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Abstract
We consider the Online Rent Minimization problem, where online jobs with release times, deadlines,
and processing times must be scheduled on machines that can be rented for a fixed length period
of T . The objective is to minimize the number of machine rents. This problem generalizes the
Online Machine Minimization problem where machines can be rented for an infinite period, and
both problems have an asymptotically optimal competitive ratio of O(log(pmax/pmin)) for general
processing times, where pmax and pmin are the maximum and minimum processing times respectively.
However, for small values of pmax/pmin, a better competitive ratio can be achieved by assuming
unit-size jobs. Under this assumption, Devanur et al. (2014) gave an optimal e-competitive algorithm
for Online Machine Minimization, and Chen and Zhang (2022) gave a (3e + 7) ≈ 15.16-competitive
algorithm for Online Rent Minimization. In this paper, we significantly improve the competitive
ratio of the Online Rent Minimization problem under unit size to 6, by using a clean oracle-based
online algorithm framework.
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1 Introduction

Machine Minimization is a classical scheduling problem in combinatorial optimization. We
are given n jobs with release time and deadline to schedule. Each job j has a length pj

and must be assigned to a machine for pj units of time between its release time rj and its
deadline dj . However, in many practical scenarios, such as cloud computing, we may not
need to buy the machines but only rent them for a fixed period of time. This motivates
the Rent Minimization problem, introduced by Saha [12]. In this problem, we are given a
constant T , which represents the duration of a machine rent. The goal is to minimize the
number of rents we make to process all jobs within their deadlines.

Another related formulation, inspired by nuclear weapon testing, is the Calibration
problem, proposed by Bender et al. [3]. In this problem, we are given m machines and a
set of jobs that must be completed feasibly. However, before using a machine, we need to
calibrate it. Each calibration, similar to a rent, activates the machine for a time period of T .
The goal is to minimize the number of calibrations to process all jobs on time. The main

© Enze Sun, Zonghan Yang, and Yuhao Zhang;
licensed under Creative Commons License CC-BY 4.0

31st Annual European Symposium on Algorithms (ESA 2023).
Editors: Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman; Article No. 97;
pp. 97:1–97:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sunenze@connect.hku.hk
mailto:fstqwq@sjtu.edu.cn
mailto:zhang_yuhao@sjtu.edu.cn
https://doi.org/10.4230/LIPIcs.ESA.2023.97
https://arxiv.org/abs/2306.17241
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


97:2 Improved Algorithms for Online Rent Minimization Problem Under Unit-Size Jobs

difference between the Calibration and the Rent Minimization problems is that the former
restricts us to have at most m machines working in parallel at any given time, while the
latter does not have such a constraint. Therefore, the Rent Minimization problem can be
regarded as a special case of the Calibration problem when m =∞.

On the other hand, in the cloud rental scenario and many other practical applications,
the computing requests usually increase over time and can be modeled as online released
jobs. Therefore, we investigate the problem in an online setting. We do not have any prior
knowledge about the jobs before their release time, and need to schedule jobs and rent
machines online and irrevocably over time. The goal is to minimize the total number of rents
for scheduling all jobs. Note that the online generalization is also studied in the Calibration
problem by Chen and Zhang [5]. To ensure that online algorithms can schedule all jobs,
they also assume m =∞ in their model, which coincides with the Online Rent Minimization
model.

Why consider unit-size jobs? Saha [12] proposes an O(log (pmax/pmin))-competitive al-
gorithm for the Online Machine Minimization problem. By paying a constant factor, it
can be extended to an O(log (pmax/pmin))-competitive algorithm for the Online Rent Min-
imization problem. (pmax and pmin are the longest and shortest processing time among
all jobs.), which was proved to be the best competitive ratio asymptotically. However,
in many real-world applications, one company usually receives similar length requests, so
the ratio between pmax and pmin may not be too large; and it is worthwhile to reduce the
constant factor of the ratio when pmax/pmin is small. To this end, we focus on the special
case of unit-size jobs (i.e., all pj = 1). Note that by partitioning jobs by their length into
log(pmax/pmin) groups, the α-competitive unit-size algorithm can be extended to a roughly
(3α log (pmax/pmin))-competitive algorithm in the general case.

The unit-size special case has also been considered in the Online Machine Minimization
problem [5, 8, 10]. Devanur et al. [8] present an e-competitive algorithm for the Online
Machine Minimization problem under unit-size jobs (though earlier work by Bansal et al.
[2] implies the same result), and it is the optimal ratio among all deterministic algorithms.
Current best lower bound of the online renting problem under unit-size jobs is also e since it
is a generalized model. On the positive side, Chen and Zhang [5] study the online renting
problem under unit-size jobs. They improve the implicit constant ratio by Saha [12] to
3e + 7 ≈ 15.16. In their algorithm, jobs are distinguished by whether they are long or short
based on the length of their time window (i.e., dj − rj) and are handled separately. Our
paper significantly improves the competitive ratio to 6 with a cleaner oracle-based algorithm
without identifying whether jobs are short or long.

