
Relaxed Models for Adversarial Streaming: The
Bounded Interruptions Model and the Advice
Model
Menachem Sadigurschi # Ñ

Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Moshe Shechner # Ñ

Blavatnik School of Computer Science, Tel Aviv University, Israel

Uri Stemmer # Ñ

Blavatnik School of Computer Science, Tel Aviv University, Israel
Google Research, Tel Aviv, Israel

Abstract
Streaming algorithms are typically analyzed in the oblivious setting, where we assume that the input
stream is fixed in advance. Recently, there is a growing interest in designing adversarially robust
streaming algorithms that must maintain utility even when the input stream is chosen adaptively
and adversarially as the execution progresses. While several fascinating results are known for the
adversarial setting, in general, it comes at a very high cost in terms of the required space. Motivated
by this, in this work we set out to explore intermediate models that allow us to interpolate between
the oblivious and the adversarial models. Specifically, we put forward the following two models:

The bounded interruptions model, in which we assume that the adversary is only partially
adaptive.
The advice model, in which the streaming algorithm may occasionally ask for one bit of advice.

We present both positive and negative results for each of these two models. In particular, we
present generic reductions from each of these models to the oblivious model. This allows us to design
robust algorithms with significantly improved space complexity compared to what is known in the
plain adversarial model.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases streaming, adversarial streaming

Digital Object Identifier 10.4230/LIPIcs.ESA.2023.91

Related Version Full Version: https://arxiv.org/abs/2301.09203

Funding This project was partially supported by the Israel Science Foundation (grant 1871/19) and
by Len Blavatnik and the Blavatnik Family foundation.

1 Introduction

Streaming algorithms are algorithms for processing data streams in which the input is
presented as a sequence of items. Generally speaking, these algorithms have access to limited
memory, significantly smaller than what is needed to store the entire data stream. This field
was formalized by Alon, Matias, and Szegedy [3], and has generated a large body of work
that intersects many other fields in computer science. In this work, we focus on streaming
algorithms that aim to track a certain function of the input stream, and to continuously
report estimates of this function. Formally,

▶ Definition 1.1 (Informal version of Definition 2.1). Let X be a finite domain and let
g : X∗ → R be a function that maps every input x⃗ ∈ X∗ to a real number g(x⃗) ∈ R.

© Menachem Sadigurschi, Moshe Shechner, and Uri Stemmer;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 91;
pp. 91:1–91:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:menisadi@gmail.com
https://menisadi.github.io
mailto:shechner@tauex.tau.ac.il
https://www.shechner.com/
mailto:u@uri.co.il
https://www.uri.co.il
https://doi.org/10.4230/LIPIcs.ESA.2023.91
https://arxiv.org/abs/2301.09203
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


91:2 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

Let A be an algorithm that in every round i ∈ [m] obtains an element xi ∈ X and outputs
a response zi ∈ R. Algorithm A is said to be an oblivious streaming algorithm for g with
accuracy α, failure probability β, and stream length m, if the following holds for every input
sequence x⃗ = (x1, x2, . . . , xm) ∈ Xm. Consider an execution of A on the input stream x⃗.
Then, Pr [∀i ∈ [m] we have zi ∈ (1± α) · g(x1, . . . , xi)] ≥ 1−β, where the probability is taken
over the coins of algorithm A.

Note that in Definition 1.1, the streaming algorithm is required to succeed (w.h.p.)
for every fixed input stream. In particular, it is assumed that the choice for the elements
in the stream is independent from the internal randomness of the streaming algorithm.
This assumption, called the oblivious setting, is crucial for the correctness of most classical
streaming algorithms. In this work, we are interested in a setting where this assumption
does not hold, referred to as the adversarial setting.

1.1 The (Plain) Adversarial Model
The adversarial streaming model, in various forms, was considered by [20, 12, 13, 1, 2, 15,
8, 7, 16, 24, 6, 4]. The adversarial setting is modeled by a two-player game between a
(randomized) StreamingAlgorithm and an Adversary. At the beginning, we fix a function
g : X∗ → R. Throughout the game, the adversary chooses the updates in the stream, and is
allowed to query the streaming algorithm at T time steps of its choice (referred to as “query
times”). Formally, for round i = 1, 2, . . . , m:
1. The Adversary chooses an update xi ∈ X and a query demand qi ∈ {0, 1}, under the

restriction that
∑i

j=1 qj ≤ T .
2. The StreamingAlgorithm processes the new update xi. If qi = 1 then, the Streaming-

Algorithm outputs a response zi, which is given to the Adversary.

The goal of the Adversary is to make the StreamingAlgorithm output an incorrect response
zi at some query time i in the stream. Let g be a function defining a streaming problem,
and suppose that there is an oblivious streaming algorithm A for g that uses space s. It is
easy to see that g can be solved in the adversarial setting using space ≈ s · T , by running T

copies of A and using each copy for at most one query. The question is if we can do better.
Indeed, Hassidim et al. [16] showed the following result.

▶ Theorem 1.2 ([16], informal). If there is an oblivious streaming algorithm for a function g

that uses space s, then there is an adversarially robust streaming algorithm for g supporting
T queries using space ≈

√
T · s.

Note that when the number of queries T is large, this construction incurs a large space
blowup. One way for coping with this is to assume additional restrictions on the function
g or on the input stream. Indeed, starting with Ben-Eliezer et al. [7], most of the positive
results on adversarial streaming assumed that the input stream is restricted to have a small
flip-number, defined as follows.

