
Approximating Connected Maximum Cuts via
Local Search
Baruch Schieber #

Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA

Soroush Vahidi #

Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA

Abstract
The Connected Max Cut (CMC) problem takes in an undirected graph G(V, E) and finds a subset
S ⊆ V such that the induced subgraph G[S] is connected and the number of edges connecting
vertices in S to vertices in V \ S is maximized. This problem is closely related to the Max Leaf
Degree (MLD) problem. The input to the MLD problem is an undirected graph G(V, E) and the
goal is to find a subtree of G that maximizes the degree (in G) of its leaves. [Gandhi et al. 2018]
observed that an α-approximation for the MLD problem induces an O(α)-approximation for the
CMC problem.

We present an O(log log |V |)-approximation algorithm for the MLD problem via local search.
This implies an O(log log |V |)-approximation algorithm for the CMC problem. Thus, improving
(exponentially) the best known O(log |V |) approximation of the Connected Max Cut problem
[Hajiaghayi et al. 2015].
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1 Introduction

The Connected Max Cut (CMC) problem takes in an undirected graph G(V, E) and finds a
subset S ⊆ V such that the induced subgraph G[S] is connected and the number of edges
connecting vertices in S to vertices in V \ S is maximized. This problem is known to be
NP-Hard [6]. We give an O(log log n)-approximation algorithm for this problem, where
n = |V |. This improves on the previously known O(log n)-approximation algorithm given
in [6]. (We say that an approximation algorithm for a maximization problem achieves an
α ≥ 1 approximation ratio if the value of its output is at least 1

α of the maximum.)
A function f : 2V → IR+ is submodular if for every A, B ∈ V , f(A) + f(B) ≥ f(A ∪

B) + f(A ∩ B). It is not difficult to verify that the cut function is submodular and non-
monotone, and thus the CMC problem is a special case of non-monotone submodular function
maximization subject to connectivity constraints. To the best of our knowledge there are no
nontrivial approximation algorithms for the well motivated general non-monotone submodular
function maximization subject to connectivity constraints.

The CMC problem is closely related to the Max Leaf Tree (MLT) and Max Leaf Spanning
Tree (MLST) problems. The undirected version of the MLT problem takes in a vertex-
weighted undirected graph G(V, E, w) and finds a subtree with maximum weight on the
leaves. The weighted version of the MLST problem requires the output tree of the MLT
instance to be a spanning tree. We note that the MLT problem can also be posed as a non-
monotone submodular function maximization problem subject to connectivity constraints.
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In this case the submodular function f : 2V → IR+ defined on subsets of vertices of G is
f(U) =

∑
x∈N (U) w(x), where N (U) is the set of neighbors of the vertices in U that are not

in U (and f(∅) = 0).
Gandhi et al. [4] observed that an α-approximation algorithm for the MLT problem

implies a 4α-approximation algorithm for the (edge) weighted CMC problem. Based on this
observation we consider a special case of the MLT problem we call the MLD problem. In
this problem we are given an undirected graph G(V, E) and the goal is to find a subtree that
maximizes the degree (in G) of its leaves, that is, the weight of vertices in this special case of
the MLT problem is their degree in G. Applying the observation in Gandhi et al. [4] we get
that an α-approximation algorithm for the MLD problem gives a 4α-approximation algorithm
for the unweighted CMC problem. We present an O(log log n)-approximation algorithm for
the MLD problem and thus an approximation algorithm with the same quality for the CMC
problem.

Our algorithm is quite simple and involves successive local improvement steps. The proof
that our algorithm indeed achieves an O(log log n) approximation ratio is somewhat involved
and relies on the fact that the weights of the vertices in the MLD problem instance are
the degrees of these vertices in an undirected graph with no parallel edges. To prove the
O(log log n) approximation ratio we prove a stronger property of our solution: we prove that
the total number of edges in the graph is O(log log n) times the sum of the degrees of the
leaves of the computed subtree. This bound is tight as we can construct an instance that
achieves this upper bound.

1.1 Motivation and Prior Art
We motivate both our CMC problem and the general non-monotone submodular function
maximization subject to connectivity constraints. The Max Cut problem is a fundamental
combinatorial optimization problem and is one of the problems listed in Karp’s seminal
paper on NP-Complete problems [9]. Extending the Max Cut problem to the CMC problem
is natural. We note that a similar extension of the Min Cut problem is trivial since we can
always find a minimum cut that separates a connected component.

The Max Cut problem has numerous applications, e.g., in circuit layout design, statistical
physics [1], and image segmentation [3, 13]. Some of these applications can be extended to
the connected max cut problem. For example, Hajiaghayi et al. [6] noted that the image
segmentation application with the additional requirement that the pixels are connected can
be modeled as a CMC problem.

There are quite a few applications of non-monotone submodular function maximiza-
tion among them: maximum facility location and optimal sensor placement, segmentation
problems [10], least core value of general supermodular cost games [15], optimal marketing
over social networks [7], and revenue maximization for banner advertisement [2]. Some of
these applications consider functions that are defined on a vertex set of a graph and thus
it is natural to consider the maximization subject to graph constraints. For example, in
sensor placement we may constrain the activated sensors to be connected to enable efficient
communication, or sets targeted for marketing in a social network may be required to be in
the same social community.

The CMC problem was introduced by Hajiaghayi et al. in [5] (see also [6]) who gave
an O(log n)-approximation algorithm for this problem and obtained a polynomial time
approximation scheme for the CMC problem on planar graphs and on bounded genus graphs.

Lee et al. [11] generalized the problem considered in [6] in two aspects: (i) they considered
more general graph constraints and not just connectivity constraints, and (ii) they allowed
the graph constraints to be on a separate graph from the one in which the max cut needs
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to be computed (as long as both graphs are defined on the same set of vertices). The
graph constraints considered in [11] include independent set, vertex cover, dominating set
and connectivity. Lee et al. [11] showed a 2 approximation for this problem on graphs
with bounded treewidth. Some of these results (for constraints such as independent set,
dominating set, and connectivity) can be achieved also for planar graphs, bounded genus
graphs, and graphs with a fixed excluded minor. The algorithm in [11] is not combinatorial
but uses an LP relaxation based on the Sherali-Adams hierarchy.

As mentioned above, Gandhi et al. [4] showed that the weighted CMC problem and the
MLT problem are closely related. They obtained a constant approximation algorithm for
MLT problem in the special case of {0, 1} weights, and then used a “bucketing” technique
to extend it to an O(log n)-approximation algorithm for the general case. This implies
an O(log n)-approximation algorithm for the weighted CMC problem which improves the
O

(
log2 n

)
-approximation algorithm for this problem given in [6].