▶ Theorem 1. There exists an efficient 6-competitive algorithm for the online renting
problems under unit-size jobs.

Our techniques. In the work of Chen and Zhang [5], they rent machines for long and short
jobs separately; as a result, their final competitive ratio is the sum of two cases, which makes
the ratio large. The technical reason behind this result is that they use the e-competitive
Online Machine Minimization algorithm by Devanur et al. [8] as a black box, which is only
suitable for short jobs. (Roughly speaking, it is because we can view T =∞ when jobs are
short.) Therefore, they must use another approach to handle long jobs.

In our paper, we formalize and extend the Online Machine Minimization algorithm to an
oracle-based framework, instead of using the algorithm as a black box. The oracle-based
framework uses an offline algorithm to guide our online decision. Note that the Online
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Machine Minimization algorithm also uses an efficient offline optimal algorithm as an oracle.
However, we do not know a polynomial offline Rent Minimization algorithm for unit-size jobs.
The main algorithmic novelty is that we find an efficient substitute for the optimal algorithm
to act as a bridge between online decisions and the optimal offline solution. The oracle is
a kind of optimal augmentation algorithm. It is allowed to use a rent length of 3T , and
the rent number is at most OPT with rent length T . It also satisfies some online monotone
properties so that we can control the cost of the online algorithm. Finally, we prove that by
following the offline oracle and paying a factor of 6 online, we can recover the same ability
for scheduling jobs as the offline oracle. This concludes the competitive ratio of 6.

Extension to the model with delay. Chen and Zhang [5] also raise a perspective that
the operation rent (a.k.a. calibration in their paper) needs a non-negative time λ to finish.
We call it Online Rent Minimization with Delay. They propose an (3(e + 1)λ + 3e + 7) ≈
(11.15λ+15.16)-competitive algorithm. We use a black box reduction to extend the algorithm
in Theorem 1 and improve the ratio to 6(λ + 1).

▶ Theorem 2. As a corollary of Theorem 1, there exists an efficient 6(λ + 1)-competitive
algorithm when we need λ time to finish each rent.

Other related works. Offline Machine Minimization is a well-studied and classic model.
Garey and Johnson [9] shows that it is NP-hard. On the algorithm side, Raghavan and
Thompson [11] propose an O( log n

log log n )-approximation algorithm. Later, the ratio has been

improved to O(
√

log n
log log n ) by Chuzhoy et al. [6]. Whether there exists a constant approxima-

tion ratio is still open. Moreover, several special cases are also discussed. Cieliebak et al. [7]
focus on the case that each job’s active time (dj − rj) is small. Yu and Zhang [13] achieve a
ratio of 2 in the equal release time case and a ratio of 6 in the equal processing time case.

Scheduling to minimize the number of calibrations is proposed by Bender et al. [3]. The
general case is NP-hard even for checking feasibility. Under unit-size jobs, Bender et al. give
a 2-approximation algorithm; later, Chen et al. [4] give the first PTAS algorithm. However,
it is worth noting that whether the unit-size special case is polynomially solvable is still open.
Moreover, Angel et al. [1] introduce the concept of delay, which means that each calibration
requires λ time to finish. They study the delay setting on the one-machine special case of
the offline calibration problem and show that it is polynomially solvable.

2 Preliminaries

We first define the models and introduce the basic notations.

Rent Minimization. We have a set of jobs J = {1, · · · , n} and a fixed rent length T . For
job j ∈ J , it has a release time rj , a deadline dj , and a unit processing time pj = 1. Each
job should be assigned to one active machine at an integer time unit [t, t + 1), where t is an
integer such that rj ≤ t ≤ dj − 1. We can rent a machine at any integer time point t. Then
we will have an active machine during [t, t + T ). The objective is to minimize the number of
machine rents to process all jobs in J .

Online Rent Minimization. In the online version, all jobs are released online, and they
become visible at their release time. On the other hand, we need to make rent decisions and
assign jobs online irrevocably. In particular, at an integer time point t, we have:

ESA 2023
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Jobs with release time equal to t become visible.
We can decide to rent a machine at t or any time after that.
We can schedule jobs on active machines during the time unit [t, t + 1) irrevocably.

Notations on Rent Set. We use a multiset I = {[s1, c1), [s2, c2), · · · [si, ci), · · · } to denote
a set of rents, where the i-th rent interval starts at si and is active in [si, ci). Note that ci

always equals si + T when the rent length is T ; however, we use the general notation for
future reference.

Focusing on the time unit [t, t + 1), the number of active units AI(t) is defined as the
number of active machines at time t, which means that we can schedule at most AI(t) jobs
at time t. For a given rent set I, we have AI(t) = |{[si, ci) ∈ I | t ∈ [si, ci)}| . We also extend
the notation for intervals, such that AI(r∗, d∗) =

∑d∗−1
t=r∗ AI(t) is the number of active units

during the time interval [r∗, d∗).

