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Abstract
Spanner construction is a well-studied problem and Delaunay triangulations are among the most
popular spanners. Tight bounds are known if the Delaunay triangulation is constructed using an
equilateral triangle, a square, or a regular hexagon. However, all other shapes have remained elusive.
In this paper we extend the restricted class of spanners for which tight bounds are known. We prove
that Delaunay triangulations constructed using rectangles with aspect ratio A have spanning ratio
at most

√
2
√

1 + A2 + A
√

A2 + 1, which matches the known lower bound.
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1 Introduction

A geometric graph is a weighted graph in the plane where every vertex v has coordinates
(xv, yv) and the weight of an edge between any two vertices is the Euclidean distance between
its endpoints. A geometric spanner is defined to be a class of subgraphs where the shortest
path distance between any two vertices is at most the Euclidean distance between these two
vertices multiplied by a constant t. The smallest constant t for which this property holds
is called the spanning ratio or stretch factor of the geometric spanner. A comprehensive
overview on the topic of geometric spanners can be found in the book by Narasimhan and
Smid [11] and the survey by Bose and Smid [5].

One way to construct a geometric spanner is by using a Delaunay triangulation. The
Delaunay triangulation is defined as follows: for any two vertices u and v, if there exists
a circle with u and v on its boundary and no other vertex in its interior, then the edge
between u and v is part of the Delaunay triangulation. Equivalently, this can be defined
using three vertices u, v, and w, where the triangle connecting these three vertices is part of
the Delaunay triangulation if and only if the unique circle through these three points does
not contain any other vertices in its interior. For simplicity, it is usually assumed that no
three points are collinear and no four points lie on the boundary of the circle.

The tight spanning ratio of the Delaunay triangulation is not known. Dobkin et al. [8]
showed an upper bound of π(1 +

√
5)/2 ≈ 5.09 for the spanning ratio, which Keil and

Gutwin [9] improved to 4π/3
√

3 ≈ 2.42. Currently, the best upper bound is 1.998, proven by
Xia [14]. A lower bound on the spanning ratio was provided by Bose et al. [4], who showed
that this is strictly larger than π

2 . This was later improved to 1.59 by Xia and Zhang [15].
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99:2 The Tight Spanning Ratio of the Rectangle Delaunay Triangulation

Usually, the distance between two points u and v in the plane is defined as ((xu − xv)2 +
(yu − yv)2)

1
2 . This distance can be generalized to a family of metrics Lp where the distance

between u and v is defined as ((xu − xv)p + (yu − yv)p)
1
p . The shape of a “circle” varies

in different metrics, leading to different Delaunay triangulations in different metrics. For
example, the shape of the “circle” would be a diamond or square in the L1 and L∞ metrics.

In 1986, Lee and Lin [10] introduced the notion of generalized Delaunay triangulations.
Instead of using a circle to construct the graph, generalized Delaunay triangulations can be
constructed using arbitrary geometric shapes. It was proven that any generalized Delaunay
triangulation constructed using a convex shape is a spanner [2].

Although generalized Delaunay triangulations using arbitrary convex shapes are known
to be spanners, their spanning ratios are less well understood. Tight bounds on the spanning
ratio are only known when an equilateral triangle, a square, or a regular hexagon is used
in the construction. When using equilateral triangles, Chew [7] showed that the spanning
ratio is 2. When using squares, Chew [6] showed an upper bound of

√
10 ≈ 3.16, and

Bonichon et al. [1] showed a matching upper and lower bound of
√

4 + 2
√

2 ≈ 2.61. When
using regular hexagons, Perković et al. [12] showed a tight bound of 2.

Bose et al. [3] studied generalized Delaunay triangulations using rectangles. For rectangles
with aspect ratio A, they showed an upper bound of

√
2(2A + 1) and a lower bound of√

2
√

1 + A2 + A
√

A2 + 1. Inspired by the proof of Bonichon et al. [1], by significantly ex-
tending and generalizing their approach we obtain a tight bound of

√
2
√

1 + A2 + A
√

A2 + 1.
This extends the class of shapes for which a tight bound is known for the spanning ratio of
generalized Delaunay triangulations. We note that the proof of our result is not a straight-
forward extension of Bonichon et al. [1], as we cannot simply rotate our lemmas to get them
to prove both the horizontal and vertical cases simultaneously.

2 Preliminaries

Let us first formally define the rectangle Delaunay triangulation of a set of points P . Given
an arbitrary axis-aligned rectangle R, the rectangle Delaunay triangulation is constructed
by considering scaled translates of R (rotations are not allowed). Such scaled translates
are also referred to as homothets. Given two vertices u and v in P , the rectangle Delaunay
triangulation contains an edge between u and v if and only if there exists a scaled translate of
R with u and v on its boundary which contains no vertices of P in the interior. Equivalently,
the rectangle Delaunay triangulation contains a triangle △uvw if and only if there exists
a scaled translate of R with u, v, and w on its boundary which contains no vertices of
P in the interior. We note that different rectangles can give different rectangle Delaunay
triangulations.

For our proofs, we assume that P is in general position. Specifically, we assume that no
four vertices lie on the boundary of any scaled translate of R and that no two vertices lie on
a line parallel to any of the sides of R (i.e., no two vertices lie on a vertical or horizontal
line). These assumptions are common for Delaunay graphs and are required to guarantee
their planarity.