The unweighted MLT problem is simply the problem of finding a subtree with the
maximum number of leaves. Note that there is always a spanning tree that maximizes the
number of leaves, and thus the unweighted MLT problem and the unweighted MLST problem
are equivalent and both can be approximated within a factor of 2 [16]. The weighted MLST
problem admits no n1−ε approximation, for any constant ε > 0 as it is equivalent to the
Maximum Independent Set problem, as observed in [8]. This is in contrast to the weighted
MLT problem that admits an O(log n) approximation [4], and to the MLD problem, which is
a special case of the weighted MLT problem in which the weight of every vertex is equal to
its degree, that admits an O(log log n) approximation, as shown in this paper.

The rest of the paper is organized as follows. Section 2 gives a formal definition of
our problems. Section 3 describes the local search algorithm, and Section 4 proves its
approximation ratio. Section 5 has some concluding remarks and open problems. Due to
space constraints some of the proofs are omitted from this abridged version of the paper.

2 Preliminaries and Problem Definitions

In all our problems we consider undirected graphs with no parallel edges. Let G(V, E) be
such a graph, with n = |V |, and m = |E|. For a subset S ⊆ V , define NG(S) to be the subset
of the edges in E with exactly one endpoint in S. For a vertex v ∈ V , let dG(v) denote the
degree of v in G; that is, dG(v) = |NG({v})|. For a subset S ⊆ V , define G[S] to be the
subgraph induced by S. Any subset S ⊆ V such that G[S] is connected, defines a connected
cut of size |NG(S)|.

A tree T (U, F ) is a subtree of graph G if T is a tree, U ⊆ V , and F ⊆ E. We denote
the “subtree” relation by the symbol ⊑, namely, T ⊑ G indicates that T is a subtree of G.
Let V (T ) be the set of vertices of T , L(T ) be the set of leaves of T , and I(T ) be the set of
the internal vertices of T ; that is, L(T ) = {v | v ∈ U ∧ dT (v) = 1} and I(T ) = V (T ) \ L(T ).
Obviously, T (U, F ) is a spanning tree of G iff U = V .

For any given vertex r ∈ U , if T is rooted at r, then all the edges in F are oriented from
r outwards; namely, for (x, y) ∈ F , vertex x precedes y in the (unique) path from r to y.
In this case we say that x is the parent of y and y is a child of x. Our convention is to
specify the tree edge connecting x to its child y as (x, y). If vertex x is on the (unique) path
from r to y then x is an ancestor of y and y is a descendant of x. We denote this relation
by x⇝y. A vertex x is considered an ancestor and a descendant of itself (unless specified
explicitly otherwise). For a subset U ′ ⊆ U , define DescT (U ′) to be the set of descendants
of the vertices in U ′, and LDescT (U ′) to be the set of leaf descendants of the vertices in
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U ′. Namely, DescT (U ′) = {y | ∃x ∈ U ′ : x⇝y}, and LDescT (U ′) = DescT (U ′) ∩ L(T ). To
simplify notation for singleton sets, we define DescT (u) = DescT ({u}). We assume that n > 2
(since the problem is trivial when n ≤ 2), and for convenience we always root T at a vertex r

for which dT (r) > 1.

For a vertex x ∈ U , let CT (x) be the set of its children in T , and Tx be the subtree
rooted at x; that is, the tree induced by the set of the descendants of x. For any two vertices
x, y ∈ U , let LCA(x, y) denote the lowest ancestor of x and y; defined as the unique vertex
u ∈ U such that u is an ancestor of both x and y, and none of the children of u is an ancestor
of both x and y.

For a graph G(V, E) and a tree T (U, F ), where U ⊆ V , define the leaf degree of T in G,
denoted LDG(T ), as LDG(T ) =

∑
v∈L(T ) dG(v); in words, the leaf degree of T is the sum of

the degrees in G of the leaves of T .

The input for both the Connected Max Cut (CMC) problem and the Max Leaf Degree
(MLD) problem is a graph G(V, E). The output of the CMC problem is a connected cut of
maximum size. The output of the MLD problem is a subtree Topt ⊑ G with maximum leaf
degree, i.e., Topt = arg maxT ⊑G {LDG(T )}.

Hajiaghayi et al. [6] proved that the CMC problem is NP-Hard even when the input is
restricted to planar graphs. The MLD problem is NP-Hard as well. To see this note that
when the graph G(V, E) is regular the MLD problem is equivalent to the unweighted MLT
problem (since all vertices have the same weight), which is equivalent to the unweighted
MLST problem, as noted above. The unweighted MLST problem on regular graphs was
shown to be NP-Hard in [12, 14] and thus the MLD problem is also NP-Hard even when
the input is restricted to regular graphs. The MLD problem is APX-Hard as well since the
unweighted MLST problem on 5-regular graphs is APX-Hard [14].

Both problems have a weighted version which is not considered in this paper. In the
weighted CMC problem every edge e ∈ E has a weight and the output of the weighted CMC
problem is a connected cut of maximum weight. In the MLT problem, which is the weighted
MLD problem, every vertex v ∈ V has a weight w(v) and the output of the MLT problem
is a subtree Topt ⊑ G with maximum leaf weight, i.e., Topt = arg maxT ⊑G

{∑
v∈L(T ) w(v)

}
.

(Recall that the MLD problem is a special case of the weighted MLT problem in which the
weight of the vertices is equal to their degree.)

Since both the CMC and the MLD problems are NP-Hard they call for approximation
algorithms. Both are maximization problems. We say that an approximation algorithm for a
maximization problem achieves an α ≥ 1 approximation ratio if the value of its output is at
least 1

α of the maximum. Gandhi et al. [4] proved a relation between the approximation of
these problems.

▶ Theorem 1 ([4]). An α-approximation algorithm for the MLD problem implies a 4α-
approximation algorithm for the CMC problem.

We note that [4] considered the weighted CMC and MLT problems. For an edge weighted
CMC instance the weight of a vertex v in the corresponding MLT instance is the sum of the
weights of the edges in NG({v}). It is easy to see that the MLD problem corresponds to the
unweighted CMC problem since in the MLD problem the weight of every vertex equals its
degree.
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3 The Local Search Algorithm for MLD

Given a graph G(V, E), we present a local search algorithm that finds a subtree T ∗ ⊑ G

such that O(LDG(T ∗) log log n) = maxT ⊑G {LDG(T )}. We start by computing any spanning
tree T (V, F ) of G, and root it at an arbitrary vertex r ∈ V . The solution generated by our
algorithm will be a subtree of G, also rooted at r. The algorithm proceeds iteratively by
performing local search improvements. Each local search improvement considers an internal
vertex v ∈ I(T ) and determines whether making v a leaf, while potentially removing some
of the current leaves in T , results in an improved tree. We call such an operation a vertex
improvement defined below. The algorithm terminates when no local search improvements
are available and the current tree T at this point is returned as T ∗.

