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Abstract
A simultaneous representation of (vertex-labeled) graphs G1, . . . , Gk consists of a (geometric)
intersection representation Ri for each graph Gi such that each vertex v is represented by the same
geometric object in each Ri for which Gi contains v. While Jampani and Lubiw showed that the
existence of simultaneous interval representations for k = 2 can be tested efficiently (2010), testing
it for graphs where k is part of the input is NP-complete (Bok and Jedličková, 2018). An important
special case of simultaneous representations is the sunflower case, where Gi ∩ Gj = (V (Gi) ∩
V (Gj), E(Gi) ∩ E(Gj)) is the same graph for each i ̸= j. We give an O(

∑k

i=1(|V (Gi)| + |E(Gi)|))-
time algorithm for deciding the existence of a simultaneous interval representation for the sunflower
case, even when k is part of the input. This answers an open question of Jampani and Lubiw.
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1 Introduction

For a family of geometric objects, the intersection graph is a graph that has for each object
a vertex such that two vertices are adjacent if and only if their objects intersect. Its
representation is the assignment of the objects to the vertices. In this paper, we consider
interval representations, which are assignments of intervals on the real line to the vertices of
a graph G such that two vertices of G are adjacent if and only if their intervals intersect.
Graph G is an interval graph if it has such a representation; see Figure 1.

A fundamental problem in the area of intersection graphs is the recognition problem,
where the task is to decide whether a given graph G admits a particular type of (geometric)
intersection representation. The simultaneous representation problem is a generalization
of the recognition problem that asks for k input graphs G1, . . . , Gk (with vertex labels)
whether there exist corresponding representations R1, . . . , Rk such that each vertex v that
is shared by two graphs Gi and Gj is represented by the same geometric object in Ri and
in Rj . For ease of notation, we refer to G = (G1, . . . , Gk) as a simultaneous graph, and
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Figure 1 An interval graph G, and an interval representation R of G. A valid clique ordering is
{a, b}, {c, b, d}, {b, d, e}.
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to R = (R1, . . . , Rk) as a simultaneous representation. For two graphs G, H we define the
intersection G ∩ H = (V (G) ∩ V (H), E(G) ∩ E(H)). A sunflower simultaneous graph is a
simultaneous graph G = (G1, . . . , Gk) where G1, . . . , Gk have pairwise the same intersection,
i.e., there is a graph S with S = Gi ∩ Gj for each i ̸= j. We call S the shared graph of G.

Simultaneous representations have first been studied in the context of graph embeddings
where also shared edges have to be represented by the same arc; see [3] for a survey. The
notion of simultaneous representations of general intersection graph classes was introduced
by Jampani and Lubiw, who gave an O(n3)-algorithm for recognizing simultaneous sunflower
permutation graphs (where n is the number of vertices in G1 ∪ · · · ∪ Gk) [17], proved NP-
completeness for sunflower chordal graphs (as intersection graphs of subtrees of a tree) [17],
and gave an O(n2 log n)-time algorithm for simultaneous interval graphs with k = 2 [15].
They left the case k > 2 open. The running times of all these algorithms were subsequently
reduced to optimal linear time (assuming each input graph is given separately, thus counting
the shared graph k times, and assuming that each input graph belongs to the corresponding
class) [4, 19].

Since then, the simultaneous representation problem has also been studied for proper and
unit interval graphs [20], circle graphs [8] and permutation graphs [17, 19] where k is part of
the input. Bok and Jedličková showed that recognizing simultaneous non-sunflower interval
graphs is NP-complete [5] if k is part of the input. Similar results hold for simultaneous
proper and unit interval representations [20].

A problem closely related to the (sunflower) simultaneous representation problem is
partial representation extension, where a representation R of a subgraph H of a single input
graph G is given, and the question is, whether G has a representation whose restriction
to H coincides with R. It has been studied extensively for various graph classes, e.g. for
interval graphs [18], circular-arc graphs [10], circle graphs [8, 19], as well as proper and
unit interval graphs [18]. Bläsius and Rutter gave a linear-time reduction from the partial
interval representation problem to the simultaneous interval representation problem on two
graphs [4].

We characterize sunflower simultaneous interval graphs in terms of linear orderings of
maximal cliques that satisfy certain consecutivity constrains. This allows us to work with
an established data structure called PQ-tree, which represents linear orderings satisfying
given consecutivity constraints. The algorithms of Jampani and Lubiw [15] and Bläsius
and Rutter [4] for recognizing simultaneous interval graphs with k = 2 input graphs use a
similar characterization and they also use PQ-trees. Jampani and Lubiw iteratively add
non-maximal cliques to orders of maximal cliques and associate nodes of distinct PQ-trees
to achieve necessary compatibilities. On the other hand, Bläsius and Rutter synchronize
a PQ-tree T that describes orderings of maximal cliques of both input graphs with two
PQ-trees T1, T2 for the two individual input graphs. To this end, they construct PQ-trees
for many nodes of T and a 2-SAT formula which describes dependencies between decisions in
these trees. While they establish a more general framework for simultaneous PQ-orderings,
their approach does not work for more than two input graphs for sunflower simultaneous
interval graph recognition.

