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Abstract
We consider the classic 1-center problem: Given a set P of n points in a metric space find the point
in P that minimizes the maximum distance to the other points of P . We study the complexity of
this problem in d-dimensional ℓp-metrics and in edit and Ulam metrics over strings of length d. Our
results for the 1-center problem may be classified based on d as follows.

Small d. Assuming the hitting set conjecture (HSC), we show that when d = ω(log n), no
subquadratic algorithm can solve the 1-center problem in any of the ℓp-metrics, or in the edit or
Ulam metrics.
Large d. When d = Ω(n), we extend our conditional lower bound to rule out subquartic
algorithms for the 1-center problem in edit metric (assuming Quantified SETH). On the other
hand, we give a (1 + ϵ)-approximation for 1-center in the Ulam metric with running time
Õε(nd + n2√

d).

We also strengthen some of the above lower bounds by allowing approximation algorithms or
by reducing the dimension d, but only against a weaker class of algorithms which list all requisite
solutions. Moreover, we extend one of our hardness results to rule out subquartic algorithms for the
well-studied 1-median problem in the edit metric, where given a set of n strings each of length n,
the goal is to find a string in the set that minimizes the sum of the edit distances to the rest of the
strings in the set.
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1 Introduction

Given a set of points P in a metric space, finding the point that “best” represents P
is a fundamental question in both discrete and continuous optimization. Motivated by
applications ranging from machine learning to computational biology, this question has
naturally received a large amount of attention through the years.

The objective can be phrased in various ways: In the median problem, the goal is to find
the point p that minimizes the sum of the distances to the points in P ; in the mean problem,
it is the point that minimizes the sum of distances squared; while in the center problem,
it is the point p that minimizes the maximum distance from a point of P to p. When the
metric is the ℓ2 (Euclidean) metric, the question of computing the geometric median dates
back to the 17th century, when Torricelli was looking for a solution for the case |P | = 3, and
to whom Fermat described an explicit solution. More recently, the question of computing
the center has also become central in applications arising, e.g., in machine learning [11], to
compute the minimum enclosing ball of a set of points, or in computational biology, to find a
good representative of a set of strings (representing molecular sequences) (e.g., [30]). This
fundamental computational geometry problem which has applications to various domains, is
the problem we consider in this paper.

Formally, in the (often referred to as the discrete) 1-center problem, the input is a set of
points P in a metric space, and the goal is to find a point of P that minimizes the maximum
distance to the points in P . When doing data summarization or compression, the discrete
version often makes more sense: Given a set of, say n strings, taking the most representative
string among the input strings, or at least in the set of grammatically (or semantically)
meaningful strings is much more insightful than taking an arbitrary string as representative.
This also applies more globally, outputting a data element that has been observed provides a
better summary than a data element that has been forged by the algorithm and that may
be unlikely to exist in the real-world. From a computational complexity standpoint, this
problem can be easily solved in time O(|P |2f(d)) where f(d) is the time required to compute
the distance of two points. This can be done by enumerating all possible choices for the
center; and for each choice computing the distance from each point in P ; then outputting
the best center. However, is this naïve algorithm the best we can do?

The computational geometry community has done extensive work on the above question
since the 80s. For metrics such as ℓ1 or ℓ2, computing the center has received a large deal of
attention. When the dimension is assumed to be a constant, there exist barely subquadratic
algorithms for the ℓ2 metric, while there exists near-linear time algorithms for the ℓ1 case
(for a discussion on this we refer the reader to [35]). For the case of string metrics, such as
Ulam or Edit distance metrics, nothing better than the O(|P |2f(d)) (where d is the string
length) “brute-force” algorithm is known.

Understanding how fast the 1-center problem can be solved in these different metrics
is not only interesting from a computational complexity point of view, but also from the
perspective of an improved understanding of the geometry of these metrics. For example, is
the geometry of the ℓ1 metric “more amenable” for designing algorithms than the ℓ2 one? Is
the Edit distance metric hard for such problems? We also believe that understanding the
geometry of the Ulam and Edit distance metrics, which one may interpret as generalization
of the Hamming metric, is not only a very basic computational geometry question, but also
would likely lead to better algorithms for these widely-studied problems. We thus ask:

How fast can the 1-center problem be solved or approximated in
ℓp-metrics and stringology metrics such as Ulam or Edit distance?
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1.1 Our Results
In this paper, we take a step towards answering the above question by providing lower and
upper bounds on solving the 1-center problem in ℓp, Ulam, and Edit distance metrics.

Assuming the Hitting Set Conjecture (HSC), we provide a strong conditional lower bound
for the 1-center problem, in a pleathora of metrics.

▶ Theorem 1 (see Theorem 9, Corollary 12, and Corollary 14 for formal statement). Assuming
HSC, no algorithm running in time n2−o(1) can given as input a set of points/strings P
of dimension/length d solve the discrete 1-center problem in Edit/Ulam/ℓp metric, where
|P | = n, d = Ω̃(logn), and p ∈ R≥1 ∪ {0}.

Moreover, by assuming a stronger complexity theoretic assumption we can strengthen this
lower bound in the case when d = poly(n) for the Edit metric. For the sake of presentation,
we state our result below when d = n.

▶ Theorem 2 (see Theorem 15). Assuming Quantified SETH, no algorithm running in time
n4−o(1) can given as input a set of n strings of length d := n each, solve the discrete 1-center
problem in Edit metric.

It’s worth emphasizing that the above lower bound for the edit metric is a rare quartic
lower bound in fine-grained complexity. It’s true that, conceptually, it’s not unexpected
because there’s a quadratic hardness from the 1-center problem and a quadratic hardness
from edit distance, so we would expect the combined problem to be quartic. But we find it
noteworthy that this actually works on the technical level because complexity theory is full
of notorious examples where such “semi-stitching techniques” completely fail (for example
KRW games [20]).

Note that we cannot expect such lower bounds for the 1-center problem in ℓp-metrics
when d = n, as one can compute all pairwise distances within a point-set in subcubic time
using fast matrix multiplication.

Next, we complement the lower bounds by the following subcubic approximation scheme
for the 1-center in the Ulam metric.

▶ Theorem 3. There exists a 1 + ϵ approximation algorithm for the 1-center under Ulam
metric that runs in time Õϵ(nd+ n2

√
d).

It is worth emphasizing here that for the (discrete) 1-center problem in any metric space,
an arbitrary point in the input is a 2-approximate solution. Also note that exact 1-center in
Ulam metric can be solved in O(n2d) time. It remains an open problem to show a conditional
lower bound of n3−o(1) for computing the 1-center in the Ulam metric for n strings each of
length n.