3.1 Vertex improvement
To define the improvements we first introduce the notion of dependent children. Let T ⊑ G

be a subtree of G. Consider a vertex v ∈ I(T ), and let CT (v) ⊆ V (T ) be the set of children
of v in T . For a vertex x ∈ CT (v), consider G[I(T )∪ {x} \ {v}] – the subgraph of G induced
by x, and the vertices in I(T ), except for v. We say that x is a dependent child of v if x is
disconnected from r in this induced subgraph. Note that a dependent child of v depends on v

for its connectivity to r in the subgraph G[I(T )∪{x}] (implying that v is a separating vertex
in G[I(T ) ∪ {x}]). If a vertex x ∈ CT (v) is not a dependent child then it is an independent
child of v. Let DT (v) ⊆ CT (v) be the (possibly empty) set of dependent children of v in
T . (For the root r of T , trivially DT (r) = CT (r).) Figure 1 illustrates a vertex v and its
independent child x.

Figure 1 Vertices x and z are independent children of v since the paths from z to x and from x

to r via (x′, y) use only internal vertices of T and avoid v.

▶ Lemma 2. For a subtree T (U, F ) ⊑ G and a vertex v ∈ I(T ), if v has any independent
children, then there exists an independent child x ∈ CT (v)\DT (v) and a subtree T ′(U, F ′) ⊑ G,
such that CT ′(v) = CT (v) \ {x}, L(T ) ⊆ L(T ′) ⊆ L(T ) ∪ {v, x}, and LDG(T ′) ≥ LDG(T ).

Proof. Consider an independent child z ∈ CT (v) \DT (v) (see Figure 1). By the definition of
an independent child there exists a path in G that connects z to the root r with the property
that all the vertices along this path are in I(T ) \ {v}. Follow such a path starting at z. It
must include an edge (x′, y) such that LCA(x′, y) is an ancestor of v other than v. (This is
because r is not a descendant of v.) Consider the first such edge along the path. For this
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edge x′ is a descendant of v (other than v) and y is not a descendant of v. Adding the edge
(x′, y) to the set F of the edges of T creates a cycle that consists of the tree paths from
LCA(x′, y) to x′ and to y and the edge (x′, y). Since x′ is a descendant of v other than v,
the path from LCA(x′, y) to x′ contains an edge that connects v to one of its children. Let
this child be x ∈ CT (v). Clearly, x is also an independent child since the path from x to r

that uses the tree path from x to x′, the edge (x′, y) and the tree path from y to r avoids v.
Let F ′ = F ∪ {(x′, y)} \ {(v, x)}. (See also Figure 1.) All the vertices in U are reachable

from r via edges of F ′ as follows. The vertices that are not descendants of x are reachable
in the same way as before and the ones which are descendants of x are reachable through
the edge (x′, y) since y (which is not a descendant of x in T ) is reachable from r and all the
descendants of x are reachable from y via edge (x′, y) and the edges in the subtree rooted at
x as all these edges are in F ′. Since |F ′| = |F | = |U | − 1 we have that T ′(U, F ′) is a tree
that spans the vertex set U , and thus T ′(U, F ′) ⊑ G.

The path from x to r in T ′ avoids v, and thus x is not a descendent of v in T ′. This is the
only change in the set of children of v, implying that CT ′(v) = CT \ {x}. The only vertices
in U whose degree in T ′ may be larger than their degree in T are y (always) and x′ (when
x′ ≠ x). However, y ∈ I(T ) and when x′ ≠ x also x′ ∈ I(T ). Thus, none of the leaves of T

may become internal vertices in T ′. On the other hand the degrees of v and x (when x′ ̸= x)
in T ′ are 1 less than their degrees in T and thus they may become leaves in T ′, implying that
L(T ) ⊆ L(T ′) ⊆ L(T ) ∪ {v, x}. Since L(T ) ⊆ L(T ′), we also have LDG(T ′) ≥ LDG(T ). ◀

Given a subtree T (U, F ) ⊑ G and a vertex v ∈ I(T ), Lemma 2 can be applied successively
to obtain a tree T ′(U, F ′) in which v has no independent children. This is done as follows.
Start by initializing T ′ to T . If v has an independent child in T ′, apply Lemma 2 to get
a modified tree T ′ that spans the same set of vertices U and satisfies the conditions of
the lemma. If vertex v still has an independent child in the modified T ′, then repeat the
application of Lemma 2. The process is bound to terminate since the number of children of
v is decreased in each iteration. Note that when the process terminates L(T ) ⊆ L(T ′) and
thus LDG(T ′) ≥ LDG(T ).

The function VertexImprove(G, T, v) described in Algorithm 1 gets a graph G(V, E),
a subtree T (U, F ) ⊑ G, and a vertex v ∈ I(T ) as parameters. It determines whether
LDG(T ) can be improved by making v a leaf. It returns a subtree T ′(U ′, F ′) ⊑ G such that
LDG(T ′) ≥ LDG(T ). (In case of improvement LDG(T ′) > LDG(T ).)

Algorithm 1 Check whether the leaf degree can be improved by making v a leaf.

1: function VertexImprove(G, T, v)
2: Parameters: graph G(V, E), subtree T (U, F ) ⊑ G, vertex v

3: Returned value: subtree T ′ ⊑ G, s.t. LDG(T ′) ≥ LDG(T )
4: T ′ ← T

5: while ∃x ∈ CT ′(v) ∧ ∃(x′, y) ∈ E such that x⇝x′ and v⇝/ y do
6: Update tree T ′ by swapping the tree edge (v, x) with the nontree edge (x′, y)
7: if v is a leaf in T ′ then
8: return T ′

9: else if dG(v) ≤ 2LDG(T ′
v) then ▷ no substantial improvement

10: return T ′

11: else ▷ remove the subtrees rooted at the children of v

12: return T ′ ← T ′[(U \ DescT ′(v)) ∪ {v}]
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The function VertexImprove starts by modifying the tree T to a tree T ′(U, F ′) in which
v has no independent children as described above. (Note that any independent child of v before
the modification becomes an independent child of another vertex in I(T ).) At this point v may
either be a leaf in T ′ or an internal vertex with only dependent children. If v is a leaf, then
L(T ) ∪ {v} ⊆ L(T ′) and LDG(T ′) > LDG(T ), resulting in an improvement of the leaf degree.
In this case tree T ′(U, F ′) is returned by the function. If v has only dependent children, then
function VertexImprove checks whether removing the subtrees rooted at the children of v,
and thus making v a leaf improves the leaf degree (substantially). (See Figure 2.) Specifically,
let T ′[Ũ ] be the subgraph of T ′ induced by the vertex set Ũ = (U \ DescT ′(v))∪{v}. Clearly,
T ′[Ũ ] is connected and thus T ′[Ũ ] ⊑ G. Compare LDG(T ′) and LDG(T ′[Ũ ]): The only leaf
in T ′[Ũ ] that is not a leaf in T ′ is v. On the other hand the only leaves in T ′ that are not
in T ′[Ũ ] are the descendant leaves of v in T ′, namely, LDescT ′(v). Let T ′

v be the subtree
of T ′ rooted at v. We get that LDG(T ′

v) is the sum of the degrees in G of the leaves in
LDescT ′(v). Consequently, LDG(T ′[Ũ ]) − LDG(T ′) = dG(v) − LDG(T ′

v). It follows that if
dG(v) > LDG(T ′

v), then LDG(T ′[Ũ ]) > LDG(T ′). To achieve our approximation ratio we
perform an improvement step in this case only if the resulting improvement is “substantial”;
that is, only if dG(v) > 2LDG(T ′

v) or equivalently LDG(T ′[Ũ ])− LDG(T ′) > LDG(T ′
v). In this

case T ′[Ũ ] is returned by the function VertexImprove(G, T, v).

