
Linear Time Construction of Cover Suffix Tree and
Applications
Jakub Radoszewski #

University of Warsaw, Poland
Samsung R&D, Warsaw, Poland

Abstract
The Cover Suffix Tree (CST) of a string T is the suffix tree of T with additional explicit nodes
corresponding to halves of square substrings of T . In the CST an explicit node corresponding to
a substring C of T is annotated with two numbers: the number of non-overlapping consecutive
occurrences of C and the total number of positions in T that are covered by occurrences of C in T .
Kociumaka et al. (Algorithmica, 2015) have shown how to compute the CST of a length-n string
in O(n log n) time. We give an algorithm that computes the same data structure in O(n) time
assuming that T is over an integer alphabet and discuss its implications.

A string C is a cover of text T if occurrences of C in T cover all positions of T ; C is a seed of
T if occurrences and overhangs (i.e., prefix-suffix occurrences) of C in T cover all positions of T .
An α-partial cover (α-partial seed) of text T is a string C whose occurrences in T (occurrences
and overhangs in T , respectively) cover at least α positions of T . Kociumaka et al. (Algorithmica,
2015; Theor. Comput. Sci., 2018) have shown that knowing the CST of a length-n string T , one can
compute a linear-sized representation of all seeds of T as well as all shortest α-partial covers and
seeds in T for a given α in O(n) time. Thus our result implies linear-time algorithms computing
these notions of quasiperiodicity. The resulting algorithm computing seeds is substantially different
from the previous one (Kociumaka et al., SODA 2012, ACM Trans. Algorithms, 2020); in particular,
it is non-recursive. Kociumaka et al. (Algorithmica, 2015) proposed an O(n log n)-time algorithm
for computing a shortest α-partial cover for each α = 1, . . . , n; we improve this complexity to O(n).

Our results are based on a new combinatorial characterization of consecutive overlapping
occurrences of a substring S of T in terms of the set of runs (see Kolpakov and Kucherov, FOCS
1999) in T . This new insight also leads to an O(n)-sized index for reporting overlapping consecutive
occurrences of a given pattern P of length m in the optimal O(m + output) time, where output is
the number of occurrences reported. In comparison, a general index for reporting bounded-gap
consecutive occurrences of Navarro and Thankachan (Theor. Comput. Sci., 2016) uses O(n log n)
space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases cover (quasiperiod), seed, suffix tree, run (maximal repetition)

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.89

Related Version Full Version: https://arxiv.org/abs/2308.04289

Funding Jakub Radoszewski: Supported by the Polish National Science Center, grant no. 2022/46/E/
ST6/00463.

Acknowledgements The author thanks the anonymous reviewers for reading the manuscript carefully
and providing several useful suggestions.

1 Introduction

The Cover Suffix Tree (CST, in short) of a string T , denoted as CST (T), is the suffix tree
of T (ST(T)) augmented with additional nodes and values. For every substring C of T ,
CST(T) allows to efficiently compute the number of positions in T that are covered by
occurrences of C, provided that the node representing C in CST (T) is known. Thus the CST

© Jakub Radoszewski;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Govrtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 89;
pp. 89:1–89:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jrad@mimuw.edu.pl
https://orcid.org/0000-0002-0067-6401
https://doi.org/10.4230/LIPIcs.ESA.2023.89
https://arxiv.org/abs/2308.04289
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

89:2 Linear Time Construction of Cover Suffix Tree and Applications

is a generalization of string covers [3]. The CST of a string was introduced by Kociumaka et
al. [29] for computing so-called partial covers of a string (see below). Other applications of
the CST to the field of quasiperiodicity (see [2]) were discussed in [29, 30].

Let n denote the length of a string T . Kociumaka et al. [29] presented an algorithm
computing CST(T) in O(n log n) time. Our main result is an algorithm that constructs
CST(T) in O(n) time. We assume that T is over an integer alphabet {0, . . . , nO(1)}. This
assumption has become a standard in suffix tree construction algorithms since the linear-time
suffix tree construction algorithm of Farach [18].

In Section 1.1 we provide more details on the CST. Then in Section 1.2 we discuss
applications of our result to computing various notions of quasiperiodicity and in Section 1.3
we present an application of our approach to a variant of text indexing.

#

#
#

#
a

a

a

a# b
a
a

a
a

#

b
a
a
b
a
a
a
b
a
a
a
a
#

b
a
a

b a

a

b a a

a

a
#

b
a
a
a
a
#

b
a

a

a
b
a
a
a
a

#

b
a
a
a
b
a
a
a
a
#

a

a
#

b
a
a
a
a
#

b
a

a
a
b
a
a
a
a

#

b
a
a
a
b
a
a
a
a
#

a

a
#

b
a
a
a
a
#

b
a

a

a
b
a
a
a
a

#

b
a
a
a
b
a
a
a
a
#

9,18,2

12,4

10,19,1

14,2
12,4

11,110,1

15,1
14,2

12,4

12,2

10,3
14,5

14,14

Figure 1 CST(T) for T = aaabaabaabaaabaaaa#. Black circles denote explicit nodes of ST(T)
and blue circles represent nodes corresponding to halves of square substrings in T . The numbers
next to nodes denote cv(v) and nov(v).

1.1 Cover Suffix Tree
In the suffix tree ST(T), there is a 1-to-1 correspondence between substrings of T and
(explicit and implicit) nodes. The same applies to CST (T). The set of explicit nodes of the
CST (T) comprises of the explicit nodes of the suffix tree of T and of nodes corresponding to
halves of square substrings of T . Here a square is a string of the form X2 = XX, for some
string X which is called the square half.

The CST has the same tree structure as the Maximal Augmented Suffix Tree (MAST)
introduced by Apostolico and Preparata for the String Statistics Problem [4]. It was already
observed by Brodal et al. [11] that the MAST of T uses only O(n) space; this is because

J. Radoszewski 89:3

the suffix tree has O(n) nodes [32] and the number of different square substrings of T is
O(n) [20]. By a recent result of Brlek and Li [9, 10] showing that a string of length n contains
at most n different square substrings, it follows that the CST (and MAST) contains at most
3n explicit nodes.

For a node v of CST(T), by v̄ we denote the substring of T that corresponds to v. A
consecutive occurrence of string S in T is a pair of indices (i, j) in T such that j > i, S has
occurrences starting at positions i and j in T and S does not occur at any of the positions
i + 1, . . . , j − 1. A consecutive occurrence (i, j) of S is called overlapping if j < i + |S|
and non-overlapping otherwise. In CST(T), each node v is annotated by two values (see
Figure 1):

cv(v), equal to the total number of positions in T covered by occurrences of v̄, and
nov(v), equal to one plus the number of non-overlapping consecutive occurrences of v̄

in T . (Intuitively, the one corresponds to the rightmost occurrence of v̄ in T .)