▶ Definition 1.3 (Flip number [7]). The (α, m)-flip number of an input stream x⃗ w.r.t. a
function g, denoted as λα,m(x⃗, g), or simply λ, is the maximal number of times that the value
of g changes (increases or decreases) by a factor of (1 + α) during the stream x⃗.

Starting from [7], the prior works of [7, 16, 24, 4] presented generic constructions that
transform an oblivious streaming algorithm with space s into an adversarially robust streaming
algorithm with space ≈ s · poly(λ). That is, under the assumption that the flip-number
is bounded, these prior works can even support T = m queries. This is useful since the



M. Sadigurschi, M. Shechner, and U. Stemmer 91:3

parameter λ is known to be small for many interesting streaming problems in the insertion-
only model (where there are no deletions in the stream). However, in general it can be as
big as Θ(m), in which case the transformations of [7, 16, 24, 4] come at a very high cost in
terms of space. To summarize this discussion, current reductions from the adversarial to
the oblivious setting are useful either when the number of queries T is small, or when the
flip-number is small.

1.2 Our Results
One criticism of the adversarial model is that it is (perhaps) too pessimistic. Indeed, there
could be many scenarios that do not fall into the oblivious model, but are still quite far from
an “adversarial” setting. Motivated by this, in this work, we set out to explore intermediate
models that allow us to interpolate between the oblivious model and the adversarial model.
Specifically, we study two such models, which we call the bounded interruptions model and
the advice model.

1.2.1 Adversarial Streaming with Bounded Interruptions (ASBI)
Recall that in the plain adversarial model, the adversary is fully adaptive in the sense that it
does not commit to the ith update before time i. We consider a refinement of this setting in
which the adversary is only partially adaptive. The game begins with the adversary specifying
a complete input stream. Throughout the execution, the adversary (who sees the outputs of
the streaming algorithm) can adaptively decide to interrupt and to replace the suffix of the
stream (which has not yet been processed by the streaming algorithm). Formally, we define
the following ASBI game between a StreamingAlgorithm and an Adversary.

Parameters: m denotes the length of the stream, T denotes the number of allowed queries,
and R denotes the number of allowed interruptions.

1. The Adversary chooses a stream x⃗ = (x1, x2, . . . , xm) ∈ Xm.
2. For round i = 1, 2, . . . , m

a. The Adversary chooses a query demand qi ∈ {0, 1} and an interruption demand
di ∈ {0, 1}, under the restriction that

∑i
j=1 qj ≤ T and

∑i
j=1 dj ≤ R.

b. If di = 1 then the adversary outputs a new stream suffix (x′
i, . . . , x′

m) and we override
(xi, . . . , xm)← (x′

i, . . . , x′
m).

c. The StreamingAlgorithm obtains the update xi. If qi = 1 then, the Streaming-
Algorithm outputs a response zi, which is given to the Adversary.

That is, the adversary sees all of the outputs given by the streaming algorithm (in
query times), and adaptively decides on R places in which it “interrupts” and arbitrarily
modifies the rest of the stream. Importantly, the streaming algorithm “does not know” when
interruptions occur. The ASBI model limits the adaptivity of the adversary in a natural way,
capturing settings in which the number of “adaptivity rounds” can be bounded. It gives
us an intuitive interpolation between the oblivious setting (in which R = 0) and the full
adversarial setting (obtained by setting R = T ).1

We show the following generic result.

1 As described, the plain adversarial setting is obtained by setting R = m. However, an easy argument
shows that setting R > T does not give more power to the adversary over the case of R = T .

ESA 2023



91:4 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

▶ Theorem 1.4 (informal version of Theorem 3.1). If there exists an oblivious streaming
algorithm for a function g : X∗ → R using space s then for every 1 ≤ R ≤ T there exists an
adversarially robust streaming algorithm for g in the ASBI model that answers T queries and
resists R interruptions using space ≈ min

{
R,
√

T
}
· s.

To obtain this result, we build on the sketch switching technique introduced by Ben-Eliezer
et al. [7]. Intuitively, we maintain 2R copies of an oblivious streaming algorithm A, where in
every given moment exactly two of these copies are designated as “active”. As long as the
two active copies produce (roughly) the same estimates, they remain as the “active” copies,
and we use their estimates as our response. Once they disagree, we discard them both (never
to be used again) and designate two (fresh) copies as “active”. In Section 3 we show that
this construction can be formalized to obtain Theorem 1.4.

▶ Remark 1.5. While our method resembles the sketch switching technique of [7], their
technique is tailored to the setting where the flip-number is small (i.e., the value of the
target function does not “jump” too many times throughout the stream), and is not directly
applicable to the ASBI model. Specifically, in [7] there is only one active copy, which is
“swithched” the moment its response differs significantly from the previously released estimate.
This is useful under the assumption that the flip-number is small, because the flip-number
bounds the number of switches. However, in the ASBI model we do not assume anything
about the flip-number of the stream, and the value of the target function can be completely
different at different query times.

For example, the following is a direct application of Theorem 1.4 for F2 estimation (i.e.,
estimating the second moment of the frequency vector of the input stream).

▶ Theorem 1.6 (F2 estimation in the ASBI model, informal). Let 1 ≤ R ≤ T . There exists an
adversarially robust F2 estimation algorithm in the ASBI model that guarantees α-accuracy
(w.h.p.) for T queries while resisting R interruptions using space ≈ min

{
R,
√

T
}

/α2.

This improves the state-of-the-art for turnstile streams in the plain adversarial model
(from [16]) whenever R ≲

√
T .

