
Efficient Algorithms and Hardness Results
for the Weighted k-Server Problem
Anupam Gupta #

Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Amit Kumar #

Computer Science and Engineering Department, Indian Institute of Technology, Delhi, India

Debmalya Panigrahi #

Computer Science, Duke University, Durham, NC, USA

Abstract
In this paper, we study the weighted k-server problem on the uniform metric in both the offline
and online settings. We start with the offline setting. In contrast to the (unweighted) k-server
problem which has a polynomial-time solution using min-cost flows, there are strong computational
lower bounds for the weighted k-server problem, even on the uniform metric. Specifically, we
show that assuming the unique games conjecture, there are no polynomial-time algorithms with a
sub-polynomial approximation factor, even if we use c-resource augmentation for c < 2. Furthermore,
if we consider the natural LP relaxation of the problem, then obtaining a bounded integrality gap
requires us to use at least ℓ resource augmentation, where ℓ is the number of distinct server weights.
We complement these results by obtaining a constant-approximation algorithm via LP rounding,
with a resource augmentation of (2 + ε)ℓ for any constant ε > 0.

In the online setting, an exp(k) lower bound is known for the competitive ratio of any randomized
algorithm for the weighted k-server problem on the uniform metric. In contrast, we show that
2ℓ-resource augmentation can bring the competitive ratio down by an exponential factor to only
O(ℓ2 log ℓ). Our online algorithm uses the two-stage approach of first obtaining a fractional solution
using the online primal-dual framework, and then rounding it online.
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1 Introduction

The k-Server problem is a foundational problem in online algorithms and has been extens-
ively studied over the last 30 years [10]. In this problem, there are a set of k servers that
must serve requests arriving online at the vertices of an n-point metric space. The goal is
to minimize the total movement cost of the servers. The k-Server problem was defined
by Manasse et al. [22], who also showed a lower bound of k on the competitive ratio of
any deterministic algorithm for this problem. Koutsoupias and Papadimitriou [20] gave a
(2k − 1)-compeititive algorithm for k-Server. There has been much progress in the recent
past on obtaining randomized algorithms with polylogarithmic (in k and n) competitive
ratio [2, 13, 21, 14]. The Weighted k-Server version of this problem, introduced by Fiat
and Ricklin [17], allows the servers to have non-uniform positive weights; the cost of moving
a server is now scaled by its weight. In this paper, we consider the Weighted k-Server
problem on a uniform metric, namely when all n points of the metric space are at unit
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12:2 Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

distance from each other, which means that the cost of moving a server between any two
distinct points is simply the weight of the server. Note that the corresponding unweighted
problem for the uniform metric is the extensively studied Paging problem [10]. Indeed, one
of the original motivations for studying the Weighted k-Server problem came from a
version of paging with non-uniform replacement costs for different cache slots [17]. In the rest
of this paper, we will implicitly assume that the underlying metric space is a uniform metric.

The original paper of Fiat and Ricklin [17] introducing the Weighted k-Server problem
(on uniform metrics) gave a deterministic algorithm with a competitive ratio of about 222k .
They also showed a lower bound of (k + 1)!/2 for deterministic algorithms. Chiplunkar
and Viswanathan [15] improved this lower bound to (k + 1)! − 1, and gave a randomized
algorithm that is 1.62k -competitive against adaptive online adversaries; this also implies
a deterministic competitive ratio of 22k+1 using the simulation technique of Ben-David et
al. [8]. Bansal, Elias, and Koumutsos [6] showed that this competitive ratio is essentially
tight for deterministic algorithms by showing a lower bound of 22k−4 . They also gave a
deterministic work function algorithm with a competitive ratio of 22k+O(log k) . If the number
of distinct server weights is ℓ and there are kj servers of weight Wj , then the competitive
ratio of their algorithm is exp(O(ℓk3 ∏ℓ

j=1(kj + 1))), which is an exponential improvement
over the general bound when ℓ is a constant. Unlike the k-Server and Paging problems, it
is unknown if randomization qualitatively improves the competitive ratio for Weighted
k-Server, although the best known lower bound for randomized algorithms against oblivious
adversaries is only singly exponential in k [1] as against the doubly exponential lower bound
for deterministic algorithms.