Our Result. We show how to recognize sunflower simultaneous interval graphs in linear
time (assuming the input graphs are given separately) even when the number of input graphs
is part of the input, thereby answering the open question of Jampani and Lubiw [16]. We
note that, similar to Bläsius and Rutter, we use a PQ-tree T that describes orderings of
the maximal cliques of the input graphs, synchronize it with PQ-trees for the individual
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Figure 2 A simultaneous graph G = (G1, G2) with a simultaneous interval representation of G.

input graphs, and use a 2-SAT formula to describe dependencies between decisions in these
PQ-trees. However, with each operation, they only synchronize pairs of PQ-trees while, in a
sense, we synchronize multiple PQ-trees at once. Further, we essentially only construct a
single PQ-tree for the synchronization, instead of one for potentially each node of T , which
can be linear in the size of the input. For our construction, we exploit a close relation between
consecutivity constraints and certain substructures in PQ-trees (Lemma 5) that provides
a converse for a natural and widely used property of PQ-trees and may be of independent
interest.

Organization. In Section 2, we characterize sunflower interval graphs in terms of linear
orderings of maximal cliques and we describe PQ-trees. In Section 3, we describe operations
on PQ-trees and dependencies between decisions in the original and resulting PQ-trees. In
Section 4, we describe our construction, characterize sunflower interval graphs in terms of
this construction, and give the linear-time algorithm for the sunflower interval representation
problem. In Section 5 we conclude with open questions.

2 Preliminaries

For n ∈ N we set [n] = {j ∈ N | 1 ≤ j ≤ n}. In this paper all graphs are simple.

Simultaneous Interval Graphs. An interval representation R = {Iv}v∈V of a graph G =
(V, E) associates with each vertex v ∈ V an interval Iv = [x, y] ⊆ R such that for each pair
of vertices u, v ∈ V we have Iu ∩ Iv ̸= ∅ ⇔ uv ∈ E; see Figure 1. A simultaneous interval
representation of a simultaneous graph G = (G1, . . . , Gk) assigns each vertex v ∈

⋃k
i=1 V (Gi)

an interval Iv such that the induced interval representation {Iv}v∈V (Gi) is an interval
representation of Gi, for each i ∈ [k]; see Figure 2. In the following we only consider
sunflower simultaneous graphs G = (G1, . . . , Gk) which are simultaneous graphs for which
there is a graph S such that Gi ∩ Gj = S for i ̸= j. Note that it is necessary that S is an
induced subgraph of each input graph Gi for G to be a simultaneous interval graph. We
call S the shared graph of G.

It is well known that interval graphs can be characterized via orderings of maximal cliques.
A valid clique ordering of G is a linear ordering of the maximal cliques of G such that for
each v ∈ V (G) the maximal cliques of G that contain v are consecutive.

▶ Proposition 1 (Fulkerson and Gross [12]). A graph is an interval graph if and only if it
admits a valid clique ordering.

ESA 2023
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Let G = (G1, . . . , Gk) be a sunflower simultaneous graph with shared graph S. For
i ∈ [k], let Ki denote the set of maximal cliques of Gi and let K =

⋃̇k

i=1 Ki. Note that
we use the disjoint union since we want to treat the maximal cliques of the input graphs
separately, even if they coincide with maximal cliques of other input graphs. I.e., each
clique in K is tagged with the input graph Gi it comes from. For a vertex v ∈ V (Gi), we
define Ki(v) = {C ∈ Ki | v ∈ C} as the set of all maximal cliques of Gi that contain v and
for v ∈ V (S), we define K(v) = {C ∈ K | v ∈ C} as the (multi)-set of all maximal cliques
of G1, . . . , Gk that contain v. We further define K(S) as the set of maximal cliques in the
shared graph S. A simultaneous clique ordering of G is a linear ordering σ of K such that
the following two properties hold:

▶ Property 1. For each v ∈ V (S) the set K(v) is consecutive.

▶ Property 2. The restriction of σ to Ki is a valid clique ordering of Gi for each i ∈ [k].

The following theorem provides a combinatorial description of sunflower interval graphs
which we will use for our algorithm.

▶ Theorem 2. A sunflower simultaneous graph G is a simultaneous interval graph if and
only if it admits a simultaneous clique ordering.

Proof. If G = (G1, . . . , Gk) is a simultaneous interval graph, then it has a simultaneous
interval representation. For i ∈ [k], we choose a point pC for each clique C ∈ Ki such that
all intervals for C contain pC and no interval for vertices in V (Gi) \ C contains pC . Such a
point must exist since intervals have the Helly property and C is maximal in Gi. We call
these points clique points. Then for each v ∈ V (S) the clique points in the interval R(v) of v

are consecutive and exactly the cliques in K(v). Note that Property 1 does not necessarily
hold for non-shared vertices. However, for each input graph Gi the clique points are placed
according to the induced representation of Gi and thus provide a clique ordering of Gi.

On the other hand, given a simultaneous clique ordering σ for G, we construct an interval
representation of G as follows. We first place distinct (clique) points for the maximal cliques
in K on the real line in the order of σ from the left to the right. We then set for each
vertex v ∈ V its interval R(v) to [ℓ(v), r(v)] where ℓ(v) and r(v) are the leftmost point and
the rightmost point for cliques containing v, respectively. We claim that the clique points
and the consecutivity constraints then enforce correct adjacencies. Namely, two vertices
u, v of the same input graph Gi have intersecting intervals R(u), R(v) if and only if those
intervals share a clique point. It remains to show that R(u), R(v) share a clique point if and
only if u, v are adjacent. First observe that if u, v are adjacent, then there is some maximal
clique containing both and its clique point is contained in R(u) and R(v) by Properties 1, 2.