A negative result for the ASBI model. Note that the space blowup of our construction
from Theorem 1.4 grows linearly with the number of interruptions R. Recall that in the
full adversarial model (where R = T for T queries) it is known that a space blowup of

√
T

suffices (see Theorem 1.2). Thus, one might guess that the correct dependence in R in the
ASBI model should be

√
R. However, we show that this is generally not the case. Specifically,

we show that there exists a streaming problem that can easily be solved in the oblivious
setting with small space, but necessitates space linear in R in the ASBI model, provided that
the number of queries is large enough (quadratic in R). This shows that our upper bound
stated in Theorem 1.4 is (nearly) tight in general. Formally,

▶ Theorem 1.7 (informal version of Corollary 3.8). For every R ≤ T there exists a streaming
problem that requires at least Ω

(
min

{
R,
√

T
})

space to be solved in the ASBI model with R

interruptions and T queries, but can be solved in the oblivious setting using space polylog(T ).

1.2.2 Adversarial Streaming with Advice (ASA)
We put forward another intermediate model, in which the streaming algorithm may occasion-
ally ask for one bit of advice throughout the execution. Formally, we consider the following
game, referred to as the ASA game, between the StreamingAlgorithm and an Adversary.



M. Sadigurschi, M. Shechner, and U. Stemmer 91:5

Parameters: m denotes the length of the stream, T ≤ m denotes the number of allowed
queries, and η ∈ N is a parameter controlling the query/advice rate.

For round i = 1, 2, . . . , m :
1. The Adversary chooses an update xi ∈ X and a query demand qi ∈ {0, 1}, under the

restriction that
∑i

j=1 qj ≤ T .
2. The StreamingAlgorithm processes the new update xi.
3. If qi = 1 then

a. The StreamingAlgorithm outputs a response zi, which is given to the Adversary.
b. If

(∑i
j=1 qj

)
mod η = 0 then the StreamingAlgorithm specifies a predicate pi :

X∗ → {0, 1}, and obtains pi(x1, x2, . . . , xi).

That is, in the ASA model the adversary is allowed a total of T queries, and once every
η queries the streaming algorithm is allowed to obtain one bit of advice, computed as a
predicate of the items in the stream so far.

Unlike our ASBI model, which (we believe) has a strong algorithmic motivation, the main
motivation to study the ASA model is theoretical. It gives us an intuitive way to measure the
amount of additional information that the streaming algorithm needs in order to maintain
utility in the adversarial setting.

▶ Remark 1.8. Even though the main motivation for the ASA model is theoretical, it could
also be interesting from an algorithmic standpoint in the following context. Consider a
streaming setting in which the input stream is fed into both a (low space) streaming algorithm
A and to a server S. The server has large space and can store all the input stream (and,
therefore, can in principle solve the streaming problem itself). However, suppose that the
server has some communication bottleneck and is busy serving many other tasks in parallel.
Hence we would like to delegate as much of the communication as possible to the “cheap”
(low space) streaming algorithm A. The ASA model allows for such a delegation, in the sense
that the streaming algorithm handles most of the queries itself, and only once every η queries
it asks for one bit of advice from the server.

We show the following generic result.

▶ Theorem 1.9 (informal version of Theorem 4.2). If there exists an oblivious linear streaming
algorithm for a function g : X∗ → R with space s, then for every η ∈ N there exists an
adversarially robust streaming algorithm for g in the ASA model with query/advice rate η

using space ≈ η · s2.

To obtain this result, we rely on a technique introduced by Hassidim et al. [16] which uses
differential privacy [11] to protect not the input data, but rather the internal randomness
of the streaming algorithm. Intuitively, this allows us to make sure that the “robustness”
of our algorithm deteriorates slower than the advice rate, which allows us to obtain an
advice-robustness tradeoff.

Note that the space complexity of the algorithm from Theorem 1.9 does not depend
polynomially on the number of queries T . For example, the following is a direct application
of this theorem in the context of F2 estimation.

▶ Theorem 1.10 (F2 estimation in the ASA model, informal). Let η ∈ N. There exists an
adversarially robust F2 estimation algorithm in the ASA model with query/advice rate η that
guarantees α-accuracy (w.h.p.) using space Õ

(
η/α4)

.

ESA 2023



91:6 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

▶ Remark 1.11. We stress that there is a formal sense in which the ASA model is “between”
the oblivious and the (plain) adversarial models. Clearly, the ASA model is easier than
the plain adversarial model, as we can simply ignore the advice bits. On the other hand, a
simple argument shows that the ASA model (with any η > 1) is qualitatively harder than the
oblivious setting. To see this, let A be an algorithm in the ASA model for a function g with
query/advice rate η > 1. Then A can be transformed into the following oblivious algorithm
Aoblivious for g (that returns an estimate in every time step without getting any advice):

An oblivious algorithm Aoblivious

1. Instantiate algorithm A (which expects to operate in the ASA model).
2. In every time i ∈ [m]:

a. Obtain an update xi ∈ X.
b. Duplicate A (with its internal state) into a shadow copy Ashadow.
c. Feed the update (xi, 0) to A and the update (xi, 1) to Ashadow, and obtain an answer

zi from the shadow copy. Here we use the notation that (x, q) means an update x

with a query demand q. Note that we only query the shadow copy.
d. Output zi and erase the shadow copy from memory.