The key property of values cv(v) and nov(v) is that if u is an implicit node of CST(T)
that is located on an edge from an explicit node v to its parent, then cv(u) can be expressed
in terms of cv(v) and nov(v) as follows: cv(u) = cv(v) − (|v̄| − |ū|)nov(v); see Figure 2.

T a a a b a a b a a b a a a b a a a a
a b a a b a a

a b a a b a a

T a a a b a a b a a b a a a b a a a a
a b a a b a

a b a a b a

Figure 2 Left: the locus v of C = abaabaa in CST(T) is an explicit node and we have cv(v) = 10,
nov(v) = 1 (see Figure 1). Right: the locus v′ of the prefix C′ = abaaba of C is an implicit node
one character above v. We then have cv(v′) = cv(v) − nov(v) = 9.

We obtain the following result.

▶ Theorem 1. The Cover Suffix Tree (CST) of a string of length n over an integer alphabet
can be constructed in O(n) time.

The O(n log n)-time algorithm from [29] for constructing CST (T) processes the suffix tree
of T bottom-up, storing for each explicit node v the set of occurrences of the corresponding
substring of T in an AVL tree. Its time complexity follows by using an efficient algorithm for
merging AVL trees [13] (cf. [12]). We use a completely different approach, based on a new
combinatorial observation that links overlapping consecutive occurrences of substrings of T

to runs in T [31]. We show that the (multi)set of substrings whose overlapping consecutive
occurrences are implied by a run has a simple, “triangular” structure. The values ov(v) and
cv(v) for explicit nodes v of CST (v) are then computed in two bottom-up traversals, one in
the tree of suffix links of ST (T) and the other in the CST (T).

1.2 Applications of CST to quasiperiodicity
Theorem 1 has several applications in the field of quasiperiodicity [2]. Basic notions of
quasiperiodicity are covers [3], that were already mentioned before, and seeds [25]. A string
C is a cover of a string T if each position of T is inside at least one occurrence of C. A string
S is a seed of a string T if it is a cover of a superstring of T . In other words, all positions of
T are covered by occurrences and overhangs of S, where an overhang is a prefix of T being
a suffix of S or a suffix of T being a prefix of S. A substring C of T is called an α-partial
cover of T if the occurrences of C in T cover at least α positions in T . A substring S of T

is called an α-partial seed of T if the occurrences and overhangs of S in T cover at least α

positions in T . See Figure 3 for examples.

ESA 2023

89:4 Linear Time Construction of Cover Suffix Tree and Applications

T a a a b a a b a a b a a a b a a a a
a a b a a

a a b a a
a a b a a

a a b a a

T a a a b a a b a a b a a a b a a a a
a a b a a

a a b a a
a a b a a

a a b a aa a b a a
a a b a a

Figure 3 C = aabaa is a 15-partial cover of T (left). Indeed, the node v of CST(T) corresponding
to C has cv(v) = 15 (Figure 1). C is also an 18-partial seed of T , hence, a seed of T (right).

In [29, 30] it was noticed that given the CST (T), all shortest α-partial covers and α-partial
seeds of T for a specified value of the parameter α can be computed in O(n) time. Thus our
Theorem 1 implies the following result.

▶ Corollary 2. Let T be a string of length n over an integer alphabet and α ∈ [1 . . n]. All
shortest α-partial covers and seeds of T can be computed in O(n) time.

In [29] also the following problem was considered.

AllPartialCovers
Input: a string T of length n

Output: for all α = 1, . . . , n, a shortest α-partial cover of T

▶ Example 3. For T from Figure 1, the solution to AllPartialCovers problem can be as
follows: substring C = a for α ≤ 14, substring C = aabaa for α = 15 (see Figure 3), and any
length-α substring of T for α ≥ 16.

An O(n log n)-time solution for AllPartialCovers based on CST (T) and on computing
the upper envelope [24] of O(n) line segments was presented in [29]. We obtain the following
result.

▶ Theorem 4. AllPartialCovers problem can be solved in O(n) time for a length-n
string over an integer alphabet.

A linear-time algorithm computing all covers of a string was presented almost 30 years
ago by Moore and Smyth [33, 34]. A rather involved linear-time algorithm computing
a representation of all seeds in a string over an integer alphabet was given much more
recently by Kociumaka et al. [27]. The representation (already introduced in the earlier,
O(n log n)-time algorithm by Iliopoulos et al. [25]) consists of a set of paths in the suffix trees
of T and of T reversed, at most one path on each edge of the suffix trees. Seeds of T are
exactly |T |-partial seeds of T , so Corollary 2 immediately implies an alternative linear-time
algorithm computing all shortest seeds of T . Moreover, in [29, Theorem 3] it was observed
that having CST (T), the aforementioned representation of all seeds in T can be computed in
O(n) time. Thus Theorem 1 yields an alternative O(n)-time algorithm computing the same
representation of all seeds in T as in [27]. The resulting algorithm is substantially different
from the algorithm of [27]; in particular, it is non-recursive and arguably simpler.

Recently, Kociumaka et al. [28] showed that there exists a different representation of
all seeds of a string, consisting of O(n) disjoint paths on just the suffix tree of T , and that
this representation can be computed in O(n) time assuming an integer alphabet. This
representation, however, no longer satisfies the convenient property that at most one path
on each edge of the suffix tree is in the representation (see [28, Fig. 2] for an example).

J. Radoszewski 89:5

1.3 Reporting overlapping occurrences
Data stored in the CST can be used to compute, for any substring S of T , the number
ov(S) of overlapping consecutive occurrences of S in T . We show that the technique behind
Theorem 1 can be further exploited to obtain a linear-space index for reporting overlapping
consecutive occurrences of a query pattern.

Navarro and Thankachan [35] proposed an index that, given a length-m substring S of T

and an interval [α, β], reports all consecutive occurrences (i, j) of S such that α ≤ j − i ≤ β

in O(m + output) time, where output is the number of consecutive occurrences reported. The
size of their index for a text T of length n is O(n log n). We solve the following problem.

Reporting bounded-gap overlapping consecutive occurrences
Input: A string T of length n

Query input: A substring S of T , |S| = m, and a positive integer β such that β < m

Query output: All consecutive occurrences (i, j) of S in T such that j − i ≤ β

▶ Theorem 5. There is an index of size O(n) that reports all bounded-gap overlapping
consecutive occurrences of a length-m pattern in O(m + output) time, where output is the
number of consecutive occurrences reported. If T is over a constant-sized alphabet, the index
can be constructed in O(n) time. The construction time becomes expected if T is over an
integer alphabet.

The data structure of Theorem 5 is superior to the data structure of [35] if α = 0 and
β < m.