Feasibility of Rent Set. We call a rent set I feasible for J , if we can schedule all jobs in J

on I. We introduce a lemma based on Hall’s Theorem to check whether I is feasible.
For a given jobs set J , we define J(r∗, d∗) = {j ∈ J |r∗ ≤ rj < dj ≤ d∗} to represent the

jobs that must be assigned inside the interval [r∗, d∗).

▶ Lemma 3 (Feasibility). I is feasible for J iff. ∀r∗ ≤ d∗ ∈ N, AI(r∗, d∗) ≥ |J(r∗, d∗)| .

Proof. For any fixed r∗ and d∗, the sum of active units provided by I is AI(r∗, d∗). Each
job released and due between this period must be scheduled on these time slots. If there
exists a pair of r∗ and d∗ such that AI(r∗, d∗) < |J(r∗, d∗)|, there is no feasible assignment
because of the pigeonhole principle. On the other hand, if the inequality holds for all r∗ and
d∗, we can view it as a bipartite matching between jobs and active units. There is a feasible
assignment by Hall’s Theorem. ◀

An Efficient Checker and Scheduler: Earliest Deadline First (EDF). Earliest Deadline
First is a greedy algorithm that can find a feasible assignment for J on I if and only if I is
feasible for J . When we call EDF(J, I), we scan time units from early to late, and assign the
released job with the earliest deadline to a free active machine at the current time unit. If a
job with deadline d cannot find a free active machine at the time unit [d− 1, d), EDF(J, I)
fails, and we call d the fail time of EDF(J, I). Otherwise, EDF(J, I) succeeds. Bender et
al. [3] has already proved that EDF can check the feasibility. It is also worth noting that
EDF can be efficiently implemented in O(n log n) by using a heap, instead of going through
all integer time points directly.

▶ Lemma 4 ([3]). EDF(J, I) succeeds, i.e., it can find a feasible schedule for J on I, if and
only if I is feasible for J .

Using EDF online. Note that we only make comparisons between released jobs. Therefore,
the EDF algorithm can be simulated online : we only need to find a feasible rent set I, and
then EDF can automatically find a feasible assignment online.

3 Oracle-based Online Algorithm Framework

Moving towards online algorithms, one natural way is to use an offline algorithm as an oracle
to suggest the actions of online algorithms. We keep track of this offline algorithm and make
corresponding online decisions when the offline algorithm changes along with the online jobs
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release. Whenever the offline algorithm increases by one at the moment t because of the
change of the job set, the online algorithm performs one Batch-Rent at this time t, which is a
fixed rent scheme that contains Γ machines. Intuitively, we use these Γ machines to catch
up with the one increment of the offline oracle. It is worth noting that the e-competitive
algorithm for Online Machine Minimization follows this approach [8].

In our case, compared to Machine Minimization, we have two main differences in our
oracle-based framework. The first difference is the job set we input to the oracle. Because
of the online fashion, the most natural way is to input the set of all released jobs to the
oracle. In Machine Minimization, it works because T =∞ and earlier rents are always more
powerful; however, this is not true in Rent Minimization. Indeed, too early rents may cause
trouble in Rent Minimization. Intuitively, we are only allowed to make online rent when
the offline oracle reports an increment if we want to bound the competitive ratio in the
framework. Consider the case where T = 10 and two jobs will be due at 100 with release
time 0 and 90. If we report the first job to the offline oracle at 0, the offline oracle will return
one new rent interval. Following the oracle-based framework, we will make Γ online rent
intervals at 0. However, we still need to make more rent intervals at 90, while the offline
oracle may not increase. To this end, we use the job set Jt as the job set we input to the
oracle at time t. A job j is in Jt if it satisfies the following two properties:
1) It is visible at t, i.e., rj ≤ t.
2) It is emergent at (or before) t, i.e., dj ≤ t + T .

Another difference is an augmentation factor α. The oracle is allowed to have αT active
time for each rent. Since the existence of a polynomial time optimal offline algorithm for
Rent Minimization is still unknown, this factor allows us to find an efficient substitute. We
use Oracleα(J, T ) (instead of Oracle(J, αT ), since the target rent length is still T ) to denote
an oracle with augmentation factor α. The framework is formalized in Algorithm 1.

Algorithm 1 Oracle-based Online Algorithm Framework.

procedure OracleBasedOnline(t: time, J : known jobs, T : length of rent)
∆t = |Oracleα(Jt, T )| − |Oracleα(Jt−1, T )| ▷ α is a positive integer
Perform ∆t(if ∆t > 0) Batch-Rent operations at t, consisting of Γ machines that start

at or after t.
schedule jobs at t following EDF(J, I), where I is the current online rent set.

end procedure

Then, we discuss how this framework helps us control the number of rents made by the
online algorithm. First, as a substitute for the optimal offline algorithm, Oracleα needs to
maintain some properties similar to those of the optimal offline algorithm. Second, Batch-Rent
should support the online algorithm to be as powerful as the offline oracle in scheduling all
released jobs. We integrate and formalize these messages in the following lemma.