The above competitive ratios depend only on k, and are independent of the size n of
metric space. Moreover, the hard instances are for metric spaces with the number of points
n that are exponentially larger than the number of servers k. This is not a coincidence, since
better algorithms exist for smaller values of n. Indeed, the Weighted k-Server problem
can be modeled as a metrical task system, where each state ω is a configuration (specifying
the location of each of the k servers), and the distance between any two states ω, ω′ is the
cost to move between the configurations. Since there are N = nk states, one can obtain an
nk-competitive deterministic algorithm [11], and an O(poly(k log n))-competitive randomized
algorithm against oblivious adversaries [7, 3, 12, 16]; all these algorithms use poly(nk) time
to explicitly maintain and manipulate the entire metric space, and hence are not efficient.

In this paper we ask: is it possible to get efficient (randomized) online algorithms
that have competitive ratios of the form poly(k log n), or even better? Is it possible to get
such approximation ratios even in the offline setting? We show that obtaining improved
competitive or approximation ratios in polynomial time is possible, provided we allow for
resource augmentation in the number of servers.

Resource augmentation in online algorithms has been widely studied in paging and
scheduling settings (see e.g. [19, 23]). It is often a much needed assumption that allows
for obtaining bounded or improved competitive ratios for such problems. Bansal et al. [5]
studied the k-Server problem on trees under resource augmentation.

1.1 Our Results
Our first result establishes computational hardness of approximating the Weighted k-
Server problem in the offline setting. Unlike Paging or k-Server, which are exactly
solvable offline in polynomial time, we show that under the Unique Games conjecture, the
Weighted k-Server problem cannot be approximated to any subpolynomial factor even
when we allow c-resource augmentation for any constant c < 2.
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▶ Theorem 1 (Hardness). For any constant ε > 0, it is UG-hard to obtain an N 1/2−ε-
approximation algorithm for Weighted k-Server with two weight classes, even when we
are allowed c-resource augmentation for any constant c < 2. Here N represents the size of
the input (including the request sequence length).

Next, we show that the natural time indexed LP relaxation for Weighted k-Server
(see LP) has a large integrality gap, unless we allow for a resource augmentation of almost ℓ,
the number of distinct server weights.

▶ Theorem 2 (Integrality Gap). For any constant ε > 0, the integrality gap of the relaxation LP
for Weighted k-Server is unbounded, even with (ℓ − ε)-resource augmentation.

It is worth noting that an optimal fractional solution to LP can be easily rounded to
give an ℓ-approximation ratio with ℓ-resource augmentation. Indeed, we know that for
each request, there exists a weight class which services this request to an extent of at least
1/ℓ. We can then scale this fractional solution by a factor ℓ and reduce this problem to ℓ

instances of standard Paging problem. The integrality gap result shows that any rounding
algorithm with bounded competitive ratio must incur almost ℓ-resource augmentation. We
complement this integrality gap result with our main technical result, which gives an offline
O(1/ε)-approximation with (2 + ε)ℓ-resource augmentation, for any ε ∈ (0, 1).

▶ Theorem 3 (Offline Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. For any ε ∈ (0, 1), there is a polynomial time algorithm
for I that uses at most 2(1 + ε)ℓ · kj servers of weights Wj for each j ∈ [ℓ] and has server
movement cost at most O(1/ε) times the optimal cost of I.

Finally, we obtain an online algorithm for Weighted k-Server with 2ℓ-resource aug-
mentation. The competitive ratio of the online algorithm is O(ℓ2 log ℓ). (In constrast to the
offline setting, it is no longer clear how to achieve an ℓ-competitive algorithm even if we
augment the number of servers by a factor of ℓ.)

▶ Theorem 4 (Online Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. There is a randomized (polynomial time) online algorithm
for I that uses at most 2ℓkj servers of weights Wj for each j ∈ [ℓ] and has expected server
movement cost at most O(ℓ2 log ℓ) times the optimal cost of I.

Since ℓ ≤ k, the competitive ratio of the online algorithm is O(k2 log k). This implies
that an O(ℓ2)-resource augmentation achieves at least an exponential improvement in the
competitive ratio of the Weighted k-Server problem. Moreover, by rounding the weights
to powers of 2, we can assume that ℓ ≤ O(log W ), where W is the aspect ratio of the server
weights. Hence, the competitive ratio of the online algorithm is O(log2 W log log W ). Finally,
note that for ℓ = O(1), the above theorem gives a O(1)-competitive online algorithm with
O(1)-resource augmentation. This can be seen as a generalization of the classic result for the
Paging problem that achieves a randomized competitive ratio of O(log k

k−h+1 ) where the
algorithm’s cache has k slots while the adversary’s has only h < k slots [24].

