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Abstract
In this paper, we introduce the concept of Density-Balanced Subset in a matroid, in which independent
sets can be sampled so as to guarantee that (i) each element has the same probability to be sampled,
and (ii) those events are negatively correlated. These Density-Balanced Subsets are subsets in the
ground set of a matroid in which the traditional notion of uniform random sampling can be extended.

We then provide an application of this concept to the Matroid-Constrained Maximum Coverage
problem. In this problem, given a matroid M = (V, I) of rank k on a ground set V and a coverage
function f on V , the goal is to find an independent set S ∈ I maximizing f(S). This problem is an
important special case of the much-studied submodular function maximization problem subject to a
matroid constraint; this is also a generalization of the maximum k-cover problem in a graph. In
this paper, assuming that the coverage function has a bounded frequency µ (i.e., any element of
the underlying universe of the coverage function appears in at most µ sets), we design a procedure,
parameterized by some integer ρ, to extract in polynomial time an approximate kernel of size ρ ·k that
is guaranteed to contain a 1 − (µ − 1)/ρ approximation of the optimal solution. This procedure can
then be used to get a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) providing a 1 − ε

approximation in time (µ/ε)O(k) · |V |O(1). This generalizes and improves the results of [Manurangsi,
2019] and [Huang and Sellier, 2022], providing the first FPT-AS working on an arbitrary matroid.
Moreover, as the kernel has a very simple characterization, it can be constructed in the streaming
setting.
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1 Introduction

Matroids are fundamental combinatorial structures that generalize the notion of linear
independence in a vector space as well as the notion of forest in a graph. In combinatorial
optimization, the matroid constraints are an important generalization of the cardinality
constraint. For instance, consider the problem of maximizing a submodular function under
some constraint. If the constraint is that the feasible subsets are those of size bounded by
some parameter k (cardinality constraint), an approximation of 1 − 1/e can be obtained
in polynomial time by a simple greedy algorithm [22] (this ratio is also the best possible
in polynomial time unless P = NP , see [7]). Under the more general constraint that the
feasible subsets are those that are independent in a given matroid M (matroid constraint),
an approximation of 1 − 1/e can also be achieved in polynomial time [3], albeit by using
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a more involved continuous greedy technique. Hence, somehow surprisingly, even though
the matroid constraint is more complex than the cardinality constraint, some optimization
problems are not really “harder” in the matroid context.

Following this perspective, in this paper we consider the problem of maximizing a coverage
function of bounded frequency under some constraint. The starting point of our paper is the
work of Manurangsi [18] in which, for cardinality constraints, a Fixed-Parameter Tractable
Approximation Scheme (FPT-AS) is developed. Our main result here is a generalization
of that FPT-AS to matroid constraints (Corollary 8), extending the approximate kernel
construction of [18] to matroids (Theorem 6). A key idea in [18] is the use of uniform random
sampling of subsets of given cardinality; unfortunately, in the matroid setting, near-uniform
sampling of independent sets is in general impossible. Instead, here we introduce the concept
of Density-Balanced Subset (DBS, Definition 2) in matroids. We show that in those particular
subsets of the ground set we can generalize the traditional notion of uniform random sampling
of a subset of a given cardinality, to that of sampling a maximum independent set, while
guaranteeing that (i) every element of the DBS has the same probability of being sampled
(i.e., the probabilities are “balanced”) and that (ii) those events are negatively correlated
(Proposition 3).

Density-Balanced Subsets

We introduce here the concept of Density-Balanced Subsets. Let us first define the notion
of density. (In the following we assume that readers already have some familiarity with
matroids; an introduction to matroids is provided in the beginning of Section 2.)

▶ Definition 1. Let M = (V, I) be a matroid. The density of a subset U ⊆ V in M is
defined as

ρM(U) = |U |
rankM(U) .

The density of an empty set is set to 0, and the density of a non-empty set of rank 0 is +∞.

From that we define a Density-Balanced Subset (DBS). Basically, in a DBS, no subset
has a larger density than the DBS itself.

▶ Definition 2. Let M = (V, I) be a matroid, and ρ be a positive integer. A subset V ′ ⊆ V

is called a ρ-DBS in M if ρM(V ′) = ρ and for all U ⊆ V ′, ρM(U) ≤ ρ.

Density-Balanced Subsets appear naturally when extracting independent sets in matroid
unions (as we will see in Section 3); in Figure 1 a simple example of DBS is given.

v1 v2 v3 · · · vρ+1 vρ+2 . . . v2ρ

≤ 1 ≤ 1 ≤ 1

≤ 2

Figure 1 Example of ρ-DBS of rank k = 2. The tree represents a laminar matroid M = (V, I)
on the ground set V = {v1, . . . , v2ρ}: the leaves represent elements of the ground set, and the inner
nodes represent cardinality constraints on the elements in their associated subtree (e.g., if S ∈ I,
then |S ∩ {v3, . . . , vρ+1}| ≤ 1). Observe that V ′ = V is a ρ-DBS.
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In ρ-DBSes, it is possible to sample independent sets while having the desired balance
and negative correlation properties. Moreover, the sampled independent sets are “maximal”
(i.e., these sampled independent sets are bases in the restriction of the matroid to the DBS),
hence, in this sense, this extends the notion of uniform random sampling. This result comes
from a more general randomized rounding algorithm developed by Chekuri, Vondrák, and
Zenklusen [4].

▶ Proposition 3. Let M = (V, I) be a matroid, V ′ ⊆ V be a ρ-DBS for some positive integer
ρ, and k = rankM(V ′). There exists a procedure to sample randomly from V ′ an independent
set of k elements S = {s1, . . . , sk} ∈ I such that:

(i) for all v ∈ V ′, P[v ∈ S] = 1/ρ;
(ii) for all T ⊆ V ′, P[T ⊆ S] ≤

∏
v∈T P[v ∈ S] = 1/ρ|T |.