Finally, we strengthen some of the lower bounds above, but against a weaker class of
algorithms, specifically, against algorithms which list all requisite solutions. Using the ideas
in [35, 10], assuming HSC, we rule out subquadratic algorithms that can list all optimal
solutions to the 1-center problem in the Euclidean metric even for very low d = o(logn)
dimensions. At a high level, this result contrasts with both ℓ1 and ℓ∞ metrics where the
1-center in o(logn) dimensions can be solved in n1+o(1) time.

▶ Theorem 4 (see Theorem 20 for formal statement). Assuming HSC, there is no n2−o(1)-time
algorithm listing all optimal solutions to the 1-center problem in 7log∗ n dimensions in the
Euclidean metric.

APPROX/RANDOM 2023
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In the same spirit as above, by applying the distributed PCP framework [2, 31] we extend
the lower bound in Theorem 1 against approximation algorithms which list all approximately
optimal 1-centers.

▶ Theorem 5 (see Theorem 22 for formal statement). Assuming HSC, there is some δ > 0, such
that no n2−o(1)-time algorithm can given as input a set of points/strings P of dimension/length
d, list all (1 + δ)-approximate solutions to the 1-center problem in the Edit/Ulam/ℓp metric,
where |P | = n, d = Ω̃(logn), and p ∈ R≥1 ∪ {0}.

One may compute all pairwise distances in Õ(n2) time for the inputs in Theorems 4 and 5,
and then obtain the list of all optimal and approximately optimal solutions efficiently. Our
theorems above say that one cannot do much better. It remains an intriguing open problem
to extend the above two conditional lower bounds but against standard decision algorithms.
We note that this involves breaking some technical barriers and in particular, developing
techniques that go beyond the dimensionality reduction techniques of [35, 10] and the
distributed PCP framework [2, 31] respectively.

We close this subsection by a short discussion about the Discrete 1-median problem in
ℓp-metrics and string metrics. For the case when d = n, we can prove a result similar to
Theorem 2 (see Remark 18). On the other hand for ℓp-metrics, one cannot prove a result
similar to Theorem 1 for the 1-median problem, because the 1-median problem in Hamming
and ℓ1-metrics admits a near linear time algorithm and for the Euclidean metric, it is even
unclear if the problem is in NP! (see discussion in [18].) Also note that by subsampling
coordinates, we can approximate 1-median in all ℓp-metrics to (1 + ε) factor, for any ε > 0
in near linear time.

1.2 Related Work
We now review the related work on the 1-center problem, and the related 1-median problem.
Both problems may be considered in the discrete or continuous settings. The discrete1 version
asks the center or median to be picked from an input set of points, while in the continuous
version, the “center” is an arbitrary element of the metric. See [13] for a discussion on these
two settings.

Below, we mainly discuss 1-center problem in stringology metrics as the literature on
related work in ℓp metrics is too vast to survey (but the interested reader may look at
[12, 25, 23, 16] and the references therein).

Metrics arising in stringology

We now review results on the 1-center problem in metric spaces arising from stringology
applications. Let Σ be an alphabet, often the binary alphabet {0, 1}. Consider the set of
strings Σ∗ = ΣL of length L, with a metric distance D : Σ∗ × Σ∗ 7→ R. Researchers have
mainly considered the following metrics defined over this space:

Edit distance (ED or Levenshtein distance): The minimum number of single-character
insertions, deletions, and substitutions required to change one string to the other.
Hamming distance or ℓ1 over binary alphabets (HD): A special case of edit distance,
where only substitutions are allowed.
Ulam distance (UD): Same as edit distance with the restriction that the input strings
may not contain any character more than once.

1 Sometimes called the medoid problem in contrast to median, generalized median, or Steiner string.
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For most of the above metrics, one need to incorporate into the running times obtained
for simpler metric such as ℓ1 or ℓ2 the time it takes to compute the exact or approximate
distance between any two points of the space. Naumovitz et al. [28] show how to approximate
UD within factor 1 + ε in time Õ(d/η +

√
d) if the distance is η. This result is tight up to

log factors.
Turning back to the 1-center and 1-median problem, note the discrete versions can be

solved exactly via O(n2) distance computations, giving trivial Õ(n2d)-time algorithms for
the case of UD. In Section 4, we show that this can be improved to Õ(n2

√
d) for 1 + ε

approximation if we combine two algorithms [26, 28] for computations of UD. Note that a
2-approximation is trivial, as we can output any string as the hub in the case of 1-center or
a random string in the case of 1-median.

Recently [9] made progress on obtaining better approximation algorithms for the con-
tinuous 1-Median problem in UD, where the median can be picked from anywhere in space,
by presenting the first polynomial-time constant-factor approximation algorithm with ap-
proximation guarantee smaller than 2 as well as an exact algorithm for the case where the
input contains three strings. They observe that if the average distance to median is Ω(d),
picking the best string as the median already gives an approximation better than two. Now
the problem is reduced to the above case if the total cost is mostly due to a small subset of
characters. Otherwise, they argue that one can deduce the relative ordering of a good portion
of the optimal median by looking at pairs of characters whose relative order is consistent in
most input strings.

Note that in the continuous case, for constant d or constant n, the median and center
problems are both solvable in polynomial time for string problems. De la Higuera and
Casacuberta [15] prove that median and center are both NP-hard. Nicolas and Rivals [29] lift
the restrictions and show that median and center are both NP-hard and W [1]-hard (when
parameterized by n, the number of strings), even for binary alphabets. Prior to these works,
NP-hardness of median was only known for ED when the substitutions have specific costs
for each pair of characters [33]. Li et al. [24, 25] give a PTAS for the HD 1-center problem,2
augmenting the LP-based PTAS for super-logarithmic d [5]. The HD 1-center problem is
known to be NP-hard [16, 23].3 Previously the best polynomial-time approximation ratio was
4
3 + ε in general [23, 19], with an exact algorithm known for constant d (optimal value) [34].

1.3 Organization of the Paper
In Section 2, we provide the formal definition of 1-center problem and the various hypotheses
used in the paper. In Section 3, we provide conditional lower bounds against exact algorithms
that compute 1-center when d = ω(logn). Next, in Section 4, we provide a subcubic
approximation algorithm for 1-center in Ulam metric when d = n. Finally, in Section 5, we
provide some hardness of approximation results (Theorem 5).

2 Preliminaries

▶ Definition 6 (Discrete 1-center). Let (X,∆) be a metric space. Given a set of points
P ⊆ X in the metric space, find x in P which minimizes the maximum distance to every
other point.

2 This is the closest string problem. They also give a PTAS for the closest substring problem, which
assumes that the cost of deletions from the input strings (∞ for HD) is zero.