For the other direction, let R(u), R(v) share a clique point. We aim to show that there is
a clique containing u and v, which implies that u and v are adjacent, concluding the proof.
Since R(u), R(v) share a clique point, one of the intervals, lets say R(u), contains an endpoint
of the other one. That endpoint p is a clique point for a clique Cp ∈ Ki(v) by definition
of R(v). If v ̸∈ V (S), then Cp is a clique in Gi that also contains u by Property 2. We can
argue analogously if R(v) contains an endpoint of R(u) and u ̸∈ V (S). If both u and v lie
in V (S), then Cp contains u and v by Property 1. Finally, consider the case where u ̸∈ V (S),
v ∈ V (S) and R(v) contains no end of R(u), meaning that R(v) ⊆ R(u). Since S has a
maximal clique Cv containing v and Gi has a maximal clique C ′

v containing Cv, R(v) must
contain a clique point for C ′

v and thus u and v are contained in clique C ′
v. ◀
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Figure 3 A PQ-tree T , an equivalent PQ-tree T ′ where the leaves a, b, c, d, e are consecutive,
and a reduction T ′′ of T with {a, b, c, d, e} (introduced in Section 3). We depict P-nodes as circles
and squares as Q-nodes. T ′′ can be obtained from T ′ by merging the nodes along the thick path
after splitting the gray P-nodes. This results in nodes with only two children, which we consider as
Q-nodes.

PQ-Trees. Let L be a set and let L′ ⊆ L. The ordering ≤′ of L′ is induced by a linear
ordering ≤ of L, if we have a ≤′ b ⇔ a ≤ b for all a, b ∈ L′. A PQ-tree is a data structure
that represents linear orderings satisfying a set of consecutivity constraints [6]. Formally, a
PQ-tree T on a set L of leaves is a rooted ordered tree where each inner node is either a
P-node or a Q-node; see Figure 3. The order of its leaves is the order induced by a preorder
traversal of the tree. A PQ-tree T ′ is equivalent to T if T ′ can be obtained from T by
arbitrarily reordering the children of P-nodes and by reversing the order of the children of
any subset of Q-nodes. Note that reversing the order of the children of a Q-node λ does not
change the order of the children of any child of λ. In this paper, we consider P-nodes with
only two children as Q-nodes. Note that this does not affect which PQ-trees are equivalent.
For each inner node µ we say we flip µ, if we reverse the order of its children.

A PQ-tree represents a linear ordering ≤ of L if ≤ is the order of the leaves of some
equivalent PQ-tree. We write R(T ) for all linear orderings of L represented by T . The
null-tree is defined as a special PQ-tree T∅ with R(T∅) = ∅. For an inner node µ of a PQ-tree,
let L(µ) denote the leaves of the subtree rooted at µ. For a leaf µ let L(µ) = {µ}. We denote
the lowest common ancestor of a set N ⊆ V (T ) by lcaT (N). We say that a node ν of T is
left of a node λ in t if ν comes before λ in a preorder traversal. However, the order of a node
and one of its ancestors will never be relevant in this paper.

3 Operations on PQ-Trees

By Theorem 2, we can recognize sunflower simultaneous interval graphs by testing the
existence of a simultaneous clique ordering. We use PQ-trees to describe clique orderings
that satisfy the properties of a simultaneous clique ordering. Namely, we use a PQ-tree T

with leaf set K to describe all linear orderings satisfying Property 1 and PQ-trees T ′
1, . . . , T ′

k

where each T ′
i represents all valid clique orderings of Gi. A simultaneous clique ordering is

then a linear ordering σ ∈ R(T ) that induces orderings in R(T ′
1), . . . , R(T ′

k).
To find such a linear ordering σ, we “synchronize” these PQ-trees. One step will be to

construct a PQ-tree TS on K(S) that describes the maximal clique orderings of S that are in
some sense compatible with the linear orderings in R(T ′

1), . . . , R(T ′
k). Another aspect is to

describe the dependencies between decisions at Q-nodes in all constructed PQ-trees.

Consistency and Backward-Consistency. We say that an ordered pair of leaves (λ1, λ2) is
forward directed if λ1 comes before λ2 in the leaf ordering of the PQ-tree. Otherwise, we call
it backward directed. Hence, a pair of leaves is either forward directed or backward directed.
Note that the corresponding children ν1, ν2 of lca(λ1, λ2) with λ1 ∈ L(ν1) and λ2 ∈ L(ν2)

ESA 2023
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are ordered the same way as λ1, λ2. Hence, if µ is a Q-node, flipping µ changes the order
of λ1, λ2. Let T1, T2 be two PQ-trees on sets L1, L2 with L1 ⊆ L2 and let µ1, µ2 be two
Q-nodes in T1, T2 such that there are two leaves λ̂1, λ̂2 whose order is affected by flipping µ1
or µ2, respectively. More formally, let µ1 be a Q-node in T1 with children ν1

1 , ν1
2 and let µ2

be a Q-node in T2 with children ν2
1 , ν2

2 , such that there exist two leaves λ̂1 ∈ L(ν1
1) ∩ L(ν2

1)
and λ̂2 ∈ L(ν1

2) ∩ L(ν2
2).

We say µ1 and µ2 are consistent, if for each pair (λ1, λ2) of leaves with µ1 = lcaT1(λ1, λ2),
µ2 = lcaT2(λ1, λ2) we have that (λ1, λ2) is forward directed in T1 if and only if it is forward
directed in T2. We say µ1 and µ2 are reverse consistent, if for each pair (λ1, λ2) of leaves with
µ1 = lcaT1(λ1, λ2), µ2 = lcaT2(λ1, λ2) we have that (λ1, λ2) is forward directed in T1 if and
only if (λ1, λ2) is backward directed in T2. Observe that µ1, µ2 cannot be both consistent and
reverse consistent at the same time. Consider the case where µ1, µ2 are neither consistent nor
reverse consistent. Then µ1, µ2 order at least one pair of leaves differently (one forward and
one backward directed) and at least one pair of leaves the same way (forward or backward
directed). This remains true even after flipping one or both of µ1, µ2. Hence, in that case no
linear order in R(T1) can be extended to a linear order in R(T2), since at least one pair of
leaves is ordered differently.