As we “rewind” A after every query, it is never expected to issue an advice-request and so
Aoblivious never issues an advice-request as well. Furthermore, a simple argument shows that
Aoblivious maintains utility in the oblivious setting.2

▶ Remark 1.12. Our construction has the benefit that the predicates specified throughout
the interaction are “simple” in the sense that every single one of them can be computed in a
streaming fashion. That is, given the predicate pi, the bit pi(x1, x2, . . . , xi) can be computed
using small space with one pass over x1, x2, . . . , xi.

A negative result for the ASA model. Theorem 1.9 shows a strong positive result in the
ASA model for streaming problems that are defined by real valued functions, presenting
space complexity that does not depend directly on the number of queries T . We compliment
this result with a negative result for a simple streaming problem which is not defined by a
real valued function. Specifically, we consider (a variant of) the well-studied ℓ0-sampling
problem, where the streaming algorithm must return an (almost) uniformly random element
from the set of non-deleted elements. It is known that the ℓ0-sampling problem is easy in the
oblivious setting (see e.g. [17]) and hard in the plain adversarial setting (see e.g. [1]). Using
a simple counting argument, we show that the ℓ0-sampling problem remains hard also in the
ASA model even if the query/advice rate is 1, i.e., even if the streaming algorithm gets an
advice bit for every query. Formally,

▶ Theorem 1.13 (informal version of Theorem 4.5). Every algorithm for solving the ℓ0-
sampling problem in the ASA model with T queries must use space Ω(T ). Furthermore, this
holds even when η = 1, that is, even if the algorithm gets an advice bit after every query.

2 To see this, fix an input stream x⃗ = (x1, x2, . . . , xm), and fix j ∈ [m]. Note that the distribution of the
output given by Aoblivious in time j when running on x⃗ is identical to the outcome distribution of A
when running on the stream ((x1, 0), . . . , (xj−1, 0), (xj , 1)), which must be accurate w.h.p. by the utility
guarantees of A (since there is only 1 query in this alternative stream, then A gets no advice when
running on it). The claim now follows by a union bound over the query times.



M. Sadigurschi, M. Shechner, and U. Stemmer 91:7

1.3 Additional Related Works
The adversarial streaming model (in a setting similar to ours) dates back to at least [1], who
studied it implicitly and showed an impossibility result for robust ℓ0 sampling in sublinear
memory. The adversarial streaming model was then formalized explicitly by [15], who showed
strong impossibility results for linear sketches. A recent line of work, starting with [7]
and continuing with [16, 24, 4, 6] showed positive results (i.e., robust algorithms) for many
problems of interest, under the assumption that the flip-number of the stream is bounded.
On the negative side, [7] also presented an attack with O(n) number of adaptive rounds on a
variant of the AMS sketch, where n is the size of the domain. Later, [19] presented a streaming
problem that can be solved in the oblivious setting with polylogarithmic space, but requires
polynomial space in the adversarial setting. Thus, the result of [19] separates the oblivious
model from the (plain) adversarial model. More recently, [9] and [10] presented attacks on
a concrete algorithm, namely CountSketch, with a number of queries that is linear in the
space of the algorithm and while using only a single round of adaptivity. Following [16], the
idea of using differential privacy to protect the internal randomness of interactive algorithms
was used in additional settings, for example in the context of dynamic algorithms [5] and
learning with experts [23].

2 Preliminaries

In this work we consider streaming problems which are defined by a real valued function
(where the goal is to approximate the value of this function) as well as streaming problems
that define a set of valid solutions and the goal is to return one of the valid solutions. The
following definition unifies these two objectives for the oblivious setting.

▶ Definition 2.1 (Oblivious streaming). Let X be a finite domain and let g : X∗ → 2W be a
function that maps every input x⃗ ∈ X∗ to a subset g(x⃗) ⊆W of valid solutions (from some
range W ).

Let A be an algorithm that, for m rounds, obtains an element xi ∈ X and outputs a
response zi ∈ W . Algorithm A is said to be an oblivious streaming algorithm for g with
failure probability β, and stream length m, if the following holds for every input sequence
x⃗ = (x1, x2, . . . , xm) ∈ Xm. Consider an execution of A on the input stream x⃗. Then,

Pr [∀i ∈ [m] we have zi ∈ g(x1, . . . , xi)] ≥ 1− β,

where the probability is taken over the coins of algorithm A.

For example, in the problem of estimating the number of distinct elements in the stream,
the function g in the above definition returns the interval g(x1, . . . , xi) = (1±α)·|{x1, . . . , xi}|,
where α is the desired approximation parameter.

3 Adversarial Streaming with Bounded Interruptions (ASBI)

In this section we present our results for the ASBI model, defined in Section 1.2.1. We begin
with our generic transformation.

3.1 A Generic Construction for the ASBI Model
We present a generic construction whose space blowup depends only on the number of
interruptions R (and not on the number of queries T ). We therefore assume in our construction
that T = m, i.e., that the adversary queries the streaming algorithm on every time step. Our
construction is given in algorithm RobustInterruptions. The following theorem specifies
its properties.

ESA 2023



91:8 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

Algorithm 1 RobustInterruptions.

Input: Parameter R ∈ N+ bounding the number of possible interruptions.
Algorithm used: An oblivious streaming algorithm A with space s, accuracy α, and
confidence β.

1. Initialize 2R independent instances of algorithm A, denoted as Aanswer
1 , . . . ,Aanswer

R and
Acheck

1 , . . . ,Acheck
R . Set r = 1.