3 Note that median is solvable exactly for HD.

APPROX/RANDOM 2023
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Perhaps the most popular assumption for proving conditional lower bounds for polynomial
time problems is the Orthogonal Vectors Hypothesis (OVH) that is implied by the Strong
Exponential Time Hypothesis (SETH). Unfortunately, the logical structure of these problems
makes reductions to our 1-center problems difficult. This was observed already by Abboud,
Vassilevska Williams, and Wang [3] in the context of 1-center in graphs (known as the Graph
Radius problem) and has lead them to introduce the hitting set conjecture (HSC): a stronger
variant of OVH that facilitates reductions to problems with different structure. A formal
barrier for establishing HSC (and similarly also any hardness results for 1-center) under
SETH was presented by Carmosino et al. [8].

▶ Definition 7 (HSC). For every ε > 0 there exists c > 1 such that no algorithm running
in time n2−ε can, given as input two collections of n-many subsets A and B of the universe
U := [c logn], determine if there exists S in A which has non-empty intersection with every
subset in B.

The difference between HSC and OVH is in the quantifiers: ∃∀ versus ∃∃. Studying
the polyline simplification problem, Bringmann and Chaudhury [6] proposed a further
strengthening with more quantifiers. Just like OVH is implied by SETH, an assumption
about k-SAT, so too can HSC and its generalizations with more quantifiers be based on
the hardness of a quantified version of k-SAT; an assumption called Quantified-SETH.
Interestingly, the previous papers using Quantified-SETH [6, 1] only needed its special case
where the quantifier structure is ∀∃; whereas in this paper we benefit from a ∃∀∃ structure
that has one more alternation.

The specific hardness assumption (implied by Quantified SETH) that we need is the
following; we refer to [6, 1] for further discussion on Quantified-SETH and to [3, 36] for
further discussion on HSC and on the need for assumptions with other quantifier structures.

▶ Definition 8 (∃∀∃∃OVH). For every ε > 0 there exists c > 1 such that no algorithm
running in time n4−ε can, given as input four collections of n-many subsets A,B, C, and D
of the universe U := [c logn], determine if there exists SA in A such that for all SB in B
there exist SC ∈ C and SD ∈ D such that the intersection SA ∩ SB ∩ SC ∩ SD = ∅ is empty.

3 Exact Lower Bounds for 1-center

In this section, we prove conditional lower bounds for the 1-center problem. We start with
some high-level remarks about the reductions and our contributions.

Previous work (for example [31, 14]) has already designed reductions from SETH and
OVH to closest pair kinds of questions for the metrics we consider, and our work can be
viewed as lifting these results to the 1-center question. As discussed in Section 2 this requires
a new starting assumption (either Quantified SETH or the Hitting Set Conjecture) that has
a different structure. Thus, technically, the main contribution is to adapt the gadgetry of
previous work into new reductions with a different structure. In some cases, fundamental
difficulties arise and we can only resolve them by requiring that the algorithm lists all
solutions.

In all our reductions, we first reduce to the Discrete 1-center with Facilities, where given
a set of clients C ⊆ X and a set of facilities F ⊆ X in the metric space, the goal is to
find x in F which minimizes the maximum distance to every point in C. We then reduce
a hard instance (F,C) of the Discrete 1-center with Facilities problem to an instance P
of the standard Discrete 1-center problem (without facilities) by adding a few additional
coordinates to points in F ∪ C and then introducing a new point/string s such that it is far
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from every point in C (in comparison to its distance from the points/strings in F ). Thus we
ensured that the 1-center of P := F ∪ C ∪ {s} must be from F . Nevertheless, for the sake of
compactness, this two step reduction in the proofs of this section is sometimes written as a
one step reduction.

This section is organized as follows. In Section 3.1, we show the conditional subquadratic
time lower bounds for 1-center in various metrics (Theorem 1). Next, in Section 3.2, we show
the conditional subquartic time lower bound for 1-center in edit metric (also Theorem 2)
and explain how to adapt it for 1-median. Finally, in Section 3.3, we show that there are no
subquadratic listing algorithms for Euclidean 1-center even in low dimensions (Theorem 4).

3.1 Subquadratic Lower Bounds for 1-center when d = ω(log n) in
String and ℓp-metrics

In this subsection, we show that subquadratic time algorithms for 1-center do not exist in
ℓp-metrics, Ulam metic, and edit metric, when d = ω(logn).

▶ Theorem 9 (Subquadratic Hardness of 1-center in ℓp-metrics). Let p ∈ R≥1∪{0}. Assuming
HSC, for every ε > 0, there exists c > 1 such that no algorithm running in time n2−ε can,
given as input a point-set P ⊆ {0, 1}d, solve the discrete 1-center problem in ℓp-metric, where
|P | = n and d = c logn.

Proof. Let (A := (S1, . . . , Sn),B := (T1, . . . , Tn), U) be an instance arising from HSC. We
construct a point-set P ⊆ {0, 1}d where |P | = 2n+ 1 and d = 5 · |U |+ 2. We build the two
maps τA : A → {0, 1}d, τB : B → {0, 1}d and a special point s ∈ {0, 1}d and the point-set P
is then simply defined to be the union of {s} and the images (range) of τA and τB, i.e.,

P := {τA(S) | S ∈ A} ∪ {τB(T ) | T ∈ B} ∪ {s}.

Let U := {u1, . . . , um}. We define our special point s as follows:

∀i ∈ [5m+ 2], si :=
{

0 if 1 ≤ i ≤ 3m
1 if 3m+ 1 ≤ i ≤ 5m+ 2

For any S ∈ A we define τA(S) as follows:

∀i ∈ [5m+ 2], τA(S)i :=



1 if ui ∈ S and 1 ≤ i ≤ m
0 if ui /∈ S and 1 ≤ i ≤ m
0 if ui−m ∈ S and m+ 1 ≤ i ≤ 2m
1 if ui−m /∈ S and m+ 1 ≤ i ≤ 2m
0 if 2m+ 1 ≤ i ≤ 4m+ 1
1 if 4m+ 2 ≤ i ≤ 5m+ 2

For any T ∈ B we define τB(T ) as follows:

∀i ∈ [5m+ 2], τB(T )i :=



1 if ui ∈ T and 1 ≤ i ≤ m
0 if ui /∈ T and 1 ≤ i ≤ m
0 if m+ 1 ≤ i ≤ 2m
0 if ui−2m ∈ T and 2m+ 1 ≤ i ≤ 3m
1 if ui−2m /∈ T and 2m+ 1 ≤ i ≤ 3m
0 if 3m+ 1 ≤ i ≤ 5m+ 2

APPROX/RANDOM 2023



1:8 On Complexity of 1-Center in Various Metrics

Notice that for any S, S′ in A and T in B, we have

∥τA(S)− τB(T )∥p = (|S|+ |T | − 2 · |S ∩ T |+m− |S|+m− |T |+m+ 1)1/p

= (3m+ 1− 2 · |S ∩ T |)1/p
.