Matroid-Constrained Maximum Coverage

Let M = (V, I) be a matroid of rank k on a ground set V . Given a universe U , a weight
function w : U → R+, and a family {Uv}v∈V of subsets of U , the matroid-constrained
maximum coverage problem is to select a subset S ∈ I maximizing the coverage function
f(S) = w(

⋃
s∈S Us) =

∑
u∈
⋃

s∈S
Us

w(u), namely, to find an element in arg maxS∈I f(S).
The frequency of an element of the universe u ∈ U refers to the number of sets Uv in which

it appears. We say that f has bounded frequency µ if every element of the underlying universe
U has a frequency bounded by µ. In our paper, we will focus on the matroid-constrained
maximum coverage problem for coverage functions having some bounded frequency µ; this
assumption is quite common and is used for instance in [2, 8, 13, 21, 24, 25]. An important
special case is µ = 2, where it corresponds to the coverage function over edges in a graph.
Besides the frequency parameter, another parameter z, corresponding to the number of
points covered in an optimal solution, has been used to design FTP algorithms in [15].

To put our problem in a larger picture, we can first observe that a coverage function is a
special case of monotone submodular function. For the problem of maximizing a monotone
submodular function under a matroid constraint, an approximation of 1−1/e can be achieved
in polynomial time [3] using continuous greedy and pipage rounding techniques. Later, a
combinatorial approach for maximizing coverage functions over matroids was developed to
achieve the same ratio [9], and this approach was then generalized to monotone submodular
functions [10].

A special case of our problem when the matroid constraint is simply a cardinality constraint
(i.e., a uniform matroid) has been studied in [1, 7, 12, 26]. It has been shown in [12] that
a simple greedy procedure (picking at each step the element maximizing the increase of
the coverage function) guarantees a ratio of 1− 1/e. If a polynomial time algorithm could
approximate maximum coverage within a ratio of 1− 1/e + ε for some ε > 0, then it would
imply that P = NP [7]. Furthermore, one cannot obtain in FPT time (where the matroid
rank k is the parameter) an approximation ratio better than 1− 1/e + ε, assuming GAP-
ETH [19]. However, when the coverage function has bounded frequency µ, an approximation
of 1− (1− 1/µ)µ can be achieved [1].

The case where the coverage function has a frequency µ bounded by 2 is called the
matroid-constrained vertex cover [13, 14], and is called max k-vertex-cover when the
matroid is uniform. The latter has also been studied through the lens of fixed-parameterized-
tractability. The problem is W [1]-hard with k being the parameter [11], thus getting an
exact solution in FPT time is unlikely. Nonetheless, it is possible to get a near-optimal
solution in FPT time [20]. Precisely, an FPT approximation scheme (FPT-AS) is given
in [20], that delivers a 1−ε approximate solution in (k/ε)O(k3/ε) · |V |O(1) time, later improved
to (1/ε)O(k) · |V |O(1) in [18, 25].

ESA 2023
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Here we recall the definition of an FPT-AS, introduced by Marx [20]:

▶ Definition 4. Given a parameter function κ associating a positive integer to each instance
x ∈ I of some problem, a Fixed-Parameter Tractable Approximation Scheme (FPT-AS) is
an algorithm that provides a (1− ε) approximate solution in time g(ε, κ(x)) · |x|O(1) for some
computable function g.
In our case, each of the instances consists of a bounded-frequency coverage function and a
matroid, and the parameter of an instance is the rank k of its matroid.

For our problem, an FPT-AS has been designed for partition, laminar, and transversal
matroids in [13], where the concept of robust subset is introduced to generalize the random
sampling argument developed in [18]. In [13], an approximate kernel1 is extracted, consisting
of a maximum weight independent set in the union of several copies of the same matroid M
(see below for a definition of the union of matroids), and then a brute-force enumeration is
performed on that kernel of small size. The number of matroids in these unions depends on
the type of matroid.

▶ Definition 5. Let M = (V, I) be a matroid. Then we can define ρM = (V, Iρ) as the
union of ρ matroids M, as follows: S ∈ Iρ if S can be partitioned into S1 ∪ · · · ∪ Sρ so that
for all i we have Si ∈ I.

It is known that the union of matroids is still a matroid and that an independence oracle
for ρM can be implemented in polynomial time given an independence oracle for M, e.g.,
see [23]. Moreover, the rank of ρM is at most ρ times the rank of M.

In this paper, we prove that a maximum weight independent set in ρM contains an
approximate solution of the problem, and that this ratio does not depend on the type of
matroid (unlike [13]):

▶ Theorem 6. LetM = (V, I) be a matroid and let f be a coverage function on V of frequency
bounded by µ. Let V ′ be a maximum weight independent set in ρM, with respect to the weights
f({v}). Then V ′ contains a 1− (µ− 1)/ρ approximate solution of the matroid-constrained
maximum coverage problem.

The proof of Theorem 6 relies on a reinterpretation of the greedy algorithm (extracting
V ′ in the matroid ρM, i.e., Algorithm 2) as the process of constructing ρ-DBSes in a series
of contracted matroids of M (see Algorithm 1). These DBSes that appear during the
construction of the kernel can then be used for random sampling purposes, allowing us to
generalize the argument of [18] for uniform matroids to any matroid (details in Section 3).
▶ Remark 7. The simplicity of our characterization of the kernel implies that our kernelization
process can be easily turned into a streaming algorithm, as in [13]. In fact, assuming that
the matroid as well as the cover function is provided to the algorithm as oracles, maintaining
a maximum weight independent set in ρM with respect to the weights f({v}) can be done
in streaming using O(ρ · k) memory.

