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Abstract
We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs
of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge
graph G = (V, E) and a number k = logo(1) n, we can deterministically compute in O(m + n1+o(1))
time the unique vertex partition {V1, . . . , Vz} such that, for every i, Vi induces a k-edge-connected
subgraph while every superset V ′

i ⊃ Vi does not. Previous algorithms with linear time work only
when k ≤ 2 [Tarjan SICOMP’72], otherwise they all require Ω(m + n

√
n) time even when k = 3

[Chechik et al. SODA’17; Forster et al. SODA’20].
Our algorithm also extends to the decremental graph setting; we can deterministically maintain

the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m1+o(1) total update
time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity
queries [Jin and Sun FOCS’20].
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1 Introduction

We study the problem of efficiently computing the maximal k-edge-connected subgraphs.
Given an undirected unweighted graph G = (V, E) with n vertices and m edges, we say that
G is k-edge-connected if one needs to delete at least k edges to disconnect G. The maximal
k-edge-connected subgraphs of G is a unique vertex partition {V1, . . . , Vz} of V such that,
for every i, the induced subgraph G[Vi] is k-edge-connected and there is no strict superset
V ′

i ⊃ Vi where G[V ′
i ] is k-edge-connected.

This fundamental graph problem has been intensively studied. Since the 70’s, Tarjan [13]
showed an optimal O(m)-time algorithm when k = 2. For larger k, the folklore recursive
mincut algorithm takes Õ(mn) time1 and there have been significant efforts from the database
community in devising faster heuristics [15, 17, 2, 12, 16] but they all require Ω(mn) time in
the worst case. Eventually in 2017, Chechik et al. [3] broke the O(mn) bound to Õ(m

√
nkO(k))

using a novel approach based on local cut algorithms. Forster et al. [4] then improved the
local cut algorithm and gave a faster Monte Carlo randomized algorithm with Õ(mk+n3/2k3)
running time. Very recently, Geogiadis et al. [5] showed a deterministic algorithm with

1 The algorithm computes a global minimum cut (A, B) (using e.g. Karger’s algorithm [8]) and return
{V } if the cut size of (A, B) is at least k. Otherwise, recurse on both G[A] and G[B] and return the
union of the answers of the two recursions.
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Figure 1 A graph G where its maximal 3-edge-connected subgraphs are different from its 3-edge-
connected components.

Õ(m + n3/2k8) time and also how to sparsify a graph to O(nk log n) edges while preserving
maximal k-edge-connected subgraphs in O(m) time. Thus, the factor m in the running time
of all algorithms can be improved to O(nk log n) while paying an O(m) additive term. The
O(mn) bound has also been improved even in more general settings such as directed graphs
and/or vertex connectivity [6, 3, 4] as well as weighted undirected graphs [10]. Nonetheless,
in the simplest setting of undirected unweighted graphs where m = O(n) and k = O(1), the
Ω(n
√

n) bound remains the state of the art since 2017.
Let us discuss the closely related problem called k-edge-connected components. The goal

of this problem is to compute the unique vertex partition {V̂ 1, . . . , V̂ z′} of V such that, each
vertex pair (s, t) is in the same part V̂ i iff the (s, t)-minimum cut in G (not in G[V̂i]) is at
least k. The partition of the maximal k-edge-connected subgraphs is always a refinement
of the k-edge-connected components and the refinement can be strict. See Figure 1 for
example. Very recently, the Gomory-Hu tree algorithm by Abboud et al. [1] implies that
k-edge-connected components can be computed in m1+o(1) time in undirected unweighted
graphs. This algorithm, however, does not solve nor imply anything to our problem. See
Appendix A for a more detailed discussion.

It is an intriguing question whether one can also obtain an almost-linear time algorithm
for maximal k-edge-connected subgraphs, or there is a separation between these two closely
related problems.

Our results

In this paper, we show the first almost-linear time algorithm when k = logo(1) n, answering
the above question affirmatively at least for small k.