Throughout this paper, we use A to denote the aspect ratio of the rectangle R used in
the construction of the rectangle Delaunay triangulation, i.e., A = l/s where l and s are
the length of the long and short side of R respectively. We also use dt(u, v) to denote the
length of the shortest path in the rectangle Delaunay triangulation between u and v, dx(u, v)
to denote the difference in x-coordinate between u and v, dy(u, v) to denote the difference
in y-coordinate between u and v, and d2(u, v) to denote the Euclidean distance between u

and v.
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Due to space constraints, we have deferred proofs of several lemmas to the full version of
this paper [13].

3 Bounding the Spanning Ratio

To show an upper bound on the spanning ratio between any two vertices u and v, we consider
the sequence of triangles T1, T2, ..., Tk intersecting with line segment uv. The order of this
sequence is determined by the order in which these triangles are encountered when following
uv from u to v (as shown in Figure 1). Each triangle except T1 and Tk intersects the interior
of uv twice. Hence, we can define the last line segment of Ti (1 ≤ i < k) that intersects
uv as the line segment involved in the second intersection. We use hi and li to denote the
endpoints of the last line segment of Ti, where hi is the endpoint above uv and li is the
endpoint below uv. Since all Ti are triangles, we have that for every Ti and Ti+1, either
li = li+1 or hi = hi+1. We also define h0 = l0 = u, lk = hk = v.

u

v

h1

R1

R2

R3

R4

R5

R6

l1 = l2

h2 = h3

l3 = l4

h4 = h5

l5

Figure 1 The triangles intersecting uv and their associated rectangles and hi and li.

Each triangle Ti also has an associated rectangle Ri: the scaled translate of R that has
the three vertices of Ti on its boundary. For ease of reference, we use W (west), N (north),
E (east), and S (south) to refer to the four sides of a rectangle. We also use these sides to
classify an edge, for example, if an endpoint of an edge lies on the W side of Ri and the
other endpoint lies on the N side of Ri, we call the edge a WN edge. We also define u to
be on the E side of R0 (not associated with any triangle), as this will simplify some of the
lemma statements.

Define L to be the length of the vertical side of R divided by the length of the horizontal
size of R. Note that L can be either A or 1/A. For our proofs, it is helpful to distinguish
between edges of slope less than the slope of the diagonal of R and those with larger slope.

▶ Definition 1. An edge is gentle if it has a slope within [-L, L]. Otherwise it is steep.

ESA 2023
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We let u, v be any two vertices in the rectangle Delaunay triangulation. Fix the (x, y)-
coordinate system so that we have Ldx(u, v) > dy(u, v). Note that this is without loss of
generality, since we can simply switch the x- and y-axes if needed. This implies that if we
consider a scaled translate of R with u lying in the lower left corner and passing through
v, then v lies on the E side. Without loss of generality, we assume u to be at the origin
(0, 0) and v to be at (x, y). We use R(u, v) to denote the rectangle with u and v in opposite
corners.

In order to bound the spanning ratio of the rectangle Delaunay triangulation, we first
define what it means for a rectangle to have potential. This later helps us to bound the total
length of the shortest path between u and v in the rectangle Delaunay triangulation.

▶ Definition 2. The inductive point c of a rectangle Ri is the point with larger x-coordinate
out of hi and li. Rectangle Ri is inductive if edge (li, hi) is gentle.

▶ Definition 3. A rectangle Ri has potential if dt(u, hi) + dt(u, li) + dRi
(hi, li) ≤ (2 + 2L)xi

where dRi
(hi, li) is the Euclidean distance when moving clockwise from hi to li along the

sides of Ri and xi is the x-coordinate of the E side of Ri.

We are now ready to prove that rectangles that are not inductive pass on their potential.

▶ Lemma 4. If R(u, v) is empty and (u, v) is not an edge in the rectangle Delaunay
triangulation, then R1 has potential. Furthermore, for any 1 ≤ i < k, if Ri has potential but
is not inductive, then Ri+1 has potential.

Next, we bound the distance from u to the inductive point of a rectangle with potential
when this inductive point lies on the E side of the rectangle.

▶ Lemma 5. If rectangle Ri has potential and its inductive point c (c = hi or c = li) lies on
the E side of Ri, then dt(u, c) ≤ (1 + L)xc.

Now we shift our focus to paths consisting of gentle edges (see Figure 2).

▶ Definition 6. If hj is on the E side of Rj, the maximal high path ending at hj is hj

itself; otherwise, it is the path hi, hi+1, ..., hj such that hm is not on the E side of Rm (for
i < m ≤ j) and either i = 0 or hi is on the E side of Ri.

If lj is on the E side of Rj, the maximal low path ending at lj is lj; otherwise, it is the
path li, li+1, ..., lj such that lm is not on the E side of Rm (for i < m ≤ j) and either i = 0
or li is on the E side of Ri.

Next, we bound the length of these maximal high and maximal low paths.