By taking the appropriate value ρ = ⌈(µ−1)/ε⌉ and performing a bruteforce enumeration
on the approximate kernel described in Theorem 6 (that kernel would be of size ρ·k = O(k·µ/ε)
and could be extracted in polynomial time, assuming that an independence oracle for M
and an oracle for f are given), we obtain an FPT-AS, extending the result of [18]:

1 An α-approximate kernel [17, 18] for some parameterized optimization problem is a pair of polynomial
time algorithms A, the reduction algorithm, and B, the solution lifting algorithm, such that (i) given an
instance (x, κ(x)), A produces another instance (x′, κ(x′)) such that |x′|, κ(x′) are bounded by g(κ(x))
and (ii) given a β approximate solution S′ for (x′, κ(x′)), B produces a solution S of (x, κ(x)) such
that S is an αβ approximate solution for (x, κ(x)). In the following we will use the terms “kernel” and
“approximate kernel” interchangeably, dropping the adjective.
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▶ Corollary 8. There exists an algorithm that computes a 1− ε approximate solution of the
matroid-constrained maximum coverage in (µ/ε)O(k) · |V |O(1) time.

To see the interest of this result, we note that if the only parameter is the rank k of the
matroid, one cannot obtain in FPT time an approximation ratio better than 1 − 1/e + ε

(assuming GAP-ETH) for a general coverage function [19], even if the matroid is the simplest
uniform matroid. In contrast, our result shows that it is possible to break through this lower
bound and get arbitrarily close to 1 for an arbitrary matroid when the frequency of the
coverage function is bounded. We also emphasize here that the randomization is only used
in the analysis; our algorithm itself is deterministic.

An important special case of Theorem 6 is when µ = 2, which corresponds to the
matroid-constrained vertex cover problem, and for which we have:

▶ Corollary 9. Let M = (V, I) be a matroid and let G = (V, E) be a weighted graph. Let V ′

be a maximum weight independent set in ρM, with respect to the weighted degrees degw(v).
Then V ′ contains a 1 − 1/ρ approximate solution of the matroid-constrained vertex cover
problem.

This extends and improves the previous kernelization results for this problem [13, 18].
In fact, in [18] the 1− 1/ρ approximation is attained for the union of ρ uniform matroids,
and in [13] that ratio is attained either for the union of ρ partition matroids, 2 · ρ laminar
matroids, or ρ + k − 1 (reduced later to ρ in [16]) transversal matroids.

2 Density-Balanced Subsets

Let us start with some definitions. Given a finite set V , a matroid is a pair M = (V, I)
where I ⊆ P(V ) is a family of subsets in V that satisfies the following three conditions: (1)
∅ ∈ I, (2) if X ⊆ Y ∈ I, then X ∈ I, and (3) if X, Y ∈ I, |Y | > |X|, then there exists an
element e ∈ Y \X so that X ∪ {e} ∈ I.

The set V is called the ground set of the matroid and the elements of I are called the
independent sets. Matroids terminology borrows concepts from vector spaces as well as graph
theory. The rank of a subset X ⊆ V is defined as rankM(X) = maxY ⊆X, Y ∈I |Y |; the rank
of a matroid is defined as rankM(V ). The span of a subset X ⊆ V in the matroid M is
defined as spanM(X) = {x ∈ V : rankM(X ∪ {x}) = rankM(X)}, and these elements in
the span are called spanned by X in M. A subset C ⊆ V is a circuit if C is a minimal
non-independent set, i.e., for every v ∈ C, C\{v} ∈ I. An element in V that is a circuit by
itself is called a loop. For more details about matroids, we refer the reader to [23].

We recall the definition of a restriction and a contraction of a matroid. Performing such
operation on a matroid results in another matroid.

▶ Definition 10 (Restriction). Let M = (V, I) be a matroid, and let V ′ ⊆ V be a subset.
Then we define the restriction of M to V ′ as M|V ′ = (V ′, I ′) where I ′ = {S ⊆ V ′ : S ∈ I}

▶ Definition 11 (Contraction). Let M = (V, I) be a matroid, and let U be a subset of
V . Then we define the contracted matroid M/U = (V \U, IU ) so that, given a maximum
independent subset BU of U , IU = {S ⊆ V \U : S ∪ BU ∈ I}.

It is well-known that any choice of BU produces the same IU , as a result the definition of
contraction is unambiguous. The following proposition comes directly from the definition.

▶ Proposition 12. Let M = (V, I) be a matroid and let A ⊆ B ⊆ V . Then we have
rankM/A(B\A) = rankM(B)− rankM(A).

ESA 2023
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In this paper, we use the notion of density of a subset in a matroid. We can observe from
that definition that the density of a non-empty set is always larger or equal to one.

▶ Definition 1. Let M = (V, I) be a matroid. The density of a subset U ⊆ V in M is
defined as

ρM(U) = |U |
rankM(U) .

The density of an empty set is set to 0, and the density of a non-empty set of rank 0 is +∞.

We now introduce the notion of Density-Balanced Subset (DBS).

▶ Definition 2. Let M = (V, I) be a matroid, and ρ be a positive integer. A subset V ′ ⊆ V

is called a ρ-DBS in M if ρM(V ′) = ρ and for all U ⊆ V ′, ρM(U) ≤ ρ.

Here is a theorem due to Edmonds [5] that will allow us to get another characterization
of Density-Balanced Subsets.

▶ Theorem 13 (Theorem 1 in [5]). The elements of a matroid M can be partitioned into as
few as ρ sets, each of which is independent, if and only if there is no subset A of elements of
M for which |A| > ρ · rankM(A).

▶ Proposition 14. Let M = (V, I) be a matroid. If V ′ is a ρ-DBS for some positive integer
ρ, then there exist ρ independent sets B1, . . . , Bρ such that V ′ = B1 ∪ · · · ∪Bρ. Conversely,
if a set V ′ of density ρ can be partitioned into ρ independent sets B1, . . . , Bρ, then V ′ is a
ρ-DBS.