▶ Theorem 1. There is a deterministic algorithm that, given an undirected unweighted graph
G with n vertices and m edges, computes the maximal k-edge-connected subgraphs of G in
O(m + n1+o(1)) time for any k = logo(1) n.

Our techniques naturally extend to the decremental graph setting.
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▶ Theorem 2. There is a deterministic algorithm that, given an undirected unweighted
graph G with n vertices and m edges undergoing a sequence of edge deletions, maintains the
maximal k-edge-connected subgraphs of G in m1+o(1) total update time for any k = logo(1) n.

Dynamic algorithms for maximal k-edge-connected subgraphs were recently studied in [5].
For comparison, their algorithm can handle both edge insertions and deletions but require
O(n
√

n log n) worst-case update time, which is significantly slower than our mo(1) amortized
update time. When k = 3, they also gave an algorithm that handles edge insertions only
using Õ(n2) total update time.

Previous Approaches and Our Techniques

Our approach diverges significantly from the local-cut-based approach in [3, 4]. In these
previous approaches, they call the local cut subroutine Ω(n) times and each call takes Ω(

√
n)

time. Hence, their running time is at least Ω(n
√

n) and this seems inherent without significant
modification. Recently, [5] took a different approach. Their Õ(m + n3/2k8)-time algorithm
efficiently implements the folklore recursive mincut algorithm by feeding O(nk) updates to
the dynamic minimum cut algorithm by Thorup [14]. However, since Thorup’s algorithm
has Ω(

√
n) update time, the final running time of [5] is at least Ω(n

√
n) as well.

Our algorithm is similar to [5] in spirit but is much more efficient. We instead apply the
dynamic k-edge connectivity algorithms by Jin and Sun [7] that takes only no(1) update time
when k = logo(1) n. Our reduction is more complicated than the reduction in [5] to dynamic
minimum cut because the data structure by [7] only supports pairwise k-edge connectivity
queries, not a global minimum cut. Nonetheless, we show that Õ(nk) updates and queries to
this “weaker” data structure also suffice.

Our approach is quite generic. Our algorithm is carefully designed without the need to
check if the graph for which the recursive call is made is k-edge-connected. This allows us to
extend our algorithm to the dynamic case.

Organization

We give preliminaries in Section 2. Then, we prove Theorem 1 and Theorem 2 in Section 3
and Section 4, respectively.

2 Preliminaries

Let G = (V, E) be an unweighted undirected graph. Let n = |V | and m = |E|, and assume
m = poly(n) and k = logo(1) n. For any S, T ⊆ V , let E(S, T ) = {(u, v) ∈ E | u ∈ S, v ∈ T}.
For every vertex u, the degree of u is deg(u) = |{(u, v) | (u, v) ∈ E}|. For every subset of
vertices S ⊆ V , the volume of S is vol(S) =

∑
u∈S deg(u). Denote G[S] as the induced graph

of G on a subset of vertices S ⊆ V .
Two vertices s and t are k-edge-connected in G if one needs to delete at least k edges to

disconnect s and t in G. A vertex set S is k-edge-connected if every pair of vertices in S is
k-edge-connected. We use the convention that S is k-edge-connected when |S| = 1. We say
that a graph G = (V, E) is k-edge-connected if V is k-edge-connected. A k-edge-connected
component is an inclusion-maximal vertex set S such that S is k-edge-connected. A whole
vertex set can always be partitioned into k-edge-connected components. We use kECC(u) to
denote the unique k-edge-connected component containing u. Note that a k-edge-connected
component may not induce a connected graph when k > 2. A vertex set S is a k-cut if
|E(S, V \ S)| < k. Note, however, we also count the whole vertex set V as a trivial k-cut.

ESA 2023
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We will crucially exploit the following dynamic algorithm in our paper.

▶ Theorem 3 (Dynamic pairwise k-edge connectivity [7]). There is a deterministic algorithm
that maintains a graph G with n vertices undergoing edge insertions and deletions using no(1)

update time and, given any vertex pair (s, t), reports whether s and t are k-edge-connected in
the current graph G in no(1) time where k = logo(1) n.

For the maximal k-edge-connected subgraph problem, we can assume that the graph is
sparse using the forest decomposition.