1.2 Our Techniques
In this section, we give an overview of the main techniques in the paper. The UG hardness of
Weighted k-Server is based on a reduction from the Vertex Cover problem. Given an
instance of the vertex cover problem, the corresponding Weighted k-Server consists of one
point in the uniform metric space for each vertex of the graph. The main observation is that
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if we know the minimum vertex cover size, we can keep one heavy weight server at each point
corresponding to this vertex cover, which never change their positions. One can then generate
an input sequence where the optimal solution pays a small cost, whereas an algorithm which
does not cover an edge using heavy servers pays a much higher cost. The UG-hardness
result for Vertex Cover translates to a corresponding resource augmentation lower bound
for Weighted k-Server. Extending this approach to more than two weight classes (with
stronger lower bounds on resource augmentation) turns out to be more challenging because
the length of the input sequence becomes exponential in n. Instead, we show that the natural
LP relaxation has a large integrality gap. The large gap instance consists of cycling through
a sequence of subsets of the metric spaces with carefully varying frequency. The fractional
solution is able to maintain a low cost by uniformly spreading servers over such cycles, but
the integral solution is forced to service some of the cycles by small number of servers only.

Our main technical result shows how to round a solution to the LP relaxation. The
relaxation has both covering and packing type constraints, and the rounding carefully
addresses one set of constraints without violating the other. We first scale the LP by a factor
of about 2ℓ, thus increasing both the resource augmentation and the cost. As a result, each
request σt is covered to an extent of 2ℓ, and we can split this coverage across those weight
classes which cover σt to an extent of at least 1. Now for a fixed weight class, we consider
the requests which are covered by it to an extent of at least 1. We show how to integrally
round this solution so that this coverage property is satisfied and yet, we do not violate any
packing constraint. After this, we show that the packing constraints can be ignored. This
allows to scale down the LP solution by a factor ℓ (which saves the cost by this factor) and
uses total unimodularity of the constraint matrix to round it.

We extend our approximation algorithm to the online setting. The first step is to maintain
an online fractional solution to the LP relaxation. Standard (weighted) paging algorithms
for this problem rely on the fact that even the optimal offline algorithm needs to place a
server at a requested location. But this turns out to be trickier here as we do not know the
weight of the server which serves this location in the optimal solution. So we serve a request
by ensuring that fractional mass from each weight classes is transferred at the same rate.
The overall analysis proceeds by a careful accounting in the potential function. The online
fractional solution satisfies the stronger guarantee that each request is served by servers of a
particular weight class only. This allows us to reduce the rounding problem to independent
instances of the Paging problem.

We now give an overview of the rest of the submission. In §2, we give details of the
integrality gap construction; we defer the UG hardness proof to §A. The offline rounding of
the LP relaxation is given in §3, and then we extend this algorithm to the online case in §4.

1.3 Preliminaries
In the Weighted k-Server problem on the uniform metric, we are given a set of n points
V = {1, . . . , n}, such that d(v, v′) = 1 for each v ̸= v′. There are k servers, labeled 1, . . . , k,
with server i having weight wi ≥ 0. The input specifies a request sequence (σ1, . . . , σT )
of length T , with each request σt arriving at time t being a point in V . A solution
f : [k] × {0, . . . , T} → V specifies the position of each server at each time t ∈ [T ] (where the
initial positions f(i, 0) are specified as part of the problem statement) such that for each
time t there exists some server it such that f(it, t) = σt. The cost of the solution f is the
total weighted distance travelled by the servers, i.e.,

1/2

k∑
i=1

wi

T∑
t=1

1[f(i, t) ̸= f(i, t − 1)].
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The goal is to find a solution with the minimum cost. We say that an instance has ℓ weight
classes if the set {w1, . . . , wk} has cardinality ℓ. For an instance with ℓ different weight
classes, we denote the distinct weights by W1, . . . , Wℓ, and let kj denote the number of
servers of weight Wj , with

∑
j kj = k. For such an instance and a parameter c ≥ 1, we say

that the algorithm uses c-resource augmentation if it uses ⌊ckj⌋ servers of weight Wj for each
j = 1, . . . , ℓ.