Proof. Consider the matroid M|V ′, i.e., the restriction of M to V ′. By Theorem 13, as the
density of any set A ⊆ V ′ is bounded by ρ, V ′ can be partitioned into ρ independent sets
B1, . . . , Bρ. Conversely, if V ′ can be partitioned into ρ independent sets B1, . . . , Bρ, then by
Theorem 13 the density of any set A ⊆ V ′ is bounded by ρ. As we assumed ρM(V ′) = ρ, V ′

is a ρ-DBS. ◀

In DBSes, the notion of uniform random sampling can be properly extended.

▶ Proposition 3. Let M = (V, I) be a matroid, V ′ ⊆ V be a ρ-DBS for some positive integer
ρ, and k = rankM(V ′). There exists a procedure to sample randomly from V ′ an independent
set of k elements S = {s1, . . . , sk} ∈ I such that:

(i) for all v ∈ V ′, P[v ∈ S] = 1/ρ;
(ii) for all T ⊆ V ′, P[T ⊆ S] ≤

∏
v∈T P[v ∈ S] = 1/ρ|T |.

Proof. By Proposition 14, we can write V ′ = B1 ∪ · · · ∪Bρ for some disjoint independent
sets. Hence we obtain (denoting 1U the indicator vector of the set U):

1
ρ
1V ′ = 1

ρ

ρ∑
i=1

1Bi
∈ P (M),

where P (M) = conv{1S : S ∈ I} = {x ∈ [0, 1]V : ∀S ⊆ V,
∑

v∈S xv ≤ rankM(S)} denotes
the matroid polytope of M. Therefore we can apply the randomized rounding algorithm
developed in [4] to the vector 1

ρ1V ′ to get an integral vector X = 1S ∈ {0, 1}V such that
S ⊆ V ′ is a maximum independent set and

(i) for all v ∈ V ′, P[v ∈ S] = E[Xv] = 1/ρ;
(ii) for all T ⊆ V ′, P[T ⊆ S] = E[

∏
v∈T Xv] ≤

∏
v∈X E[Xv] =

∏
v∈T P[v ∈ S] = 1/ρ|T |.

This concludes the proof. ◀
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Conversely we also have the following proposition.

▶ Proposition 15. Let V ′ a set of integer density ρ in which independent sets can be sampled
randomly so that each element has probability 1/ρ of being sampled, then V ′ is a ρ-DBS.

Proof. In fact, if there exists U ⊆ V ′ such that ρM(U) > ρ, then an algorithm sampling each
element in V ′ with probability 1/ρ would take in expectation strictly more than rankM(U)
elements in U , meaning that some of those sampled set violate the rank constraint on U . ◀

Another useful property of DBSes is that after a matroid contraction we can still recover
in a ρ-DBS V ′ a smaller V ′′ while preserving the rank of V ′ in the contracted matroid:

▶ Proposition 16. Let M = (V, I) be a matroid, and V ′ be a ρ-DBS in M for some positive
integer ρ. Let A ⊆ V such that V ′ ̸⊆ spanM(A). Then there exists a subset V ′′ ⊆ V ′ such
that:

(i) V ′′ is a ρ-DBS in M/A;
(ii) rankM/A(V ′′) = rankM/A(V ′\A).

Proof. Using Proposition 14, we know that V ′ = B1 ∪ · · · ∪Bρ for some disjoint independent
sets B1, . . . , Bρ, each of cardinality rankM(V ′) (because V ′ has density ρ, so it contains
ρ · rankM(V ′) elements, and each independent set is made of at most rankM(V ′) elements),
and each of them spanning V ′ in M. As a result, for all i ∈ {1, . . . , ρ} we also have
V ′\A ⊆ spanM/A(Bi\A), hence rankM/A(Bi\A) = rankM/A(V ′\A) and thereby there exists
B′

i ⊆ Bi\A such that B′
i is independent in M/A and |B′

i| = rankM/A(V ′\A). Hence V ′′ =
B′

1 ∪ · · · ∪B′
ρ is a set of rank equal to rankM/A(V ′\A) inM/A, contains ρ · rankM/A(V ′\A)

elements, and can be partitioned into ρ independent sets, therefore, by Proposition 14, V ′′ is
a ρ-DBS in M/A with rankM/A(V ′′) = |B′

1| = · · · = |B′
ρ| = rankM/A(V ′\A). ◀

The following propositions are about matroid contraction and densest subsets. The next
proposition states how the density is changed after a matroid contraction.

▶ Proposition 17. Let M = (V, I) be a matroid. If A ⊆ B ⊆ V and U ⊆ V \B we have
ρM/A(U) ≤ ρM/B(U), assuming that ρM/A(U) < +∞.

Proof. We have rankM/A(U) ≥ rankM/B(U), while the cardinality |U | remains the same. ◀

Now we give some results regarding densest subsets, which are closely related to Density-
Balanced Subsets, as a densest subset in a matroid is automatically a DBS.

▶ Proposition 18. Let M = (V, I) be a matroid, and ρ be a positive integer. Let V ′ ⊆ V . If
maxU⊆V ′ ρM(U) < ρ, then for any v ∈ V \V ′, maxU⊆V ′∪{v} ρM(U) ≤ ρ.

Proof. Consider U ⊆ V ′, U ̸= ∅. As ρM(U) < ρ, we know that |U | ≤ ρ · rankM(U) − 1
(because ρ · rankM(U) is an integer). Therefore we have

ρM(U ∪ {v}) ≤ |U |+ 1
rankM(U) ≤

ρ · rankM(U)− 1 + 1
rankM(U) = ρ,

which concludes the proof. ◀

▶ Proposition 19. Let M = (V, I) be a matroid, V ′ be a subset of V , and let B be a subset
that reaches the maximum density ρ∗ < +∞ in V ′. Then given any A ⊊ B, ρM/A(B\A) ≥ ρ∗.