∥τA(S)− τA(S′)∥p ≤ (2m)1/p
.

∥τA(S)− s∥p = (2m+ 1)1/p
.

∥τB(T )− s∥p = (3m+ 2)1/p
.

Suppose there exists S in A such that it intersects with every subset T in B then τA(S)
has distance strictly less than (3m+ 1)1/p with τB(T ) for every T in B. Additionally, τA(S)
has distance at most (2m)1/p with τA(S′) for any S′ ∈ A and distance (2m+ 1)1/p with s.
Therefore, τA(S) is at distance at most (3m)1/p from every point in P .

On the other hand, if for every S in A there exists T in B such that S and T are disjoint,
then we show that for any point x in P there is a point y in P such that ∥x−y∥p ≥ (3m+1)1/p.
Suppose x := τB(T ) for some T ∈ B then we have x is at distance (3m+2)1/p from s. Similarly
if x := s then it is at distance (3m+2)1/p from every τB(T ) for all T ∈ B. Finally, if x := τA(S)
for some S ∈ A then from the soundness assumption we have that there exists T in B such
that S and T are disjoint. Thus, x is at distance (3m+ 1)1/p from τB(T ). ◀

▶ Remark 10. For the ℓ∞-metric, we can solve Discrete 1-center problem in O(nd2) time as
follows. Given input point-set P , for every coordinate i ∈ [d], determine a farthest pair of
points (ai, bi) in the point-set when restricted to that coordinate. Note that discrete 1-center
cost of P is equal to the cost of the discrete 1-center of the point-set {a1, ..., ad, b1, ...., bd}
when the center can be picked anywhere in P . Thus we can solve discrete 1-center in the
ℓ∞-metric in O(nd2) time, which is near linear time as long as d = no(1).

The quadratic lower bound for 1-center in Ulam metric follows from the below lemma.

▶ Lemma 11. Let Πd denote the set of all permutations over [d]. For every d ∈ N, there is
a function η : {0, 1}d → Π2d, such that for all a, b ∈ {0, 1}d the following holds:

ed(η(a), η(b)) = 2 · ∥a− b∥0.

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in O(d) time.

Proof. Let a ∈ {0, 1}d. We define η(a) as follows:

∀i ∈ [2d], η(a)[i] =


i if i = 2k − 1 and ak = 0 for some k ∈ N
i if i = 2k and ak = 0 for some k ∈ N
i+ 1 if i = 2k − 1 and ak = 1 for some k ∈ N
i− 1 if i = 2k and ak = 1 for some k ∈ N

Fix some k ∈ [d] and a, b ∈ {0, 1}d. If ak = bk then notice that η(a)[2k] = η(b)[2k] and
η(a)[2k−1] = η(b)[2k−1]. If ak ̸= bk then η(a)[2k] = η(b)[2k−1] and η(a)[2k−1] = η(b)[2k].
Since the characters do not repeat, we have that the optimal distance is obtained by swapping
which amounts to two edit operations. ◀

▶ Corollary 12 (Subquadratic Hardness of 1-center in Ulam metric). Assuming HSC, for every
ε > 0 there exists c > 1 such that no algorithm running in time n2−ε can given as input a set
P of n many permutations of [d], solve the discrete 1-center problem in Ulam metric, where
|P | = n and d = c logn.
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The quadratic lower bound for 1-center in Edit metric follows from the below lemma.

▶ Lemma 13. For every d ∈ N, there is a function η : {0, 1}d → {0, 1}d′ , such that for all
a, b ∈ {0, 1}d the following holds:

ed(η(a), η(b)) = ∥a− b∥0.

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in O(d log d) time.

Proof. Let l1, l2, . . . , ld be d strings of length 10 log d each made by realizing 10 log d 0/1 bits
uniformly at random. It follows that with high probability, the hamming distance as well as
the edit distance of each pair li, lj (i ̸= j) is Ω(log d) [22]. For a string a, we define η(a) in
the following way: we make a string of size d(10 log d+ 1) which consists of d consecutive
blocks. Each block i starts with ai and is followed by li. By putting all the blocks next to
each other we obtain a string of size d(10 log d+ 1) which we denote by η(a). We prove in
the following that ed(η(a), η(b)) = ∥a− b∥0 holds for each pair of strings a and b.

ed(η(a), η(b)) ≤ ∥a− b∥0 immediately follows from the fact that by only toggling the first
characters of some block of η(a) we can turn η(a) into η(b) and this transformation only costs
∥a− b∥0. Note that we only toggle the first characters of the blocks whose corresponding
characters in a and b are not the same.

Now, assume for the sake of contradiction that ed(η(a), η(b)) < ∥a − b∥0 holds. This
implies that for at least d− ∥a− b∥0 + 1 many blocks of a, the transformation cost is 0. In
other words, for each of these blocks, there is a substring of length 10 log d+ 1 in η(b) which
is completely the same as that block. Since the blocks are generated randomly, this can only
happen if for some i, the i’th block of η(a) is transformed into the i’th block of η(b) and
ai = bi. Thus, this implies that for at least d − ∥a − b∥0 + 1 different values of i we have
ai = bi which is contradiction. ◀

▶ Corollary 14 (Subquadratic Hardness of 1-center in Edit metric). Assuming HSC, for every
ε > 0 there exists c > 1 such that no algorithm running in time n2−ε can given as input a
point-set P ⊆ {0, 1}d solve the discrete 1-center problem in edit metric, where |P | = n and
d = c logn log logn.

Next we prove much higher lower bounds for the Edit metric when d is larger.

3.2 Subquartic Lower Bound for 1-center when d = n in Edit metric
We now present our lower bound under Quantified SETH which offers a conceptual novelty
since as discussed in Section 2 it is the first time (to our knowledge) that more than two
quantifier alternations are utilized.

▶ Theorem 15 (Subquartic Hardness of 1-center in Edit metric). Assuming Quantified SETH,
for every ε > 0 no algorithm running in time n4−ε can given as input a point-set P ⊆ {0, 1}n

solve the discrete 1-center problem in edit metric, where |P | = n.

Proof. Let us first reduce to the 1-center problem with facilities where there are two sets of
binary strings, a set of clients C and a set of facilities F and the goal is to decide if there
is a string in F that has ED at most τ to all strings in C. Given an instance A,B, C,D of
∃∀∃∃OVH we construct C and F as follows.