Figure 2 Removing the children of v and all their descendants.

It follows from the proof of Lemma 2 that as long as v has any independent children, the
condition of the While loop in Line 5 of Algorithm 1 must be satisfied. After the execution
of this While loop all the vertices in CT ′(v) must be dependent children of v. Note that
Algorithm 1 can be implemented in polynomial time.

3.2 Sequencing the improvement steps

Algorithm 2 starts from an arbitrary spanning tree and calls the function VertexImprove
successively, as long as tree T has an internal vertex that was not considered as a candidate
for improvement by this function. An internal vertex v is considered as a candidate for
improvement only after all its nonleaf children were considered as candidates for improvement.
Such an internal vertex is guaranteed to exist whenever there are internal vertices that were
not considered for improvement. The output of Algorithm 2 is the final tree, denoted T ∗.

We prove the following properties of the tree T ∗ that is the output of Algorithm 2.

▶ Lemma 3. For every vertex v ∈ I(T ∗), dG(v) ≤ 2
∑

u∈DT ∗ (v) LDG(T ∗
u ) ≤ 2LDG(T ∗

v ).

ESA 2023



93:8 Approximating Connected Maximum Cuts via Local Search

Algorithm 2 Local improvements.

Input: graph G(V, E), and an arbitrary vertex r ∈ V

Output: a subtree T ∗ ⊑ G rooted at r

1: T (V, F )← a spanning tree rooted at r

2: tested(v)← false, ∀v ∈ I(T )
3: tested(v)← true, ∀v ∈ L(T )
4: while ∃v ∈ I(T ) s.t. tested(v) = false do
5: find a vertex v ∈ I(T ) s.t. tested(v) = false ∧ ∀u ∈ CT (v) tested(u) = true
6: T ← VertexImprove(G, T, v)
7: tested(v)← true
8: return T ∗ ← T

Proof. Algorithm 2 starts with a spanning tree T rooted at r. The tree T is modified in
every call to VertexImprove. Each such change may involve the removal of vertices from
T and conversion of some vertices from internal vertices to leaves. However, a leaf is never
changed to an internal vertex, and a vertex that was removed from T will never be brought
back. Consider an internal vertex v ∈ I(T ∗) and the function call VertexImprove(G, T, v).
Fix T to be the tree after this call. Vertex v has to be an internal vertex of T (as otherwise it
would not be in I(T ∗)). It follows that after this call dG(v) ≤ 2LDG(Tv), and all the vertices
in CT (v) are dependent children of v. Since all these vertices were children of v also before
the function call VertexImprove(G, T, v), then by our algorithm they were considered for
improvement before this call. It follows that removing any of these vertices in subsequent
calls would imply also the removal of v, and since removed vertices are not brought back
this did not happen. Thus, DT (v) = CT (v) ⊆ CT ∗(v). Since I(T ∗) ⊆ I(T ) all these vertices
are also dependent children of v in T ∗ and thus dG(v) ≤ 2

∑
u∈DT ∗ (v) LDG(T ∗

u ). Clearly,
2

∑
u∈DT ∗ (v) LDG(T ∗

u ) ≤ 2LDG(T ∗
v ). ◀

▶ Lemma 4. There are no edges connecting vertices in I(T ∗) to vertices outside T ∗.

Proof. We show that the following assertion holds throughout the computation of Algorithm 2:
there are no edges connecting vertices in I(T ) to vertices outside T . The lemma follows since
T ∗ is the final value of T . The assertion holds at the start of Algorithm 2 since initially T is
a spanning tree and thus there are no vertices outside T . Suppose that the assertion holds
for T until the function call VertexImprove(G, T, v). We need to show that it holds also
after this call. This clearly holds in case the vertices of T are not changed in this call. The
only nontrivial case is when some vertices are removed from T in this call; that is, Line 12 in
Algorithm 1 is executed. Recall that the removed vertices are all the descendants of v (other
than v itself) in the tree T ′, and that in tree T ′ all the children of v are dependent children;
i.e., DT ′(v) = CT ′(v). This implies that none of the vertices in descT ′(v) are connected to
an internal vertex of T ′[(U \ DescT ′(v)) ∪ {v}] (which is the returned value of T ) as this will
imply that at least one of the vertices in CT ′(v) is independent. Thus, the assertion holds
for T also after the call. ◀

It is not difficult to see that Algorithm 2 can be implemented in polynomial time. We
remark that the efficiency of the algorithm can be improved by avoiding the search for a
vertex v for which tested(v) = false ∧ ∀u ∈ CT (v) tested(u) = true (Line 5). This can be
done by computing a postorder of the vertices of the initial tree T (which is a spanning tree)
and following this order when the vertices are considered for improvement. Recall that a
vertex v appears in a postorder after all its descendants. So, this is the case for the initial
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tree. Now, suppose that Algorithm 2 follows the vertices in this order, and a vertex v is
considered for improvement. At this point all the descendants of v in the initial tree were
considered already. Any descendant of v at this point that was not a descendant of v in
the original tree became a descendant as a result of a move of vertices in a function call to
VertexImprove. The only vertices that are moved in this function call must have been
considered for improvement already since they are the descendant of the vertex considered
for improvement in the call to VertexImprove. Thus, when a vertex v is considered for
improvement all its descendants were already considered for improvement.

4 The Approximation Ratio of the Algorithm

Recall that T ∗ is the tree computed by Algorithm 2. We start by proving that the number
of edges with at least one endpoint in V (T ∗) is O(LDG(T ∗) log log n). We prove this bound
separately for tree edges and nontree edges. Next, we show that the total number of edges
of G outside T ∗ is also O(LDG(T ∗) log log n). It follows that m = O(LDG(T ∗) log log n).
Since for any subtree S of G, LDG(S) ≤ 2m, we get that for any subtree S of G, LDG(S) =
O(LDG(T ∗) log log n). This implies that Algorithm 2 is an O(log log n)-approximation al-
gorithm for both the MLD and the respective CMC problems.