▶ Lemma 5. Let OPT(J, T ) be the number of rents used by the optimal offline algorithm to
schedule the job set J , Algorithm 1 is Γ-competitive if these three properties are guaranteed:
1) For any job set J , |Oracleα(J, T )| ≤ OPT(J, T );
2) The offline oracle is online monotone: |Oracleα(Jt1 , T )| ≤ |Oracleα(Jt2 , T )| if t1 ≤ t2;
3) Algorithm 1 is feasible for scheduling all online released jobs.

Proof. The online algorithm makes
∑

∆t>0 ∆t rent batches, which is exactly |Oracleα(J , T )|
by property 2) and is not greater than |OPT(J , T )| by property 1). Also, the output satisfies
the feasibility requirement by property 3). Therefore, Algorithm 1 is Γ-competitive. ◀

ESA 2023
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The e-competitive algorithm for Online Machine Minimization. We can use the framework
to understand the e-competitive Online Machine Minimization algorithm.

Oracle is the optimal offline algorithm, and we set α = 1. The monotonicity directly
comes from optimality.
Jt is the set of visible jobs at t because all jobs are emergent.
Each Batch-Rent contains e new machines in average; for simplicity, we omit any rounding
issues related to e.

Choice of the oracle. Recall that we do not have an efficient optimal algorithm for Rent
Minimization currently. It remains to find a suitable substitute that also uses a small number
of rents (property 1). One candidate algorithm may be the Lazy-Binning algorithm by Bender
et al. [3], which requires an augmentation factor of 2 to satisfy property 1). However, Lazy-
Binning algorithm, as well as other relatively simple 2 approximation algorithms we come up
with, cannot guarantee monotonicity. This will make us fail to bound the competitive ratio
of the online algorithm. In the next section, we introduce our oracle with an augmentation
factor of 3, called the semi-online algorithm, which provides all the properties we need in
Lemma 5.

4 The Semi-Online Algorithm

In this section, we introduce the semi-online algorithm shown as Algorithm 2, which uses an
augmentation factor of 3 and acts as the Oracle3 in our framework.

Algorithm 2 The Semi-Online Algorithm.

procedure SemiOnline(J : input job set, T : length of rent)
J ′, I ← ∅ ▷ I is a multiset for rents.
τj = max{rj , dj − T} for all j.
for j ∈ J in non-decreasing order of τj do

J ′ ← J ′ ∪ {j}
if EDF(J ′, I) fails then

I ← I ∪ {[τj − T, τj + 2T )} ▷ A rent that starts at τj − T with length 3T .
end if

end for
return I

end procedure

We call Algorithm 2 semi-online, because the enumerating order is exactly the same as
how Jt increases in the oracle-based framework. Thus, if we have some new jobs with rj = t

or dj −T = t when the online time moves from t−1 to t, the only possible difference between
SemiOnline(Jt−1, T ) and SemiOnline(Jt, T ) is some rent intervals of [t − T, t + 2T ). This
observation could be formalized into the following properties of the semi-online algorithm.

▶ Lemma 6 (Strong Monotonicity). We have the following two properties for Algorithm 2.
1. For any Jt1 and Jt2 where t1 ≤ t2, we have SemiOnline(Jt1 , T ) ⊆ SemiOnline(Jt2 , T ).
2. SemiOnline(Jt, T )\SemiOnline(Jt−1, T ) is a multiset of a fixed rent interval [t−T, t+2T ).

Proof. Intuitively, the reason behind the lemma is that the order of τj is the same as the
order in which we insert jobs into Jt as t increases. Formally speaking, compare Jt1 and
Jt2 and consider a job j ∈ Jt2 \ Jt1 . By definition, we have that τj ≥ max

j′∈Jt1

τj′ . Therefore,
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Algorithm 2 first enumerates the jobs in Jt1 and then the jobs in Jt2 \ Jt1 , which concludes
the first property immediately. For the second property, the reason is that Jt \Jt−1 is a set of
jobs with rj = t or dj − T = t. In other words, we enumerate them after jobs in Jt−1. Thus,
if I continues to grow when we enumerate them, the new interval must be [t−T, t + 2T ). ◀

The strong monotonicity in Lemma 6 suffices to show the weak monotonicity in property
2) of Lemma 5. On the other hand, these two properties are also used in the proof of property
3) later. It remains to prove property 1) by bounding the cardinality of the semi-online
algorithm’s solution.

▶ Lemma 7. |SemiOnline(J, T )| ≤ OPT(J, T ), and SemiOnline(J, T ) is feasible for J .

Before proving Lemma 7, we introduce coOPT so that we can better understand the
solution structure.

▶ Definition 8 (Optimal complement solution). For a job set J , rent length T , and a given rent
set I (which may not be length T ), the optimal complement solution of I, denoted as coOPT(I),
is defined as a rent set of length T with minimum cardinality such that I ∪ coOPT(I) is
feasible for J .

▶ Fact 9. coOPT(∅) = OPT, coOPT(OPT) = ∅.

Consider a rent set I that is infeasible for J . Below, we state the main property of coOPT.

▶ Lemma 10. Let d be the fail time of EDF(J, I). There exists a coOPT(I) such that there
is a rent interval [s, s + T ) ∈ coOPT(I) that satisfies: d− T ≤ s < d.