ESA 2023
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Proof. If rankM/A(B\A) = 0 then ρM/A(B\A) = +∞ and we are done; otherwise, by
Proposition 12:

ρM(B) =
rankM(A) · ρM(A) + rankM/A(B\A) · ρM/A(B\A)

rankM(A) + rankM/A(B\A) ,

hence ρM(B) is a weighted average of ρM(A) and ρM/A(B\A). As ρM(A) ≤ ρ∗ (by definition
of ρ∗), it implies that ρM/A(B\A) ≥ ρ∗. ◀

The following proposition states that the densest subsets are closed under union, thus
proving the uniqueness of the maximum cardinality densest subset – that property will be
useful in Algorithm 1 (Section 3).

▶ Proposition 20. Let M = (V, I) be a matroid, and V ′ ⊆ V . Let ρ∗ = maxU⊆V ′ ρM(U) <

+∞. Then given any two subsets W1, W2 in V ′ of density ρ∗, ρM(W1 ∪W2) = ρ∗.

Proof. If W1 ⊆W2, then the proposition is trivially true. So assume that W1\W2 ̸= ∅, and
we can observe that

ρ∗ ≤ ρM/(W1∩W2)(W1\(W1 ∩W2)) ≤ ρM/W2(W1\(W1 ∩W2)),

where the first inequality uses Proposition 19 and the second uses Proposition 17. As a
result, by the facts that ρM(W2) = ρ∗ and that ρM/W2(W1\(W1 ∩W2)) ≥ ρ∗, we obtain
ρM(W1 ∪W2) ≥ ρ∗ (using a weighted average argument as in Proposition 19). Hence we
have ρM(W1 ∪W2) = ρ∗. ◀

▶ Proposition 21. Let M = (V, I) be a matroid, and V ′ ⊆ V a non-empty set. Let A be the
largest densest subset in V ′. Then for any B ⊆ V ′\A, we have ρM/A(B) < ρM(A).

Proof. We proceed by contradiction. Suppose that there exists B ⊆ V ′\A such that
ρM/A(B) ≥ ρM(A). Then it implies that

ρM(A ∪B) = ρM(A) · rankM(A)
rankM(A) + rankM/A(B) +

ρM/A(B) · rankM/A(B)
rankM(A) + rankM/A(B) ≥ ρM(A),

contradicting the hypothesis that A was the largest densest set in V ′. ◀

3 Matroid-Constrained Maximum Coverage

Here we will use a slightly different formalization of the coverage function, based on edge-
weighted hypergraphs (compared to the one given in the introduction), but it is straightforward
to see that these formalizations are equivalent. Let G = (V, E) be a hypergraph, V being a set
of vertices and E being a set of hyper-edges, i.e., an element e ∈ E is a subset of V . We denote
n = |V |. Let w : E → R+ be a weight function on the hyper-edges. We extend this function
to any set of hyper-edges by setting for any A ⊆ E, w(A) =

∑
e∈A w(e). For a vertex v ∈ V ,

we denote δ(v) the set of its set of incident hyper-edges, namely, δ(v) = {e ∈ E : v ∈ e}, and
degw(v) its weighted degree, namely, degw(v) = w(δ(v)). The frequency of a hyper-edge e is
defined as the number of vertices for which e appears in δ(v), namely, |e|. The hypergraph
G will be said of bounded frequency µ if all its hyper-edges have frequencies bounded by µ.
For two sets of vertices S, T we denote by E(S, T ) the set of hyper-edges having at least
one endpoint in each set S and T , namely, E(S, T ) = {e ∈ E : e ∩ S ̸= ∅, e ∩ T ̸= ∅}. For
conciseness we will denote E(S) = E(S, S).
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LetM = (V, I) be a matroid on the ground set V . In the matroid-constrained maximum
coverage problem, we are asked to find a set of vertices S ⊆ V that is independent in
the matroid M (i.e., S ∈ I) and that maximizes the total weight of the covered hyper-
edges, namely, an element of arg maxS∈I w(E(S)). The problem can be solved exactly by
the standard greedy algorithm if µ = 1 [6], so in the following we will assume that our
hypergraph has a bounded frequency of µ ≥ 2. Observe that the case µ = 2 corresponds to
the matroid-constrained vertex cover, studied in [13].

Here we want to construct a kernel that contains a good approximation of the optimal
solution of the maximum coverage problem under a matroid constraint. We will start by
describing a procedure to build the kernel that will be convenient for the analysis, and then
we will show that this algorithm turn out to be equivalent to the one of Theorem 6. We build
our kernel V ′ as follows. Let ρ be a fixed positive integer. Start with an empty set V ′, and
an auxiliary set C that is also empty at the beginning. Process the elements vi ∈ V in the
order of non-increasing weighted-degrees. If the element vi is not spanned by V ′ at that time
we add that element to C, we check whether C contains a set of density larger or equal to ρ

with respect to the matroid M/V ′. If this is the case, then we consider that largest densest
subset X in C with respect to M/V ′, we add that set into V ′ and remove that set from C

(note that, because of Proposition 20, the largest densest set X is well-defined). When the
main loop terminates, the set C is also added into V ′. A formal description of this procedure
is provided in Algorithm 1.

Algorithm 1 Algorithm for building a maximum coverage approximate kernel.