2. For i = 1, 2, . . . , m:
a. Obtain the next item in the stream xi ∈ X.
b. Feed xi to all of the copies of algorithm A.
c. Let zanswer

r,i and zcheck
r,i denote the answers returned by Aanswer

r and Acheck
r , respectively.

d. If zanswer
r,i ∈ (1 ± 2α) · zcheck

r,i then output zanswer
r,i . Otherwise, output zcheck

r,i and set
r ← r + 1.

e. If r > R then FAIL. Otherwise continue to the next iteration.

▶ Theorem 3.1. Fix any function g and fix α, β > 0. Let A be an oblivious streaming
algorithm for g that uses space s and guarantees accuracy α with failure probability β. Then
for all R ∈ N+ there exists an adversarially robust streaming algorithm for g that resists R

interruptions and guarantees accuracy 5α with failure probability O(Rβ) using space O(Rs).

▶ Remark 3.2. Recall that Hassidim et al. [16] showed a generic transformation from an
oblivious algorithm for a function g : X∗ → R with space s to an adversarial algorithm (in the
plain model) for g, answering T queries with space ≈

√
T · s (see Theorem 1.2). Therefore,

combined with the above theorem, we get that for every such function g and every 1 ≤ R ≤ T

there exists an adversarially robust streaming algorithm in the ASBI model that answers T

queries and resists R interruptions using space ≈ min
{

R,
√

T
}
· s.

Fix an adversary B and consider the interaction between algorithm RobustInterruptions
and the adversary B. For r ∈ [R], let ir denote the time step in which zcheck

r,ir
is returned.

▶ Lemma 3.3. Fix r∗ ∈ [R]. With probability at least 1 − β, the answers returned by
Acheck

r∗ in times 1, 2, . . . , ir∗ are α-accurate. That is, for every 1 ≤ i ≤ ir∗ it holds that
zcheck

r∗,i ∈ (1± α) · g(x1, . . . , xi).

Proof. For simplicity, we assume that the adversary B is deterministic (this is without loss
of generality by a simple averaging argument). Fix the randomness of all copies of algorithm
A, except for Acheck

r∗ . Let RIr∗ be a variant of algorithm RobustInterruptions which is
identical to RobustInterruptions until the time step i∗ in which r becomes r∗. In times
i ≥ i∗, algorithm RIr∗ simply outputs zanswer

r∗,i , i.e., the answer given by Aanswer
r∗ . Note that

Acheck
r∗ does not exist in algorithm RIr∗ .

As we fixed the coins of the copies of A ≠ Acheck
r∗ , the interaction between B and RIr∗ is

deterministic. In particular, it generates a single stream x⃗r∗ . By the utility guarantees of
algorithm Acheck

r∗ , when run on this stream, then with probability at least 1− β it maintains
α-accuracy throughout the stream.

The lemma now follows by observing that until time ir∗ the stream generated by the
interaction between B and algorithm RobustInterruptions is identical to the stream x⃗r∗ . ◀

▶ Lemma 3.4. With probability at least 1 − Rβ, all of the answers given by
RobustInterruptions (before returning FAIL) are 5α-accurate.



M. Sadigurschi, M. Shechner, and U. Stemmer 91:9

Proof. Follows from a union bound over Lemma 3.3, and by Step 2d of
RobustInterruptions. ◀

▶ Lemma 3.5. Algorithm RobustInterruptions returns FAIL with probability at most 2Rβ.

Proof. Let j1, j2, . . . , jR denote the time steps in which the adversary conducts interruptions.
That is, j1 is the first time in which the adversary switches the suffix of the stream, j2 is
the second time this happens, and so on. Also let p1, p2, . . . , pR denote the time steps in
which the parameter r increases during the execution of algorithm RobustInterruptions.
Specifically, pℓ is the time i in which r becomes equal to ℓ + 1. We show that for every
r ∈ [R], with probability at least 1 − 2rβ it holds that jr ≤ pr. (That is, interruptions
happen “faster” then r increases.)

The proof is by induction on r. For the base case, r = 1, let x⃗1 denote the first stream
chosen by the adversary. By the utility guarantees of A, with probability at least 1− 2β we
have that both Aanswer

1 and Acheck
1 are α-accurate w.r.t. this stream, in which case r does

not increase. Thus, with probability at least 1− 2β we have j1 ≤ p1.
The inductive step is similar: Fix r ∈ [R], and suppose that jr ≤ pr, which happens with

probability at least (1− 2rβ) by the inductive assumption. Let x⃗r denote the last stream
specified by the adversary before time pr. Note that the internal coins of Aanswer

r+1 and Acheck
r+1

are independent with this stream. Hence, by the utility guarantees of A, with probability
at least 1− 2β we have that both Aanswer

r+1 and Acheck
r+1 are α-accurate w.r.t. this stream, in

which case r does not increase. Overall, with probability at least 1 − 2(r + 1)β we have
jr+1 ≤ pr+1.

The lemma now follows by recalling that there are at most R interruptions throughout
the execution. Hence, with probability at least 1−2Rβ it holds that r never increases beyond
R, and the algorithm does not fail. ◀

Theorem 3.1 now follows by combining Lemmas 3.3, 3.4, 3.5.

3.2 A Negative Result for the ASBI Model
We show the following negative result.

▶ Theorem 3.6. For every R, there exists a streaming problem over domain of size poly(R)
and stream length poly(R) that requires at least Ω(R) space to be solved in the ASBI model
with R interruptions and T = R2 queries to within constant accuracy (small enough), but
can be solved in the oblivious setting using space polylog(R).