Proof. We use coOPT as a shorthand for coOPT(I) in this proof. Let [s, s + T ) be the
earliest interval in coOPT.

First, we show that s < d. Suppose, for a contradiction, that s ≥ d. Let j be the job
that fails in EDF(J, I), where J is a fixed given job set. Then, j has no more active units
in coOPT, since all rent intervals start at or after d. But this contradicts the definition of
coOPT, which is a feasible rent set for J .

Second, we show that s ≥ d− T can be true. If this is not true, we construct a new rent
set coOPT′ = coOPT \ {[s, s + T )} ∪ {[d− T, d)} . That is, we replace the rent interval at s

with another one at d− T . We claim that coOPT′ ∪ I is also feasible for J . This means that
coOPT′ is also a feasible coOPT, and [s′ = d− T, T ) is a feasible rent interval that satisfies
our desired condition.

To prove our claim, we fix an arbitrary choice of r∗ ≤ d∗ ∈ N, and we verify the condition
in Lemma 3, i.e., AI∪coOPT′(r∗, d∗) ≥ |J(r∗, d∗)|.

We consider two cases:
Case 1: d∗ < d. If the condition does not hold, we have AI(r∗, d∗) ≤ AI∪coOPT′(r∗, d∗) <

J ′(r∗, d∗), which means that EDF(I, J ′) must fail no later than d∗ since the active units
are not enough beforehand. This contradicts the definition of d.
Case 2: d∗ ≥ d. The only difference between coOPT and coOPT′ is the contribution of
active units by [s, s + T ) and [d− T, d). We prove that [d− T, d) must provide at least as
many active units as [s, s + T ) does. Referring to Figure 1, we see that [d − T, d) has
more active units than [s, s + T ) in [s + T, d), and vice versa in [s, d− T ). Since d∗ ≥ d,
we need r∗ ≤ d− T to reach the advantage area of coOPT; however, [r∗, d∗) then covers
the whole part of [d − T, d). This implies that the total contribution of coOPT never
exceeds that of coOPT′.

The discussion concludes the claim. ◀
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𝑟∗ 𝑑∗

coOPT

coOPT′

𝑑 − 𝑇 𝑑𝑠 + 𝑇𝑠

Figure 1 coOPT’ contributes at least as many active units as coOPT on [r∗, d∗) when d∗ ≥ d.

▶ Lemma 11. At the end of each iteration of j, I is feasible for J ′.

Proof. We prove it by induction. In the base case, I is feasible for J ′ when they are ∅. Then,
assume the lemma is true after the (j − 1)-th iteration. At the j-th iteration, we add a job j

to J ′. This means that ∀r∗ ≤ rj , d∗ ≥ dj , |J ′(r∗, d∗)| will increase by one. If EDF(J ′, I) is
already feasible, we are done. Otherwise, the algorithm will employ a new 3T length rent
interval [τj − T, τj + 2T ). Notice that d∗ ≥ dj ≥ τj . Every AI(r∗, d∗) also increases by at
least one. Thus, we still have AI(r∗, d∗) ≥ |J ′(r∗, d∗)| after we employ [τj − T, τj + 2T ) (at
the end of the j-th iteration). ◀

▶ Corollary 12. SemiOnline(J, T ) is feasible for J .

▶ Lemma 13. In the j-th iteration, if EDF(J ′, I) is infeasible in Algorithm 2, before we rent
[t− T, t + 2T ), we have

|coOPT(I ∪ {[t− T, t + 2T )})| ≤ |coOPT(I)| − 1.

Proof. By the condition of the lemma and Lemma 11, we have EDF(J ′, I) is infeasible while
EDF(J ′ \ {j}, I) is feasible. By the enumerating order, all the jobs j′ in J ′ must satisfy
max{rj , dj′ − T} ≤ τj . Therefore, EDF(J ′, I) must fail at a deadline d ≤ τj + T . On the
other hand, for all j′ ∈ J such that dj′ < τj , we must have j′ ∈ J ′ \ {j}, also because of the
enumerating order. Thus, we can show that d ≥ τj . Otherwise, J ′ \ {j} would be infeasible
for I, which is a contradiction. In conclusion, we show that the failure time d of EDF(J ′, I)
satisfies τj ≤ d < τj + T.

Finally, by Lemma 10, there exists a coOPT with rent interval [s, s + T ] such that
d− T ≤ s < d. It implies that τj − T < s < τj + T . Therefore [s, s + T ) is always a subset
of [τj − T, τj + 2T ). We have

|coOPT(I ∪ {[t− T, t + 2T )})| ≤ |coOPT(I ∪ {s})| = |coOPT(I)| − 1. ◀

Proof of Lemma 7. Recall Fact 9 that coOPT(∅) = OPT. It follows that SemiOnline rents
at most OPT times as a corollary of Lemma 13. ◀

5 The 6-competitive Online Algorithm

It remains to define the rent scheme for each Batch-Rent in the framework. For completeness,
we formally describe the algorithm in Algorithm 3.
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Algorithm 3 The Online algorithm.

procedure OnlineRent(t: time, J : known jobs, T : length of rent)
∆ = |SemiOnline(Jt, T )| − |SemiOnline(Jt−1, T )|
Perform ∆ Batch-Rent at time t, each consists of 6 machines: 4 at t and 2 at t + T .
schedule jobs at t following EDF(J, I), where I is the current online rent set.

end procedure

Next, we prove the property 3) of Lemma 5 by our design of Batch-Rent, i.e., to show
Algorithm 3 is feasible for the total job set J . Combining with the property 1) and 2) by
the semi-online algorithm, we can conclude our online algorithm is 6-compeititve as claimed
in Theorem 1.