First we will use the following lemma that follows from the existing reductions from OVH
to ED [4, 7] (the latter reference gets the alphabet size down to 2).
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1:10 On Complexity of 1-Center in Various Metrics

▶ Lemma 16 ([7]). There are two linear time algorithms such that: each algorithm takes a
set (A or B) of n binary vectors of length d and constructs (independently of the other) a
binary string (sA or sB) of length O(nd) with the following property for a fixed value τ that
only depends on n, d: ED(sA, sB) < τ if there is a pair of orthogonal vectors vA ∈ A, vB ∈ B
and ED(sA, sB) ≥ τ otherwise.

For a set X ⊆ [d] let v(X) ∈ {0, 1}d be the natural encoding of the set as a binary vector
where v(X)[i] = 1 iff i ∈ X. Note that two vectors are orthogonal iff the two corresponding
sets are disjoint.

Now, for each set SA ∈ A define the set of n vectors A = {v(X) | SC ∈ C, X = SA ∩ SC}
representing the n sets that result from intersecting SA with any set in C. Similarly, for each
set SB ∈ B define the set of n vectors B = {v(X) | SD ∈ D, X = SB ∩ SD}.

It follows that there is an orthogonal pair vA ∈ A, vB ∈ B iff there exist SC ∈ C and
SD ∈ D such that SA ∩ SB ∩ SC ∩ SD = ∅. Therefore, if we use the algorithms in the above
lemma to encode each set A with a string sA and add it to the set of facilities F , and also
encode each set B with a string sB and add it into the set of clients C we get the reduction
we are after: By the definition of the ∃∀∃∃OVH problem, there is a string sA ∈ F such that
for all strings sB ∈ C we have ED(sA, sB) < τ if and only if the given ∃∀∃∃OVH instance is
a yes-instance.

Finally, we reduce to the basic 1-center problem (without facilities). Suppose that the
strings in F,C have length m. We simply construct an instance P ⊆ {0, 1}4m of 1-center as
follows.

P := {1m ◦ f ◦ 02m | f ∈ F} ∪ {1m ◦ c ◦ 12m | c ∈ C} ∪ {04m}.

The following simple facts about the ED of the transformed strings show that the optimal
center in P must be from {1m ◦ f ◦ 02m | f ∈ F} and its cost would be smaller than 2m+ τ

iff the original ∃∀∃∃OVH instance is a yes-instance.

▷ Claim 17. Let x, y be two binary strings of length m with ED exactly t.
ED(1m ◦ x ◦ 02m, 1m ◦ y ◦ 02m) ≤ m.
ED(1m ◦ x ◦ 02m, 04m) ≤ 2m.
ED(1m ◦ x ◦ 02m, 1m ◦ y ◦ 12m) = 2m+ t.
ED(1m ◦ x ◦ 12m, 04m) ≥ 3m.

The first and second items follow from the straightforward alignment of the strings. The
fourth item follows because ED(0ℓ, 1ℓ) = ℓ. The third item requires a bit more care. First,
to see that the ED is at most 2m+ t consider the alignment that maps x to y optimally at
cost t and then maps the other parts in the straightforward way at cost 2m. Now suppose for
contradiction that there was a better alignment. This alignment must match one of the new
letters (from the transformation) to x or y; otherwise it would yield an alignment between
x, y at cost smaller than t. But any alignment that matches the 1 letters on the left to x
or y can be corrected so that the 1m parts on the left are matched to each other, without
affecting the cost. Similarly, any matching between the letters on the right to x or y can be
corrected without increasing the cost. Suppose that a 0 from the right is matched to y. This
implies that one of the 1’s to the right of y must be deleted (because there are no longer
enough 0’s in the other string to get substituted with all of them), and a corrected alignment
that instead substitutes the 0 with a 1 (reducing the number of such deletions by one) and
leaves the mate in y unmatched does not have a higher cost. We refer the reader to [7] for
more formal proofs of such claims. ◀
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▶ Remark 18. The above reduction to Edit also work for the 1-median problem but with
two key differences. The first and main difference is that, since we take the sum instead
of the max, the cost in the objective may now be affected by non-orthogonal pairs and
it is no longer sufficient to have gadgets that give distance < τ or ≥ τ depending on the
orthogonality. Instead, we need gadgets that guarantee that the distance is either < τ or
exactly τ . Fortunately, such requirements can be accomplished, see e.g. Theorem 4 in [4].
The second difference is that we do not need the ∀ quantifier in the starting assumption; the
sum is powerful enough to support the (standard) ∃∃∃∃ structure type. Therefore, the lower
bounds for 1-median can be based on the standard SETH rather than the Quantified-SETH.

3.3 Subquadratic Lower Bounds for 1-center in Low dimensional
Euclidean space

In this subsection, we show that an algorithm with subquadratic running time does not exist
in the low dimensional Euclidean metric for the 1-center problem. Our proof essentially
adopts ideas developed in [35, 10]. We note that this result is surprising as there is a near
linear time algorithm for 1-center in the low dimensional ℓ1-metric.
▶ Remark 19. For the ℓ1-metric, we can solve Discrete 1-center problem in O(n22d) time
by using the isometric embedding of the ℓ1-metric to the ℓ∞-metric [27], and then noting
Remark 10.

▶ Theorem 20. Assuming HSC, there exists a constant η > 1 such that for every ε > 0, no
algorithm running in time n2−ε can given as input a point-set P ⊆ Rd and a positive real
α output all points in P whose 1-center cost in the Euclidean metric is at most α, where
|P | = n, d = ηlog∗ n, and representing each vector requires at most Õ(logn) bits.

Proof of Theorem 20. We prove the theorem statement by contradiction. Suppose for some
ε > 0 there is an algorithm T running in time n2−ε that can given as input a point-set
P ⊆ Rd and a positive real α output all points in P whose 1-center cost in the Euclidean
metric is at most α, where |P | = n, d = ηlog∗ n, and each vector is of at most k logn bit
entries (for some constant integer k).

Let (A := (S1, . . . , Sn),B := (T1, . . . , Tn), U) be an instance arising from HSC, where
|U | = c logn. We think of each set in A and B as its characteristic vector in {0, 1}c log n. We
show how we can decide this instance in n2− ε

2 time using T , thus contradicting HSC.
We need the following theorem from Chen [10].

▶ Theorem 21 (Chen [10]). Let b, ℓ be two sufficiently large integers. There is a reduction
ψb,ℓ : {0, 1}b·ℓ → Zℓ and a set Vb,ℓ ⊆ Z, such that for every x, y ∈ {0, 1}b·ℓ,

x · y = 0⇔ ψb,ℓ(x) · ψb,ℓ(y) ∈ Vb,ℓ

and

0 ≤ ψb,ℓ(x)i < ℓ6log∗(b)·b

for all possible x and i ∈ [ℓ]. Moreover, the computation of ψb,ℓ(x) takes poly(b · ℓ) time, and
the set Vb,ℓ can be constructed in O

(
ℓO(6log∗(b)·b) · poly(b · ℓ)

)
time.