▶ Lemma 7. If the path hi, hi+1, ..., hj is a maximal high path then dt(hi, hj) ≤ (xhj
−

xhi
) + (yhj

− yhi
). Similarly, if the path li, li+1, ..., lj is a maximal low path then dt(li, lj) ≤

(xlj
− xli

) + (yli
− ylj

).

We now use the above lemmas to prove bounds on the path length from u to the inductive
point on the first inductive rectangle (if one exists) when R(u, v) does not contain any vertices.
Note that in Property 2 of Lemma 8, we differentiate between L = A and L = 1/A, which is
crucial in proving Theorem 10.

▶ Lemma 8. Let R(u, v) not contain any vertices of P and let (u, v) not be an edge of the
rectangle Delaunay triangulation. The following properties hold:
1. If no rectangle in R1, ..., Rk is inductive then

dt(u, v) ≤ (L +
√

L2 + 1)x + y.
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Ri

Ri+1

Rj

hj

hi

hi+1

Figure 2 An example of a maximal high path (thick edges). The other edges of the triangles are
shown using dashed line segments.

2. Otherwise, let Rj be the first inductive rectangle in the sequence R1, ..., Rk.
a. If hj is the inductive point of Rj and L = A, then

dt(u, hj) + (yhj − y) ≤ (A +
√

A2 + 1)xhj .

b. If hj is the inductive point of Rj and L = 1
A , then

dt(u, hj) + A(yhj
− y) ≤

(
1 +

√
1

A2 + 1
)

xhj
.

c. If lj is the inductive point of Rj and L = A, then

dt(u, lj) − ylj ≤ (A +
√

A2 + 1)xlj .

d. If lj is the inductive point of Rj and L = 1
A , then

dt(u, lj) − Aylj
≤

(
1 +

√
1

A2 + 1
)

xlj
.

Proof. Property 1: By Lemma 4, if no rectangle in R1, ..., Rk is inductive then the last
rectangle must have potential since R1 has potential. Since no two vertices have the same
y-coordinate, v must lie on the E side of the last rectangle. Thus, we can use Lemma 5 to
conclude that dt(u, v) ≤ (1 + L)x ≤ (L +

√
L2 + 1)x + y.

Property 2a: We consider the situation where Rj is the first inductive rectangle in the
sequence R1, ..., Rk. Let li, ..., lj−1 = lj be the maximal low path ending at lj , and recall that
hj is the inductive point of Rj . By Lemma 4 we know that Ri has potential, since R1 has
potential and no rectangle before Ri is inductive. Since Ri has potential and li is on the E
side of Ri, by Lemma 5 we know dt(u, li) ≤ (1 + L)xli . See Figure 3. Since L = A, we have

dt(u, hj) + (yhj − y) ≤ dt(u, li) + dt(li, lj) + d2(lj , hj) + (yhj − y)
≤ (1 + A)xli

+ dt(li, lj) + d2(lj , hj) + yhj
.

Since li, ..., lj−1 = lj is a maximal low path, by Lemma 7 we know dt(li, lj) ≤ (xlj
− xli

) +
(yli

− ylj
). Hence, we obtain that:

dt(u, hj) + (yhj
− y) ≤ (1 + A)xli

+ (xlj
− xli

) + (yli
− ylj

) + d2(lj , hj) + yhj

= Axli + xlj + (yli − ylj ) + d2(lj , hj) + yhj .

ESA 2023
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Ri

Rjlj

li
u

R1

. . . . . .

hj

Figure 3 In Property 2a, Rj is the first inductive rectangle, hj is the inductive point of Rj , and
li, ..., lj−1 = lj is the maximal low path ending at lj . Ri has potential and li is on the E side of Ri.

Because Rj is inductive, we know that edge (lj , hj) is gentle. Therefore, d2(lj , hj) ≤√
1 + A2(xhj − xlj ) and thus:

dt(u, hj) + (yhj
− y) ≤ Axli

+ xlj
+ (yli

− ylj
) +

√
1 + A2(xhj

− xlj
) + yhj

≤ Axli
+ (yli

− ylj
) +

√
1 + A2xhj

+ yhj
.

Furthermore, again because edge (lj , hj) is gentle, we have that yhj
− ylj

≤ A(xhj
− xlj

)
and therefore:

dt(u, hj) + (yhj − y) ≤ Axli + yli +
√

1 + A2xhj + A(xhj − xlj )

≤ yli +
√

1 + A2xhj + Axhj .

Note that when i ≤ j, then xli ≤ xlj . Finally, since R(u, v) is empty, li must lie below it
and thus yli

< 0, which leads to: dt(u, hj) + (yhj
− y) ≤ (A +

√
A2 + 1)xhj

.
Property 2b: Let Rj be the first inductive rectangle in the sequence R1, ..., Rk. Let

li, ..., lj−1 = lj be the maximal low path ending at lj , and recall that hj is the inductive
point of Rj . By Lemma 4, Ri has potential, and by Lemma 5, we have dt(u, li) ≤ (1 + L)xli

.
Since L = 1

A , we have

dt(u, hj) + A(yhj
− y) ≤ dt(u, li) + dt(li, lj) + d2(lj , hj) + A(yhj

− y)
≤ (1 + 1

A )xli
+ dt(li, lj) + d2(lj , hj) + Ayhj

.