▶ Definition 4 (Forest decomposition [9]). A t-forest decomposition of a graph G is a collection
of forests F1, . . . , Ft, such that Fi is a spanning forest of G \

⋃i−1
j=1 Fj, for every 1 ≤ i ≤ t.

▶ Theorem 5 (Lemma 8.3 of [5]). Any O(k log n)-forest decomposition of a graph has the
same maximal k-edge-connected subgraphs as the original graph. Moreover, there is an
algorithm for constructing such a O(k log n)-forest decomposition in O(m) time.

3 The Static Algorithm

In this section, we prove our main result, Theorem 1. The key idea is the following reduction:

▶ Lemma 6. Suppose there is a deterministic decremental algorithm supporting pairwise
k-edge-connectivity that has tp ·m total preprocessing and update time on an initial graph
with n vertices and m edges and query time tq.

Then, there is a deterministic algorithm for computing the maximal k-edge-connected
subgraphs in O(m + (tp + tq) · kn log2 n) time.

By plugging in Theorem 3, we get Theorem 1. The rest of this section is for proving
Lemma 6. Throughout this section, we let tq denote the query time of the decremental
pairwise k-edge connectivity data structure that Lemma 6 assumes.

Recall again that, for any vertex u, u’s k-edge-connected component, kECC(u), might
not induce a connected graph. The first tool for proving Lemma 6 is a “local” algorithm for
finding a connected component of G[kECC(u)].

▶ Lemma 7. Given a graph G and a vertex u, there is a deterministic algorithm for finding
the connected component U containing u of G[kECC(u)] in O(tq · vol(U)) time.

Proof. We run BFS from u to explore every vertex in the connected component U containing
u of kECC(u). During the BFS process, we only visit the vertices in kECC(u) by checking
if the newly found vertex is k-edge-connected to u. Since each edge incident to U is visited
at most twice, the total running time is O(tq · vol(U)). ◀

Below, we describe the algorithm for Lemma 6 in Algorithm 1 and then give the analysis.

Correctness

We start with the following structural lemma.

▶ Lemma 8 (Lemma 5.6 of [3]). Let T be a k-cut in G[C] for some vertex set C. Then,
either

T is a k-cut in G as well, or
T contains an endpoint of E(C, V (G) \ C).

Next, the crucial observation of our algorithm is captured by the following invariant.
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Algorithm 1 Main(G, L): compute the maximal k-edge-connected subgraphs.

Input: An undirected connected graph G = (V, E), and a list of vertices L (initially
L = V ). Note that the parameters are passed by value.

Output: The maximal k-edge-connected subgraphs of G.
1 S ← ∅.
2 while |L| > 1 do
3 Choose an arbitrary pair (u, v) ∈ L.
4 if u and v are k-edge-connected in G then
5 L← L \ {v}.
6 else
7 Simultaneously compute the u’s connected component of G[kECC(u)] and

the v’s connected component of G[kECC(v)], until the one with the smaller
volume (denoted by U) is found.

8 S ← S ∪Main(G[U ], U).
9 G← G \ U .

10 L← (L \ U) ∪ {w /∈ U | (x, w) ∈ E(U, V (G) \ U)}.
11 end
12 end
13 S ← S ∪ {V (G)}.
14 return S.

▶ Lemma 9. At any step of Algorithm 1, every k-cut T in G is such that T ∩ L ̸= ∅.

Proof. The base case is trivial because L← V initially. Next, we prove the inductive step.
L can change in Line 5 or Line 8.

In the first case, the algorithm finds that u and v are k-edge-connected and removes v

from L. For any k-cut T where v ∈ T , an important observation is that kECC(v) ⊆ T as
well. But kECC(u) = kECC(v) and so u ∈ T too. So the invariant still holds even after
removing v from L.