We use the above theorem with ℓ = 7log∗ n and b = |U |/ℓ. Note that if ℓ = 7log∗ n then
log

(
ℓ6log∗(b)·b

)
= o(logn). All of the below construction details appears in [35, 10] and we

skip many of the calculations and claim proofs hereafter. Our contributions are mainly in
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using these previously known constructions in a new way to prove the theorem statement.
In particular, for every t ∈ Vb,ℓ we create an instance (Pt ⊆ R(ℓ+1)2+3, α :=

√
2n5 − 1) of

1-center as follows.
For every4 Si ∈ A (resp. Tj ∈ B) we first define a point pt

i ∈ Zℓ+1 (resp. qt
j ∈ Zℓ+1) as

follows:

pt
i := (ψb,ℓ(Si), t) (resp. qt

j := (ψb,ℓ(Tj),−1)).

It is then easy to verify that Si ∩ Tj = ∅ if and only if there exists some t ∈ Vb,ℓ such
that ⟨pt

i, q
t
j⟩ = 0. Next for every pt

i ∈ Zℓ+1 (resp. qt
j ∈ Zℓ+1) we define p̃t

i ∈ Z(ℓ+1)2 (resp.
q̃t

j ∈ Z(ℓ+1)2) as follows:

∀a, b ∈ [ℓ+ 1], p̃t
i(a, b) := pt

i(a) · pt
i(b) (resp. q̃t

j(a, b) := −qt
j(a) · qt

j(b)).

It is then straightforward to verify that ⟨pt
i, q

t
j⟩ = 0 if and only if ⟨p̃t

i, q̃
t
j⟩ ≥ 0.

Finally, we have our pointset Pt ∈ R(ℓ+1)2+3 defined as follows:

Pt :=
{(

p̃t
i,

√
n5 − ∥p̃t

i∥2
2, 0, 0

) ∣∣∣∣Si ∈ A
}

︸ ︷︷ ︸
P A

t

⋃ {(
−q̃t

j , 0,
√
n5 − ∥q̃t

j∥2
2,
√
n5

) ∣∣∣∣Tj ∈ B
}

︸ ︷︷ ︸
P B

t

∪
{

0⃗
}
,

where 0⃗ = (0, 0, . . . , 0).
It can then be verified that ⟨p̃t

i, q̃
t
j⟩ ≥ 0 if and only if the distance between(

p̃t
i,

√
n5 − ∥p̃t

i∥2
2, 0

)
and

(
−q̃t

j , 0,
√
n5 − ∥q̃t

j∥2
2

)
is at least

√
2n5; otherwise their distance

is at most
√

2n5 − 1. Also note that any pair of points in PA
t or any pair of points in PB

t

are at distance at most
√

2n5 − 1 from each other. Finallt, note that the distance between
any point in PB

t and 0⃗ is exactly
√

2n5 and the distance between any point in PA
t and 0⃗ is

exactly
√
n5.

We run T on (Pt, α :=
√

2n5 − 1) for every t ∈ Vb,ℓ. Let Ot ⊆ Pt be the output of
running T on (Pt, α). In other words for every t ∈ Vb,ℓ and every p ∈ Ot we have that for
every p′ ∈ Pt, ∥p− p′∥2 ≤

√
2n5 − 1.

We claim that there exists S in A such that it intersects with every subset T in B if and
only if there exists i ∈ [n] such that for all t ∈ Vb,ℓ, we have

(
p̃t

i,
√
n5 − ∥p̃t

i∥2
2, 0

)
∈ Ot.

Suppose there exists Si∗ in A such that it intersects with every subset T in B. Fix t ∈ Vb,ℓ.
We have that

(
p̃t

i∗ ,
√
n5 − ∥p̃t

i∗∥2
2, 0

)
is at distance at most

√
2n5 − 1 from every other point

in PA
t just from construction. Suppose there is

(
−q̃t

j , 0,
√
n5 − ∥q̃t

j∥2
2

)
∈ PB

t such that their
distance is greater than

√
2n5 − 1 then from the construction, their distance must be

√
2n5,

which implies that Si∗ ∩ Tj = ∅, a contradiction.
On the other hand, if for every S in A there exists T in B such that S and T

are disjoint then we show that for any point
(
p̃t

i,
√
n5 − ∥p̃t

i∥2
2, 0

)
there exists t ∈ Vb,ℓ

such that
(
p̃t

i,
√
n5 − ∥p̃t

i∥2
2, 0

)
/∈ Ot. Fix i ∈ [n]. Let Tj ∈ B such that Si ∩ Tj =

∅. Let t∗ := ψb,ℓ(Si) · ψb,ℓ(Tj). From Theorem 21 we have that t∗ ∈ Vb,ℓ. Thus(
p̃t∗

i ,
√
n5 − ∥p̃t∗

i ∥2
2, 0

)
and

(
−q̃t∗

j , 0,
√
n5 − ∥q̃t∗

j ∥2
2

)
in Pt∗ are at distance at least

√
2n5

and thus
(
p̃t∗

i ,
√
n5 − ∥p̃t∗

i ∥2
2, 0

)
/∈ Ot∗ .

Finally, note that the total run time was O(n2−ε · |Vb,ℓ|) = O(n2−ε logn) < n2− ε
2 . ◀

4 Recall that we think of Si and Tj through their characteristic vector.
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4 An n2.5 time 1 + ϵ Approximation Algorithm for 1-Center in Ulam
Metric when d = n

In this section, we consider the 1-center problem under Ulam metric. More precisely, we
consider a problem where n strings s1, s2, . . . , sn are given as input and our goal is to find a
string sk such that the maximum distance of sk from the rest of the strings is minimized.
Our focus here is on the Ulam metric.