In the data structure we use the same combinatorial observation as in Theorem 1. With
it, a query for a pattern S consists in finding the corresponding node v in CST(T) and
reporting all “triangular” structures implied by runs that contain v. To this end, range
minimum query data structures [8] are used to store the “bottom sides” of the triangles.
Thanks to this, it is actually sufficient to store ST (T) instead of the CST (T). The expected
time in the construction algorithm stems from using perfect hashing [21] to store children of
a node of the suffix tree if T is over a superconstant alphabet.

1.4 Structure of the paper
We start by recalling basic definitions related to strings and compact tries (including
suffix trees). In Section 3 we present the proof of the main Theorem 1. Solution to
AllPartialCovers (Theorem 4) is provided in Section 4. The data structure for reporting
bounded-gap overlapping consecutive occurrences (proof of Theorem 5) is presented in the
full version. We conclude in Section 5.

2 Preliminaries

2.1 Strings
By Σ we denote the finite alphabet of all the considered strings. We assume that characters of
a string S are numbered 1 through |S|, with S[i] ∈ Σ denoting the ith character. An integer
j ∈ [1 . . |S|] is called an index in S. A string S[i]S[i + 1] · · · S[j] for any indices i, j such that
i ≤ j is called a substring of S. By S[i . . j] we denote a fragment of S that can be viewed as
a positioned substring S[i]S[i + 1] · · · S[j] (formally, it is represented in O(1) space with a
reference to S and the interval [i . . j]). We also denote S[i . . j − 1] as S[i . . j). Two fragments

ESA 2023

89:6 Linear Time Construction of Cover Suffix Tree and Applications

S[i . . j] and S[i′ . . j′] match (notation: S[i . . j] = S[i′ . . j′]) if the underlying substrings are
the same. Similarly we define matching of a fragment and a substring. Two fragments S[i . . j]
and S[i′ . . j′] are equivalent (notation: S[i . . j] ≡ S[i′ . . j′]) if i = i′ and j = j′. A string U is
called a prefix (suffix) of a string S if U = S[1 . . |U |] (U = S[|S| − |U | + 1 . . |S|], respectively)
and a border of S if it is both a prefix and a suffix of S.

Henceforth by T we denote the text string and by n we denote |T |. We say that a
string S occurs in the text T at position i if S = T [i . . i + |S|). A pair of indices (i, j)
in T is called a consecutive occurrence of substring S if i < j, T [i . . i + |S|) = T [j . . j + |S|)
and T [k . . k + |S|) ̸= S for all k ∈ (i . . j). A consecutive occurrence is called overlapping if
j < i + |S| and otherwise it is called non-overlapping. By OvOcc(S) we denote the set of
overlapping consecutive occurrences of S in T .

For a string U and d ∈ Z≥0, by Ud we denote the dth power of U , equal to a concatenation
of d copies of U . A string V is primitive if V = Ud for d ∈ Z+ implies that d = 1. The
following property of primitive strings is a known consequence of Fine and Wilf’s lemma [19].

▶ Lemma 6 (Synchronization property, see [14]). A string V is primitive if and only if V has
exactly two occurrences in V 2.

A string of the form U2 is called a square.

▶ Theorem 7 ([20] and [15, 6]). The number of distinct square substrings in a length-n string
is O(n) and they can all be computed in O(n) time assuming an integer alphabet.

We say that a string S has a period p if S[i] = S[i + p] holds for all i ∈ [1 . . |S| − p];
equivalently, if S has a border of length |S| − p. By per(S) we denote the smallest period
of S.

A run in a string T is a triad (a, b, p) such that (1) p is the smallest period of T [a . . b], (2)
2p ≤ b − a + 1, (3) a = 1 or T [a − 1] ̸= T [a − 1 + p], and (4) b = |T | or T [b + 1] ̸= T [b + 1 − p].
The exponent of a run R = (a, b, p) is defined as exp(R) = (b − a + 1)/p. By R(T) we denote
the set of all runs in T .

▶ Theorem 8 ([5]). A string T of length n has at most n runs and they can be computed in
O(n) time if T is over an integer alphabet.

An earlier bound |R(T)| = O(n) together with an O(n)-time algorithm for computing
R(T) was proposed in [31]. All runs can be computed in O(n) time also for a string over a
general ordered alphabet [17].

2.2 Compact tries
The suffix trie of a string T contains a node for every distinct substring of T #, where # ̸∈ Σ
is a special end marker. The root node is the empty string. For each pair of substrings
(S, Sc) of T , where c ∈ Σ, there is an edge from S to Sc labeled with the character c. Each
suffix of T# corresponds to a leaf of the suffix trie.

A compact suffix trie of T contains the root, the branching nodes, the leaf nodes, and
possibly some other nodes of the suffix trie as explicit nodes. Maximal paths that do not
contain explicit nodes are replaced by single compact edges, and a fragment of T is used
to represent the label of every such edge in O(1) space. The nodes that are dissolved due
to compactification are called implicit nodes; an implicit node u can be referred to as a
pair (v, d) where v is the nearest explicit descendant of u and d is the distance (number of
characters) between u and v. The most common example of a compact suffix trie of T is the
suffix tree of T , denoted here as ST(T), in which each maximal branchless path from the
suffix trie is replaced by a single compact edge.

J. Radoszewski 89:7

▶ Theorem 9 ([18, 26]). The suffix tree of a string of length n over an integer alphabet can
be constructed in O(n) time.

For a node v of a compact suffix trie T of T , the corresponding substring v̄ of T is called
the string label of v. Conversely, for a substring (or fragment) S of T , its locus in T is the
(explicit or implicit) node v of T such that v̄ = S.

The locus in ST (T) of a substring S is denoted as locus(S). For a non-root explicit node
v of ST (T), its suffix link leads from v to the node suf (v) = locus(X), where v̄ = cX, c ∈ Σ;
it is known that suf (v) is then an explicit node. By ST ′(T) we denote tree of suffix links in
ST (T). The nodes of ST ′(T) are the explicit nodes of ST (T) and for each non-root explicit
node v of ST (T), in ST ′(T) there is an edge connecting node v with node suf (v).

Let Sq(T) = {S : S2 is a substring of T}. Then the tree structure of CST(T) is a
compact suffix trie of T that could be obtained from the suffix tree ST (T) by making loci of
substrings Sq(T) explicit.

A weighted ancestor query on a compact suffix trie T is given a leaf ℓ of T and a non-
negative integer d and asks for the topmost (explicit) ancestor w of ℓ such that |w̄| ≥ d. We
denote such a query and its result as w = WA(ℓ, d). We use the following offline solution to
the problem of answering WA queries.

▶ Theorem 10 ([28]). Any q weighted ancestor queries on a compact suffix trie with O(n)
nodes of a length-n string can be answered in O(n + q) time.

Data structures for answering weighted ancestor queries with different complexities are
known [1, 22], also in the special case of the compact suffix trie being the suffix tree [7, 23].

Let v be a node of a compact suffix trie and S = v̄. Then cv(v) is formally defined as

cv(v) =
⋃

{ [i . . i + |S|) : T [i . . i + |S|) = S }.