We now describe the natural LP relaxation for Weighted k-Server. It has a variable
x(v, j, t) for each request time t, weight class j ∈ [ℓ] and vertex v ∈ V ; it denotes the
fractional mass of servers of weight Wj that are present at point v at time t. Let σt denote
the vertex requested at time t. It is easy to verify that this is a valid relaxation.

min 1/2
∑
j∈[ℓ]

Wj

∑
t

∑
v∈V

|xv,j,t − xv,j,t−1| (LP)

∑
v∈V

xv,j,t ≤ kj ∀t, j ∈ [ℓ] (1)∑
j∈[ℓ]

xσt,j,t ≥ 1 ∀t (2)

xv,j,t ≥ 0 ∀t, v ∈ V, j ∈ [ℓ]

2 An Integrality Gap for the Natural Linear Program

In this section, we show that the relaxation LP for Weighted k-Server has a large
integrality gap, unless we allow for a resource augmentation of almost ℓ, the number of
distinct server weights.

Recall that the ℓ weights are denoted W1 ≫ · · · ≫ Wℓ, and there are kj servers of weight
Wj . Our theorem is the following:

▶ Theorem 2 (Integrality Gap). For any constant ε > 0, the integrality gap of the relaxation LP
for Weighted k-Server is unbounded, even with (ℓ − ε)-resource augmentation.

An Instance for Two Classes. To gain some intuition, we first consider the special case of
ℓ = 2, and prove the result without giving any resource augmentation. There are n/2 servers
of weight W and n/4 servers of weight 1, thereby giving a total of k = 3n/4 servers. The input
is given in “phases”. Each phase is specified by a distinct subset S of V , where |S| = n/2.
During the phase corresponding to a subset S, we cycle through all subsets S′ of S with
|S′| = |S|/2 = n/4. Given such a subset S′ of S, we send requests which cycle through the
points in S′ for L times, where L is large enough.

One fractional solution for such a sequence is defined as follows: we assign 1/2 unit of
weight-W server at each of the n locations. During the phase for a subset S, we assign 1/2

unit of server of unit weight at each of the locations in S. The cost of the fractional solution
is at most Z :=

(
n

n/2
)

· n/4 (not accounting for the initial movement of the servers). However,
an integral solution either moves at least one heavy server, or else pays at least L during one
of the phases, thereby must pay at least min(W, L). Assuming W, L ≫ Z gives an arbitrarily
large integrality gap. (We can account for the initial movement of the fractional servers by
repeating the process some M times: the integral solution would pay at least min(W, L)
in each such iteration and the fractional solution would pay at most Z, so that the initial
movement cost would get amortized away.)

APPROX/RANDOM 2023



12:6 Efficient Algorithms and Hardness Results for the Weighted k-Server Problem

The Instance for ℓ Classes. We extend this construction to larger values of ℓ by defining
phases in a recursive manner on a nested sequence of subsets of V , with each phase containing
several repetitions of the same sequence. Instead of decreasing by a factor 2, the number of
servers of each weight class now goes down by a factor of C ≥ ℓ. This allows the integrality
gap result to hold even when the integral solution is allowed a resource augmentation of
nearly ℓ.

For some r ≤ ℓ − 1, we call a tuple (S0, . . . , Sr) valid if (i) S0 = V and each Sj ⊆ Sj−1,
and (ii) |Sj | = |Sj−1|/C = n/Cj. The request sequence is generated by calling Algorithm 1
with the trivial valid sequence (S0 = V ). Given a valid tuple (S0, . . . , Sr), the procedure
cycles through all subsets S ⊆ Sr of size |Sr|/C and recursively calls Generate(S0, . . . , Sr, S);
this process is repeated Lr times. Finally, in the base case when r = ℓ − 1, it cycles through
all the locations in Sℓ for Lℓ−1 times. For a suitably large choice of M , we define for each
r ∈ [ℓ]:

Lr := Mr and Wr := M ℓ−r. (3)

Finally, the number of servers of weight Wr is given by kr := n
ℓCr−1 .

Algorithm 1 Procedure Generate(S0, S1, . . . , Sr).