We assume throughout this section that the length of all strings is equal to d. Our
algorithm for this case is two-fold. Let o be the value of the solution (i.e., the maximum
distance of the center of the strings to the rest of the strings is exactly equal to o). If o
is lower bounded by

√
d, previous work on Ulam distance gives us a 1 + ϵ approximate

solution for center in the following way: We iterate over all pairs of strings and each time we
estimate their Ulam distance via the algorithm of Naumovitz, Saks, and Seshadhri [28] for
approximating the Ulam distance of each pair. When the Ulam distance of two strings is
equal to u, their algorithm takes time Õϵ(d/u+

√
d) to 1 + ϵ approximate the solution. Thus,

we only run their algorithm up to a runtime of Õϵ(
√
d) to either obtain a 1 + ϵ approximate

solution for the Ulam distance or verify that the Ulam distance is smaller than
√
d. It follows

that if o ≥
√
d this information is enough for us to approximate the 1-center problem within

a factor 1 + ϵ and the runtime of the algorithm is bounded by Õϵ(n2
√
d). Thus, it only

remains to design an algorithm for the low-distance regime.
From here on, we assume that o ≤

√
d. In this case, we take an arbitrary string (say

s1) and compute the Ulam distance of that string to all the other strings. In addition to
this, we also keep track of the changes that convert s1 into all the strings. It follows that
since o ≤

√
d, the distance of s1 to all the strings is bounded by at most 2

√
d. Thus, via the

transformations we compute in this step, we would be able to make a transformation from
any si to any sj with at most 4

√
d operations (we can combine the transformation from s1

to si and the transformation from s1 to sj). Using this information, we can determine the
exact Ulam distance of every string si to every string sj in the following way:

We start with the non-optimal transformation from si to sj that uses at most 4
√
d

operations. We then split the characters from [1, . . . , d] into buckets such that in each bucket
all the characters are next to each other and they appear in the same order in the two
strings. To be more precise, consider the following procedure: color each character of si

and sj which is touched in the transformation (deleted, added, or changed) in red and the
rest blue. Each set of consecutive blue characters and each single red character makes a
bucket. It follows that because there is a transformation from si to sj with at most 4

√
d

operations, the total number of buckets would be bounded by O(
√
d). Moreover, there exists

an optimal transformation wherein either all characters of each buckets are deleted/inserted
or all characters of each bucket remain intact. This implies that we can compress the two
strings into smaller strings by replacing each bucket with a single character. The insertion
and deletion of these special characters then has a cost proportional to the size of the bucket.
This way, the size of the two strings would be bounded by O(

√
d) and thus we can compute

the Ulam distance of the two strings in time Õ(
√
d). Therefore, we can compute the center

of the strings in time Õϵ(nd+ n2
√
d).

▶ Theorem 3. There exists a 1 + ϵ approximation algorithm for the 1-center under Ulam
metric that runs in time Õϵ(nd+ n2

√
d).

Proof of Theorem 3. The outline of the algorithm along with its runtime analysis is given
earlier. Here we prove that the approximation factor of the algorithm is bounded by 1 + ϵ. In
case o ≥

√
d, we use the 1+ϵ approximation algorithm of Naumovitz, Saks, and Seshadhri [28]
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Algorithm 1 1-center of n strings under Ulam metric.

Data: s1, s2, . . . , sn

Result: 1-center
o←∞;
for i← 1 to n do

mx← −1;
for j ← 1 to n do

Run [28] on si and sj up to Õϵ(
√
d) steps;

if the algorithm terminates then
mx← max{mx, the output of the algorithm};

end
end
o← min{o,mx};

end
if o ̸= −1 then

return o;
end
else

o←∞;
for i← 1 to n do

tri ← optimal transformation between s1 and si;
end
for i← 1 to n do

mx← −1;
for j ← 1 to n do

(s∗
i , s

∗
j )← compressed versions of (si, sj) based on tri and trj ;

mx← max{mx, the Ulam distance of s∗
i and s∗

j};
end
o← min{o,mx};

end
return o;

end

for each pair of strings up to a runtime of Õϵ(
√
d). If the algorithm gives an estimation before

we terminate it, we take the value into account when determining the maximum distance
for the strings involved. It follows that since o ≥

√
d, then for each string sx, there is one

string sy whose distance to sx is at least
√
d and thus the maximum distance we determine

for each string is a 1 + ϵ approximation of the optimal value.

Next, we show that in case o ≤
√
d, our algorithm determines the Ulam distance of each

pair exactly and thus solves the 1-center problem correctly. In order to determine the Ulam
distance between si and sj , we begin with a transformation of size at most 4

√
d between

the two strings. We then mark all the characters that are either deleted or inserted in this
transformation and all the characters that are next to these characters. We then compress
the two strings in the following way: each marked character becomes a single character with
the same value. Each maximal interval of unmarked characters that are next to each other
also become a single character whose value represents the entire interval. Therefore, the
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compressed strings have O(
√
d) characters each. It follows that the Ulam distance of the

compressed strings is exactly equal to the Ulam distance of the original strings. Moreover,
even though for the compressed strings the operations have arbitrary costs, we can still solve
Ulam distance in time proportional to the length of the strings which results in an algorithm
with runtime Õ(

√
d) for computing Ulam distance between each pair. ◀

5 Hardness of Approximation of 1-center in String and ℓp-metrics

In this section, we prove hardness of approximation results for the 1-center problem. A
background on error correcting codes is detailed in Appendix A.

▶ Theorem 22 (Subquadratic Inapproximability of 1-center in ℓp-metrics). Let p ∈ R≥1 ∪ {0}.
Assuming HSC, for every ε > 0 there exists δ > 0 such that no algorithm running in time
n2−ε can given as input a point-set P ⊆ {0, 1}d and a positive real α output all points in P

whose 1-center cost in the ℓp-metric is at most α · (1 + δ), where |P | = n and d = Oε(logn).

Proof. Fix p ∈ R≥1 ∪ {0}. We prove the theorem statement by contradiction. Suppose for
some ε > 0 there is an algorithm T running in time n2−ε that can for every δ > 0, given as
input a point-set P ⊆ Rd and a positive real α output all points in P whose 1-center cost in
the ℓp-metric is at most α · (1 + δ), where |P | = n and d = Oε(logn) (dependency on ε will
become clear later in the proof).

Let (A := (S1, . . . , Sn),B := (T1, . . . , Tn), U) be an instance arising from HSC, where
|U | = c logn. We think of each set in A and B as its characteristic vector in {0, 1}c log n. We
show how we can decide this instance in n2− ε

2 time using T , thus contradicting HSC.
The construction below is exactly the same as the one suggested by Rubinstein [31]. We

however, use this construction to fit our purposes of proving lower bound for the 1-center
problem.

Algebrization. Fix T = 2c/ε. Let q be the smallest prime greater than T (i.e., q < 2 · T ).
Let m := c logn. Let C1

m/T and C2
m/T be the codes guaranteed in Theorem 26 over Fq2 with

block length ℓ ≤ λm/T .
Let C̃ ⊆ C2

m/T such that ω ∈ C̃ if and only if ω |[m/T ]= 0⃗ (i.e., ω has a zero entry
in each of the first m/T coordinates). For every ω ∈ C̃ we define two functions τω

A, τ
ω
B :

{0, 1}m → {0, 1}r, where r := q4(T +2) × ℓ. We can thus index every i ∈ [r] using elements in
FT

q2 × FT
q2 × [ℓ].