We use four operations on PQ-trees for the construction of the PQ-tree TS that orders
the maximal cliques of the shared graph: reduction, intersection, projection and pruning.
While the first three operations are frequently used for PQ-trees, pruning is less common, but
was for example used in the context of level planarity [7] where the algorithm is attributed
to Di Battista and Nardelli [2].

To achieve a linear running time for our algorithm, we track what happens to Q-nodes
when applying these operations in a PQ-tree, similar as in [4].

Reduction. Let T be a PQ-tree with leaf set L. The reduction of R(T ) with a set L′ ⊆ L

is the set R′(T, L′) of linear orderings in R(T ) where L′ is consecutive. A PQ-tree T ′ with
R(T ′) = R′(T, L′) can be computed from T in O(|L′|) time [6]. This operation is the main
operation for PQ-trees, since it allows to compute a PQ-tree T̂ on L where sets S1, . . . , Sk ⊆ L

are consecutive efficiently.

▶ Proposition 3 (Booth and Lueker [6]). Let L be a finite set and let S1, . . . , Sk ⊆ L be
non-empty sets. A PQ-tree T̂ on L that represents the linear orderings of L where S1, . . . , Sk

are consecutive can be computed in O(|L| +
∑k

i=1 |Si|) time.

While the reduction for PQ-trees was originally described by applying a variety of
templates, Hsu gave an alternative description [14]; see also [11]. Roughly speaking, we find
a certain path P in T that separates L′ and L \ L′, split P-nodes on P suitably and merge
the resulting nodes on P to a single P-node. Finally we remove some degeneracies (especially,
if P consists of a single P-node λ, the resulting Q-node is smoothed, effectively just splitting
λ into two P-nodes); see Figure 3. For more details, we refer to the papers of Booth and
Lueker [6] or Hsu [14]. We only use the running time result for the construction of PQ-trees
satisfying given consecutivity constraints mentioned above. Especially, we do not need to
keep track of the consistencies between Q-nodes for the reduction.

Intersection. Let T1, T2 be PQ-trees with leaf set L. The intersection T1 ∩ T2 is a PQ-tree
on L representing R(T1) ∩ R(T2). It can be computed from T1, T2 in O(|L|) time together
with the consistencies between the Q-nodes in T1 ∩ T2 and the Q-nodes in T1 and T2 [19].

For any two cliques A, B ∈ L where lcaT1(A, B) or lcaT2(A, B) is a Q-node, one can see
that lcaT1∩T2(A, B) is a Q-node as follows. Let lcaT1(A, B) be a Q-node. We can obtain
T1 ∩ T2 from T1, by applying a reduction on T1 for each consecutivity constraint of T2. Since



I. Rutter and P. Stumpf 90:7

the only possible change to Q-nodes in reductions is being merged with other nodes to a
Q-node of higher degree, the lowest common ancestor of A, B remains a Q-node (Note that
the reduction of a PQ-tree for a given set is unique up to equivalence).

Projection. Let T be a PQ-tree with leaf set L and let L′ ⊆ L. The projection R⋆(T, L′)
from R(T ) to L′ is the set of linear orderings of L′ induced by the linear orderings in R(T )
on L′. The projection T ′ of T on L′ is a PQ-tree on L′ with R(T ′) = R⋆(T, L′). It can be
computed in O(|L|) time from T by only keeping nodes µ with L(µ) ∩ L′ ̸= ∅ and smoothing
all nodes with a single child (that is, removing the node and adding an arc connecting its
parent with its child). Here all Q-nodes in T ′ are consistent to their respective copy in T .

Prune. Let T be a PQ-tree with leaf set L, let ℓ′ ̸∈ L and let L′ ⊆ L be consecutive in
each σ ∈ R(T ). For any σ ∈ R(T ), the prune of L′ to ℓ′ in σ is the result of replacing L′ in σ

by ℓ′. The prune of L′ to ℓ′ in R(T ) is the set containing for each σ ∈ R(T ) the prune of L′

to ℓ′ in σ. For pruning PQ-trees, we first observe that consecutive sets of leaves correspond
to simple substructures of PQ-trees.

▶ Lemma 4. Let T be a PQ-tree with leaf set L and let L′ ⊆ L be consecutive in each σ ∈ R(T ).
Then, there is either a P-node λ with L(λ) = L′ or a Q-node µ with a consecutive subset of
children ν1, . . . , νl such that

⋃l
i=1 L(νi) = L′.

Proof. We consider ν = lca(L′), i.e., L′ ⊆ L(ν) and there are two distinct children µ1,µ2
of ν with L′ ∩ L(µ1) ̸= ∅ and L′ ∩ L(µ2) ̸= ∅.

First assume ν is a P-node. Then for any other child ξ of ν we have L(ξ) ⊆ L′ since
otherwise we could violate the consecutivity of L′ by placing ξ between µ1 and µ2. We
further have L(µ1) ⊆ L′ and L(µ2) ⊆ L′, since otherwise the consecutivity of L′ is violated
after flipping µ1 and µ2. Hence, we have L(ν) = L′.