First, we introduce an obvious relationship between online and semi-online algorithms.

▶ Fact 14. At every moment t, there always exists a bijection from one semi-online rent
batch to one online rent batch, such that both batches are at the same time: 4× [t, t + T ) +
2× [t + T, t + 2T ) in Online 7→ [t− T, t + 2T ) in SemiOnline.

Proof. This fact is directly implied by the second property of Lemma 6. Whenever
SemiOnline(Jt, T ) increases from SemiOnline(Jt−1, T ) by some rent intervals of [t−T, t + 2T ),
the new batches must be 4× [t, t + T ) + 2× [t + T, t + 2T ). Each of them can correspond to
one [t− T, t + 2T ). ◀

We prove the feasibility by showing that the active units provided by the online algorithm
are always enough for the possible jobs inside any possible interval [r∗, d∗).

▶ Lemma 15. Let I be the rent sets made by our algorithm. We have ∀r∗ ≤ d∗ ∈
N, A(r∗, d∗) ≥ |J (r∗, d∗)|, where we use A to denote AI for simplicity.

We remark that Lemma 15 provides the necessary information to prove the correctness
via the feasibility lemma (Lemma 3). It only remains to complete the proof of Lemma 15.

5.1 Proof of Lemma 15
Let us fix an arbitrary range r∗ ≤ d∗, and discuss A(r∗, d∗) and J (r∗, d∗) separately. First,
we discuss A(r∗, d∗). The behavior of the online algorithm can be represented by a set of
online rent batches. Note that only those rent batches that start in (r∗ − 2T, d∗) can provide
active units inside [r∗, d∗). Therefore, we only discuss a subset B of all rent batches with a
start time in (r∗ − 2T, d∗). Each b means a Batch-Rent made by Algorithm 3. We use t(b) to
mean its decision time. That is, a batch b contains 4 rent intervals of [t(b), t(b) + T ), and 2
of [t(b) + T, t(b) + 2T ).

We partition the time interval [r∗, d∗) by several critical time points. The first time
point is θ1 = max

{(
r∗+d∗

2

)
, d∗ − T

}
. It means that θ1 = d∗ − T when d∗ − r∗ ≥ 2T

and θ1 =
(

r∗+d∗

2

)
when d∗ − r∗ < 2T . Remark that in both cases, θ1 ≥ d∗ − T . Then

we recursively define θi+1 =
(

θi+d∗

2

)
for every i ≥ 1 until ⌊θi⌋ = d∗ − 1. Besides, we let

θ0 = r∗ − 1. For i ≥ 1, we call [⌊θi−1⌋+ 1, ⌊θi⌋] the i-th sub-interval, which is the minimal
sub-interval of (θi−1, θi] that contains all integers in it. We define Bi ⊆ B as the set of rent
batches starting in the i-th sub-interval. Moreover, we let B0 be the set of rent batches
starting in (r∗ − 2T, r∗].
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𝑡 𝑏

SemiOnline

Online

𝜃1𝑟∗ 𝑑∗𝜃2 …

𝜆1(𝑏)

Figure 2 An example for b ∈ B1 when d∗ − r∗ > 2T . The shaded area is the considered [r∗, d∗),
and the online rent batch provides 2λ1(b) + 2 min{λ1(b), T } active units to it.

For each b ∈ B, recall that t(b) is the time it was allocated, and we let λi(b) be the length
of the intersecting interval of [t(b), t(b) + 2T ) and [⌊θi−1⌋+ 1, d∗). Note that λ1(b) represents
the intersecting interval with the whole [r∗, d∗). Let L = min{2T, d∗ − r∗} = 2(d∗ − θ1)
denote the maximum possible length in λ1, and by our partition method. It follows the
property of the length of sub-intervals by our partition.

▶ Lemma 16 (Partition length property). For any batch b ∈ Bi where i ≥ 1, the intersection
of [t(b), t(b) + 2T ) and [⌊θi−1⌋+ 1, d∗) satisfies: 2−i · L ≤ λi(b) ≤ 21−i · L.

Proof. For i = 1, λ1(b) = min{2T, d∗ − t(b)}. By definition, r∗ ≤ t(b) ≤ ⌊θ1⌋, hence

L/2 = min{T, d∗ − θ1} ≤ min{2T, d∗ − t(b)} ≤ min{2T, d∗ − r∗} = L.