Moreover, nov(v) equals one plus the number of non-overlapping consecutive occurrences of
S in T . CST (T) stores the values cv(v) and nov(v) for each explicit node v. By occ(v) we
further denote the total number of occurrences of v̄ in T . The values occ(v) for all explicit
nodes of a compact suffix trie can be computed bottom-up in linear time, as occ(v) is the
number of leaves in the subtree of node v. By ov(v) we denote the number of overlapping
consecutive occurrences of v̄ in T . We have ov(v) + nov(v) = occ(v). We use the notations
cv(), nov(), ov() and occ() also for substrings of T .

3 Construction of the CST

3.1 Computing the tree structure
▶ Lemma 11. The tree structure of the CST of a string T of length n over an integer
alphabet can be computed in O(n) time.

Proof. The suffix tree of a string over an integer alphabet can be constructed in O(n) time
(Theorem 9). By Theorem 7, the set Sq(T) of square substring halves, each represented as a
fragment of T , can be computed in O(n) time.

The final step is to make all implicit nodes of the suffix tree that correspond to elements
of Sq(T) explicit. Let T [i . . i + 2d) be a square substring and ℓ be the leaf of the suffix tree
of T corresponding to the suffix T [i . . n]. Using a weighted ancestor query we can compute a
pair (v, p) where v = WA(ℓ, d) is the nearest explicit descendant of the locus u of T [i . . i + d)
and p is the distance between u and v. With Theorem 10 a batch of O(n) such queries

ESA 2023

89:8 Linear Time Construction of Cover Suffix Tree and Applications

can be answered in O(n) time. Finally, we use Radix Sort to sort the pairs (v, p) (under
an arbitrary, fixed order on nodes of the suffix tree) in O(n) time. As a result, the loci of
substrings in Sq(T) are grouped by their nearest explicit descendants, and each group is
sorted by decreasing depths. This allows to make all the desired implicit nodes explicit in
O(n) time. ◀

3.2 Properties of overlapping consecutive occurrences
If a substring S of T does not have overlapping occurrences in T , i.e., ov(S) = 0, then
cv(S) = nov(S) · |S| = occ(S) · |S| is easy to compute. Hence, below we characterize
overlapping consecutive occurrences of substrings. To this end, we use runs.

For indices 1 ≤ i ≤ j1 ≤ j2 ≤ n, we denote the set of fragments corresponding to a path
in the suffix tree of T :

Path(i, j1, j2) = {T [i . . j] : j ∈ [j1 . . j2]}.

For a run R = (a, b, p) in T , we denote

Triangle(R) = Triangle(a, b, p) =
b−2p⋃
i=a

Path(i, i + p, b − p).

Figure 4 gives a graphical motivation for the name of this set of fragments, whereas Figure 5
shows that in some cases the triangle is “wrapped”.

The following key combinatorial lemma shows that sets Triangle(R) for R ∈ R(T) are
sufficient for counting overlapping consecutive occurrences.

a
b

c
d

e

b
c

d
e

a

c
d
e
a
b

d
e

a
b

c

a
b
c
d

b
c
d

c
d

d

suf
suf

suf

Upper(R)
Lower(R)
Triangle(R)

R
1

a
2

b
3

c
4

d
5

e
6

a
7

b
8

c
9

d
10

e
11

a
12

b
13

c
14

d

Figure 4 Illustration of the sets Triangle(R), Upper(R) and Lower(R) on paths in CST(T) for an
example run R = (1, 14, 5). All nodes representing fragments from Triangle(R) are distinct because
exp(R) = 2.8 ≤ 3. The nodes in Upper(R) and Lower(R) are explicit in CST(T) (see Observation 13).

▶ Lemma 12. Let S be a string of length d. Then S has an overlapping consecutive occurrence
(i, j) in T for some indices i, j if and only if S matches a fragment T [i . . i + d) ∈ Triangle(R)
for some run R with period j − i in T .

Proof. (⇒) If S has an overlapping consecutive occurrence (i, j), then the substring F =
T [i . . j + d) has a border S, so F has a period p = j − i < d.

J. Radoszewski 89:9

We further have |F | = j + d − i > 2(j − i) = 2p. Period p is the smallest period of F ;
indeed, a period q ∈ [1 . . p) would imply an occurrence T [i + q . . i + q + d) of S at position
i + q such that i < i + q < i + p = j − i, so (i, j) would not be a consecutive occurrence of S.

Finally, fragment F extends to a unique maximal periodic fragment with smallest period
p; it is a run R = (a, b, p) in T . We have T [i . . i + d) ∈ Path(i, i + p, b − p) ⊆ Triangle(R) as
i ∈ [a . . b − 2p].

(⇐) Assume that T [i . . i + d) ∈ Triangle(R) holds for some run R = (a, b, p) and S =
T [i . . i + d). Then [i . . i + d + p) ⊆ [a . . b], so the period of the run implies that T [i + p . . i +
p + d) = T [i . . i + d) = S. Moreover, d > p by the definition of Triangle(R), so the two
occurrences of S overlap.

Finally, we need to show that (i, j), for j = i + p, is a consecutive occurrence of S. If
there was an occurrence T [k . . k + d) = S with i < k < j, then the string X = T [i . . i + p)
would have an occurrence in T [i . . i + 2p) = X2 being neither a prefix nor a suffix of X2.
String X is primitive, as otherwise the run R would have a period smaller than p. Therefore
this situation is impossible by the synchronization property (Lemma 6). ◀

a
b

b
a

a

b

a

b

a

b

b

a

b

a

b

suf

suf
suf

suf
suf

3x 3x Upper(R) R a
1

b
2

a
3

b
4

a
5

b
6

a
7

b
8

a
9

b
10

Lower(R)

Triangle(R)

Figure 5 Illustration of the sets Triangle(R), Upper(R) and Lower(R) on paths in CST(T) for a
run R = (1, 10, 2) with exponent 5. The substrings in the set Triangle(R) form a multiset being the
sum of the two trapezia and a triangle. The set Upper(R) contains six fragments; three of them
match substring ab, and the remaining three match ba.

For a run R = (a, b, p), we further denote:

Upper(a, b, p) = {T [i . . i + p) : i ∈ [a . . b − 2p]}
Lower(a, b, p) = {T [i . . b − p] : i ∈ [a . . b − 2p]}

Intuitively, Lower(R) consists of bottommost endpoints of paths Path from Triangle(R) and
Upper(R) consists of parents of topmost endpoints of these paths. Informally, they are the
“lower side” and the “excluded upper side” of the triangle; see also Figures 4 and 5. Below
we show basic properties of these sets.

▶ Observation 13. Let R be a run in T .
(a) All fragments in Upper(R) are square halves in T .
(b) The loci of fragments in Lower(R) are explicit nodes in ST (T).