1.1 Input: A valid tuple (S0, S1, . . . , Sr)
1.2 repeat
1.3 if r is equal to ℓ − 1 then
1.4 Send a request at each location in Sℓ−1.
1.5 else
1.6 for each subset S of Sr with |S| = |Sr|

C do
1.7 // Move 1/ℓ mass of servers of weight Wr+2 to S

1.8 Call Generate(S0, . . . , Sr, S).

1.9 until Lr iterations have occurred

Analyzing the Integrality Gap
We bound the cost of the optimal fractional solution for the above input sequence.

▶ Lemma 5. There is a fractional solution of total cost O(f(n)M ℓ−2) for the input sequence
constructed by Algorithm 1, where f(n) is a function solely of n.

Proof. Our fractional solution maintains the invariant: when the procedure
Generate(S0, . . . , Sr) is called, we have 1/ℓ fractional mass of servers of weight W1, . . . , Wr+1
respectively at each location in Sr. For the base case r = 0, we place 1/ℓ server mass at each
location in S0 = V ; recall that k1 = n/ℓ. For the inductive step, suppose this invariant is
satisfied for a certain value of r where 0 ≤ r < ℓ − 1; we need to show that it is satisfied for
r + 1 as well. Indeed, the induction hypothesis implies that we have 1/ℓ amount of server
mass of weight W1, . . . , Wr+1 at each location in Sr, and hence at each location in Sr+1.
Moreover, as line 1.7 indicates, we move 1/ℓ fractional mass of servers of weight Wr+2 to each
location in Sr+1 to satisfy the invariant condition. This costs Wr+2 kr+2/ℓ; moreover, this is
feasible because the total number of servers of weight Wr+2 needed is |Sr+1|

ℓ = n
ℓCr+1 = kr+2.

Finally, when r = ℓ − 1, the invariant shows that 1 unit of server mass is present at each of
the locations in Sℓ, and hence the requests generated in line 1.4 can be served without any
additional movement of servers.
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We now account for the movement cost. The total server movement cost during
Generate(S0, . . . , Sr) (not counting the movement costs in the recursive calls) is at most
O(Lr kr+1 Wr+2) = O(kr+1 M ℓ−2). Since kr+1 ≤ n and the number of calls to Generate is a
function only of n, the overall movement cost can be expressed as O(f(n) · M ℓ−2). (Again,
by repeating the entire process multiple times we can amortize away the initial movement
cost; we avoid this step for the sake of clarity.) ◀

The next lemma shows that any integral solution must have much higher cost.

▶ Lemma 6. Let ε > 0 be a small enough constant. Assume that the integral solution is
allowed (ℓ − ε)kr servers of weight Wr for each r ∈ [ℓ]. Any integral solution for the input
sequence generated by Algorithm 1 (with C = ℓ/ε) has movement cost at least M ℓ−1.

We defer the proof to Appendix B; combining Lemma 5 and Lemma 6 proves Theorem 2.

3 An Offline Algorithm via LP Rounding

We now show an algorithm for the offline setting, that rounds any fractional solution to the
LP relaxation (LP), and achieves the following guarantee:

▶ Theorem 3 (Offline Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. For any ε ∈ (0, 1), there is a polynomial time algorithm
for I that uses at most 2(1 + ε)ℓ · kj servers of weights Wj for each j ∈ [ℓ] and has server
movement cost at most O(1/ε) times the optimal cost of I.

Instead of working with the relaxation (LP), we work with an equivalent relaxation which
turns out to be easier to interpret. For each vertex v ∈ V , index j ∈ [ℓ] and time interval I,
we have a variable yv,j,I , which denotes the fractional mass of server of weight Wj residing
at v during the entire time interval I. The variable xv,j,t used in (LP) can be expressed as
follows:

xv,j,t =
∑

I:t∈I

yv,j,I . (4)

Let I denote the set of all intervals during the request timeline. The new linear program
relaxation for Weighted k-Server is the following:

min 1/2
∑
j∈[ℓ]

Wj

∑
I∈I

∑
v∈V

yv,j,I (LP2)

s.t.
∑
j∈[ℓ]

∑
I:t∈I

yσt,j,I ≥ 1 ∀t (5)

∑
v∈V

∑
I:t∈I

yv,j,I ≤ kj ∀t, j ∈ [ℓ] (6)

yv,j,I ≥ 0 ∀t, j ∈ [ℓ], v ∈ V.

