all lists in L and |X| = c · k + 1, where c := c(d) is the
approximation factor. Assume Z is an optimal solution to G, i.e. |Z| ≤ k and Z satisfies
all lists in L. Guess the intersection W = X ∩ Z, and let G′ = G−W , X ′ = X \W , and
Z ′ = Z \W . Construct L′ starting with L and removing all lists satisfied by W . Further,
guess the partition X = (X1, . . . , Xℓ) of X ′ into the connected components of G′ − Z ′, and
identify the variables in each subset Xi into a single vertex xi, and redefine X ′ accordingly.
Note that the probability of our guesses being correct up to this point is 2−O(k log k). Also,
these steps can be derandomized by creating 2O(k log k) branches.

Now compute a minimum X -multiway cut in G′, i.e. a set M ⊆ V 1(G′) that separates
every pair of vertices xi and xj in X ′. Note that Z ′ is a X -multiway cut by the definition of
X , so |M | ≤ |Z ′| ≤ k. Such a set M can be computed in O∗(2k) time using the algorithm
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of [21]. If no X -multiway cut of size at most k exists, then abort the branch and make
another guess for X . If an X -multiway cut M of size at most k is obtained, remove the
vertices in M from G and along with the lists in L′ satisfied by M . This completes the initial
phase of the algorithm. Properties of the resulting instance are summarized below.

▶ Lemma 13 (Proof Omitted). After the initial phase we obtain a graph G′, a family of list
requests L′, and subset of vertices X ′ ⊆ V (G′) such that |V (G′)| ≤ |V (G)|, ν(L′) ≤ ν(L),
µ(L′) ≤ µ(L), and |X ′| ∈ O(k). The set X ′ satisfies all lists in L′ and intersects each
connected component of G′ in at most one vertex. Moreover, the following hold.

cost(G,L) ≤ k + cost(G′,L′).
If cost(G,L) ≤ k, then, with probability 2−O(k log k), we have cost(G′,L′) ≤ k. Moreover,
there is a set Z ′ ⊆ V (G′), |Z ′| ≤ k that satisfies all lists in L′ and is disjoint from X ′.

Random Covering of Shadow

Random covering of shadow is a powerful tool introduced by [37] and sharpened by [18]. We
use the latter work as our starting point. Although [18] present their theorems in terms
of directed graphs, their results are applicable to our setting by considering undirected
edges as bidirectional, i.e. replacing every edge uv with a pair of antiparallel arcs (u, v) and
(v, u). Consider a graph G with vertices partitioned into deltable and undeletable subsets,
i.e. V (G) = V 1(G) ⊎ V ∞(G). Let F = (F1, . . . , Fq) be a family of connected subgraphs of
G. An F-transversal is a set of vertices T that intersects every subgraph Fi in F . If T is an
F-transversal, we say that F is T -connected. For every W ⊆ V (G), the shadow of W (with
respect to T ) is the subset of vertices disconnected from T in G −W . We state it for the
case T ⊆ V ∞(G) which suffices for our applications.

▶ Theorem 14 (Random Covering of Shadow, Theorem 3.5 in [18]). There is an algorithm
RandomCover that takes a graph G, a subset T ⊆ V ∞(G) and an integer k as input, and
in O∗(4k) time outputs a set S ⊆ V (G) such that the following holds. For any family F of
T -connected subgraphs, if there is an F-transversal of size at most k in V 1(G), then with
probability 2−O(k2), there exists an F-transversal Y ⊆ V 1(G) of size at most k such that
1. Y ∩ S = ∅, and
2. S covers the shadow of Y with respect to T .

The following consequence is convenient for our purposes.

▶ Corollary 15 (Proof Omitted). Let S and Y be the shadow-covering set and the F-transversal
from Theorem 14, respectively. Define R = V (G) \ S to be the complement of S. Then
Y ⊆ R and, for every vertex v ∈ R, either v ∈ Y or v is connected to T in G− Y .

Note that if a vertex v ∈ N(S) and v is undeletable, then v ∈ R and v /∈ Y , hence v is
connected to T in G− Y . Since Y ∩ S = ∅, every vertex in N(v) ∩ S is also connected to T

in G− Y , so we can remove N(v) ∩ S from S (and add it to R instead). By applying this
procedure to exhaustion, we may assume that no vertex in N(S) is undeletable.