1: V = {v1, . . . , vn} where degw(v1) ≥ · · · ≥ degw(vn)
2: V ′ ← ∅, C ← ∅
3: for i = 1, . . . , n do ▷ vertices are processed in non-increasing order of weighted degree
4: if vi ∈ spanM(V ′) then
5: continue ▷ vi is ignored if already spanned by V ′

6: C ← C ∪ {vi}
7: let X be the largest densest subset in C with respect to the matroid M/V ′

8: if ρM/V ′(X) ≥ ρ then
9: C ← C\X

10: V ′ ← V ′ ∪X

11: V ′ ← V ′ ∪ C

12: return V ′

▷ Claim 22. In Algorithm 1, at the end of each iteration of the loop, for all U ⊆ C,
ρM/V ′(U) < ρ. Moreover, when the condition at Line 8 is true, we have ρM/V ′(X) = ρ.

Proof. We prove these two properties by induction. In the first iteration of the algorithm,
both properties are clearly true. Suppose that during the ith iteration both properties are
satisfied. It means that at the beginning of the (i + 1)st iteration the densest subset in C

is of density strictly smaller than ρ, hence Proposition 18 implies that the densest subset
after inserting vi+1 in C cannot be of density strictly larger than ρ. This implies the second
property for the (i + 1)st iteration. Regarding the first property,

if condition at Line 8 is false, then the first property is clearly satisfied;
if condition at Line 8 is true, then the preceding discussion implies that the largest
densest subset X removed from C has density ρ, and therefore, by Proposition 21, the
first property is satisfied.

This concludes the proof. ◁
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The set V ′ can be decomposed as follows:

V ′ = X1 ∪ · · · ∪Xr ∪R (1)

where the Xis represent the largest densest subsets X that were added through the execution
of the algorithm (at Line 10), labeled in the order they were added, and R represents the set
of remaining elements coming from C that were added after termination of the main loop
(at Line 11). As each Xi is a densest subset of density ρ in M/(

⋃i−1
j=1 Xj), each set Xi is a

ρ-DBS in the matroid M/(
⋃i−1

j=1 Xj).
Now we can prove the following important lemma, which states that the set V ′ built

by Algorithm 1 is an approximate kernel, i.e., a small subset of V containing a good
approximation of the optimal solution:

▶ Lemma 23. Let V ′ be the kernel built in Algorithm 1, and let O be an optimal solution.
Then V ′ contains an independent set S such that w(E(S)) ≥ (1− (µ− 1)/ρ) · w(E(O)).

Proof. Let O ∈ I be an optimal solution. We denote Oin = O ∩ V ′, Oout = O\Oin. As
in [13, 18], we want to sample randomly an independent set S ⊆ V ′ so that we have an
inequality in expectation, implying that some set satisfying that same inequality actually
exists:

E[w(E(S))] ≥ (1− (µ− 1)/ρ) · w(E(O)).

To sample S, we will do the following. For i = 1, . . . , r, using Proposition 16, consider
X ′

i ⊆ Xi a ρ-DBS in M/(Oin ∪
⋃i−1

j=1 Xj) of rank ki = rankM/(Oin∪
⋃i−1

j=1
Xj)(Xi) (if Xi

is spanned by Oin ∪
⋃i−1

j=1 Xj in M, then we just set X ′
i = ∅ and ki = 0). From that

set X ′
i, using Proposition 3, we sample an independent set Si = {si,1, . . . , si,ki

} ⊆ X ′
i in

M/(Oin ∪
⋃i−1

j=1 Xj) such that:
(i) for all v ∈ X ′

i, P[v ∈ Si] = 1/ρ;
(ii) for all v, v′ ∈ X ′

i such that v ̸= v′, P[v ∈ Si ∧ v′ ∈ Si] ≤ 1/ρ2.
Then we set S = Oin ∪

⋃r
i=1 Si. We denote S̃ =

⋃r
i=1 Si and V ′′ =

⋃r
i=1 X ′

i. The Sis are
sampled independently.

▷ Claim 24. The set S sampled using the aforementioned method is always independent in
M. Moreover,

(i) for all v ∈ V ′′, P[v ∈ S̃] = 1/ρ;
(ii) for all v, v′ ∈ V ′′ such that v ̸= v′, P[v ∈ S̃ ∧ v′ ∈ S̃] ≤ 1/ρ2.

Proof. We prove by induction on i that Oin ∪
⋃i

j=1 Sj is independent in M. For i = 0 this
is clearly true, as Oin is a subset of O, which is an independent set in M. Suppose that the
property is true for some i < r. Then it means that Oin∪

⋃i
j=1 Sj is an independent set inM.

We know that for any sampling in X ′
i+1, the set Si+1 is independent is M/(Oin ∪

⋃i
j=1 Xj),

so it is also independent in M/(Oin ∪
⋃i

j=1 Sj) (as Oin ∪
⋃i

j=1 Sj ⊆ Oin ∪
⋃i

j=1 Xj) and
therefore Oin ∪

⋃i+1
j=1 Sj is independent in M.

Then, for property (i), consider some v ∈ V ′′. There exists a unique i so that v ∈ Xi

(as the Xis are disjoint). Hence from the properties of the sampling of Si we know that
P[v ∈ Si] = 1/ρ, hence P[v ∈ S̃] = 1/ρ. For property (ii), if v and v′ are in the same Xi,
then the way Si is sampled guarantees that P[v ∈ S̃ ∧ v′ ∈ S̃] ≤ 1/ρ2. Otherwise, the choices
of v and v′ are independent, i.e., P[v ∈ S̃ ∧ v′ ∈ S̃] = 1/ρ2. ◁

For i = 1, . . . , r, let Oout
i = Oout ∩ (spanM(

⋃i
j=1 Xj)\spanM(

⋃i−1
j=1 Xj)).
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▷ Claim 25. We have Oout = Oout ∩ spanM(
⋃r

i=1 Xi) =
⋃r

i=1 Oout
i .