Since li, ..., lj−1 = lj is a maximal low path, by Lemma 7 we know dt(li, lj) ≤ (xlj
−

xli) + (yli − ylj ). Because Rj is inductive, we know that edge (lj , hj) is gentle. Therefore,
d2(lj , hj) ≤

√
1 + 1

A2 (xhj
− xlj

) and thus:

dt(u, hj) + A(yhj − y) ≤ (1 + 1
A

)xli + (xlj − xli ) + (yli − ylj ) + d2(lj , hj) + Ayhj

≤ (1 + 1
A

)xli + (xlj − xli ) + (yli − ylj ) +
√

1 + 1
A2 (xhj − xlj ) + Ayhj

≤ 1
A

xli + (yli − ylj ) +
√

1 + 1
A2 xhj + Ayhj .
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Again because edge (lj , hj) is gentle, we have that yhj − ylj ≤ 1
A (xhj − xlj ). Therefore

A(yhj
− ylj

) ≤ (xhj
− xlj

). We have A ≥ 1 and therefore:

dt(u, hj) + A(yhj
− y) ≤ 1

A xli
+ A(yli

− ylj
) +

√
1 + 1

A2 xhj
+ Ayhj

≤ 1
A xli

+ Ayli
+ (xhj

− xlj
) +

√
1 + 1

A2 xhj
.

Since 1
A ≤ 1 and i ≤ j, we have 1

A xli ≤ xli ≤ xlj . Therefore

dt(u, hj) + A(yhj − y) ≤ Ayli + xhj +
√

1 + 1
A2 xhj ≤ (1 +

√
1

A2 + 1)xhj .

Property 2c: Let Rj be the first inductive rectangle in the sequence R1, ..., Rk. Now, let
hi, ..., hj−1 = hj be the maximal high path ending at hj , and recall that lj is the inductive
point of Rj . By Lemma 4, Ri has potential, and by Lemma 5, we have dt(u, hi) ≤ (1 + L)xhi

.
Since L = A,

dt(u, lj) − ylj
≤ dt(u, hi) + dt(hi, hj) + d2(hj , lj) − ylj

≤ (1 + A)xhi
+ dt(hi, hj) + d2(hj , lj) − ylj

.

Since hi, ..., hj−1 = hj is a maximal high path, by Lemma 7 we know dt(hi, hj) ≤
(xhj

− xhi
) + (yhj

− yhi
). It follows that:

dt(u, lj) − ylj
≤ (1 + A)xhi

+ (xhj
− xhi

) + (yhj
− yhi

) + d2(hj , lj) − ylj

= Axhi
+ xhj

+ (yhj
− yhi

) + d2(hj , lj) − ylj
.

Because Rj is inductive, we know that edge (lj , hj) is gentle. Therefore, d2(hj , lj) ≤√
1 + A2(xlj

− xhj
) and thus:

dt(u, lj) − ylj
≤ Axhi

+ xhj
+ (yhj

− yhi
) +

√
1 + A2(xlj

− xhj
) − ylj

≤ Axhi
+ (yhj

− yhi
) +

√
1 + A2xlj

− ylj
.

Furthermore, again because edge (lj , hj) is gentle, we have that yhj
− ylj

≤ A(xlj
− xhj

)
and therefore:

dt(u, lj) − ylj
≤ Axhi

− yhi
+

√
1 + A2xlj

+ A(xlj
− xhj

)

≤ −yhi
+

√
1 + A2xlj

+ Axlj
.

Finally, since R(u, v) is empty, hi must lie above it and thus yhi > 0, which leads to
dt(u, lj) − ylj

≤ (A +
√

A2 + 1)xlj
.

Property 2d: Let Rj be the first inductive rectangle in the sequence R1, ..., Rk. Now, let
hi, ..., hj−1 = hj be the maximal high path ending at hj , and recall that lj is the inductive
point of Rj . By Lemma 4, Ri has potential, and by Lemma 5, we have dt(u, hi) ≤ (1 + L)xhi .
Since L = 1

A ,

dt(u, lj) − Aylj ≤ dt(u, hi) + dt(hi, hj) + d2(hj , lj) − Aylj

≤ (1 + 1
A )xhi + dt(hi, hj) + d2(hj , lj) − Aylj .

Since hi, ..., hj−1 = hj is a maximal high path, by Lemma 7 we know dt(hi, hj) ≤ (xhj
−

xhi)+(yhj −yhi). Because edge (lj , hj) is gentle, we have that d2(hj , lj) ≤
√

1 + 1
A2 (xlj −xhj ).

It follows that:

ESA 2023
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dt(u, lj) − Aylj
≤ (1 + 1

A )xhi
+ (xhj

− xhi
) + (yhj

− yhi
) + d2(hj , lj) − Aylj

≤ (1 + 1
A )xhi

+ (xhj
− xhi

) + (yhj
− yhi

) +
√

1 + 1
A2 (xlj

− xhj
) − Aylj

≤ 1
A xhi + (yhj − yhi) +

√
1 + 1

A2 xlj − Aylj .

Again because edge (lj , hj) is gentle, we have that yhj
− ylj

≤ 1
A (xlj

− xhj
). Therefore

A(yhj
− ylj

) ≤ (xlj
− xhj

) and

dt(u, lj) − Aylj ≤ 1
A xhi + A(yhj − yhi) +

√
1 + 1

A2 xlj − Aylj

≤ 1
A xhi

+ (xlj
− xhj

) − Ayhi
+

√
1 + 1

A2 xlj
.