We next provide an overview for the proof of this theorem (see the full version of this
work for more details). At a high level, Theorem 3.6 follows by strengthening the following
negative result of Kaplan et al. [19] for the (plain) adversarial model.

▶ Theorem 3.7 ([19]). For every T , there exists a streaming problem over domain of size
poly(T ) and stream length poly(T ) that requires at least

√
T space to be solved in the (plain)

adversarial setting with T queries to within constant accuracy (small enough), but can be
solved in the oblivious setting using space polylog(T ).

To obtain their result, Kaplan et al. [19] presented a streaming problem, called the SADA
problem, that is easy to solve in the oblivious setting but requires large space to be solved in
the adversarial setting. Specifically, they showed a reduction from a hard problem in learning
theory (called the adaptive data analysis (ADA) problem) to the task of solving the SADA
problem in the adversarial setting with small space.

ESA 2023



91:10 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

In the ADA problem, the goal is to design a mechanism A that initially obtains a dataset
D consisting of n i.i.d. samples from some unknown distribution P, and then answers k

adaptively chosen queries w.r.t. P. Importantly, A’s answers must be accurate w.r.t. the
underlying distribution P, and not just w.r.t. the empirical dataset D. Hardt, Ullman,
and Steinke [14, 22] showed that the ADA problem requires a large sample complexity.
Specifically, they showed that every efficient3 mechanism for this problem must have sample
complexity n ≥ Ω(

√
k).

Theorem 3.6 follows by the following two observations regarding the negative result of [19]
for the SADA problem, and regarding the underlying hardness result of [14, 22] for the ADA
problem:
1. In the hardness results of [14, 22] for the ADA problem, the adversary generates the

queries using O(n) rounds of adaptivity, where n is the sample size. In more detail, the
adversary poses O(n2) queries throughout the interaction, but these queries are generated
in O(n) bulks where queries in the jth bulk depend only on answers given to queries of
previous bulks.

2. The reduction of Kaplan et al. [19] from the ADA problem to the SADA problem maintains
the number of adaptivity rounds. That is, the reduction of Kaplan et al. [19] transforms
an adversary for the ADA problem that generates the queries in ℓ bulks into an adversary
for the SADA problem that uses ℓ interruptions.

The following is an immediate corollary of Theorem 3.6.

▶ Corollary 3.8. For every R ≤ T , there exists a streaming problem over domain of size
poly(T ) and stream length poly(T ) that requires at least Ω

(
min

{
R,
√

T
})

space to be solved
in the ASBI model with R interruptions and T queries to within constant accuracy (small
enough), but can be solved in the oblivious setting using space polylog(T ).

Observe that this (nearly) matches our upper bound stated in Theorem 1.4. We remark
that Theorem 3.6 and Corollary 3.8 hold even in a model where the streaming algorithm is
strengthen and gets an indication during each interruption round.

4 Adversarial Streaming with Advice (ASA)

In this section we present our results for the ASA model, defined in Section 1.2.2. We begin
with our generic transformation.

4.1 A Generic Construction for the ASA Model
Our generic construction for the ASA model transforms an oblivious and linear streaming
algorithm A into a robust streaming algorithm in the ASA model. The linearity property
that we need is the following. Suppose that three copies of A, call them A1,A2,A3, are
instantiated with the same internal randomness r, and suppose that A1 processes a stream
x⃗1 and that A2 processes a stream x⃗2 and that A3 processes the stream x⃗1 ◦ x⃗2 (where the
operator ◦ stands for concatenation). Then there is an operation, denote it as “+”, that
allows us to obtain an internal state (A1 +A2) that is identical to the internal state of A3.
Many classical streaming algorithms have this property (for example, the classical AMS
sketch for F2 has this property [3]). Formally,

3 The results of [14, 22] hold for all computationally efficient mechanisms, or alternatively, for a class of
unbounded mechanisms which they call natural mechanisms.



M. Sadigurschi, M. Shechner, and U. Stemmer 91:11

Algorithm 2 RobustAdvice(β, m, η).

Input: Parameters: β is the failure probability, m is the length of input stream and η is the
advice query cycle.
Algorithm used: An oblivious linear streaming algorithm A with space s for α accuracy.
Constants calculation:
1. k = Ω(ηs log(m/β) log2(m/(βα))) is the number of instances of each of the sets “active”,

“next” and “shadow”.
2. ε0 = ε√

8ηks ln(1/δ)
is the privacy parameter of PrivateMed executions, where ε = 1/100,

δ = O(β/m).

1. Initialize k independent instances Aactive
1 , . . . ,Aactive

k of algorithm A.
2. REPEAT (outer loop)

a. Initialize k independent instances Anext
1 , . . . ,Anext

k of algorithm A.
b. Let Ashadow

1 , . . . ,Ashadow
k be duplicated copies of Anext

1 , . . . ,Anext
k , where each Ashadow

i

is initiated with the same randomness as Anext
i .

c. Denote the current time step as t. (That is, so far we have seen t updates in the
stream.)

d. REPEAT (inner loop)
i. Receive next update xt and a query demand qt ∈ {0, 1}.
ii. Insert update xt into each of Aactive

1 ,Anext
1 , . . . ,Aactive

k ,Anext
k .

iii. If qt = 1 then:
Query Aactive

1 ,Aactive
2 , . . . ,Aactive

k and obtain answers yt,1, yt,2, . . . , yt,k

Output zt ← PrivateMed(yt,1, yt,2, . . . , yt,k) with privacy parameter ε0.
If

(∑t
ℓ=1 qℓ

)
mod η = 0 then define the predicate pt that given a (prefix of a)

stream x⃗ returns the next bit in the inner state of (Ashadow
1 ,Ashadow

2 , . . . ,Ashadow
k )

after processing the first t updates in x⃗. Update the corresponding bit in the
state of the corresponding Ashadow

i .
If

(∑t
ℓ=1 qℓ

)
mod ηks = 0 then EXIT inner loop. Otherwise, CONTINUE inner

loop.
e. For i ∈ [k] let Aactive

i .Sv ← Anext
i .Sv +Ashadow

i .Sv and let Aactive
i .SR ← Anext

i .SR.