4.1 Bounding the number of tree edges in T ∗

We show that the number of tree edges is O(LDG(T ∗)). For this we upper bound the number
of vertices in T ∗ which also bounds the number of tree edges in T ∗. Clearly, the number
of leaves is |L(T ∗)|. Also, the number of vertices of degree at least 3 in T ∗ is bounded by
|L(T ∗)| − 1. We still need to bound the number of vertices of degree 2 in T ∗. To prove this
bound we apply a lemma from [6] that states that WLOG it can be assumed that the input
graph to the CMC problem and thus also to the respective MLD problem does not contain a
path of three vertices of degree 2.

▶ Lemma 5 ([6]). WLOG it can be assumed that the input graph to the CMC problem and
thus also to the respective MLD problem does not contain a path of three vertices of degree 2.

We note that [6] considered the slightly more general {0, 1}-weighted case rather than the
unit weight case considered here.

For the remainder of our analysis we color the edges of T ∗ in two colors red and blue.
For v ∈ I(T ∗), a tree edge (v, u) is colored red if u is a dependent child of v and colored
blue otherwise. Trivially, all the edges outgoing from r are red. By Lemma 3 every vertex
v ∈ I(T ∗) has at least one outgoing red edge. We now bound the number of degree 2 vertices
in T ∗.

▶ Lemma 6. The number of degree 2 vertices in T ∗ is bounded by 8|L(T ∗)|+ 3LDG(T ∗).

Proof. Consider the subgraph of T ∗ induced by its degree 2 vertices. This subgraph is a
collection of paths. The endpoint of each such path is the parent of a distinct vertex of
degree other than 2 in T ∗. Hence, the number of these paths is bounded by the number of
vertices with degree other than 2 in T ∗. As stated above, the number of vertices of degree 1
in T ∗ is |L(T ∗)|, and the number of vertices of degree 3 or more is bounded by |L(T ∗)| − 1.
Thus, the total number of these paths is bounded by 2|L(T ∗)| − 1. Consider the paths of
length (in edges) at most 3. Let n3 be the number of these paths. The number of vertices of
degree 2 on these paths is bounded by 4n3.
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Consider the rest of the paths, and denote their number by n≥4. Let v1, v2, v3, . . . , vℓ,
for ℓ ≥ 5, be such a path. Note that the edges (vi, vi+1), for i ∈ [1..ℓ− 1], must be red
since every internal vertex must have at least one dependent child and vi+1 is the only child
of vi; namely, CT ∗(vi) = DT ∗(vi) = {vi+1}. By Lemma 5 G does not contain a path of
three vertices of degree 2. Thus, at least one out of every three consecutive vertices on the
path v2, . . . , vℓ−1 must have degree at least 3 in G. Hence, at least ⌊ ℓ−2

3 ⌋ vertices on the
path v2, . . . , vℓ−1 must have degree at least 3 in G. Let vi be one of these vertices, and let
y /∈ {vi−1, vi+1} be a vertex connected to vi in G (y /∈ {vi−1, vi+1} because G has no parallel
edges). By Lemma 4 vertex vi is not connected to vertices outside T ∗, and hence y ∈ V (T ∗).
We claim that y must be a leaf. To obtain a contradiction assume that this is not the case
and consider LCA(vi, y). If LCA(vi, y) ̸= vi, then it must be an ancestor of vi−1 but not
vi−1 itself (since vi is the only child of vi−1). In this case vi cannot be a dependent child
of vi−1 because the path from vi to y using edge (vi, y) and then up the tree to LCA(vi, y)
avoids vi−1. If LCA(vi, y) = vi, then y must be a descendant of vi+1 but not vi+1 itself. In
this case the only child of vi+1 cannot be a dependent child because the path from this child
down the tree to y and then to vi using edge (vi, y) avoids vi+1.

It follows that at least ⌊ ℓ−2
3 ⌋ ≥

ℓ−4
3 vertices on every path v1, v1, v2, . . . , vℓ of degree

2 vertices in T ∗, where ℓ ≥ 4, are connected to leaves in L(T ∗). Thus, each one of the
n≥4 paths of length ℓ ≥ 4 of degree 2 vertices in T ∗ contributes at least ℓ−4

3 to the leaf
degree of T ∗, which equals LDG(T ∗). Summing this over all such paths implies that the
total number of vertices of degree 2 on these paths is bounded by 3LDG(T ∗) + 4n≥4. Since
n3 +n≥4 < 2|L(T ∗)| the number of degree 2 vertices is bounded by 8|L(T ∗)|+3LDG(T ∗). ◀

We conclude the following theorem.

▶ Theorem 7. The number of tree edges in T ∗ is bounded by 10|L(T ∗)| + 3LDG(T ∗) =
O(LDG(T ∗)).

4.2 Bounding the number of nontree edges with at least 1 endpoint in
V (T ∗)

The number of nontree edges with at least one endpoint in L(T ∗) is O(LDG(T ∗)). Thus,
from now on we concentrate on bounding the number of nontree edges with at least one
endpoint in I(T ∗), and the other not in L(T ∗). We have already established in Lemma 4
that a vertex in I(T ∗) cannot be connected to a vertex outside T ∗. It follows that it suffices
to bound the number of nontree edges with both endpoints in I(T ∗).

Recall that for v ∈ I(T ∗), a tree edge (v, u) is colored red if u is a dependent child of
v and colored blue otherwise. For a vertex v ∈ I(T ∗), let BT ∗(v) be the subset of vertices
of T ∗ that can be reached from v by paths that start at a red edge outgoing from v and
then use only blue edges. In other words, BT ∗(v) consists of all the dependent children of v

and all the vertices that are reachable from these dependent children using only blue edges.
(Notice that v /∈ BT ∗(v).) In the next lemma we prove that an internal vertex x ∈ BT ∗(v)
cannot be connected to an internal vertex of T ∗ that is neither v nor in BT ∗(v) ∪BT ∗(x).

▶ Lemma 8. If an internal vertex x ∈ BT ∗(v) is connected by a nontree edge to a vertex
y ∈ I(T ∗), then y ∈ {v} ∪BT ∗(v) ∪BT ∗(x).