ESA 2023

89:10 Linear Time Construction of Cover Suffix Tree and Applications

Proof. (a) By the periodicity of run R, each fragment T [i . . i + p) ∈ Upper(R) is followed by
a matching fragment T [i + p . . i + 2p). This is because i ≤ b − 2p. Hence, T [i . . i + 2p) is
indeed a square in T .

(b) Let T [i . . b − p] ∈ Lower(R) and c = T [b + 1 − p]. The period of the run implies that
T [i . . b − p] = T [i + p . . b].

If T [i . . b − p] is a suffix of T , its locus in ST (T) is explicit as the locus has children along
the characters c and #.

Otherwise, character c′ = T [b + 1] is different from c by the right maximality of the run
R. Hence, T [i . . b − p]c and T [i . . b − p]c′ are different substrings of T , as claimed. ◀

Let us note that if exp(R) > 3, then each of the sets Upper(R), Triangle(R) may contain
matching fragments; see Figure 5.

3.3 Counting overlapping consecutive occurrences
For each explicit node v of CST (T), instead of nov(v), we will compute the number ov(v) of
overlapping consecutive occurrences of the substring v̄ in T .

For a set F of fragments of T , we denote by #v(F) = |{T [i . . j] ∈ F : v̄ = T [i . . j]}| the
number of fragments in F that match v̄. Lemma 12 implies the following formula for ov(v).

▶ Observation 14. For a node v of CST (T), ov(v) =
∑

R∈R(T) #v(Triangle(R)).

We will show how to efficiently evaluate these formulas for all explicit nodes v simultaneously.
For each explicit node v of CST (T) we will compute two counters:

Cupper[v] =
∑

R∈R(T)

#v(Upper(R)), Clower[v] =
∑

R∈R(T)

#v(Lower(R)).

That is, Cupper[v] (Clower[v]) stores the number of times fragments matching the substring v̄

occur in Upper(R) (Lower(R), respectively) over all runs R ∈ R(T).
For an explicit node v of CST (T), by subtree(v) we denote the set of explicit descendants

of v in the tree (including v). The following lemma shows how to compute ov from the
counters Cupper and Clower. The lemma follows by Observation 14.

▶ Lemma 15. For an explicit node v of the CST (T), we have

ov(v) =
∑

w∈subtree(v)

(Clower[w] − Cupper[w]).

Proof. If node x is an ancestor of node y, by x ⇝ y we denote the set of explicit nodes
on the path from x to y. By root we denote the root of CST(T). By the definitions of
Triangle(R), Upper(R) and Lower(R) and Observation 14, we have:

ov(v) =
∑

R∈R(T)

#v(Triangle(R))

=
∑

(a,p,b)∈R(T)

b−2p∑
i=a

#v(Path(i, i + p, b − p))

=
∑

(a,p,b)∈R(T)

|{i ∈ [a . . b − 2p] : v ∈ (locus(T [i . . i + p])⇝ locus(T [i . . b − p]))}|

J. Radoszewski 89:11

=
∑

(a,p,b)∈R(T)

|{i ∈ [a . . b − 2p] : v ∈ (root ⇝ locus(T [i . . b − p]))}|

−
∑

(a,p,b)∈R(T)

|{i ∈ [a . . b − 2p] : v ∈ (root ⇝ locus(T [i . . i + p))}|

=
∑

R∈R(T)

∑
w∈subtree(v)

#w(Lower(R)) −
∑

R∈R(T)

∑
w∈subtree(v)

#w(Upper(R))

=
∑

w∈subtree(v)

(Clower[w] − Cupper[w]). ◀

3.3.1 Computing Clower and Cupper

Let us recall that ST ′(T) is the tree of suffix links of ST (T).

▶ Observation 16. For each run R in T , Lower(R) forms a path in ST ′(T).

▶ Lemma 17. The counters Clower[v] for all explicit nodes v of CST (T) can be computed in
O(n) time.

Proof. By the observation, Clower[v] is simply the number of paths Lower(R) that cover
node v in ST ′(T) (in particular, no two fragments in a single set Lower(R) match).

To count paths covering each node in a rooted tree we apply a standard approach using ±1
counters. Initially all counters Clower[v] are equal to 0. For each run R = (a, b, p) ∈ R(T), we
increment Clower[v] for the bottom endpoint v of the path Lower(R) (v = locus(T [a . . b − p]))
and decrement Clower[u] for the parent u in ST ′(T) of the top endpoint of Lower(R) (u =
locus(T [b − 2p + 1 . . b − p])). In the end for each node u of ST ′(T) in a bottom-up order, we
add Clower[v] to Clower[u] for all children v of u in ST ′(T).

Let us summarize and analyze the complexity of the algorithm. Tree ST ′(T) has O(n)
nodes. By Theorem 8, there are at most n paths Lower(R) and all runs R can be computed
in O(n) time. The endpoints of all paths Lower(R) can be located in ST ′(T) in O(n) time
using weighted ancestor queries in ST (T) (Theorem 10). Finally, the bottom-up traversal of
the tree ST ′(T) takes O(n) time. ◀

We proceed to computing counters Cupper. Let us define an operation rot such that
rot(cX) = Xc for a string X and character c ∈ Σ. For k ∈ Z≥0, by rotk(S) we denote the
composition of rot k times. If S′ = rotk(S) for some strings S, S′ and k ∈ Z≥0, we say that
S′ is a cyclic rotation of S. We also say that S and S′ are cyclically equivalent.

For each run R in T , the strings in Upper(R) are cyclic rotations of each other. This
motivates introduction of the following directed graph G = (V, E). The set of vertices is
V = Sq(T) and the arcs are defined as follows: (S, S′) ∈ E if and only if S, S′ ∈ V and
S′ = rot(S). Instead of addressing vertices of G by substrings of T , we will address them by
their loci in CST (T) which are explicit nodes of CST (V).

▶ Observation 18. For each run R in T , Upper(R) corresponds to a (directed) walk in G.

Let us note that the vertices (and arcs) on the walk Upper(R) may repeat if exp(R) > 3
(see Figure 5 again). In particular, in this case Upper(R) is contained in a cycle in G.

We proceed to the construction of graph G. More precisely, a sufficient subset of arcs of
G is constructed.

▶ Lemma 19. A subset E′ of E containing all arcs that belong to any walk Upper(R), for
R ∈ R(T), can be constructed in O(n) time.

ESA 2023

89:12 Linear Time Construction of Cover Suffix Tree and Applications

Proof. For each distinct square substring T [i . . i + 2d) of T , we insert into E′ an arc from
locus(T [i . . i + d)) to locus(T [i + 1 . . i + d]) if T [i + 1 . . i + d] ∈ Sq(T); the latter condition
can be checked from the construction of the tree structure of CST(T) (Lemma 11). By
Theorem 7, square substrings of T can be enumerated in O(n) time. Then we use off-line
weighted ancestor queries (Theorem 10) on CST (T) to find the desired loci. This concludes
that the time complexity is O(n). Now let us argue for the correctness of this algorithm in
two steps.