For i ≥ 2, by definition d∗ − θi = 2−i ·L. Because t(b) ∈ [⌊θi−1⌋+ 1, ⌊θi⌋] ⊆ (θi−1, θi], we
have 2−i · L ≤ λi(b) ≤ min{2T, 21−i · L}. Since 2 · L ≤ 2T , we conclude the lemma. ◀

Then, we present the lemmas for a lower bound of active units and an upper bound of
job numbers.

▶ Lemma 17 (Lower bound of active units).

A(r∗, d∗) ≥
∑

b∈B0

(2λ1(b) + 2 max{λ1(b)− T, 0})

+
∑

b∈B1

(2λ1(b) + 2 min{λ1(b), T})

+
∑
i≥2

4 · (2−i · L) · |Bi|.

Proof. Three terms on the RHS of the inequality are counting of B0, B1 and B≥2, where
the first two are straightforward counting as shown in Figure 2, and the last term was scaled
down a bit by Lemma 16:

4
∑
i≥2

∑
b∈Bi

λ1(b) = 4
∑
i≥2

∑
b∈Bi

λi(b) ≥
∑
i≥2

4 · (2−i · L) · |Bi|. ◀
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Let Ji be the job set with deadline at most d∗ and released in the i-th subinterval:

Ji = {j ∈ J | ⌊θi−1⌋+ 1 ≤ rj ≤ ⌊θi⌋, dj ≤ d∗} .

We provide an upper bound of Ji by the performance of our algorithm.

▶ Lemma 18. Let It be the semi-online batches allocated at or before time t. We have that
Ji is no more than the active units after ⌊θi−1⌋+ 1 provided by SemiOnline at ⌊θi⌋. i.e.,

Ji ≤ AI⌊θi⌋(⌊θi−1⌋+ 1, d∗).

Proof. Let us observe the time point t = ⌊θi⌋. SemiOnline(Jt, T ) reports It at this time.
By Lemma 11, It is feasible for Jt. By the definition of θi, we prove t ≥ d∗ − T because
θ1 ≥ d∗ − T . Thus, all jobs with deadlines at most d∗ are already in Jt, and combining with
the feasibility of It, we have:

Ji = Jt(⌊θi−1⌋+ 1, d∗) ≤ At(⌊θi−1⌋+ 1, d∗).

The lemma then concludes because we define t = ⌊θi⌋. ◀

▶ Lemma 19 (Upper bound of job numbers). We have two different upper bounds for Ji:

i = 1: |J1| ≤
∑

b∈B0

λ1(b) +
∑

b∈B1

(λ1(b) + L/2) .

i ≥ 2: |Ji| ≤
∑

b∈B0

λi(b) + 2 · (2−i · L) ·
i∑

j=1
|Bj |.

Proof. In this proof, we apply Lemma 18 and count the number of active units after θi−1 by
I⌊θi⌋. Note that by Fact 14, each 3T length rent interval in I⌊θi⌋ corresponds to an online
Batch-Rent.

First, let us consider the case i = 1. I⌊θi⌋ corresponds to the online batches with
t(b) ≤ I⌊θi⌋. Note that the ending time of b and its corresponding semi-online rent interval
are both t(b) + 2T . Thus, AI⌊θi⌋(⌊θi−1⌋+ 1, d∗) corresponds to B0 and B1.

For i = 1, we keep the B0 straightforward and calculate the upper bound of active units
provided by the corresponding semi-online batch for each batch b in B1. Note that the
semi-online rent set spans [t(b)− T, t(b) + 2T ). We split the 3T interval into first T and last
2T : the latter could be upper bounded by λ1(b) using Lemma 16, and we could find that the
former is at most L/2:

When d∗ − r∗ < 2T , t(b)− r∗ < (d∗ − r∗)/2, then min {T, t(b)− r∗} < L/2.
When d∗ − r∗ ≥ 2T , L = 2T , and then min {T, t(b)− r∗} ≤ T = L/2.

So we can conclude that

|J1| ≤
∑

b∈B0

λ1(b) +
∑

b∈B1

(λ1(b) + L/2) .

For the case i ≥ 2, all jobs released in sub-interval i can be allocated at most [θi−1 +1, d∗),
and by Lemma 16 each semi-online batch covers at most 2 ·(2−i ·L). Like i = 1, the inequality
follows direct counting on ∪i

j=0Bj . ◀

Thus far, we are ready to prove Lemma 15 by a charging argument.
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Proof of Lemma 15. Recall that in Lemma 17 we have

A(r∗, d∗) ≥
∑

b∈B0

(2 max{λ1(b)− T, 0}+ 2λ1(b)) +
∑

b∈B1

(2λ1(b) + 2 min{T, λ1(b)})

+
∑
i≥2

4 · (2−i · L) · |Bi|.
(1)

Also, by Lemma 19,

J (r∗, d∗) ≤
∑

b∈B0

λ1(b)+
∑

b∈B1

(λ1(b) + L/2)+
∑
i≥2

 ∑
b∈B0

λi(b) + 2 · (2−i · L) ·
i∑

j=1
|Bj |

 . (2)

Using these two inequalities, we charge the upper bound of J (r∗, d∗) and the lower bound
of A(r∗, d∗) to each b ∈ B. We prove that for each b, the charged amount of J (r∗, d∗)’s
upper bound is at most A(r∗, d∗)’s lower bound.