Note that the covering constraint (5) enforces having at least one unit of (fractional) server
mass at the location σt requested for each time t. The packing constraint (6) enforces that
the total (fractional) server mass of weight Wj used at any time t is at most the number of
servers of this weight, namely kj . Given a solution yv,j,I to LP2, the variables xv,j,t defined
using (4) define a feasible solution to LP of the same cost.

Fix any constant ε ∈ (0, 1). We now prove Theorem 3 by rounding an optimal fractional
solution yv,j,I to LP2. The rounding algorithm has two stages. The first stage scales and
discretizes the LP variables to integers such that

APPROX/RANDOM 2023
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Algorithm 2 Procedure ScaleRound(x, y, v, Wj).

2.1 Input: A fractional solution (yv,j,I , xv,j,t) to LP2, a location v and a weight Wj

2.2 Initialize variables yv,j,I to 0 for all intervals I.
2.3 (Scale): Define ỹv,j,I = (2 + ε/2) ℓ · yv,j,I and therefore,

x̃v,j,t =
∑

I:t∈I ỹv,j,I = (2 + ε/2) ℓ · xv,j,t for each I ∈ I.
2.4 (Round): for h = 1, 2, . . . , ℓ do
2.5 Initialize LastEvent = DOWN, LastTime = 0.
2.6 repeat
2.7 if LastEvent = UP then
2.8 Let t be the first DOWN after LastEvent
2.9 Update LastEvent = DOWN, LastTime = t.

2.10 else
2.11 (LastEvent = DOWN) Let t be the first UP after LastEvent
2.12 Add I = [LastTime, t) to Iv,j(h) and increase yv,j,I by 1.
2.13 Update LastEvent = DOWN, LastTime = t.

2.14 until we have reached the end of the timeline [0, T ]

1. the packing constraints are satisfied up to a factor of (2 + ε)ℓ,
2. the covering constraints are satisfied with a scaled covering requirement of ℓ instead of 1,

i.e.,
∑

j

∑
I:t∈I yσt,j,I ≥ ℓ, for all times t, and

3. the cost of the fractional solution increases by a factor of O(ℓ/ε).
In the second stage, we remove the packing constraints from the LP; this results in the
resulting interval covering LP being integral. Next, we scale the solution from the first stage
down by ℓ, getting a feasible fractional solution to the standard LP relaxation for the interval
covering problem. Finally, we use the integrality of the interval covering LP relaxation to
obtain an integral solution for LP2. We present these two stages in the next two sections.

3.1 Stage I: Scaling and Discretization
The first stage of the rounding algorithm operates independently on each location v ∈ V and
for each server weight Wj ; the formal algorithm ScaleRound(x, y, v, Wj) is given in Algorithm 2.
We work with both the yv,j,I variables and the equivalent xv,j,t variables defined in (4); this
representational flexibility makes it convenient to explain the algorithm. To begin, we scale
the LP variables yv,j,I by a factor (2 + ε/2)ℓ to obtain ỹv,j,I (we also define the auxiliary
variables x̃v,j,t by scaling xv,j,t similarly).

Discretization. Next we discretize the scaled variables ỹv,j,I and x̃v,j,t to nonnegative
integers yv,j,I and xv,j,t respectively. To start, let us describe the discretization of x̃v,j,t to
obtain xv,j,t. Intuitively, we would like to define xv,j,t as ⌊x̃v,j,t⌋, i.e., the largest step function
with unit step sizes entirely contained in x̃v,j,t, but this can amplify small fluctuations around
integer values, and hence may increases the cost. To avoid this, we introduce hysteresis in
our discretization, by setting different thresholds for increasing and decreasing the value of
x̃v,j,t. We view x̃v,j,t as a time-varying profile and define horizontal slabs in it corresponding
to the restriction of the range of x̃v,j,t to [h, h + 1) for some integer h. For each such slab, we
identify intervals I of width at most 1 and at least 1/2 and set the increase the corresponding
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yv,j,I value by 1. In more detail, for each such level h, we identify a subset Iv,j(h) of intervals
for which the corresponding yv,j,I variable is to be increased by 1. We identify an alternating
sequence of up and down events in the timeline [0, T ] as follows:

UP event: At time t, there is an UP event at level h if x̃v,j,t− < h and x̃v,j,t ≥ h, and the
previous event at level h was a DOWN event.
DOWN event: At time t, there is a DOWN event at level h if the previous event at level
h was an UP, and x̃v,j,t− > h − ε/2 and x̃v,j,t ≤ h − ε/2, or t = T , the end of the timeline.
(The reader should think of ε/2 as the “hysteresis gap” between the up and down events
at any level.)