Proof. To obtain a contradiction assume that x is connected to a vertex y ∈ I(T ∗) \
({v} ∪BT ∗(v) ∪BT ∗(x)). We consider 4 cases.
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Case 1. y is a descendant of x. Follow the path from x to y in T ∗. The vertex immediately
after x along this path must be in BT ∗(v) ∪ BT ∗(x). By our assumption y /∈ BT ∗(v) ∪
BT ∗(x). Thus, the path from x to y in T ∗ must leave either BT ∗(v) or BT ∗(x). Note
that for any vertex u ∈ I(T ∗), any tree edge connecting a vertex in BT ∗(u) to a vertex
outside BT ∗(u) must be red. It follows that the path from x to y in T ∗ must include a
red edge (x′, x′′), where x′ ̸= x is a descendant of x. Note that vertex x′′ is a dependent
child of x′ since (x′, x′′) is red. This is a contradiction since the path from x′′ down the
tree to y, followed by the edge (x, y), and the path from x down the tree to the parent of
x′ avoids x′, and thus x′′ cannot be a dependent child of x′.

Case 2. vertex y is a descendant of a vertex z ∈ BT ∗(v), where z ̸= x, and y is not a
descendant of x. Since y /∈ BT ∗(v) the path from z to y in T ∗ must include a red edge
(z′, z′′), where z′ ∈ BT ∗(v). In this case z′′ is an ancestor of y, and thus z′′ is connected
to x through the edge (x, y). To obtain a contradiction we show that there exists a path
from x to the parent of z′ that avoids the vertex z′. This implies that z′′ cannot be a
dependent child of z′ which is a contradiction. Consider LCA(x, z′). By our assumption
in this case x is not an ancestor of y and thus it also cannot be an ancestor of z′. Thus,
LCA(x, z′) ̸= x. In case LCA(x, z′) ̸= z′ the path from x to the parent of z′ goes from x

to LCA(x, z′) and then down the tree to the parent of z′. In case is LCA(x, z′) = z′ we
must have that z′ is an ancestor of x. Since both x and z′ are in BT ∗(v), all the edges on
the path in T ∗ from z′ to x are blue. But then the ancestor of x which is the child of z′

is not a dependent child of z′, and thus there is a path from x to the parent of z′ that
goes through this child and avoids z′.
In the remaining two cases vertex y is not a descendant of any vertex in BT ∗(v).

Case 3. Vertex y is not a descendant of v. In this case there is a path from y to the parent
of v that avoids v. Let x′ be the child of v that is an ancestor of x. Since x ∈ BT ∗(v),
the tree edge (v, x′) is colored red, and vertex x′ is a dependent child of v but this is a
contradiction since the path from x′ to x and then through the edge (x, y) to the parent
of v avoids v.

Case 4. Vertex y is a descendant of v. Consider the first edge (v, y′) on the path from v to y

in T ∗. Since y is not a descendant of any vertex in BT ∗(v) this edge must be colored blue,
and thus y′ is an independent child of v and there exists a path from y′ to the parent of
v that avoids v. As in the previous case, let x′ be the child of v that is an ancestor of
x. The tree edge (v, x′) is colored red, and vertex x′ is a dependent child of v. This is a
contradiction since the path from x′ that goes down the tree to x, then to y through the
edge (x, y), then up the tree to y′, and then from y′ to the parent of v, avoids v. ◀

Consider a vertex x ∈ V (T ∗) that is not the root r. Since all the edges outgoing from r

are red, there must be at least one red edge (v, v′) on the path up the tree from x to r. Thus
there exists a vertex v ∈ I(T ∗) such that x ∈ BT ∗(v). Note that v is the unique ancestor of
x with the property that the (unique) path from v to x in T ∗ starts in a red edge and then
uses only blue edges. It follows that any two sets BT ∗(v) and BT ∗(u) are disjoint. Thus, the
sets BT ∗(v) form a partition of the vertices in T ∗ (excluding r). This implies that the total
number of edges of the form (v, x), where v ∈ I(T ∗) and x ∈ BT ∗(v) ∩ I(T ∗) is bounded by
|I(T ∗)| (since there are no parallel edges). Clearly, |I(T ∗)| is bounded by the number of tree
edges, and thus by Theorem 7 |I(T ∗)| = O(LDG(T ∗)).

It follows from Lemma 8 that we are left with bounding the number of nontree edges
(x, y), where both x and y are in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗). To bound the number
of these edges we modify the tree T ∗ to a tree T̃ that spans the same set of vertices as T ∗ in
which all the vertices in BT ∗(v) become the children of v. Note that unlike the tree T ∗, the
tree T̃ is not a subtree of G.
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4.2.1 The modification of T ∗ to T̃

Tree T̃ is obtained from T ∗(U, F ) by making all the vertices in BT ∗(v) the children of v, for
every v ∈ I(T ∗). Formally, for every v ∈ I(T ∗), edge (v, x) is a tree edge of T̃ iff x ∈ BT ∗(v).
To illustrate the definition, consider a vertex x ∈ BT ∗(v) that is not a child of v in T ∗, and
let y be the parent of x in T ∗. Note that the edge (y, x) is a blue edge and x is thus an
independent child. We remove the edge (y, x) and instead add the edge (v, x), making v the
new parent of x. Let T̃ be the resulting tree. It is not difficult to see that T̃ is indeed a tree
that spans the set U . This is because the parent of any vertex v in T̃ is an ancestor of its
parent in T ∗.

▶ Lemma 9. Any two vertices {x, y} ⊆ BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗) are siblings in
T̃ and share v as their parent.

Proof. If both x and y are independent children in T ∗ then after the modification both
become children of v. The only other vertices in BT ∗(v) ∩ I(T ∗) are the dependent children
of v and they remain children of v also in T̃ . ◀

Recall that we need to bound the number of nontree edges of the form (x, y), where
both x and y are in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗). This is equivalent to bounding the
number of the edges of G that connect siblings in I(T̃ ).

▶ Lemma 10. For any vertex v ∈ I(T ∗), if x is a descendant of a dependent child of v in
T ∗ then x is a descendant of v in T̃ .

By Lemma 3 for every vertex v ∈ I(T ∗), dG(v) ≤ 2
∑

u∈DT ∗ (v) LDG(T ∗
u ). By Lemma 10

any leaf descendant of a vertex u ∈ DT ∗(v) is a descendant of v in T̃ and thus we have
dG(v) ≤ 2LDG(T̃v). As shown above, to bound the number of nontree edges with both
endpoints in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗), it suffices to bound the number of edges
that connect siblings in I(T̃ ). For this we prove the following slightly more general theorem,
where instead of considering the leaf degree, we assume general weights on the leaves of
T̃ . Associate a weight w(ℓ) ≥ 1 with every leaf ℓ ∈ L(T̃ ). For a vertex v ∈ I(T̃ ), let w(T̃v)
denote the total weight of the leaves of T̃v, which is the subtree rooted at v. Also define
w(T̃ ) = w(T̃r). The following theorem (proven below) may be interesting on its own.