In the second case, the algorithm removes U from G. Let us denote G′ = G \ U . Since
the algorithm adds the endpoints of cut edges crossing U to L, it suffices to consider a k-cut
T in G′ that is disjoint from the endpoints of the cut edges of U . By Lemma 8, T was a
k-cut in G. Since the changes in L occur only at U and neighbors of U , while T is disjoint
from both U and all neighbors of U , we have T ∩ L ̸= ∅ by the induction hypothesis. ◀

▶ Corollary 10. When |L| = 1, then G is k-edge-connected.

Proof. Otherwise, there is a partition (A, B) of V where |E(A, B)| < k. So both A and B

are k-cuts in G. By Lemma 9, A ∩ L ̸= ∅ and B ∩ L ̸= ∅ which contradicts that |L| = 1. ◀

We are ready to conclude the correctness of Algorithm 1. At a high level, the algorithm
finds the set U and “cuts along” U at Lines 7. Then, on one hand, recurse on U at Line 8
and, on the other hand, continue on V (G) \ U . We say that the cut edges E(U, V (G) \ U)
are “deleted”.

Now, since U is the connected component of G[kECC(u)] for some vertex u. We have
that, for every edge (x, y) ∈ E(U, V (G) \U), the pair x and y are not k-edge-connected in G.
In particular, x and y are not k-edge-connected in G[V ′] for every V ′ ⊆ V .

ESA 2023
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Algorithm 2 Update(H, e).

Input: A k-edge-connected subgraph H and an edge e = (x, y) ∈ H to be deleted.
Output: The k-edge-connected subgraphs of H after deletion.

1 H ← H \ {(x, y)}.
2 return Main(H, {x, y}).

Thus, the algorithm never deletes edges inside any maximal k-edge-connected subgraph Vi.
Since the algorithm stops only when the remaining graph is k-edge-connected, the algorithm
indeed returns the maximal k-edge-connected subgraphs of the whole graph.

Running Time

Consider the time spent on each recursive call. Let G′ be the graph for which the recursive
call is made and m′ = vol(G′). Every vertex is inserted to L initially or as an endpoint of
some removed edge, so the total number of vertices added to L is O(m′). In each iteration,
either we remove a vertex from L, or remove a subgraph from G. Hence we check pairwise
k-edge-connectivity O(m′) times, so the running time of checking pairwise k-edge-connectivity
is O(tq ·m′). For the time of finding connected components of k-edge-connected components,
since we spend O(tq · vol(U)) time to find some U and remove U from G, the total cost is
O(tq ·m′). Plus, initializing the dynamic pairwise k-edge connectivity algorithm on G′ takes
O(tp ·m′) time. Thus the total running time of each recursive call is O((tp + tq) ·m′).

For the recursion depth, since each U found has the smaller volume of the two, vol(U) ≤
m′/2. Hence the recursion depth is O(log m0), where n0 and m0 are the numbers of
vertices and edges of the initial graph. Thus the total running time of Algorithm 1 is
O((tp + tq) ·m0 log n0).

By applying Theorem 5 to the initial graph G and invoking Algorithm 1 on the resulting
graph, the number of edges in the resulting graph is O(kn0 log n0), so the running time is
improved to O(m0 + (tp + tq) · kn0 log2 n0). This completes the proof of Lemma 6.

4 The Decremental Algorithm

Our static algorithm can be naturally extended to a decremental dynamic algorithm. To
prove Theorem 2, we prove the following reduction. By combining Lemma 11 and Theorem 3,
we are done.

▶ Lemma 11. Suppose there is a deterministic decremental algorithm supporting pairwise
k-edge-connectivity that has tp ·m total preprocessing and update time on an initial graph
with n vertices and m edges and query time tq.

Then there is a deterministic decremental dynamic algorithm for maintaining the maximal
k-edge-connected subgraphs on an undirected graph of n vertices and m edges with O((tp +
tq) ·m log n) total preprocessing and update time, and O(1) query time.

The algorithm for Lemma 11 as is follows. First, we preprocess the initial graph G0 using
Algorithm 1 and obtain the maximal k-edge-connected subgraphs {V1, . . . , Vz} of G0.