▶ Definition 4.1 (Linear state algorithm). Let A be an algorithm with three segments of
memory state. The first segment, denoted as SR, is randomized in the beginning of the
execution and then remains fixed. The second segment, denoted as Sv, is an encoding of a
vector in Rd. The third segment, denoted as Sc, is the rest of its memory space and is used
for other computations. Then, A is linear state w.r.t. its input stream if for any two streams
x⃗1 = (x1, . . . , xl) ∈ X l, x⃗2 = (x1, . . . , xp) ∈ Xp with lengths of l, p ∈ N and three different
executions of A with the same randomized state (SR) the following holds:

A(x⃗1 ◦ x⃗2).Sv = A(x⃗1).Sv +A(x⃗2).Sv

Where A(x⃗).Sv is the encoded vector v ∈ Rd resulting from the input stream x⃗ encoded in the
corresponding memory state.

ESA 2023



91:12 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

Our construction is given in algorithm RobustAdvice, and its properties are stated in
the following theorem.4. The analysis is deferred to the the full version of this work [21].

▶ Theorem 4.2. Fix any real valued function g and fix α, β > 0 and η ∈ N. Let A be an
oblivious linear-state streaming algorithm for g that uses space s and guarantees accuracy α

with failure probability 1/10. Then there exists an adversarially robust streaming algorithm
for g in the ASA model with query/advice rate η, accuracy α, and failure probability β using
space O(ηs2 log(m/β) log2(m/(βα))).

4.2 A Negative Result for the ASA Model

In this section we show that ℓ0-sampling, a classical streaming problem, cannot be solved
with sublinear space in the adversarial setting with advice. Consider a turnstile stream
u⃗ = (u1, . . . , um) where each ui = (ai, ∆i) ∈ [n]× {±1}. A β-error ℓ0-sampler returns with
probability at least 1− β an (almost) uniformly random element from

support(u1, . . . , um) =
{

a ∈ [n] :
∑

i:ai=a

∆i ̸= 0
}

,

provided that this support is not empty. The next theorem, due to Jowhari et al. [18], shows
that ℓ0-sampling is easy in the oblivious setting.

▶ Theorem 4.3 ([18]). There is a streaming algorithm with storage O
(

log2(n) log( 1
β )

)
bits,

that with probability at most β reports FAIL, with probability at most 1/n2 reports an arbitrary
answer, and in all other cases produces a uniform sample from support(u⃗).

Nevertheless, as we next show, this is a hard problem in the ASA setting. In fact, our
negative result even holds for a simpler variant of the ℓ0-sampling problem, in which the
algorithm is allowed to return an arbitrary element, rather than a random element. Formally,

▶ Definition 4.4 (The J0 problem). Let X be a finite domain and let A be an algorithm
that operates on a stream of updates (u1, . . . , um) ∈ (X × {±1}), given to A one by one.
Algorithm A solves the J0 problem with failure probability β if, except with probability at
most β, whenever A is queried it outputs an element with non-zero frequency w.r.t. the
current stream. That is, if A is queried in time i then it should output an element from
support(u1, . . . , ui).

▶ Theorem 4.5. Let X be a finite domain and let T be such that |X| = Ω(T ) (large enough).
Let A be an algorithm for solving the J0 problem over X in the adversarial setting with
advice with T queries and with failure probability at most 3/4. Then A uses space Ω(T ).
Furthermore, this holds also when η = 1, that is, even if algorithm A gets an advice after
every query.

Proof. Let A be an algorithm for the J0 problem with T queries over domain X in the ASA
setting with failure probability at most 3/4. Consider the following thought experiment.

4 We assume that the estimates given by the oblivious algorithm A are in the range [−mc, −1/mc] ∪
{0} ∪ [1/mc, mc] for some constant c, and are rounded to the nearest power of (1 + α). See the full
version of this work for more details [21].



M. Sadigurschi, M. Shechner, and U. Stemmer 91:13

Input: Y ⊆ X of size |Y | = T

1. For every x ∈ Y , feed algorithm A the update (x, 1).
2. Initiate Ŷ = ∅.
3. Repeat T times:

a. Query A and obtain an outcome x ∈ X

b. If A requests an advice then give it a random bit b.
c. Add x to Ŷ

d. Feed the update (x,−1) to A
4. Output Ŷ .