Next let ν be a Q-node, and let µ1, µ2 be the leftmost and the rightmost child of ν

with descendants in L′. Since L′ is consecutive, all children between µ1 and µ2 only have
descendants in L′. If µ1 or µ2 had a descendant not in L′, then the consecutivity of L′ could
be violated by flipping it. Hence, ν has the stated property. ◀

With this insight, the prune of L′ to ℓ′ in T is obtained as follows. By Lemma 4, either
lca(L′) is a P-node with L(lca(L′)) = L′ or lca(L′) is a Q-node with consecutive children
ν1, . . . , νl such that L′ =

⋃l
i=1 L(νi). If lca(L′) is a P-node, the prune is obtained by replacing

lca(L′) and its subtree by leaf ℓ′. Otherwise, the prune is obtained by replacing ν1, . . . , νl

by ℓ′ as a child of the Q-node lca(L′). Clearly, given L′, the prune can be computed in
O(|L′|) time from T with a bottom-up approach. We introduce additional consistencies.
Namely, we consider each Q-node µ of T consistent to its copy µ′ in the prune of L′ to ℓ′ in
T , if that copy exists. These consistencies are trivial and not explicitly computed.

4 Recognition Algorithm

We use Theorem 2 to recognize sunflower simultaneous interval graphs by deciding whether
a given sunflower simultaneous graph G has a simultaneous clique ordering. The rough idea
is the following. For Property 1, we construct a PQ-tree T on K where K(v) is consecutive
for each v ∈ V (S). For Property 2, we construct for each i ∈ [k] a PQ-tree T ′

i on Ki where
Ki(v) is consecutive for each v ∈ V (Gi). I.e., each T ′

i represents the valid clique orderings
of Gi; see Figure 4. By construction, a simultaneous clique ordering of G is then a linear
ordering σ ∈ R(T ) that induces a linear ordering in each of R(T ′

1), . . . , R(T ′
k).

ESA 2023
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Figure 4 Top: Simultaneous representation of a sunflower simultaneous graph G = (G1, G2) with
V (G1) = {a, b, c, r, s, t, u} and V (G2) = {x, y, r, s, t, u}. Below are the PQ-trees for G with circles
for P-nodes and squares for Q-nodes, as defined in Section 4. The leaves are cliques described as
strings of the contained vertices.
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This means that we obtain σ as the order of leaves of T , if for i ∈ [k] any two cliques
A, B ∈ Ki are ordered the same way in the order of leaves of T and in the order of leaves of T ′

i .
We construct PQ-trees T1, . . . , Tk by restricting T ′

1, . . . , T ′
k such that they are “compatible”

with T while only loosing linear orderings that do not match any simultaneous clique ordering.
We will show that if lcaT (A, B) is a Q-node, then so is lcaTi

(A, B). This allows to ensure
the same ordering of A, B in T and Ti by making each pair of backward-consistent Q-nodes
consistent. We achieve this with a 2-SAT formula Φ. If µ = lcaT (A, B) is a P-node, then we
cannot just arrange the children of µ according to Ti, since this can also affect the order of
maximal cliques for other input graphs. However, we can resolve this problem as follows.
We will see that, if A or B is a child of µ directly, then its position can be chosen according
to Ti without affecting the order of the cliques for other input graphs. Otherwise, µ has two
inner nodes ν1, ν2 with A ∈ L(ν1), B ∈ L(ν2) as children. The next lemma then shows that
the order of ν1 and ν2 is in a sense decided by the order of two shared intervals (“below”
ν1 and ν2, respectively). This allows us to synchronize T and T1, . . . , Tk by considering
corresponding valid clique orderings for K(S). Namely, we use the operations on PQ-trees
from Section 3 to obtain a PQ-tree TS on K(S) that is in a sense compatible with T1, . . . , Tk

and T . In T , we order the children of a P-node µ that are inner nodes according to the order
of corresponding shared intervals whose order is given by the order of the leaves of TS , and
we apply corresponding orderings in each Ti. This ensures compatibility of the orders of
T1, . . . , Tk, since all children of µ that are leaves are private to some Ti and can be arranged
accordingly in T .

Note that each consecutivity constraint for T is a set K(v) with v ∈ V (S). In that sense,
by the following lemma each child of a P-node in T has a private shared vertex v ∈ V (S) if
it is an inner node.

▶ Lemma 5. Let L be a finite set and let {S1, . . . , Sk} ⊆ 2L with |Si| ≥ 2 for i ∈ [k]. Let T

be the PQ-tree on L obtained by making S1, . . . , Sk consecutive. Let µ be a P-node and let ν

be a child of µ that is not a leaf. Then if ν is a P-node, there is an Si with L(ν) = Si. If ν is
a Q-node, there is an Si with

⋃l
j=1 L(νj) = Si for a consecutive subset of children ν1, . . . , νl

of ν.

Proof. Let ν be a P-node and suppose there is no Si with L(ν) = Si. First observe that by
Lemma 4, for any Si with Si ∩ L(µ) ̸= ∅, we have either L(µ) ⊆ Si or Si ⊆ L(λ) for some
child λ of µ. This means that, after contracting the arc µν, no Si can be violated. However,
the contraction allows to order other children of µ between the children of ν. Thereby L(ν)
is no longer consecutive in all represented linear orderings. This contradicts T originally
representing all linear orderings where S1, . . . , Sk are consecutive, since in each σ ∈ R(T ) for
the original T , leaf set L(ν) is consecutive.