Why E′ ⊆ E: When adding an arc from locus(T [i . . i + d)) to locus(T [i + 1 . . i + d]),
we know that T [i . . i + d) ∈ Sq(T) and we check if T [i + 1 . . i + d] ∈ Sq(T). Hence, an arc
connects two vertices of V = Sq(T). Finally, we have rot(T [i . . i + d)) = T [i + 1 . . i + d]
because T [i . . i + 2d) is a square. Consequently, E′ ⊆ E.

Why all arcs that belong to any walk Upper(R) are in E′: Let T [i . . i+p), T [i+1 . . i+p] ∈
Upper(a, b, p) be two consecutive elements. Then a ≤ i < b − 2p, so T [i . . i + 2p) is a square.
Therefore, (locus(T [i . . i + p)), locus(T [i + 1 . . i + p])) ∈ E′ by definition. ◀

In the lemma above, it can be the case that E′ ⊊ E if there are two substrings S, S′ ∈ Sq(T)
such that S′ = rot(S) but there are no two fragments T [i . . i + |S|), T [i + 1 . . i + 1 + |S|)
matching S and S′, respectively. Moreover, it can happen that E′ contains an arc that
does not belong to any walk Upper(R). Indeed, when an arc from locus(T [i . . i + d)) to
locus(T [i+1 . . i+d]) is added to E′, we avoid the unnecessary check if T [i . . i+d), T [i+1 . . i+d]
belong to a set Upper(R) for any run R.

▶ Lemma 20. The counters Cupper[v] for all explicit nodes v of CST(T) can be computed
in O(n) time.

Proof. By Observation 18, Cupper[v] is the total number of times that walks Upper(R) visit
the node v ∈ V . We will be able to compute these counters efficiently using the fact that
graph G has a particularly simple structure: it is a collection of disjoint cycles and paths.
The same applies to the graph G′ = (V, E′) that is computed in Lemma 19. For a node u,
by next(u) we denote the unique node v such that (u, v) ∈ E′, and ⊥ if no such node exists.

We can find all cycles in G′ using the DFS. Then we apply an algorithm using ±1 counters
(as in the proof of Lemma 17) and additional counters C ′ assigned to cycles. Initially all
counters are equal to 0. For each cycle Q, let us order the nodes v1, . . . , v|Q| ∈ Q along the
cycle (arbitrarily) and assign them consecutive id numbers id(vi) = i.

For each walk Upper(R), R = (a, b, p) ∈ R(T), we check if its endpoints v1 and v2
(v1 = locus(T [a . . a + p)) and v2 = locus(T [b − 2p . . b − p))) belong to a cycle. If not, we
increment Cupper[v1]; we also decrement Cupper[next(v2)] if next(v2) ̸= ⊥. Otherwise, if v1, v2
belong to a cycle Q, we increase the cycle counter C ′[Q] by ⌊ |Upper(R)| / |Q| ⌋. Moreover
(for v1, v2 ∈ Q), if id(v1) ≤ id(v2), we increment Cupper[v1] and decrement Cupper[next(v2)]
if id(v2) < |Q|. If, however, id(v1) > id(v2), we increment Cupper[v1] and Cupper(u) for the
node u ∈ Q with id(u) = 1 and decrement Cupper[next(v2)], thus “breaking the cyclicity”.

For each cycle Q, let us remove the arc (v, next(v)) for vertex v ∈ Q such that id(v) = |Q|.
This way G′ becomes acyclic; it can be viewed as a forest in which each tree is a path. For
each node v of the modified graph G′ in topological order, we add Cupper[v] to Cupper[next(v)]
if next(v) ̸= ⊥. Finally, for each original cycle Q in G′, we increase Cupper[v] for all vertices
v ∈ Q by the counter C ′[Q]. This way we have computed all the counters Cupper as desired.

Let us analyze the complexity. By Lemma 19, graph G′ = (V, E′) can be constructed
in O(n) time. By Theorem 8, there are at most n paths Upper(R) and all runs R can be
computed in O(n) time. The endpoints of walks Upper(R) can be located in G′ in O(n)
time using weighted ancestor queries in CST (T) (Theorem 10). Finally, the computation of
counters via DFS and topological ordering takes O(n) time. ◀

J. Radoszewski 89:13

This concludes efficient computation of the numbers of overlapping and non-overlapping
consecutive occurrences.

▶ Lemma 21. Values ov(v) and nov(v) for all explicit nodes v of CST (T) can be computed
in O(n) time.

Proof. We compute the counters Clower and Cupper using Lemmas 17 and 20, respectively.
By the formula from Lemma 15, for each node v of CST (T) in the bottom-up order, ov(v)
can be computed as a sum of Clower[v]−Cupper[v] and the sum of values ov(w) for all explicit
children w of v. Such values can be computed via a bottom-up traversal in O(n) time.

Finally we recall that nov(v) = occ(v) − ov(v) and that occ(v) for all explicit nodes of
CST (T) can be easily computed in O(n) time bottom-up. ◀

3.4 Computing coverage
For a substring S of T , we introduce the following notations:

cv_ov(S) =
∑

(i,j)∈OvOcc(S)

(j − i), cv_nov(S) = nov(S) · |S|.

As before, we denote cv_ov(v) = cv_ov(v̄) and cv_nov(v) = cv_nov(v̄) for nodes v of
CST (T). The proof of the following observation provides intuition on these definitions.

▶ Observation 22. For every substring S of T , cv(S) = cv_ov(S) + cv_nov(S).

Proof. Let us assign each position k of T that is covered by an occurrence of S to the
rightmost occurrence T [i . . i + |S|) of S with i < k. Let j be the next occurrence of S to the
right of position i (then j > k), if any. If j exists and (i, j) ∈ OvOcc(S), then position k is
counted in cv_ov(S). Otherwise position k is counted in cv_nov(S). ◀

Values cv_nov(v) for explicit nodes v of CST(T) can be easily computed using values
nov(v) computed in Lemma 21. Lemma 12 yields the following formula for cv_ov(v).

▶ Observation 23. For a node v of CST (T), cv_ov(v) =
∑

R∈R(T) #v(Triangle(R)) ·per(R).

Now cv_ov values can be computed similarly as ov values were computed in Section 3.3. We
just need to multiply counter updates by periods of respective runs.

▶ Lemma 24. The values cv_ov(v) for all explicit nodes v of CST (T) can be computed in
O(n) time.

Proof. Let

C ′
upper[v] =

∑
R∈R(T)

#v(Upper(R)) · per(R), C ′
lower[v] =

∑
R∈R(T)

#v(Lower(R)) · per(R).

Following the proof of Lemma 15 it can be readily verified that for every explicit node v,

cv_ov(v) =
∑

w∈subtree(v)

(C ′
lower[w] − C ′

upper[w]).