Since 1
A ≤ 1, we have 1

A xhi ≤ xhi ≤ xhj . Thus

dt(u, lj) − Aylj ≤ xlj − Ayhi +
√

1 + 1
A2 xlj

≤ (1 +
√

1
A2 + 1)xlj

.

as required, completing our proof of Property 1, 2a, 2b, 2c and 2d. ◀

Our final ingredient determines the types of edges we can encounter when the y-coordinate
of a vertex differs significantly from that of v.

▶ Lemma 9. Let R(u, v) not contain any vertices of P and let the coordinates of the inductive
point c of Ri be such that it satisfies 0 < L(x − xc) < |y − yc|.

If c = hi and thus 0 < L(x − xc) < yc − y, then let j be the smallest index larger than i

such that L(x − xhj
) ≥ yc − y ≥ 0. All edges on the path hi, ..., hj are NE edges.

If c = li and thus 0 < L(x − xc) < y − yc, then let j be the smallest index larger than i

such that L(x − xlj
) ≥ y − yc ≥ 0. All edges on the path li, ..., lj are SE edges.

We now have all the ingredients needed to prove our main result. Recall that, up to
Lemma 9, the (x, y)-coordinate system is fixed so that Ldx(u, v) > dy(u, v), i.e. Lx ≥ y.
However, for ease of exposition, in Theorem 10 we instead fix the (x, y)-coordinate system so
that all the homothet rectangles have their vertical sides being the long sides.

Note that in Lemma 8, we obtain different upper bounds depending on whether L = A

or L = 1/A. These two cases must be treated differently for the inductive proof of Theorem 10
to hold. In particular, in Theorem 10 the bound for Adx(u, v) ≥ dy(u, v) does not coincide
with the rotated version of the bound for Adx(u, v) < dy(u, v).

▶ Theorem 10. Let u, v be any two vertices in the rectangle Delaunay triangulation. If
Adx(u, v) ≥ dy(u, v), then

dt(u, v) ≤ (A +
√

A2 + 1)x + y.

Otherwise,

dt(u, v) ≤ Ax +
(

1 +
√

1
A2 + 1

)
y.

Proof. We consider all pairs of vertices (u, v) and order them by the size of the smallest
scaled translate of R that has both u and v on its boundary. We perform induction based on
the rank in this ordering.
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The first pair (u, v) in this ordering has the smallest overall scaled translate of R and
can thus contain no vertices of P , as any such vertex would imply the existence of a
smaller rectangle with two vertices on its boundary, contradicting that we are considering
the smallest one. Hence, by construction there exists an edge between u and v and thus
dt(u, v) = d2(u, v) ≤ x + y, satisfying the induction hypothesis, regardless of whether or not
Adx(u, v) ≥ dy(u, v).

Next, consider an arbitrary pair (u, v) and assume the theorem holds for all pairs (u, v)
defining a smaller rectangle. We consider two cases: R(u, v) does not contain any vertex of
P , and R(u, v) contains some vertices of P .
Case 1: There are no vertices inside R(u, v). We distinguish two subcases, either Ax ≥ y or

Ax < y.
Subcase Ax ≥ y: Note that since the vertical side of the homothets is the longer side,

for the (x, y)-coordinate system we have L = A, and Lx ≥ y.
If (u, v) is an edge in the rectangle Delaunay triangulation, then dt(u, v) ≤ x + y ≤
(A +

√
A2 + 1)x + y. Otherwise, if no rectangle in R1, ..., Rk is inductive then by

Property 1 of Lemma 8 we know dt(u, v) ≤ (A +
√

A2 + 1)x + y.
Hence, we focus on the case where there is an inductive rectangle. Let Ri be the
first inductive rectangle in the sequence R1, ..., Rk. We distinguish the case where
the inductive point is hi and where it is li. If hi is the inductive point of Ri then by
Property 2a of Lemma 8 we know dt(u, hi) + (yhi

− y) ≤ (A +
√

A2 + 1)xhi
and thus

dt(u, hi) ≤ (A +
√

A2 + 1)xhi − (yhi − y).
If A(x − xhi

) ≥ yhi
− y ≥ 0, we let hj = hi in the remainder. Otherwise, we let j be

the smallest index larger than i such that A(x − xhj ) ≥ yhj − y ≥ 0. By Lemma 9,
hj exists and all edges on the path hi, ..., hj are NE edges. By triangle inequality,
dt(hm, hm+1) ≤ (xhm+1 −xhm)+(yhm −yhm+1) for any hm and hm+1 on this path. This
implies that dt(hi, hj) ≤ (xhj

− xhi
) + (yhi

− yhj
). Since A(x − xhj

) ≥ yhj
− y ≥ 0 and

the smallest scaled translate of R with hj and v on its boundary is smaller than that
of u and v, we can use induction to get dt(hj , v) ≤ (A +

√
A2 + 1)dx(hj , v) + dy(hj , v).