Next, let ν be a Q-node and suppose there is no Si with
⋃l

j=1 L(νj) = Si for any
consecutive subset of children ν1, . . . , νl of ν. If ν has precisely two children, we treat it
as a P-node and argue as above that there is an Si with L(ν) = Si. Hence, assume that
ν has at least three children. By Lemma 4, for any Si with Si ∩ L(µ) ̸= ∅, we then have
either L(µ) ⊆ Si or Si ⊆ L(λ) for some child λ of µ. This means that after switching the
label of µ from Q-node to P-node, still all represented linear orderings have all Si consecutive.
This contradicts the choice of T , since by making µ a P-node, T represents additional linear
orderings. ◀

Note that Lemma 5 is in a sense the converse of Lemma 4 for the children of P-nodes.

ESA 2023



90:10 Simultaneous Representation of Interval Graphs in the Sunflower Case

4.1 Polynomial-Time Algorithm
We now describe the construction of the 2-SAT formula Φ and all relevant PQ-trees. For Φ,
each Q-node λ (of any constructed PQ-tree) is assigned a Boolean variable xλ that tells
whether it should be flipped, and we add (xλ ↔ xµ) for consistent nodes µ and we add
(xλ ̸↔ xν) for backward-consistent nodes ν to Φ. We describe for which PQ-trees we need to
consider the consistencies after introducing all PQ-trees.

Let G = (G1, . . . , Gk) be a sunflower simultaneous graph and let T be the PQ-tree on K
that enforces consecutivity of each set K(v) with v ∈ V (S); see Figure 4. Note that if T is
the null-tree, then there exists no simultaneous clique ordering since Property 1 cannot be
satisfied, and by Theorem 2 there is no simultaneous interval representation of G. Hence, we
assume in the following, that T is not the null-tree.

For i ∈ [k], let T |i be the projection of T on Ki, and let T ′
i be the PQ-tree on Ki that

enforces consecutivity of each set Ki(v) with v ∈ V (Gi). Note that T ′
i describes all valid

clique orderings of Gi. We are interested in the PQ-tree Ti = T |i ∩ T ′
i , which restricts the

valid clique orderings of Gi to those that are compatible with Property 1; see Figure 4. With
Property 2 this means that, if any Ti is the null-tree, then there is no simultaneous clique
order. Hence, we assume in the following that no Ti is the null-tree.

We would like to synchronize T1, . . . , Tk with T . However, they have distinct leaf sets.
Thus, we cannot just intersect them. Instead, we aim to describe the clique orderings for S

that can be induced by T1, . . . , Tk with PQ-trees. This allows us to find a clique ordering
for S that is compatible with all T1, . . . , Tk. With the Q-nodes flipped according to a solution
of Φ, this will be enough to synchronize T1, . . . , Tk with T .

We next aim to prune T1, . . . , Tk to maximal cliques of S. For any clique A ∈ K(S),
we define Ki(A) as the set of maximal cliques of Gi that contain A as a subclique. It is
Ki(A) = {C ∈ Ki | A ⊆ C} =

⋂
v∈A{C ∈ Ki | v ∈ C} =

⋂
v∈A(K(v) ∩ Ki). The critical

observation is that, since the intersection of consecutive sets is itself consecutive in a linear
order, Ki(A) is consecutive in T ′

i and thus in Ti. Note that for distinct A, B ∈ K(S), the
sets Ki(A) and Ki(B) are disjoint, since the set of shared vertices in a maximal clique
C ∈ Ki(A) ∩ Ki(B) would otherwise be A as well as B.

We can now construct for each Ti a PQ-tree describing the corresponding orderings of
K(S) as follows. For i ∈ [k], let T ⋆

i be the PQ-tree obtained by starting with Ti and pruning
for each A ∈ K(S) the set Ki(A) to leaf A. Then, let Ti|S be the projection of T ⋆

i on K(S).
Finally, let TS =

⋂k
i=1 Ti|S be the intersection of all Ti|S ; see Figure 4. By construction,

R(TS) contains all clique orderings of S that can be induced by a simultaneous clique order.
Hence, if it is the null-tree, there is no simultaneous clique order.

For each 1 ≤ i ≤ k, we add clauses to Φ for the consistencies between T and T |i, between
T |i and Ti, between Ti and T ⋆

i , between T ⋆
i and Ti|S , and between Ti|S and TS . If Φ is not

satisfiable, then there is no simultaneous clique ordering. On the other hand, with this, the
necessary conditions are also sufficient.

▶ Theorem 6. (G1, . . . , Gk) is a sunflower interval graph if and only if Φ is satisfiable and
neither T nor TS is the null-tree.

Proof. If (G1, . . . , Gk) is a sunflower interval graph the requirements are necessary as
discussed above. Hence, assume that neither T nor TS is the null-tree and that Φ has a
satisfying assignment Γ. By Theorem 2, it suffices to find a simultaneous clique ordering.
We aim to operate on T and each Ti such that the order σ of T induces the order of each Ti,
thus ensuring that σ is a simultaneous clique ordering. We first flip all Q-nodes according
to Γ (that is, flip each Q-node λ where xλ is true). This ensures that any two cliques A, B
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in K or C(S) are ordered the same way in each of T, T1, . . . , Tk or T1|S , . . . , Tk|S , TS where
lca(A, B) is a Q-node and the sets Ki(A), Ki(B) are ordered in Ti the same way as A, B are
ordered in Ti|S , for i ∈ [k].