The counters C ′
lower[v] (C ′

upper[v]) for all explicit nodes can be computed as in Lemma 17
(Lemma 20, respectively), where instead of ±1 counters, for each path Lower(R) (walk
Upper(R), respectively), R ∈ R(T), we add and subtract per(R) in the respective nodes (and
increase cycle counters C ′[Q] by amounts ⌊ |Upper(R)| / |Q| ⌋ · per(R)). ◀

ESA 2023

89:14 Linear Time Construction of Cover Suffix Tree and Applications

This concludes the construction of CST (T).

▶ Theorem 1. The Cover Suffix Tree (CST) of a string of length n over an integer alphabet
can be constructed in O(n) time.

Proof. Lemma 11 can be used to construct the tree structure of CST(T). We compute
occ(v) for all explicit nodes of CST (T) in a bottom-up traversal and ov(v) using Lemma 21,
which lets us compute nov(v) = occ(v) − ov(v) for all explicit nodes. Then for all explicit
nodes we compute cv_ov(v) using Lemma 24, which lets us compute cv(v) for all explicit
nodes using values cv_nov(v) that, in turn, depend on nov(v). Each of the lemmas, as well
as the bottom-up processing, requires O(n) time. ◀

4 Solution to AllPartialCovers

An O(n log n)-time solution to AllPartialCovers from [29] is based on computing the
upper envelope of O(n) line segments, each connecting points (|v|, cv(v)) and (|v|−k, cv(v)−
k · nov(v)) constructed for an edge of CST (T) from v to its parent v′ containing k implicit
nodes. An upper envelope of O(n) line segments can be computed in O(n log n) time [24].

We show that the AllPartialCovers problem can be solved in O(n) time using the
following observation. A substring C of T is called branching if the locus of C in ST (T) is a
branching node.

▶ Lemma 25. If C is a substring of T , then there is a substring C ′ of T such that |C ′| = |C|,
cv(C ′) ≥ cv(C) and C ′ is branching or a suffix of T .

Proof. Let C0 = C. If C0 is branching or C0 is a suffix of T , we are done. Otherwise, all
occurrences of C0 in T are followed by the same character. Let a be this character, X be C

without its first character, and C1 = Xa. We have |C1| = |C0| and cv(C1) ≥ cv(C0). We use
this construction to obtain substrings C1, C2, . . . The sequence ends at the first substring
that is branching or a suffix of T ; such a substring exists since the rightmost occurrence of
Ci in T , for i ≥ 1, is located to the right of the rightmost occurrence of Ci−1 in T . Let Ck,
for k ≥ 1, be the last substring in this sequence. By the construction, |Ck| = |C0| = |C|,
cv(Ck) ≥ cv(C) and Ck is branching or a suffix of T . We choose C ′ = Ck. ◀

By the lemma, in the solution to AllPartialCovers it suffices to iterate over all suffixes
of T and branching nodes of ST (T). We obtain the following result that was already stated
in Section 1.

Algorithm 1 Solution to AllPartialCovers.

for i := 1 to n do shortest[n − i + 1] := T [i . . n];
foreach branching node v of ST (T) do

if |v̄| < |shortest[cv(v)]| then
shortest[cv(v)] := v̄;

for i := n − 1 down to 1 do
if |shortest[i]| > |shortest[i + 1]| then

shortest[i] := shortest[i + 1];

▶ Theorem 4. AllPartialCovers problem can be solved in O(n) time for a length-n
string over an integer alphabet.

J. Radoszewski 89:15

Proof. We apply Algorithm 1. Clearly, the algorithm works in O(n) time. Let us argue for
its correctness.

In the algorithm an auxiliary array shortest is used that stores fragments of T represented
in O(1) space each. By Lemma 25, after the foreach-loop, shortest[α] = C for α ∈ [1 . . n] if
C is a shortest substring of T such that cv(C) = α. At the end, shortest[α] = C if C is a
shortest substring of T such that cv(C) ≥ α. Hence, shortest[α] is a shortest α-partial cover
of T by definition. ◀

5 Conclusions

We have designed the first linear-time algorithm computing the Cover Suffix Tree. We have
shown several applications of this result, some of which follow directly from previous work.
Experimental comparison of our algorithms for computing the Cover Suffix Tree and the set
of seeds in a string with implementations of existing methods from [16] is left as future work.

It remains an open problem if our approach can help to improve upon the O(n log n)-time
algorithm of Brodal et al. [11] for constructing MAST.

References
1 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static

pattern matching. ACM Transactions on Algorithms, 3(2):19, 2007. doi:10.1145/1240233.
1240242.

2 Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2):247–265, 1993. doi:10.1016/0304-3975(93)90159-Q.

3 Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity testing
for strings. Information Processing Letters, 39(1):17–20, 1991. doi:10.1016/0020-0190(91)
90056-N.

4 Alberto Apostolico and Franco P. Preparata. Data structures and algorithms for the string
statistics problem. Algorithmica, 15(5):481–494, 1996. doi:10.1007/BF01955046.

5 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and
Kazuya Tsuruta. The “runs” theorem. SIAM Journal on Computing, 46(5):1501–1514, 2017.
doi:10.1137/15M1011032.

6 Hideo Bannai, Shunsuke Inenaga, and Dominik Köppl. Computing all distinct squares in
linear time for integer alphabets. In Juha Kärkkäinen, Jakub Radoszewski, and Wojciech
Rytter, editors, 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017,
volume 78 of LIPIcs, pages 22:1–22:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.CPM.2017.22.

7 Djamal Belazzougui, Dmitry Kosolobov, Simon J. Puglisi, and Rajeev Raman. Weighted
ancestors in suffix trees revisited. In Paweł Gawrychowski and Tatiana Starikovskaya, editors,
32nd Annual Symposium on Combinatorial Pattern Matching, CPM 2021, volume 191 of
LIPIcs, pages 8:1–8:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPIcs.CPM.2021.8.

8 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, 4th Latin American Symposium on
Theoretical Informatics, LATIN 2000, volume 1776 of Lecture Notes in Computer Science,
pages 88–94. Springer, 2000. doi:10.1007/10719839_9.

9 Srečko Brlek and Shuo Li. On the number of squares in a finite word, 2022. arXiv:2204.10204.
10 Srečko Brlek and Shuo Li. On the number of distinct squares in finite sequences: Some old and

new results. In Anna E. Frid and Robert Mercas, editors, 14th International Conference on
Combinatorics on Words, WORDS 2023, volume 13899 of Lecture Notes in Computer Science,
pages 35–44. Springer, 2023. doi:10.1007/978-3-031-33180-0_3.