Proof. The second part of the equality is straightforward, so we focus on the first part.
Consider v ∈ O\spanM(

⋃r
i=1 Xi). It means that when v is processed in Algorithm 1, that

element cannot be discarded by the condition in Line 4, because at that time V ′ =
⋃i

j=1 Xj

for some i and therefore v is not spanned by V ′: that element is thereby added to C. Hence
v is added to V ′ in the end (Line 11) and v ∈ Oin (more precisely, v ∈ O ∩ R, using the
notation of equation (1)). ◁

▷ Claim 26. For all v ∈ Oout
i , for all v′ ∈ Xj such that j ≤ i, we have degw(v) ≤ degw(v′).

Proof. The element v ∈ Oout
i has been discarded after the sets X1, . . . , Xi were built (other-

wise it would not have been spanned by V ′, see Line 4), therefore these sets only contain
elements having larger or equal weighted degrees. ◁

▷ Claim 27. For all 1 ≤ i ≤ r, we have |
⋃i

j=1 Oout
j | ≤

∑i
j=1 kj .

Proof. The set
⋃i

j=1 Oout
j is independent in M/Oin and as it is in spanM(

⋃i
j=1 Xj),

it is in spanM/Oin(
⋃i

j=1 Xj). Then we obtain |
⋃i

j=1 Oout
j | ≤ rankM/Oin(

⋃i
j=1 Xj) =∑i

j=1 rankM/(Oin∪
⋃j−1

l=1
Xl)(Xj) =

∑i
j=1 kj , where in the first equality we used Proposi-

tion 12 multiple times. ◁

Now we index the elements in Oout = {o1, . . . , o|Oout|} so that Oout
1 = {o1, . . . , o|Oout

1 |},
Oout

2 = {o|Oout
1 |+1, . . . , o|Oout

1 |+|Oout
2 |}, and so on. Similarly, we index the elements of S̃ =

{s1, . . . , s∑r

i=1
ki
} so that s1 = s1,1, . . . , sk1 = s1,k1 , sk1+1 = s2,1, . . . , sk1+k2 = s2,k2 , and so

on.
In the following, we will say that the element si “replaces” the element oi.

▷ Claim 28. For all 1 ≤ i ≤ |Oout|, we have degw(oi) ≤ degw(si).

Proof. Because of Claim 27, an element oi ∈ Oout
j is replaced by si ∈ Xj′ for some j′ ≤ j.

As a result, by Claim 26, we know that we always have degw(oi) ≤ degw(v) for any v ∈ Xj′ .
As si is drawn from Xj′ we obtain the desired result. ◁

Then, as S = Oin ∪ S̃, we have:

w(E(S)) = w(E(Oin)) + w(E(S̃))− w(E(Oin, S̃)).

We bound E[w(E(Oin, S̃))] as follows. By construction, P[v′ ∈ V ′′] = 1/ρ for all v′ ∈ V ′′.
Then we have

E[w(E(Oin, S̃))] =
∑

e∈E(Oin)

w(e) · P[e ∩ S̃ ̸= ∅]

≤
∑

e∈E(Oin)

[
w(e) ·

( ∑
v′∈e∩V ′′

P[v′ ∈ S̃]
)]

by union-bound

=
∑

e∈E(Oin)

w(e) · |e ∩ V ′′| · 1/ρ as P[v′ ∈ S̃] = 1/ρ, ∀v′ ∈ V ′′

≤
∑

e∈E(Oin)

w(e) · (µ− 1) · 1/ρ as |e ∩ V ′′| ≤ µ− 1

= (µ− 1)/ρ · w(E(Oin)).
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Furthermore, the value w(E(S̃)) can be rearranged as follows:

w(E(S̃)) =
∑

e∈E(S̃)

∑
v∈e∩S̃

w(e)
|e ∩ S̃|

=
∑
v∈S̃

∑
e∈δ(v)

w(e)
|e ∩ S̃|

=
∑
v∈S̃

∑
e∈δ(v)

((
1− |e ∩ S̃| − 1

|e ∩ S̃|

)
· w(e)

)
=
∑
v∈S̃

degw(e)−
∑

e∈δ(v)

|e ∩ S̃| − 1
|e ∩ S̃|

· w(e)

 .

Hence E[w(E(S̃))] can be written as

E[w(E(S̃))] = E

∑
v∈S̃

degw(v)

− E

∑
v∈S̃

∑
e∈δ(v)

|e ∩ S̃| − 1
|e ∩ S̃|

· w(e)

 . (2)

We will then focus on upper-bounding the second term, which captures the extent to which
edges are counted multiple times in the first term of the sum. We have

E

∑
v∈S̃

∑
e∈δ(v)

|e ∩ S̃| − 1
|e ∩ S̃|

· w(e)


≤ E

 ∑
v∈V ′′

∑
e∈δ(v)

w(e) · 1[v ∈ S̃ ∧ |e ∩ S̃| ≥ 2]


=
∑

v∈V ′′

∑
e∈δ(v)

w(e) · P[v ∈ S̃ ∧ |e ∩ S̃| ≥ 2]

≤
∑

v∈V ′′

∑
e∈δ(v)

w(e) ·

 ∑
v′∈e∩V ′′\{v}

P[v ∈ S̃ ∧ v′ ∈ S̃]

 by union-bound

≤
∑

v∈V ′′

∑
e∈δ(v)

w(e) ·

 ∑
v′∈e∩V ′′\{v}

1/ρ2

 by Claim 24

≤
∑

v∈V ′′

∑
e∈δ(v)

w(e) ·
(
(µ− 1) · 1/ρ2) as |e ∩ V ′′\{v}| ≤ µ− 1

= (µ− 1)
∑

v∈V ′′

1/ρ2 · degw(v)

= (µ− 1)/ρ · E

∑
v∈S̃

degw(v)

 . as P[v ∈ S̃] = 1/ρ, ∀v ∈ V ′′

where for the first inequality we apply the worst possible coefficient (namely, 1 ≥ (µ− 1)/µ)
each time e is covered more than once by S̃, and for the second inequality we use a union
bound, namely, P[v ∈ S̃ ∧ |e ∩ S̃| ≥ 2] ≤

∑
v′∈e∩V ′′\{v} P[v ∈ S̃ ∧ v′ ∈ S̃]. As a result,

combining with (2), we obtain

E[w(E(S̃))] ≥ (1− (µ− 1)/ρ) · E

∑
v∈S̃

degw(v)

 .