We next order the children of the P-nodes of T . Let µ be a P-node of T . Then, by Lemma 5
for each child ν of µ that is an inner node, there is a vertex v ∈ S such that K(v) ⊆ L(ν):
We choose an arbitrary clique Cν ∈ K(S) that contains v. We then order the children ν of µ

that are inner nodes according to the order of the corresponding cliques Cν given by TS .
For i ∈ [k], we order the sets Ki(Cν) in Ti accordingly. First note that these sets are not
empty since each Gi contains a clique containing Cν . Next note that this orders any two
leaves λ1,λ2 ∈ Ki with µ = lcaT (λ1, λ2) that are not children of µ the same way in Ti as in T

since for the corresponding children ν1, ν2 of µ we have that L(ν1) and L(ν2) are consecutive
in T and thus also in Ti. E.g., even if ν1 is a Q-node and Ki(Cν1) does not contain λ1, this
rearrangement still ensures the correct ordering of λ1 and λ2 in Ti. Finally note that this
does not flip any Q-nodes of Ti since projection and intersection preserve Q-nodes that order
two leaves of the projection set [4]. I.e., for each pair of cliques A, B ∈ K(S) such that the
order of Ki(A), Ki(B) is decided by a Q-node µ in Ti, there is a Q-node in TS deciding the
order of A, B the same way as µ orders Ki(A), Ki(B) (after flipping Q-nodes according
to Γ).

With this, for any P-node µ of T and any two children ν1, ν2 of µ that are inner nodes,
each Ti orders any pair of A ∈ L(ν1)∩Ki and B ∈ L(ν2)∩Ki the same way as T . This allows
us to order the children of µ simultaneously according to T1, . . . , Tk where each inner node ν

is ordered as any leaf C ∈ L(ν) ∩ Ki. Note that each child of µ that is a leaf is contained
in a single Ti, i.e., it can be placed solely considering the order in Ti (which ensures the
correct order with regards to the children of µ that are inner nodes). Since L(ν) ∩ Ki is
consecutive in Ti, the choice of C(ν) does not matter. I.e., we find an ordering of all children
of µ, which is compatible with the orderings given by T1, . . . , Tk. It remains to show that T

now actually provides a simultaneous clique ordering. Property 1 is satisfied by the definition
of T . For Property 2 we verify that the order of Ki induced by T is the same as the one given
by Ti. Consider any two cliques A, B ∈ Ki. If lcaT (A, B) is a Q-node, then A, B are ordered
the same way in T and Ti, since we flipped the Q-nodes according to Φ. If lcaT (A, B) is a
P-node, then they are ordered the same way in T and Ti by the operations we just applied
on the P-nodes of T . ◀

All three requirements in Theorem 6 are necessary; see Figure 5. Theorem 6 allows to
recognize sunflower interval graphs in polynomial time by constructing T , TS and Φ. If G is
a simultaneous interval graph, we obtain a simultaneous clique ordering of G by following
the construction in the proof of Theorem 6. With the construction in Theorem 2, we then
obtain a simultaneous interval representation.

▶ Corollary 7. Sunflower interval graphs can be recognized in polynomial time. For yes-
instances a simultaneous interval representation can also be constructed in polynomial time.

4.2 Linear-Time Algorithm
To achieve a linear running time, we use that the construction steps can be done efficiently,
while also computing the consistencies between Q-nodes, as discussed in Section 3. However,
we cannot afford to compute the projection from T on Ki for each i ∈ [k] separately, since
this could result in an additional factor of k for the running time. Instead, we use the next
lemma to compute the projections simultaneously. A similar argumentation has been used
by Münch et al. [19].
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Figure 5 Variants of a sunflower graph G = (G1, G2) where G1 and G2 are interval graphs, but
G is not a simultaneous interval graph. a) T is a null-tree since the sets {abc, bx}, {abc, ay} and
{abc, cz} have to be consecutive, while abc can only have two neighbors in the linear ordering. b) TS

is a null-tree since G1 forces b to be in the middle of a and c, while G2 forces a to be in the middle
of b and c. c) Φ cannot be satisfied since ξ is consistent to µ and ν while λ is consistent to µ and
backward-consistent to ν (note that these consistencies are implied in Φ via the other constructed
PQ-trees).
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▶ Lemma 8. Let T be an ordered tree with leaf set L and let S = {S1, . . . , Sl} ⊆ 2L. Then,
for each Si ∈ S the projection T ⋆

i of T on Si can be computed such that each node of T ⋆
i

holds a reference to its original copy in T , with a total running time in O(|L| +
∑l

i=1 |Si|).

Proof. Observe that a preorder traversal of a T ⋆
i is a subsequence of a preorder traversal of

T . We create a list U that contains a tuple (Si, λ.p) where λ.p is the position of λ in the
preorder of T , for each Si ∈ S and λ ∈ Si. We then sort U lexicographically in linear time
using radix sort [9]. Then, for each set Si ∈ S, the tuples with Si are consecutive and provide
the order of the leaves in Si in the preorder traversal. For any Si, we find all nodes of T ⋆

i in
T with the following observation. Let µ be a node of T ⋆

i and let ν1, ν2 be two children of µ

with ν1 < ν2 in the preorder. Then µ is the lowest common ancestor of the rightmost leaf in
L(ν1) and the leftmost leaf in L(ν2). Hence, each inner node of T ⋆

i is the lowest common
ancestor of two consecutive leaves. We use the lowest common ancestor data structure for
static trees by Harel and Tarjan [13], to compute for every pair of nodes λ1, λ2 in Si that
are consecutive in the preorder the least common ancestor lcaT (λ1, λ2) and place it between
λ1 and λ2 in a copy Ui of Si ordered as the preorder. This is already preparing the last step,
which is to compute for each node of T ⋆

i its parent. Now every node λ ∈ Si is descendant
of both its neighbors µ1, µ2 in Ui. If µ1, µ2 are distinct, the later one in the preorder is
the parent of λ (and descendant of the other one). By removing Si and then all duplicates
from Ui, we get a list of all nodes of Si of height 1. Note that all duplicates of a node λ

are consecutive, when they are removed. By repeating the same for each height, we get the
parents of all nodes. ◀

With that, the construction of the PQ-trees is straightforward.