First, for b ∈ B0, the contribution of b to the lower bound of A(r∗, d∗) (i.e., RHS of
Equation (1)) is: 2 max{λ1(b) − T, 0} + 2λ1(b). The contribution to the upper bound of
J (r∗, d∗) (i.e., RHS of Equation (2)) is: λ1(b)+

∑
i≥2 λi(b). Note that b ∈ B0 only contributes

to a prefix of [r, d), it is easy to see that λi(b) ≤ 21−iλ1(b), and thus

λ1(b) +
∑
i≥2

λi(b) ≤ λ1(b) +
∑
i≥2

21−iλ1(b) < 2λ1(b).

We are done for b ∈ B0.
Second, for b ∈ B1, the contribution of b to the lower bound of A(r∗, d∗) (i.e., RHS of

Equation (1)) is: 2λ1(b) + 2 min{T, λ1(b)}. The contribution to the upper bound of J (r∗, d∗)
(i.e., RHS of Equation (2)) is: λ1(b) + L/2 +

∑
i≥2 2 · (2−i · L). Then, we have

λ1(b) + L/2 +
∑
i≥2

2 · (2−i · L) < λ1(b) + L/2 + 2 ·
(
2−1 · L

)
≤ λ1(b) + L/2 + 2 ·min {T, λ1(b)}
≤ 2λ1(b) + 2 min{T, λ1(b)}.

The last inequality holds by Lemma 16. Therefore, we are done for b ∈ B1.
Finally, for b ∈ Bi≥2, the contribution of b to the lower bound of A(r∗, d∗) (i.e., RHS of

Equation (1)) is: 4 · (2−i ·L). The contribution to the upper bound of J (r∗, d∗) (i.e., RHS of
Equation (2)) is:

∑
i′≥i 2 · (2−i′ · L). We are done because

∑
i′≥i 2−i′

< 21−i. Summing up
three parts, we have proved that A(r∗, d∗) ≥ J (r∗, d∗). ◀

5.2 A Remark on Running Time

We only need to recalculate SemiOnline if the job set gets updated, and the procedure of
reconstructing the rent set in SemiOnline can be maintained incrementally. Thus, it is possible
to implement the algorithm calling EDF at most n + OPT ≤ 2n times, and hence achieve a
worst case guarantee of O(n2 log n). Also, note that a job can influence the calculation of
SemiOnline for at most O(T ) time units, so the SemiOnline can also update in O(nw log w)
if there are at most O(w) jobs within any interval of length O(T ). Therefore, the online
algorithm is efficient in terms of worst case guarantee and also average online updating.
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6 Online Rent Minimization with Delay

In the version with delay, we are also given an online released job set J and a rent length T .
We aim to minimize the number of rents needed to process all jobs. The notations are the
same as in the Online Rent Minimization problem. Moreover, we are given a nonnegative
integer λ as the delay parameter. It means that if we rent a machine at time t, we will have
an active machine at [t + λ, t + λ + T ). Note that it is impossible to serve an unknown
emergency job with dj − rj ≤ λ online; following Chen and Zhang [5], we require that the
active time dj − rj is at least λ + 1.

We use the following reduction lemma and our 6-competitive no-delay algorithm as a
black box to prove Theorem 2. Chen and Zhang [5] also mention this approach.

▶ Lemma 20 (Reduction). If ALG(J ) ≤ Γ·OPT(J ) for every job set J , we have an algorithm
ALGλ that guarantees

ALGλ(J , λ) ≤ Γ · (λ + 1) · OPT(J ),

if ∀j ∈ J , dj − rj ≥ λ + 1.

After proving Lemma 20, Theorem 2 follows directly. See the full version for a complete
proof.

▶ Theorem 2. As a corollary of Theorem 1, there exists an efficient 6(λ + 1)-competitive
algorithm when we need λ time to finish each rent.

7 Conclusion and Future Work

In conclusion, our main contribution is a 6-competitive algorithm for the Online Rent
Minimization problem under unit-size jobs, which follows the oracle-based framework.

Since the Online Rent Minimization problem is a generalization of the Online Machine
Minimization problem, where we have an optimal e-competitive algorithm, one major question
is: Is the Rent Minimization problem strictly harder than the Machine Minimization problem?

On the other hand, we are also interested in the power of oracle-based algorithms. Note
that the optimal e-competitive algorithm for Machine Minimization follows the oracle-based
framework. It is interesting to ask: What is the best competitive ratio we can achieve for the
Online Rent Minimization problem by using the oracle-based framework? The Semi-Online
captures our current understanding of the possible range of optimal solutions, so replacing it
with an optimal oracle cannot improve ratio directly by the same argument in the paper. Is
it possible to obtain a better ratio with access to an optimal oracle?
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