Putting everything together, we obtain that

dt(u, v) ≤ dt(u, hi) + dt(hi, hj) + dt(hj , v)

≤ (A +
√

A2 + 1)xhi − (yhi − y) + (xhj − xhi ) + (yhi − yhj )

+ (A +
√

A2 + 1)dx(hj , v) + dy(hj , v)

= (A +
√

A2 + 1)xhi + (xhj − xhi ) + (y − yhj )

+ (A +
√

A2 + 1)dx(hj , v) + dy(hj , v)

≤ (A +
√

A2 + 1)dx(u, hj) − dy(hj , v) + (A +
√

A2 + 1)dx(hj , v) + dy(hj , v)

= (A +
√

A2 + 1)x.

proving the theorem when hi is the inductive point of Ri.
If li is the inductive point of Ri then by Property 2c of Lemma 8 we know dt(u, li)−yli

≤
(A +

√
A2 + 1)xli and thus dt(u, li) ≤ (A +

√
A2 + 1)xli + yli .

If A(x − xli) ≥ y − yli , we let lj = li in the remainder. Otherwise, we let j be
the smallest index larger than i such that A(x − xlj

) ≥ y − yc ≥ 0. By Lemma 9,
lj exists and all edges on the path li, ..., lj are SE edges. By triangle inequality,
dt(lm, lm+1) ≤ (xlm+1 − xlm) + (ylm+1 − yhm) for any lm and lm+1 on this path. This
implies that dt(li, lj) ≤ (xlj

− xli
) + (ylj

− yli
). Since A(x − xlj

) ≥ y − ylj
≥ 0 and

the smallest scaled translate of R with lj and v on its boundary is smaller than that
of u and v, we can use induction to get dt(lj , v) ≤ (A +

√
A2 + 1)dx(lj , v) + dy(lj , v).

Putting everything together, this implies that
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dt(u, v) ≤ dt(u, li) + dt(li, lj) + dt(lj , v)

≤ (A +
√

A2 + 1)xli + yli + (xlj − xli ) + (ylj − yli )

+ (A +
√

A2 + 1)dx(lj , v) + dy(lj , v)

≤ (A +
√

A2 + 1)xli + (xlj − xli ) + ylj + (A +
√

A2 + 1)dx(lj , v) + dy(lj , v)

≤ (A +
√

A2 + 1)x + y.

completing the proof of Case 1 when Ax ≥ y.

Subcase Ax < y: Consider the (x′, y′)-coordinate system where the x′-axis equals the
y-axis and the y′-axis equals the x-axis. See Figure 4. When we look at the homothet
rectangles R1, . . . , Rk intersecting the segment uv in the (x′, y′)-coordinate system, the
horizontal side of the homothets is the longer side and we have L = 1/A. Therefore,
Ax < y implies Lx′ > y′.

u

v

x

y

x′

y′ u

v
R1

R2

R1

R2

Figure 4 Homothet rectangles R1, . . . , Rk in the (x′, y′)-coordinate system, for k = 2.

If (u, v) is an edge in the rectangle Delaunay triangulation, then dt(u, v) ≤ x′ + y′ ≤
(1 +

√
1

A2 + 1)y + Ax. If no rectangle in R1, ..., Rk is inductive then by Property 1 of

Lemma 8 we know dt(u, v) ≤ ( 1
A +

√
1

A2 + 1)x′ + y′ ≤ (1 +
√

1
A2 + 1)y + Ax.

When there is an inductive rectangle, define Ri, hi and li as above. If hi is the
inductive point of Ri then by Property 2b of Lemma 8 we know dt(u, hi)+A(y′

hi
−y′) ≤

(1 +
√

1
A2 + 1)x′

hi
.

If 1
A (x′ − x′

hi
) ≥ y′

hi
− y′ ≥ 0, we let hj = hi in the remainder. Otherwise, we let j be

the smallest index larger than i such that 1
A (x′ − x′

hj
) ≥ y′

hj
− y′ ≥ 0. By Lemma 9,

hj exists and all edges on the path hi, ..., hj are NE edges. By triangle inequality,
dt(hi, hj) ≤ (x′

hj
−x′

hi
)+(y′

hi
−y′

hj
). Since 1

A (x′ −x′
hj

) ≥ y′
hj

−y′ ≥ 0 and the smallest
scaled translate of R with hj and v on its boundary is smaller than that of u and v,
we can use induction to get dt(hj , v) ≤ (1 +

√
1

A2 + 1)dy(hj , v) + Adx(hj , v). Putting
everything together, we obtain
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dt(u, v) ≤ dt(u, hi) + dt(hi, hj) + dt(hj , v)

≤ (1 +
√

1
A2 + 1)x′

hi
− A(y′

hi
− y′) + (x′

hj
− x′

hi
) + (y′

hi
− y′

hj
)

+ (1 +
√

1
A2 + 1)dy(hj , v) + Adx(hj , v)

≤ (1 +
√

1
A2 + 1)x′

hi
− A(y′

hi
− y′) + (x′

hj
− x′

hi
) + A(y′

hi
− y′

hj
)

+ (1 +
√

1
A2 + 1)dy(hj , v) + Adx(hj , v)

≤ (1 +
√

1
A2 + 1)x′

hi
+ (x′

hj
− x′

hi
) − Ady′(hj , v)

+ (1 +
√

1
A2 + 1)dy(hj , v) + Adx(hj , v).

Recall that the y′-axis in the (x′, y′)-coordinate system equals the x-axis in the (x, y)-
coordinate system, so Ady′(hj , v) = Adx(hj , v). Thus

dt(u, v) ≤ (1 +
√

1
A2 + 1)x′

hj
+ (1 +

√
1

A2 + 1)dy(hj , v)

= (1 +
√

1
A2 + 1)y.

If li is the inductive point of Ri then by Property 2d of Lemma 8 we know dt(u, li) −
Ay′

li
≤ (1 +

√
1

A2 + 1)x′
li

. Thus dt(u, li) ≤ (1 +
√

1
A2 + 1)x′

li
+ Ay′

li
.