▶ Corollary 9. Sunflower interval graphs can be recognized in O(
∑k

i=1(|V (Gi)| + |E(Gi)|))
time, where (G1, . . . , Gk) is the input sunflower graph. For yes-instances a simultaneous
interval representation can be constructed in the same asymptotic running time.

Proof. We follow the construction of T , T1, . . . , Tk, T1|S , . . . , Tk|S , TS for Theorem 6. For
each constructed PQ-tree, we maintain the consistencies to the PQ-tree(s) it is constructed
from (except for consistencies to unchanged copies of a Q-node, where we use the same
variable). The trees T and T ′

1, . . . , T ′
k, can be constructed in O(

∑k
i=1(|V (Gi)| + |E(Gi)|))

time by Proposition 3. Then, T |1, . . . , T |k can be constructed in O(
∑k

i=1(|V (Gi)| + |E(Gi)|))
time by Lemma 8. The PQ-trees T1, . . . , Tk can be constructed in the same total time [19].
T1|S , . . . , Tk|S can then be constructed in O(

∑k
i=1(|V (Gi)| + |E(Gi)|)) by computing the

projection and prunes directly. However, we store the smoothed nodes and pruned subtrees
(or sets of subtrees), such that we can compute easily a linear order in R(Ti) whose prune
is a given linear order in R(Ti|S) (after projection to K(S)). Finally, TS can be computed
in O(k · (|V (S)| + |E(S)|)) time. The 2-SAT formula Φ can easily be computed from the
maintained consistencies. A solution for Φ can be computed in linear time [1]. With
Theorem 6 this suffices to decide whether there is a simultaneous interval representation.

To compute such a representation in linear time, we construct the simultaneous clique
ordering a bit differently than in Theorem 6. We first operate on T1|S , . . . , Tk|S such that
their leaves are ordered as in TS . This can be done in O(k · (|V (S)| + |E(S)|)) time. Then we
reverse the smoothing and pruning from T1, . . . , Tk (using the stored nodes and subtrees) to
obtain corresponding linear orderings in R(T1), . . . , R(Tk). This can be done in time linear
in the size of T1, . . . , Tk, i.e., in O(

∑k
i=1(|V (Gi)| + |E(Gi)|)) time.

In the proof of Theorem 6 we established that the obtained linear orderings can now be
merged to a simultaneous clique ordering. We only need to ensure the consecutivities for
the shared vertices. Then, we compute for i ∈ [k] the first and last position sv

i , tv
i of each
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shared vertex v ∈ V (S) in the clique ordering of Ti by iterating over the clique ordering
once. For i ∈ [k], we sort a list of all these positions in O(|V (Gi)| + |E(Gi)|) time using
counting sort [9]. After removing duplicates of positions appearing multiple times, we assign
each shared vertex v the positions ŝv

i , t̂v
i of sv

i , tv
i in that sorted list. We can then consider

for each vertex v ∈ V (S) two k-tuples ŝv = (ŝv
1, . . . , ŝv

k) and t̂v = (t̂v
1, . . . , t̂v

k). We sort a list
LS of all these k-tuples lexicographically in O(k · |V (S)|) time using radix sort [9]. This
provides us with an order of the start and endpoints of the intervals of the shared vertices in
a simultaneous interval representation.

We get a simultaneous clique ordering σ by simultaneously iterating over the sorted list
LS and the clique orderings of T1, . . . , Tk as follows. At each entry sv (or tv) of LS , append
to σ for each Ti all cliques between the last appended clique and position sv

i (or tv
i ). After the

last entry of LS , append the remaining cliques to σ. Since we followed the construction of the
proof of Theorem 6 there is a simultaneous clique ordering inducing the clique orderings of
T1, . . . , Tk. Thus, we have for any two entries r = (r1, . . . , rk), r′ = (r′

1, . . . , r′
k) that r ≤ r′ in

LS only if ri ≤ r′
i, for all i ∈ [k]. This ensures that each clique C is appended when C ∩ V (S)

are precisely the shared vertices v for which sv is processed, but tv is not. Hence, Property 1
is satisfied and σ actually is a simultaneous clique ordering. With that a simultaneous
interval representation can be computed straightforwardly, by placing a point for each clique
on the real line in that order and then assigning to each vertex v the interval [sv, tv] where
sv, tv are the points for the first and last clique containing v, as done for Theorem 2. ◀

5 Open Questions

While we solve the sunflower representation problem for interval graphs in linear time if
each input graph is given separately, a more compact input description is possible, if the
number of non-shared vertices is very small. In that case, the input can be given as the union
G =

⋃k
i=1 Gi as a single graph with labels describing which input graph a non-shared vertex

belongs to. Our approach would then have a running time in O(k · (|V (G)| + |E(G)|)).

▶ Question 1. Can the sunflower representation problem for interval graphs be solved in
o(k · (|V (G)| + |E(G)|)) time if the input is given as the union graph G?

Note that it is not clear how to even verify that each input graph is an interval graph
with less time.

While the general simultaneous representation problem is NP-complete for interval graphs
if the number of input graphs is part of the input, and it is solvable in linear time for k = 2,
we do not know the complexity for fixed k > 2.

▶ Question 2. Can the simultaneous representation problem for interval graphs be solved
in polynomial time for a fixed k > 2? In particular, considering k as a parameter, is the
problem in XP? Is it FPT?
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