With the random covering of shadow at our disposal, we return to Disjunctive Multi-
cut. By Lemma 13, we can start with an instance (G,L, k) and a set X ⊆ V (G) such that
|X| ∈ O(k), X satisfies all lists in L, every connected component of G intersects X in at
most one vertex, and there is an optimal solution Z disjoint from X. Let T := T (G,L, X, Z)
be the set of cut requests in

⋃
L satisfied by both X and Z. Define F as the set of st-walks

for all st ∈ T . Observe that an F -transversal is precisely a T -multicut. Apply the algorithm
from Theorem 14 to (G, X, k). Since X and Z are F -transversals and |Z| ≤ k by assumption,
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Theorem 14 and Corollary 15 imply that we can obtain a set R ⊆ V (G) in fpt time such
that, with probability 2−O(k2), there is an F -transversal Y ⊆ R of size at most k, and every
vertex in R \ Y is connected to X in G− Y .

For every vertex v ∈ V 1(G) \X, define a set of vertices Rv ⊆ R \X as follows:
if v is disconnected from X, then let Rv = ∅;
if v ∈ N(X) or v ∈ R, then let Rv = {v};
otherwise, let Rv = R ∩N(H), where H is the component of G[S] containing v.

Note that, by definition, the set Rv is an Xv-separator in G. Moreover, we have ensured
that N(S) does not contain undeletable vertices, so Rv does not contain undeletable vertices.
In a certain sense, the sets Rv are the only Xv-separators that Y needs to use. This idea is
made precise in the following lemma.

▶ Lemma 16 (Proof Omitted). Let G be a graph. Let X and Y be disjoint subsets of V (G)
such that X intersects every connected component of G in at most one vertex. Suppose
R ⊆ V (G) is such that Y ⊆ R and all vertices in R \ Y are connected to X in G− Y . If a
vertex s is disconnected from X in G− Y , then Rs ⊆ Y .

Now we compute a simplified collection of lists L′. Start by adding all lists in L to L′.
Remove every singleton request xx such that x ∈ X from every list of L′. For every list
L ∈ L′ not shortened this way, let st ∈ L be a non-singleton cut request satisfied by X.
Consider Rs and Rt and apply one of the following rules.
(R1) If |Rs| > k and |Rt| > k, remove st from L.
(R2) If |Rs| ≤ k and |Rt| > k, replace L with sets (L \ {st}) ∪ {aa} for all a ∈ Rs.
(R3) If |Rs| > k and |Rt| ≤ k, replace L with sets (L \ {st}) ∪ {bb} for all b ∈ Rt.
(R4) If |Rs| ≤ k and |Rt| ≤ k, replace L with sets (L \ {st})∪ {aa, bb} for all a ∈ Rt, b ∈ Rt.
Finally, make vertices in X undeletable, obtaining a new graph G′. This completes the
simplification step. Note that each list in L is processed once, so the running time of the last
step is polynomial.

Now we prove some properties of G′ and L′ obtained above. Note that |V (G′)| = |V (G)|.
Since every list in L is processed once and with at most k2 new lists, the size of |L′| grows by
a factor of at most k2. To see that ν(L′) ≤ ν(L) and µ(L′) ≤ µ(L)− 1, observe that every
reduction rule replaces a list L with new lists with either one less non-singleton request (so
µ2 decreases by at least 1), and adds up to two singleton requests (so µ1 increases by at
most 2). Moreover, in every list of L there is a cut request satisfied by X, so no list of L
remains unchanged in L′. We state the remaining ingredients for proving correctness.

▶ Lemma 17 (Proof Omitted). If cost(G,L) ≤ k, then, with probability 2−O(k2), we have
cost(G′,L′) ≤ 2k.

▶ Lemma 18 (Proof Omitted). If cost(G,L) > 2k, then we have cost(G′,L′) > 2k.

We are now ready to prove Lemma 11.

Proof of Lemma 11. Suppose (G,L, k) is a yes-instance of Disjunctive Multicut. By
Lemma 13, after the initial phase we obtain G′, L′ such that |V (G′)| ≤ |V (G)|, ν(L′) ≤ ν(L),
µ(L′) ≤ µ(L), and cost(G′,L′) ≤ k. Moreover, we obtain a set X ′ ⊆ V (G′), |X ′| ∈ O(k),
that satisfies all lists in L′, intersects every component of G′ in at most one vertex, and is
disjoint from an optimum solution Z ′ to (G′,L′, k). Now we apply random covering of shadow
and the list reduction rules to G′,L′, X ′, obtaining a new graph G′′ and a new set of lists
L′′. By Lemma 17, with probability 2O(−k2), we have cost(G′′,L′′) ≤ 2k. This proves one
statement of Lemma 11. For the second statement of Lemma 11, suppose cost(G′′,L′′) ≤ 2k.
By Lemma 18, we have cost(G′,L′) ≤ 2k. By Lemma 13, cost(G′L′) ≤ 2k implies that
cost(G,L) ≤ 2k + k ≤ 3k, and we are done. ◀
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