Then this can be compared to w(E(Oout)) as we have

E

∑
v∈S̃

degw(v)

 ≥ E

|Oout|∑
i=1

degw(si)

 ≥ |Oout|∑
i=1

degw(oi) ≥ w(E(Oout)),
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where we use Claim 27 for the first inequality (for i = r, i.e., |S̃| ≥ |Oout|), Claim 28 in the
second inequality, and then we use that the sum of the weighted degrees is always greater
than the actual weight of covered hyper-edges (because the hype-edges may be counted
multiple times in the sum of the weighted degrees) for the last one.

As a result, we finally get:

E[w(E(S))] ≥ w(E(Oin)) + (1− (µ− 1)/ρ) · w(E(Oout))− (µ− 1)/ρ · w(E(Oin))
≥ (1 − (µ − 1)/ρ) · w(E(O)).

Therefore by averaging principle, there exists S∗ ⊆ V ′ such that S∗ ∈ I and w(E(S∗)) ≥
(1− (µ− 1)/ρ) · w(E(O)). ◀

Now we give another interpretation of Algorithm 1 in terms of matroid union, which
allows us to give a simpler description of the kernel V ′. First recall the definition of matroid
union:

▶ Definition 5. Let M = (V, I) be a matroid. Then we can define ρM = (V, Iρ) as the
union of ρ matroids M, as follows: S ∈ Iρ if S can be partitioned into S1 ∪ · · · ∪ Sρ so that
for all i we have Si ∈ I.

In Algorithm 2 we provide a simpler description of Algorithm 1 (the equivalence of the
two algorithms is proved in Proposition 29).

Algorithm 2 Algorithm for building a maximum coverage approximate kernel.

1: V = {v1, . . . , vn} where degw(v1) ≥ · · · ≥ degw(vn)
2: V ′ ← ∅
3: for i = 1, . . . , n do ▷ vertices are processed in non-increasing order of weighted degree
4: if V ′ ∪ {vi} ∈ Iρ then
5: V ′ ← V ′ ∪ {vi}
6: return V ′

▶ Proposition 29. Algorithm 1 and Algorithm 2 build the same kernel V ′. Moreover, V ′ is
a maximum weight independent set in ρM with respect to the weighted degrees.

Proof. To prove the first part of the proposition, it suffices to prove that the condition in
Line 4 of Algorithm 1 is equivalent to check whether V ′ ∪ C ∪ {vi} is or is not in Iρ (if so,
then V ′ ∪ C in Algorithm 1 plays the role of V ′ in Algorithm 2).

Using the decomposition in equation (1), we know that when vi is processed and we check
the condition in Line 4 of Algorithm 1, we have V ′ = X1 ∪ · · · ∪Xj for some j ∈ {0, . . . , r}.
We know that each Xl is a ρ-DBS in M/(

⋃l−1
l′=1 Xl′), hence each one can be partitioned

into ρ independent sets Bl,1, . . . , Bl,ρ in M/(
⋃l−1

l′=1 Xl′), all of size rankM/(
⋃l−1

l′=1
Xl′ )(Xl).

Therefore,

V ′ = (B1,1 ∪ · · · ∪Bj,1)︸ ︷︷ ︸
B1

∪ · · · ∪ (B1,ρ ∪ · · · ∪Bj,ρ)︸ ︷︷ ︸
Bρ

can be partitioned into ρ independent sets in M, each of size rankM(V ′). Now, regarding
condition in Line 4 of Algorithm 1:
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If vi ∈ spanM(V ′), as V ′ is a set containing ρ · rankM(X) elements, the set V ′ ∪{vi} will
contain ρ · rankM(X) + 1 elements while still being of rank equal to rankM(V ′): hence it
is not possible to partition V ′ ∪ {vi} into ρ independent sets (as each one can contain up
to rankM(V ′) elements), so V ′ ∪ C ∪ {vi} ̸∈ Iρ.
Otherwise, by Claim 22, the densest subset in C with respect to the matroid M/V ′ is
of density strictly below ρ, hence, by Proposition 18, the densest subset in C ∪ {vi} is
of density at most ρ. We can therefore use Theorem 13 to partition C ∪ {vi} into ρ

independent sets C1, . . . , Cρ in M/V ′, hence V ′ ∪C ∪ {vi} = (B1 ∪C1)∪ · · · ∪ (Bρ ∪Cρ)
can be partitioned into ρ independent subsets, i.e., V ′ ∪ C ∪ {vi} ∈ Iρ.

Therefore Algorithms 1 and 2 build the very same approximate kernel V ′. As Algorithm 2
is simply the greedy algorithm to build a maximum weight independent set in the matroid
ρM with respect to the weighted degrees (see [6]), V ′ is a maximum weight independent set
in ρM. ◀

▶ Theorem 6. LetM = (V, I) be a matroid and let f be a coverage function on V of frequency
bounded by µ. Let V ′ be a maximum weight independent set in ρM, with respect to the weights
f({v}). Then V ′ contains a 1− (µ− 1)/ρ approximate solution of the matroid-constrained
maximum coverage problem.

Proof. In fact, from the characterization of maximum weight independent sets in [6], any
maximum weight independent set in ρM can be obtained by choosing the right processing
order in Algorithm 2 (i.e., for elements having the same weighted degrees, putting first the
ones we want to pick in our kernel). Hence that kernel would have been built following the
procedure of Algorithm 1, and therefore the result of Lemma 23 applies. ◀
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