To make the definition complete, we set x̃v,j,t to 0 at t = 0− and at t = T +, and start with a
DOWN at time 0. Finally, we add intervals stretching from each UP to the next DOWN to
the set Iv,j(h) of intervals. By construction, these intervals are mutually disjoint. Finally,
whenever an interval I is added to such a set Iv,j(h), we increment the corresponding variable
yv,j,I . Thus we have:

yv,j,I = |{h : I ∈ Iv,j(h)}|, and correspondingly, xv,j,t =
∑

I:t∈I

yv,j,I .

The next lemma shows that xv,j,t can be thought of as a discretized form of x̃v,j,t:

▶ Lemma 7. The following holds for variables xv,j,t:

x̃v,j,t − 1 < xv,j,t < x̃v,j,t + ε/2. (7)

Proof. Suppose x̃v,j,t ∈ [r, r + 1). Consider the for loop in line 2.4 in Algorithm 2 for a value
h ≤ r. We claim that at time t, the value of the variable LastEvent must be UP. Suppose
not. Let t′ be the value of LastTime at time t (i.e., t′ is the last time before and including t

when an UP or a DOWN occurred). Since a DOWN event happened at time t′, x̃v,j,t′ < h.
Since x̃v,j,t ≥ h, an UP event must occur during (t′, t], a contradiction. Therefore must have
added an interval containing time t to Iv,j(h). Thus, xv,j,t gets increased during each such
iteration, i.e., xv,j,t ≥ r > x̃v,j,t − 1. This proves the first inequality in (7).

We now prove the second inequality. Let h be an integer satisfying h ≥ x̃v,j,t + ε/2.

Consider the iteration of the for loop in Algorithm 2 for this particular value of h. We
claim that the value of the variable LastEvent at time t must be DOWN. Suppose not, and
let t′ denote the value of the variable LastTime. Then an UP happened at time t′ and
so x̃v,j,t′ ≥ h. Since x̃v,j,t ≤ h − ε/2, a DOWN event must have happened during (t′, t],
a contradiction. Hence, we do not add any interval containing time t to the set Iv,j(h).
Therefore, xv,j,t < x̃v,j,t + ε/2, which proves the second inequality in (7). ◀

The next lemma establishes the key properties of the variables yv,j,I and xv,j,t.

▶ Lemma 8. The following properties hold the for the variables yv,j,I :
(i) (Cost) The LP cost increases by at most O(ℓ/ε) when the original variables yv,j,I are

replaced by the new variables yv,j,I :∑
v,j,I

Wj · yv,j,I ≤ O(ℓ/ε) ·
∑
v,j,I

Wj · yv,j,I .

(ii) (Covering) The variables yv,j,I satisfy the scaled covering constraints of (LP2)∑
j,I:t∈I

yv,j,I ≥ ℓ ∀t.
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(iii) (Packing) The variables yv,j,I approximately satisfy the packing constraints of (LP2):∑
v,I:t∈I

yv,j,I ≤ (2 + ε)ℓkj ∀j ∈ [ℓ], t.

Proof. We first prove the cost bound: the cost of the solution yv,j,I is the weight of all
intervals added to the sets Iv,j(h) for all v, j, h. I.e.,∑

v,j,I

Wj · yv,j,I =
∑
v,j

Wj ·
∑
h∈[ℓ]

|Iv,j(h)|. (8)

Fix a vertex v and indices j, h. For a non-negative number x, and non-negative integer h,
define the h-level truncation of x to be trunch(x) := min(1, (x−h)+), where (a)+ := max(a, 0)
for any real a. Observe that x =

∑
h≥0 trunch(x). In fact, for any two non-negative integers

x and y:

|x − y| =
∑
h′≥0

|trunch′(x) − trunch′(y)|. (9)

Now let I1 = [s1, t1), . . . , Iu = [su, tu) be the intervals added to Iv,j(h) (in left to right order).
Define t0 = 0. We know that for any i ∈ [u], an UP happens at su and a DOWN happens at
tu. Therefore, trunch(x̃v,j,su

) − trunch(x̃v,j,tu−1) ≥ ε/2. Hence,

εWj/2 · |Iv,j(h)| ≤ WJ ·
u∑

i=1
|trunch(x̃v,j,su) − trunch(x̃v,j,tu−1)|

≤ Wj ·
T∑

t′=1
|trunch(x̃v,j,t−1) − trunch(x̃v,j,t)|,

where the last inequality follows from triangle inequality. Summing over all h and using (9),
we get

εWj/2 · yv,j,I ≤ Wj ·
T∑

t′=1
|x̃v,j,t−1) − x̃v,j,t|.