Next, given an edge e to be deleted, if e is in a maximal k-edge-connected subgraph Vi of
G, then we invoke Update(G[Vi], e) and update the set of the maximal k-edge-connected
subgraphs of G; otherwise we ignore e. The subroutine Update(H, e) is described in
Algorithm 2.
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Correctness

Let H = (V ′, E′) be the maximal k-edge-connected subgraph containing edge (x, y) before
deletion. It suffices to prove that Lemma 9 holds when we invoke Algorithm 1. Suppose
there is a k-cut C in H \ {(x, y)} such that C ∩ {x, y} = ∅, then C is also a k-cut in H, a
contradiction. Hence the correctness follows from the correctness of Algorithm 1.

Running Time

In the case that H \ {(x, y)} is still k-edge-connected, the running time is tq. We charge this
time tq to the deleted edge (x, y).

Otherwise, consider the time spend on each recursive call of Main. Assume that the total
volume of the subgraphs removed and passed to another recursive call in a recursive call is
ν. The total number of vertices added to L is O(ν). In each iteration, we either remove
a vertex from L or remove a subgraph. Hence we check pairwise k-edge-connectivity O(ν)
times, so the running time of checking pairwise k-edge-connectivity is O(tq · ν). Since we
spend O(tq · vol(U)) time to find U , the total cost is O(tq · ν). Plus, it takes O((tp + tq) ·m′)
time to initialize the dynamic pairwise k-edge connectivity algorithm and check pairwise
k-edge-connectivity on a graph H ′ with m′ edges for the first time we invoke Main on H ′.
Also, removing all edges from H ′ takes tp ·m′ time. We charge O(tp + tq) to each of the
removed edges in each recursive call.

The recursion depth is O(log m0) by Lemma 6, where n0 and m0 are the numbers of
vertices and edges of the initial graph. Hence each edge will be charged O(log m0) times, so
the total preprocessing and update time is O((tp + tq) ·m0 log n0).

References
1 Amir Abboud, Robert Krauthgamer, Jason Li, Debmalya Panigrahi, Thatchaphol Saranurak,

and Ohad Trabelsi. Breaking the cubic barrier for all-pairs max-flow: Gomory-hu tree in
nearly quadratic time. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages 884–895. IEEE, 2022.
doi:10.1109/FOCS54457.2022.00088.

2 Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Linear-time enumeration of maximal k-
edge-connected subgraphs in large networks by random contraction. In Qi He, Arun Iyengar,
Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, editors, 22nd ACM International Conference
on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27
– November 1, 2013, pages 909–918. ACM, 2013. doi:10.1145/2505515.2505751.

3 Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Veronika Loitzenbauer, and
Nikos Parotsidis. Faster algorithms for computing maximal 2-connected subgraphs in sparse
directed graphs. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 1900–1918. SIAM, 2017. doi:10.1137/1.9781611974782.124.

4 Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 2046–2065. SIAM, 2020. doi:10.1137/1.9781611975994.126.

5 Loukas Georgiadis, Giuseppe F. Italiano, Evangelos Kosinas, and Debasish Pattanayak. On
maximal 3-edge-connected subgraphs of undirected graphs. CoRR, abs/2211.06521, 2022.
doi:10.48550/arXiv.2211.06521.

ESA 2023

https://doi.org/10.1109/FOCS54457.2022.00088
https://doi.org/10.1145/2505515.2505751
https://doi.org/10.1137/1.9781611974782.124
https://doi.org/10.1137/1.9781611975994.126
https://doi.org/10.48550/arXiv.2211.06521


92:8 Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k

6 Monika Rauch Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connectivity:
New bounds from old techniques. In 37th Annual Symposium on Foundations of Computer
Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 462–471. IEEE
Computer Society, 1996. doi:10.1109/SFCS.1996.548505.

7 Wenyu Jin and Xiaorui Sun. Fully dynamic s-t edge connectivity in subpolynomial time
(extended abstract). In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 861–872. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00088.

8 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. doi:
10.1145/331605.331608.

9 Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connectivity.
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2008.
doi:10.1017/CBO9780511721649.