▶ Theorem 11. Let T̃ be a rooted tree with an integral weight w(ℓ) ≥ 1 associated with every
leaf ℓ ∈ L(T̃ ), and let G̃(I(T̃ ), Ẽ) be a graph with no parallel edges that all of its edges connect
siblings in I(T̃ ). If for every v ∈ I(T̃ ), dG̃(v) ≤ 2w(T̃v), then |Ẽ| = O

(
w(T̃ ) log log w(T̃ )

)
.

To prove this theorem we further modify T̃ to T̂ in which the degree of every internal
vertex is lower and upper bounded by a constant times the weight of the leaves of its rooted
subtree.

4.2.2 The modification of T̃ to T̂

We obtain T̂ from T̃ by removing some of the internal vertices of T̃ . While doing so we
maintain that the number of edges connecting siblings in I(T̂ ) remains the same as the
number of edges connecting siblings in I(T̃ ).

Initially, T̂ is set to T̃ and Ĝ is set to G̃. Next, we traverse the vertices of I(T̂ ) \ {r} top
down starting from the children of the root r. When a vertex v is traversed we check whether
v has any children that are internal vertices, and if so whether dĜ(v) < w(T̂v). (Recall that
by the conditions of Theorem 11, initially, dĜ(v) ≤ 2w(T̂v).) If this is the case we execute
the following modification steps.
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Step 1. Remove v from T̂ and connect all the children of v that are internal vertices to the
parent of v. Denote the set of these children by C.

Step 2. Pick a vertex x ∈ C and connect x to all the leaves of T̂ that were children of v

before its removal.
Step 3. For every edge (v, y) in Ĝ that connected v before its removal to a sibling in T̂ , find

a vertex z ∈ C such that dĜ(z) < 3w(T̂z)− 1, and add the edge (z, y) to Ĝ in lieu
of the edge (v, y). Lemma 12 implies that such a vertex z always exists.

▶ Lemma 12. After Step 2 of the modification steps

dĜ(v) +
∑
z∈C

dĜ(z) < 3
∑
z∈C

w(T̂z). (1)

Lemma 12 implies that for each of the dĜ(v) edges that connected v to its siblings we
can find in Step 3 a vertex z ∈ C such that dĜ(z) < 3w(T̂z)− 1. (Recall that the weights
are integral.)

▶ Lemma 13. After traversing all the vertices of T̂ the following properties are satisfied.
Property 1. The graph Ĝ(I(T̂ ), Ê) has no parallel edges and all of its edges connect siblings

in I(T̂ ).
Property 2. The number of edges of Ĝ is the same as the number of edges of G̃.
Property 3. For every internal vertex v ∈ I(T̂ ) \ {r} that is a parent of a nonleaf vertex in

T̂ , w(T̂v) ≤ dĜ(v).
Property 4. For every internal vertex v ∈ I(T̂ ) \ {r}, dĜ(v) ≤ 3w(T̂v).

4.2.3 Bounding the number of edges connecting siblings in T̂

To bound the number of edges connecting siblings in T̂ we prove the following theorem.

▶ Theorem 14. Let T̂ be a rooted tree with an integral weight w(ℓ) ≥ 1 associated with
every leaf ℓ ∈ L(T̂ ), and let Ĝ(I(T̂ ), Ê) be a graph with no parallel edges that all of its edges
connect siblings in I(T̂ ). If for every v ∈ I(T̂ ) that is a parent of a nonleaf vertex in T̂ ,
w(T̂v) ≤ dĜ(v), and for every v ∈ I(T̂ ), dĜ(v) ≤ 3w(T̂v), then |Ê| = O

(
w(T̂ ) log log w(T̂ )

)
.

To prove Theorem 14 we use the following simple inequality that holds for undirected
graphs with no parallel edges.

▶ Lemma 15. Let H(V, E) be an undirected graph with no parallel edges and m = |E|. Let
U ⊆ V be the subset of vertices of degree at most 4

√
m. Then,

∑
v∈U dH(v) > 7

8 m.

Proof of Theorem 14. To bound the number of edges of Ĝ we use a charging scheme. For a
vertex v ∈ I(T̂ ) that is a parent of at least 2 nonleaf vertices in T̂ , let Ĝv = Ĝ[CT̂ (v)∩ I(T̂ )];
that is, the subgraph of Ĝ induced by the children of v that are internal vertices. Note that Ĝ

is the union of all these subgraphs since Ĝ only contains edges that connect siblings in I(T̂ ).
Let mv be the number of edges in this subgraph. “Charge” these mv edges to the subset of
children of v whose degree in Ĝv and thus also in Ĝ is at most 4√mv. By Lemma 15 the
sum of the degrees of all these children is greater than 7

8 mv. Thus it suffices to charge each
such child x of v the amount 8

7 · dĜ(x) to cover for all the mv edges.
To bound the total number of edges we need to sum the charges of all the vertices. We

distinguish between charged vertices that are parents of a nonleaf vertex and those with
only leaf children. There are 3 cases based on the characteristics of the charged vertex
x ∈ CT̂ (v) ∩ I(T̂ ).

ESA 2023



93:14 Approximating Connected Maximum Cuts via Local Search

Case 1. The charged vertex x has only leaf children. By the conditions of the theorem dĜ(x)
is upper bounded by 3 times the weight of its leaf children. Since the leaf children of any
two vertices are disjoint we get that the total amount charged to vertices with only leaf
children is upper bounded by 8

7 · 3w(T̂ ).

Case 2. The charged vertex x is a parent of a nonleaf vertex and dĜ(x) ≤ 48 · 3 = 144.
The amount charged to all such vertices is upper bounded by 8

7 · 144 times the number
of vertices in I(T̂ ) that have siblings. The number of internal vertices in T̂ that have
siblings (and thus are children of a vertex whose degree is at least 3 in T̂ ) is bounded by
the number of leaves of T̂ . Note that O

(
L(T̂ )

)
= O

(
w(T̂ )

)
since for every leaf ℓ ∈ L(T̂ ),

w(ℓ) ≥ 1. We conclude that the amount charged to all such vertices is O
(

w(T̂ )
)

.

Case 3. The charged vertex x is a parent of a nonleaf vertex and dĜ(x) > 144. By our
construction since x is a parent of a nonleaf vertex we have w(T̂x) ≥ 1

3 dĜ(x) > 48 and
dĜ(x) > w(T̂x). Recall that the number of edges in Ĝv is mv. Since dĜ(x) ≤ 4√mv

we have also w(T̂x) < 4√mv. On the other hand we claim that w(T̂v) ≥ 2
3 mv. This

holds since for every child y ∈ CT̂ (v) ∩ I(T̂ ) we have dĜ(y) ≤ 3w(T̂y) summing over all
such children of v we get that the sum of all degrees, which is 2mv, is bounded by 3
times the sum of the weights of the subtrees rooted at all these children. The sum of
these weights is upper bounded by the weight of the subtree rooted at their parent v

and thus we have 2mv ≤ 3w(T̂v). Combining the two inequalities (i) w(T̂x) < 4√mv and

(ii) w(T̂v) ≥ 2
3 mv, we get w(T̂v) ≥ 2

3 mv = 1
24

(
4√mv

)2
> 1

24

(
w(T̂x)

)2
> 22 · 24 (since

w(T̂x) > 48), and thus for any ancestor y of v it also holds that w(T̂y) > 1
24

(
w(T̂x)

)2
.