We say that the thought experiment succeeds if Ŷ = Y . By the assumption on A, for
every input Y , our thought experiment succeeds with probability at least 2−T /4. This is
because if all of the bits of advice are correct then A succeeds with probability at least 1/4,
and the advice bits are all correct with probability at least 2−T . Hence, there must exist a
fixture of A’s coins and a fixture of an advice string b⃗ for which our thought experiments
succeeds on at least 2−T /4 fraction of the possible inputs Y .5

That is, after fixing A’s coins and the advice string b⃗ as above, there is a subset of inputs
B of size |B| ≥ 2−T

4
(|X|

T

)
such that for every Y ∈ B, when executed on Y , our thought

experiment outputs Ŷ = Y . Finally, note that the inner state of algorithm A at the end
of Step 1 determines the outcome of our thought experiment. Hence, as there are at least
2−T

4
(|X|

T

)
different outputs, there must be at least 2−T

4
(|X|

T

)
possible different inner states for

algorithm A, meaning that its space complexity (in bits) is at least log
(

2−T

4
(|X|

T

))
, which is

more than T provided that |X| = Ω(T ) (large enough). ◀

References
1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear

measurements. In SODA, pages 459–467, 2012. doi:10.1137/1.9781611973099.40.
2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners,

and subgraphs. In PODS, pages 5–14, 2012. doi:10.1145/2213556.2213560.
3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

4 Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for adversarial
streaming via differential privacy and difference estimators. In ITCS, volume 251 of LIPIcs,
pages 8:1–8:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

5 Amos Beimel, Haim Kaplan, Yishay Mansour, Kobbi Nissim, Thatchaphol Saranurak, and
Uri Stemmer. Dynamic algorithms against an adaptive adversary: generic constructions and
lower bounds. In STOC, pages 1671–1684. ACM, 2022.

6 Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via
dense-sparse trade-offs. In SOSA@SODA, pages 214–227, 2022.

7 Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. J. ACM, 69(2):17:1–17:33, 2022.

5 Otherwise, consider sampling an input Y uniformly. We have that 2−T

4 ≤ Prr,⃗b,Y [Ar,⃗b(Y ) succeeds] =∑
r,⃗b

Pr[r, b⃗] · PrY [Ar,⃗b(Y ) succeeds] <
∑

r,⃗b
Pr[r, b⃗] · 2−T

4 = 2−T

4 , which is a contradiction. Here r

denotes the randomness of A and b⃗ is the advice string.

ESA 2023

https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545


91:14 Relaxed Models for Adversarial Streaming: The ASBI Model and the ASA Model

8 Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In PODS, pages
49–62, 2020.

9 Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, Moshe Shechner, and Uri Stemmer. On
the robustness of countsketch to adaptive inputs. In ICML, volume 162 of Proceedings of
Machine Learning Research, pages 4112–4140. PMLR, 2022.

10 Edith Cohen, Jelani Nelson, Tamas Sarlos, and Uri Stemmer. Tricking the hashing trick: A
tight lower bound on the robustness of countsketch to adaptive inputs. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(6):7235–7243, 2023.

11 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, pages 265–284, 2006.

12 A. C. Gilbert, B. Hemenway, A. Rudra, M. J. Strauss, and M. Wootters. Recovering simple
signals. In Information Theory and Applications Workshop (ITA), pages 382–391, 2012.

13 A. C. Gilbert, B. Hemenway, M. J. Strauss, D. P. Woodruff, and M. Wootters. Reusable
low-error compressive sampling schemes through privacy. In IEEE Statistical Signal Processing
Workshop (SSP), pages 536–539, 2012.

14 Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive data analysis is
hard. In FOCS. IEEE, october 19-21 2014.

15 Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs? In
STOC, pages 121–130, 2013.

16 Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversari-
ally robust streaming algorithms via differential privacy. J. ACM, 2022. doi:10.1145/3556972.

17 Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In PODS, pages 49–58. ACM, 2011.

18 Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 49–58, 2011.

19 Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming
from oblivious streaming using the bounded storage model. In CRYPTO, pages 94–121, 2021.

20 Ilya Mironov, Moni Naor, and Gil Segev. Sketching in adversarial environments. SIAM J.
Comput., 40(6):1845–1870, 2011. doi:10.1137/080733772.

21 Menachem Sadigurschi, Moshe Shechner, and Uri Stemmer. Relaxed models for adversarial
streaming: The bounded interruptions model and the advice model, 2023. arXiv:2301.09203.

22 Thomas Steinke and Jonathan R. Ullman. Interactive fingerprinting codes and the hardness
of preventing false discovery. In 2016 Information Theory and Applications Workshop, ITA
2016, La Jolla, CA, USA, January 31 – February 5, 2016, pages 1–41. IEEE, 2016. doi:
10.1109/ITA.2016.7888199.

23 David P. Woodruff, Fred Zhang, and Samson Zhou. Streaming algorithms for learning with
experts: Deterministic versus robust. CoRR, abs/2303.01709, 2023. arXiv:2303.01709.

24 David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and
sliding windows via difference estimators. In FOCS, pages 1183–1196, 2022.

https://doi.org/10.1145/3556972
https://doi.org/10.1137/080733772
https://arxiv.org/abs/2301.09203
https://doi.org/10.1109/ITA.2016.7888199
https://doi.org/10.1109/ITA.2016.7888199
https://arxiv.org/abs/2303.01709

	1 Introduction
	1.1 The (Plain) Adversarial Model
	1.2 Our Results
	1.2.1 Adversarial Streaming with Bounded Interruptions (ASBI)
	1.2.2 Adversarial Streaming with Advice (ASA)

	1.3 Additional Related Works

	2 Preliminaries
	3 Adversarial Streaming with Bounded Interruptions (ASBI)
	3.1 A Generic Construction for the ASBI Model
	3.2 A Negative Result for the ASBI Model

	4 Adversarial Streaming with Advice (ASA)
	4.1 A Generic Construction for the ASA Model
	4.2 A Negative Result for the ASA Model