Fix x ∈ {0, 1}m. Let x = (x1, . . . , xT ) ∈ {0, 1}m where for all i ∈ [T ] we have xi ∈
{0, 1}m/T . We define τω

A(x) coordinate wise. Fix ζ ∈ [r] and we think of ζ as follows:

ζ =
(
(µA

1 , . . . , µ
A
T +2), (µB

1 , . . . , µ
B
T +2), j

)
∈ FT +2

q2 × FT +2
q2 × [ℓ]. (1)

We define τω
A(x)ζ to be 1 if and only if:∑

i∈[T +2]

µA
i · µB

i = ω(j) and ∀i ∈ [T ], µA
i = C1

m/T (xi)j , and µA
T +1 = 0, µA

T +2 = C1
m/T (1m/T )j .

Similarly, we define τω
B (x) coordinate wise. Fix ζ ∈ [r] and we think of ζ as in (1). We

define τω
B (x)ζ to be 1 if and only if:∑

i∈[T +2]

µA
i · µB

i = ω(j) and ∀i ∈ [T ], µB
i = C1

m/T (xi)j and µB
T +1 = C1

m/T (1m/T )j , µB
T +2 = 0.
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Construction. For every Si ∈ A, we define sω
i := τω

A(Si). Further, we define s̃ω
i =

(sω
i ,1

r − sω
i ,1

2r) ∈ {0, 1}4r. For every Tj ∈ B, we define tωj := τω
B (Tj). Further, we define

t̃ωj = (1r − tωj , tωj , 02r) ∈ {0, 1}4r.
We define the point-set Pω to be PA

ω := {s̃ω
i | Si ∈ A} ∪ PB

ω := {t̃ωj | Tj ∈ B} ∪ {14r}.
Let α := (2q4(T +2) − 4q2(T +1)) · ℓ+ 2r + ℓ. Let δ := 1/(4q4T − 4q2T −2 + 1).

Analysis. We run T on (Pω, α) for every ω ∈ C̃. Let Oω ⊆ Pω be the output of running T
on (Pω, α). In other words for every ω ∈ C̃ and every s ∈ Ot we have that for every s′ ∈ Pω,
∥s− s′∥p ≤ (1 + δ)1/p · α1/p.

We claim that there exists S in A such that it intersects with every subset T in B if and
only if there exists i ∈ [n] such that for all ω ∈ C̃, we have s̃ω

i ∈ Oω.
Suppose there exists Si∗ in A such that it intersects with every subset T in B. Fix ω ∈ C̃.

We have that s̃ω
i∗ is at distance at most (2r)1/p from every other point in PA

ω just from
construction. Suppose there is t̃ωj ∈ PB

ω such that their distance is greater than α1/p then
from the construction, their distance must be at least (1 + δ)1/p · α1/p, which implies that
Si∗ ∩ Tj = ∅, a contradiction.

On the other hand, if for every S in A there exists T in B such that S and T are disjoint
then we show that for any point s̃ω

i there exists ω ∈ C̃ such that s̃ω
i /∈ Oω. Fix i ∈ [n]. Let

Tj ∈ B such that Si ∩ Tj = ∅. Let ω∗ :=
∑

e∈[T ] C
1
m/T (Se

i ) · C1
m/T (T e

j ). From Theorem 26
we have that ω∗ ∈ C̃. Thus s̃ω∗

i and t̃ω
∗

j in Pω∗ are at distance at least (1 + δ)1/p · α1/p and
thus s̃ω∗

i /∈ Oω∗ . Also, note that for all ω ∈ C̃, we have that every point in PB
ω is at distance

at least (3r)1/p from 1
4r.

Finally, note that the total run time was O(n2−ε · |C̃|) = O(n2−ε+ c
T ) < n2− ε

2 . ◀

We remark that the above construction is the same as the one in [31] albeit for a different
problem (nearest neighbors problem).

Theorem 22 readily extend to the edit metric from the below statement and to the Ulam
metric from Lemma 11.

▶ Lemma 23 (Rubinstein [31]). For large enough d ∈ N, there is a function η : {0, 1}d →
{0, 1}d′ , where d′ = O(d log d), such that for all a, b ∈ {0, 1}d the following holds for some
constant λ > 0:

|ed(η(a), η(b))− λ · log d · ∥a− b∥0| = o(d′).

Moreover, for any a ∈ {0, 1}d, η(a) can be computed in 2o(d) time.
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A Error Correcting Codes

An error correcting code C over alphabet Σ is a function C : Σm → Σℓ where m and ℓ are
positive integers which are referred to as the message length and block length of C respectively.
Intuitively, the function C encodes an original message of length m to an encoded message
of length ℓ. The rate of a code ρ(C) is defined as the ratio between its message length and
its block length, i.e., ρ(C) = m/ℓ. The relative distance of a code, denoted by δ(C), is defined
as min

x ̸=y∈Σm
δ(C(x), C(y)) where δ(C(x), C(y)) is the relative Hamming distance between C(x)

and C(y), i.e., the fraction of coordinates on which C(x) and C(y) disagree.
In this paper, we require our codes to have some special algebraic properties which have

been shown to be present in algebraic geometric codes [17]. First, we will introduce a couple
of additional definitions.

▶ Definition 24 (Systematicity). Given s ∈ N, a code C : Σm → Σℓ is s-systematic if there
exists a size-s subset of [ℓ], which for convenience we identify with [s], such that for every
x ∈ Σs there exists w ∈ Σm in which x = C(w) |[s].

▶ Definition 25 (Degree-t Closure). Let Σ be a finite field. Given two codes C : Σm →
Σℓ, C ′ : Σm′ → Σℓ and positive integer t, we say that C ′ is a degree-t closure of C if,
for every w1, . . . , wr ∈ Σm and P ∈ F[X1, . . . , Xr] of total degree at most t, it holds that
ω := P (C(w1), . . . , C(wr)) is in the range of C ′, where ω ∈ Σℓ is defined coordinate-wise by
the equation ωi := P (C(w1)i, . . . , C(wr)i).

Below we provide a self-contained statement of the result we need; it follows from
Theorem 7 of [32], which gives an efficient construction of the algebraic geometric codes
based on [17]’s explicit towers of function fields.

▶ Theorem 26 ([17, 32]). There is a constant λ > 0 such that for any prime q ≥ 7, there are
two code families C1 = {C1

n}n∈N, C2 = {C2
n}n∈N such that the following holds for all n ∈ N,

C1
n and C2

n are n-systematic code with alphabet Fq2 ,
C1

n and C2
n have block length less than λn.

C2
n has relative distance ≥ 1/2,

C2
n is a degree-2 closure of C1

n, and,
Any codeword in C1

n or C2
n can be computed in poly(n) time.

We point the interested reader to [21] for a proof sketch of the above theorem.
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