Note that 1
24 ·

(
22i−1 · 24

)2
= 22i · 24. Thus, applying the inequality recursively on all the

ancestors of x that are also charged, implies that if i ancestors of the charged vertex x

are also charged, then the weight of the subtree rooted at the highest such ancestor is at
least 22i · 24. This implies that the maximum number of such vertices that are charged
along any path from the root to a leaf is O

(
log log w(T̂ )

)
.

To sum the total amount charged to vertices with a nonleaf child and degree in Ĝ greater
than 144, we consider them in “layers”. The first layer consists of all vertices x such that (1)
x has a nonleaf child and dĜ(x) > 144, (2) x was charged, and (3) none of the ancestors of x

(other than x) were charged. Similarly, layer i > 1 consists of all vertices x such that (1) x

has a nonleaf child and dĜ(x) > 144, (2) x was charged, and (3) x has an ancestor (other than
x) that belongs to layer i− 1. The number of layers is bounded by the maximum number of
vertices that are charged along any path from the root to a leaf which is O

(
log log w(T̂ )

)
. By

the construction of layers if vertices x and y are in the same layer then T̂x and T̂y are disjoint.
Since the charge of a vertex x that is a parent of a nonleaf vertex is 8

7 · dĜ(x) ≤ 8
7 · 3w(T̂x)

the total amount charged to the vertices in the same layer is 8
7 · 3w(T̂ ). The proof follows

since there are O
(

log log w(T̂ )
)

layers. ◀

We note that the bound Theorem 14 is tight. We show a family of trees and associated
graphs that achieve the upper bound in Theorem 14. Let S1 be a tree of height 3 with 5
vertices: a root, 2 children of the root, and 2 leaves, each of which is a single child of a child of
the root. Assign a weight of 1 to each of the 2 leaves. The graph Ĝ1 consists of a single edge
connecting the 2 children of the root. For i > 1, the tree Si is given by taking 22i−1 copies of
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Si−1 and connecting them to a common root. The graph Ĝi includes 22i−1 copies of Ĝi−1
associated with the copies of Si−1. In addition, partition the 22i−1 children of the root of Si

into two sets of size 22i−1−1 and add the edges of the complete bipartite graph connecting the
vertices in these 2 sets. The number of these edges is

(
22i−1−1

)2
= 22i−2. Figure 3 shows

the tree S2 and the associated graph Ĝ2. It can be verified that the construction obeys the
conditions in Theorem 14. It can be shown by a simple induction that the number of leaves
in Si is 22i−1 and the number of edges in Ĝi is i · 22i−2 which achieves the bound tightly.

Figure 3 The tree S2 and the associated graph Ĝ2. Tree edges are dashed and graph edges are
solid.

We use Theorem 14 to prove Theorem 11.

Proof of Theorem 11. The number of edges of G̃ connecting siblings in I(T̃ ) is the same as
the number of edges of Ĝ connecting siblings in I(T̂ ) (see Property 2 above). Also, by our
modification process w(T̃ ) = w(T̂ ). By Properties 3 and 4 above the tree T̂ and the graph Ĝ

satisfy the conditions of Theorem 14. It follows that the number of edges connecting siblings
in I(T̂ ) and thus also in I(T̃ ) is O

(
w(T̃ ) log log w(T̃ )

)
. ◀

The analysis in Sections 4.1 and 4.2 implies the following theorem.

▶ Theorem 16. The number of edges with at least one endpoint in V (T ∗) is
O(LDG(T ∗) log log n).

Proof. Theorem 7 implies that the number of tree edges in T ∗ is O(LDG(T ∗)). Clearly,
the number of edges with one endpoint in L(T ∗) is O(LDG(T ∗)). As shown earlier the
number of edges connecting a vertex v to vertices in BT ∗(v)∩ I(T ∗) is also O(LDG(T ∗)). By
Lemma 8 the only other edges with at least one endpoint in V (T ∗) are edges connecting 2
vertices in BT ∗(v) ∩ I(T ∗), for some v ∈ I(T ∗). By Lemma 3 for every vertex v ∈ I(T ∗),
dG(v) ≤ 2

∑
u∈DT ∗ (v) LDG(T ∗

u ). This implies that after modifying T ∗ to T̃ the conditions of
Theorem 11 hold with w(ℓ) = dG(ℓ), for every leaf ℓ ∈ L(T ∗). The theorem follows since
log log |E(G)| = O(log log n). ◀

4.3 Bounding the number of edges outside T ∗

The next theorem bounds the number of edges in G[V \ V (T ∗)].

▶ Theorem 17. The number of edges in G[V \ V (T ∗)] is O(LDG(T ∗) log log n).
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The proof of the theorem is omitted due to space constraints. It has two parts. First, we
prove that there exists some constant c such that the number of edges added to G[V \V (T ∗)]
when the subtrees rooted at the children of a vertex v are removed from the tree is at most
c · LDG(T ′

v) log log n. Second, we show that the total number of edges in G[V \ V (T ∗)] is
bounded by c ·LDG(T ∗) log log n using the fact that that the subtrees rooted at the children of
a vertex v are removed only when the improvement is substantial; namely, dG(v) > 2LDG(T ′

v).
We conclude with the main theorem.

▶ Theorem 18. The total number of edges in G(V, E) is O(LDG(T ∗) log log n). Thus,
Algorithm 2 is an O(log log n)-approximation algorithm for both the MLD and the respective
CMC problems.

5 Conclusions and Future Research

We gave an O(log log n)-approximation algorithm for the MLD problem that implies an
approximation algorithm with the same quality to the CMC problem. The approximation
algorithm consists of local improvement steps. While we have evidence that the analysis of
our algorithm is tight, it is open whether the approximation ratio we achieved is tight or
whether there exists a o(log log n)-approximation for the MLD and CMC problems.

Our algorithm uses the fact that the weights of the vertices in the MLD problem are the
degrees of these vertices in an undirected graph with no parallel edges. It will be interesting
to see if the same approach can be extended to other weights. It cannot be extended to
general weights as there are examples of graphs with general edge weights in which the ratio
of the total edge weight to the weighted connected cut is Ω(log log n).

To the best of our knowledge neither nontrivial approximation algorithms nor hardness
of approximation results are known for non-monotone submodular function maximization
subject to connectivity constraints. Any progress along these lines for either general or
specific classes of graphs is bound to have numerous applications.
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