10 Chaitanya Nalam and Thatchaphol Saranurak. Maximal k-edge-connected subgraphs in
weighted graphs via local random contraction. In Nikhil Bansal and Viswanath Nagarajan,
editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA
2023, Florence, Italy, January 22-25, 2023, pages 183–211. SIAM, 2023. doi:10.1137/1.
9781611977554.ch8.

11 Thatchaphol Saranurak and Wuwei Yuan. Maximal k-edge-connected subgraphs in almost-
linear time for small k, 2023. doi:10.48550/arXiv.2307.00147.

12 Heli Sun, Jianbin Huang, Yang Bai, Zhongmeng Zhao, Xiaolin Jia, Fang He, and Yang Li.
Efficient k-edge connected component detection through an early merging and splitting strategy.
Knowl. Based Syst., 111:63–72, 2016. doi:10.1016/j.knosys.2016.08.006.

13 Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,
1(2):146–160, 1972. doi:10.1137/0201010.

14 Mikkel Thorup. Fully-dynamic min-cut. In Jeffrey Scott Vitter, Paul G. Spirakis, and
Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of
Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 224–230. ACM, 2001. doi:
10.1145/380752.380804.

15 Xifeng Yan, Xianghong Jasmine Zhou, and Jiawei Han. Mining closed relational graphs with
connectivity constraints. In Robert Grossman, Roberto J. Bayardo, and Kristin P. Bennett,
editors, Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages 324–333. ACM,
2005. doi:10.1145/1081870.1081908.

16 Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. I/O efficient ECC
graph decomposition via graph reduction. Proc. VLDB Endow., 9(7):516–527, 2016. doi:
10.14778/2904483.2904484.

17 Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin Li. Finding
maximal k-edge-connected subgraphs from a large graph. In Elke A. Rundensteiner, Volker
Markl, Ioana Manolescu, Sihem Amer-Yahia, Felix Naumann, and Ismail Ari, editors, 15th
International Conference on Extending Database Technology, EDBT ’12, Berlin, Germany,
March 27-30, 2012, Proceedings, pages 480–491. ACM, 2012. doi:10.1145/2247596.2247652.

A Relationship with k-Edge-Connected Components

The reason why a subroutine for computing k-edge-connected components is not useful for
computing maximal k-edge-connected subgraphs is as follows. Given a graph G = (V, E),
we can artificially create a supergraph G′ = (V ′ ⊇ V, E′ ⊇ E) where the whole set V is
k-edge-connected, but the maximal k-edge-connected subgraphs of G′ will reveal the maximal
k-edge-connected subgraphs of G. So given a subroutine for computing the k-edge-connected
components of G′, we know nothing about the maximal k-edge-connected subgraphs of G.
The construction of G′ is as follows.

https://doi.org/10.1109/SFCS.1996.548505
https://doi.org/10.1109/FOCS52979.2021.00088
https://doi.org/10.1109/FOCS52979.2021.00088
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/331605.331608
https://doi.org/10.1017/CBO9780511721649
https://doi.org/10.1137/1.9781611977554.ch8
https://doi.org/10.1137/1.9781611977554.ch8
https://doi.org/10.48550/arXiv.2307.00147
https://doi.org/10.1016/j.knosys.2016.08.006
https://doi.org/10.1137/0201010
https://doi.org/10.1145/380752.380804
https://doi.org/10.1145/380752.380804
https://doi.org/10.1145/1081870.1081908
https://doi.org/10.14778/2904483.2904484
https://doi.org/10.14778/2904483.2904484
https://doi.org/10.1145/2247596.2247652


T. Saranurak and W. Yuan 92:9

First, we set G′ ← G. Assume V = {1, 2, . . . , n}. For every 1 ≤ i < n, add k parallel
dummy length-2 paths (i, di,1, i + 1), . . . , (i, di,k, i + 1). Thus i and i + 1 are k-edge-connected,
so V is k-edge-connected at the end. When we compute the maximal k-edge-connected
subgraphs of G′, we know that we will first remove all dummy vertices di,j because they all
have degree 2 (assuming that k > 2). We will obtain G and so we will obtain the maximal
k-edge-connected subgraphs of G from this process.
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