If 1
A (x′ − x′

li
) ≥ y′ − y′

li
≥ 0, we let lj = li in the remainder. Otherwise, we let j be

the smallest index larger than i such that 1
A (x′ − x′

lj
) ≥ y′ − y′

lj
≥ 0. By Lemma 9,

lj exists and all edges on the path li, ..., lj are SE edges. By triangle inequality,
dt(li, lj) ≤ (x′

lj
− x′

li
) + (y′

lj
− y′

li
). Since 1

A (x′ − x′
lj

) ≥ y′ − y′
lj

≥ 0 and the smallest
scaled translate of R with lj and v on its boundary is smaller than that of u and v,
we can use induction to get dt(lj , v) ≤ (1 +

√
1

A2 + 1)dy(lj , v) + Adx(lj , v). Thus we
obtain that

dt(u, v) ≤ dt(u, li) + dt(li, lj) + dt(lj , v)

≤ (1 +
√

1
A2 + 1)x′

li
+ Ay′

li
+ (x′

lj
− x′

li
) + (y′

lj
− y′

li
)

+ (1 +
√

1
A2 + 1)dy(lj , v) + Adx(lj , v)

≤ (1 +
√

1
A2 + 1)x′

li
+ Ay′

li
+ (x′

lj
− x′

li
) + A(y′

lj
− y′

li
)

+ (1 +
√

1
A2 + 1)dy(lj , v) + Adx(lj , v)

= (1 +
√

1
A2 + 1)x′

li
+ (x′

lj
− x′

li
) + Ay′

lj

+ (1 +
√

1
A2 + 1)dy(lj , v) + Adx(lj , v).

Using that Ay′
lj

= Axlj , we obtain

dt(u, v) ≤ (1 +
√

1
A2 + 1)ylj

+ (1 +
√

1
A2 + 1)dy(lj , v) + Ax

= (1 +
√

1
A2 + 1)y + Ax.

completing the proof of Case 1.
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Case 2: There are vertices of P inside R(u, v). We distinguish two subcases, either Ax ≥ y

or Ax < y.
Subcase Ax ≥ y: We split R(u, v) into three regions formally defined as follows:

A = {p | p is inside R(u, v) such that Adx(u, p) < dy(u, p)}, B = {p |
p is inside R(u, v) such that Adx(u, p) ≥ dy(u, p) and Adx(p, v) ≥ dy(p, v)}, C = {p |
p is inside R(u, v) such that Adx(p, v) < dy(p, v)}. Informally, these three regions can
be constructed by considering the line through u and the line through v parallel to the
line through the diagonal of R and labelling the resulting regions A, B, and C from
left to right (see Figure 5(a)).

u

v

A

B

C

u

v

A

B

C

(a) (b)

Figure 5 (a) The three regions in R(u, v) when Ax ≥ y. (b) The three regions in R(u, v) when
Ax < y.

If there exists a vertex p inside region B, then we can apply induction on the pairs (u, p),
which satisfies Adx(u, p) ≥ dy(u, p), and (p, v), which satisfies Adx(p, v) ≥ dy(p, v):

dt(u, v) ≤ dt(u, p) + dt(p, v)

≤ (A +
√

A2 + 1)dx(u, p) + dy(u, p) + (A +
√

A2 + 1)dx(p, v) + dy(p, v)

= (A +
√

A2 + 1)x + y.

If there is no vertex inside region B, we define Ru to be the smallest scaled translate of
R that has u on its lower left corner and some vertex p ∈ A in R(u, v) on its boundary.
Similarly, we define Rv to be the smallest scaled translate of R that has v on its upper
right corner and some vertex q ∈ C in R(u, v) on its boundary. Since R(u, v) is not
empty, at least one of p and q must exist. Assume without loss of generality that p

exists. In this case we have that Adx(p, v) > dy(p, v) and the smallest homothet with
p and v on its boundary is smaller than that of u and v. If (u, p) is an edge in the
rectangle Delaunay triangulation, then we obtain that:

dt(u, v) ≤ dt(u, p) + dt(p, v)
= d2(u, p) + dt(p, v)

≤ dx(u, p) + dy(u, p) + (A +
√

A2 + 1)dx(p, v) + dy(p, v)

≤ (A +
√

A2 + 1)x + y.