ESA 2023

https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1016/0304-3975(93)90159-Q
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1007/BF01955046
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPIcs.CPM.2017.22
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.4230/LIPIcs.CPM.2021.8
https://doi.org/10.1007/10719839_9
https://arxiv.org/abs/2204.10204
https://doi.org/10.1007/978-3-031-33180-0_3

89:16 Linear Time Construction of Cover Suffix Tree and Applications

11 Gerth Stolting Brodal, Rune B. Lyngso, Anna Ostlin, and Christian N. S. Pedersen. Solving
the string statistics problem in time O(n log n). In Peter Widmayer, Francisco Triguero
Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan J. Eidenbenz, and Ricardo Conejo,
editors, 29th International Colloquium on Automata, Languages and Programming, ICALP
2002, volume 2380 of Lecture Notes in Computer Science, pages 728–739. Springer, 2002.
doi:10.1007/3-540-45465-9_62.

12 Gerth Stolting Brodal and Christian N. S. Pedersen. Finding maximal quasiperiodicities
in strings. In Raffaele Giancarlo and David Sankoff, editors, 11th Annual Symposium on
Combinatorial Pattern Matching, CPM 2000, volume 1848 of Lecture Notes in Computer
Science, pages 397–411. Springer, 2000. doi:10.1007/3-540-45123-4_33.

13 Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. Journal of the ACM,
26(2):211–226, 1979. doi:10.1145/322123.322127.

14 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings. Cam-
bridge University Press, 2007.

15 Maxime Crochemore, Costas S. Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech
Rytter, and Tomasz Waleń. Extracting powers and periods in a word from its runs structure.
Theoretical Computer Science, 521:29–41, 2014. doi:10.1016/j.tcs.2013.11.018.

16 Patryk Czajka and Jakub Radoszewski. Experimental evaluation of algorithms for computing
quasiperiods. Theoretical Computer Science, 854:17–29, 2021. doi:10.1016/j.tcs.2020.11.
033.

17 Jonas Ellert and Johannes Fischer. Linear time runs over general ordered alphabets. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on
Automata, Languages, and Programming, ICALP 2021, volume 198 of LIPIcs, pages 63:1–63:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.
63.

18 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, pages 137–143. IEEE Computer
Society, 1997. doi:10.1109/SFCS.1997.646102.

19 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proceedings
of the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

20 Aviezri S. Fraenkel and Jamie Simpson. How many squares can a string contain? Journal of
Combinatorial Theory, Series A, 82(1):112–120, 1998. doi:10.1006/jcta.1997.2843.

21 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538–544, 1984. doi:10.1145/828.1884.

22 Moses Ganardi and Paweł Gawrychowski. Pattern matching on grammar-compressed strings
in linear time. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 2833–2846. SIAM, 2022.
doi:10.1137/1.9781611977073.110.

23 Paweł Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors in
suffix trees. In Andreas S. Schulz and Dorothea Wagner, editors, 22th Annual European
Symposium on Algorithms, Wrocław, Poland, ESA 2014, volume 8737 of Lecture Notes in
Computer Science, pages 455–466. Springer, 2014. doi:10.1007/978-3-662-44777-2_38.

24 John Hershberger. Finding the upper envelope of n line segments in O(n log n) time. Information
Processing Letters, 33(4):169–174, 1989. doi:10.1016/0020-0190(89)90136-1.

25 Costas S. Iliopoulos, Dennis W. G. Moore, and Kunsoo Park. Covering a string. Algorithmica,
16(3):288–297, 1996. doi:10.1007/BF01955677.

26 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction.
Journal of the ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

27 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
A linear time algorithm for seeds computation. In Yuval Rabani, editor, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pages
1095–1112. SIAM, 2012. doi:10.1137/1.9781611973099.86.

https://doi.org/10.1007/3-540-45465-9_62
https://doi.org/10.1007/3-540-45123-4_33
https://doi.org/10.1145/322123.322127
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1016/j.tcs.2020.11.033
https://doi.org/10.1016/j.tcs.2020.11.033
https://doi.org/10.4230/LIPIcs.ICALP.2021.63
https://doi.org/10.4230/LIPIcs.ICALP.2021.63
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.2307/2034009
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1145/828.1884
https://doi.org/10.1137/1.9781611977073.110
https://doi.org/10.1007/978-3-662-44777-2_38
https://doi.org/10.1016/0020-0190(89)90136-1
https://doi.org/10.1007/BF01955677
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1137/1.9781611973099.86

J. Radoszewski 89:17

28 Tomasz Kociumaka, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. A linear-time algorithm for seeds computation. ACM Transations on Algorithms,
16(2):27:1–27:23, 2020. doi:10.1145/3386369.

29 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Fast algorithm for partial covers in words. Algorithmica, 73(1):217–233, 2015. doi:
10.1007/s00453-014-9915-3.

30 Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleń. Efficient algorithms for shortest partial seeds in words. Theoretical Computer Science,
710:139–147, 2018. doi:10.1016/j.tcs.2016.11.035.

31 Roman M. Kolpakov and Gregory Kucherov. Finding maximal repetitions in a word in linear
time. In 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pages
596–604. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814634.

32 Edward M. McCreight. A space-economical suffix tree construction algorithm. Journal of the
ACM, 23(2):262–272, 1976. doi:10.1145/321941.321946.

33 Dennis W. G. Moore and William F. Smyth. Computing the covers of a string in linear time.
In Daniel Dominic Sleator, editor, Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA 1994, pages 511–515. ACM/SIAM, 1994. URL: http://dl.acm.
org/citation.cfm?id=314464.314636.

34 Dennis W. G. Moore and William F. Smyth. A correction to “An optimal algorithm to
compute all the covers of a string”. Information Processing Letters, 54(2):101–103, 1995.
doi:10.1016/0020-0190(94)00235-Q.

35 Gonzalo Navarro and Sharma V. Thankachan. Reporting consecutive substring occurrences
under bounded gap constraints. Theoretical Computer Science, 638:108–111, 2016. doi:
10.1016/j.tcs.2016.02.005.

ESA 2023

https://doi.org/10.1145/3386369
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1007/s00453-014-9915-3
https://doi.org/10.1016/j.tcs.2016.11.035
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1145/321941.321946
http://dl.acm.org/citation.cfm?id=314464.314636
http://dl.acm.org/citation.cfm?id=314464.314636
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/j.tcs.2016.02.005
https://doi.org/10.1016/j.tcs.2016.02.005

	1 Introduction
	1.1 Cover Suffix Tree
	1.2 Applications of CST to quasiperiodicity
	1.3 Reporting overlapping occurrences
	1.4 Structure of the paper

	2 Preliminaries
	2.1 Strings
	2.2 Compact tries

	3 Construction of the CST
	3.1 Computing the tree structure
	3.2 Properties of overlapping consecutive occurrences
	3.3 Counting overlapping consecutive occurrences
	3.3.1 Computing C_{lower} and C_{upper}

	3.4 Computing coverage

	4 Solution to AllPartialCovers
	5 Conclusions