An analogous argument can be used if q exists and (v, q) is an edge in the rectangle
Delaunay triangulation.
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Hence, it remains to consider the case where (u, p) is not an edge, in which case Ru is
not empty. This implies that there exists a p′ ∈ C such that (u, p′) is an edge. We
have that Adx(p′, v) < dy(p′, v) and the smallest scaled translate of R with p′ and v

on its boundary is smaller than that of u and v. By the induction hypothesis, we have:

dt(u, v) ≤ dt(u, p′) + dt(p′, v)
= d2(u, p′) + dt(p′, v)

≤ dx(u, p′) + dy(u, p′) + Adx(p′, v) +
(

1 +
√

1
A2 + 1

)
dy(p′, v)

≤ Ax +
(

1 +
√

1
A2 + 1

)
y.

Since Ax ≥ y and
(

1 +
√

1
A2 + 1

)
> 1, we have

dt(u, v) ≤ 1Ax +
(

1 +
√

1
A2 + 1

)
y

≤
(

1 +
√

1
A2 + 1

)
Ax + 1y

=
(

A +
√

A2 + 1
)

x + y.

Subcase Ax < y: We split R(u, v) into three regions formally defined as follows:
A = {p | p is inside R(u, v) such that Adx(v, p) ≥ dy(v, p)}, B = {p |
p is inside R(u, v) such that Adx(v, p) < dy(v, p) and Adx(u, p) < dy(u, p)}, C =
{p | p is inside R(u, v) such that Adx(u, p) ≥ dy(u, p)}. See Figure 5(b).
If there exists a vertex p inside region B, then we can apply induction on the pairs (u, p),
which satisfies Adx(u, p) < dy(u, p), and (p, v), which satisfies Adx(v, p) < dy(v, p):

dt(u, v) ≤ dt(u, p) + dt(p, v)

≤ Adx(u, p) + (1 +
√

1
A2 + 1)dy(u, p) + Adx(p, v) + (1 +

√
1

A2 + 1)dy(p, v)

= Ax + (1 +
√

1
A2 + 1)y.

If there is no vertex inside region B, we define Ru to be the smallest scaled translate of
R that has u on its lower left corner and some vertex p ∈ A in R(u, v) on its boundary.
Similarly, we define Rv to be the smallest scaled translate of R that has v on its upper
right corner and some vertex q ∈ C in R(u, v) on its boundary. Since R(u, v) is not
empty, at least one of p and q must exist. Assume without loss of generality that p

exists. In this case we have that Adx(p, v) > dy(p, v) and the smallest rectangle with
p and v on its boundary is smaller than that of u and v. If (u, p) is an edge in the
rectangle Delaunay triangulation, then we obtain that:

dt(u, v) ≤ dt(u, p) + dt(p, v)
= d2(u, p) + dt(p, v)

≤ dx(u, p) + dy(u, p) + (A +
√

A2 + 1)dx(p, v) + dy(p, v)

≤ (A +
√

A2 + 1)x + y.
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Since Ax < y, we have

dt(u, v) ≤ (A +
√

A2 + 1)x + y

= (1 +
√

1 + 1
A2 )Ax + 1y

≤ Ax + (1 +
√

1
A2 + 1)y.

An analogous argument can be used if q exists and (v, q) is an edge in the rectangle
Delaunay triangulation.
Hence, it remains to consider the case where (u, p) is not an edge, in which case Ru is
not empty. This implies that there exists a p′ ∈ C such that (u, p′) is an edge. We
have that Adx(p′, v) < dy(p′, v) and the smallest scaled translate of R with p′ and v

on its boundary is smaller than that of u and v. By the induction hypothesis, we have:

dt(u, v) ≤ dt(u, p′) + dt(p′, v)
= d2(u, p′) + dt(p′, v)

≤ dx(u, p′) + dy(u, p′) + Adx(p′, v) +
(

1 +
√

1
A2 + 1

)
dy(p′, v)

≤ Ax +
(

1 +
√

1
A2 + 1

)
y.

This completes the proof of Case 2 and the theorem. ◀

We can now use Theorem 10 to show an upper bound of the spanning ratio of the rectangle
Delaunay triangulation. For any pair of vertices u, v in the graph, if Adx(u, v) ≥ dy(u, v) we
have

dt(u, v)
d2(u, v) <

(A +
√

A2 + 1)x + y√
x2 + y2

.

This function is maximized when y/x = 1/(A +
√

A2 + 1), where the function is equal to

√
2
√

1 + A2 + A
√

1 + A2.

On the other hand, when Adx(u, v) < dy(u, v), we can get

dt(u, v)
d2(u, v) <

Ax + (1 +
√

1
A2 + 1)y√

x2 + y2
.

This function is maximized when y/x = (1 +
√

1
A2 + 1)/A, where the function value equals√

A2 + 2 + 2
√

1 + 1
A2 + 1

A2 ,

which is at most
√

2
√

1 + A2 + A
√

1 + A2. This implies the main result of the paper.

▶ Theorem 11. The spanning ratio of the rectangle Delaunay triangulation is at most√
2
√

1 + A2 + A
√

1 + A2, where A is the aspect ratio of the rectangle used in its construction.

Since it was already known that
√

2
√

1 + A2 + A
√

1 + A2 is a lower bound on the
spanning ratio [3], we obtain that the bound of

√
2
√

1 + A2 + A
√

1 + A2 is tight.
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