Summing over all vertices v and indices j ∈ [ℓ], we see that the cost of the solution yv,j,I is
at most 2/ε times that of ỹv,j,I . Finally, the fact that ỹv,j,I are obtained by scaling yv,j,I by
a factor (2 + ε/2)ℓ, we get the desired bound on the cost of yv,j,I solution.

Next, we prove the covering property. Since xv,j,t is a feasible solution to LP2, we have
for any time t:∑

j

xσt,j,t ≥ 1, and therefore,
∑

j

x̃σt,j,t ≥ (2 + ε/2)ℓ.

Using Lemma 7, we have x̃σt,j,t < xσt,j,t + 1, so∑
j∈ℓ

(xσt,j,t + 1) > (2 + ε/2)ℓ, and therefore,
∑

j

xσt,j,t > ℓ.

Finally, we prove the packing property. Since xv,j,t is a feasible solution to the LP, we
have for any j ∈ [ℓ] and time t,∑

v

xv,j,t ≤ kj , and therefore,
∑

v

x̃v,j,t ≤ (2 + ε/2)ℓkj .
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Again Lemma 7 gives x̃v,j,t > xv,j,t − ε/2, which implies∑
j

(xv,j,t − ε/2)+
< (2 + ε/2)ℓkj . (10)

Since xv,j,t is a nonnegative integer,

xv,j,t > 0 =⇒ xv,j,t ≥ 1 Lemma 7=⇒ x̃v,j,t > xv,j,t − ε/2 ≥ 1 − ε/2.

Since
∑

v x̃v,j,t ≤ kj , it follows that the number of locations v for which xv,j,t > 0 is at most
kj

1−ε/2
< 2kj , if ε < 1. Using this fact in Equation (10), we get∑

v

xv,j,t =
∑

v:xv,j,t>0

xv,j,t =
∑

v:xv,j,t>0

(xv,j,t − ε/2) +
∑

v:xv,j,t>0

ε/2

≤
∑

v

(xv,j,t − ε/2)+ + 2kj · ε/2 ≤ (2 + ε/2)ℓkj + εkj .

Since ℓ ≥ 2 (otherwise, we have the unweighted problem), we get∑
v

xv,j,t ≤ (2 + ε)ℓkj . ◀

3.2 Stage II: Weighted Interval Cover
In the second stage of the rounding algorithm, we first scale the (integer-valued) variables
yv,j,I down by a factor of ℓ to obtain new variables y∗

v,j,I :

y∗
v,j,I := yv,j,I/ℓ and therefore, x∗

v,j,t =
∑

I:t∈I

y∗
v,j,I = xv,j,t/ℓ. (11)

Our goal is to round the fractional variables y∗
v,j,I to {0, 1} values. In fact, our rounding

will ensure that if the rounded value equals 1 then y∗
v,j,I > 0. Since yv,j,I is integral, the

packing property in Lemma 8 implies that for any time t, vertex v, and index j ∈ [ℓ], there
are at most (2 + ε)ℓkj intervals I ∋ t for which yv,j,I > 0. The rounding property of our
algorithm will ensure that the final integral solution, which lies in the support of y∗

v,j,I , will
also satisfy that there are at most (2 + ε)ℓkj intervals containing any time t. Since we are
allowed a resource augmentation of (2 + ε)ℓ factor in the number of servers of weight Wj ,
we can serve the requests with the set of available servers. Henceforth, we can ignore the
packing constraint (6) for our rounded solution. As a result, the relaxation LP2 decouples
into n independent relaxations, one for each location v ∈ V .

In this decoupled instance, we get the following LP relaxation for each location v, where
for each class j ∈ [ℓ], we define Iv,j := {I | y∗

v,j,I > 0} as the set of intervals I with a nonzero
value of y∗

v,j,I and R(v) as the set of times t when v is requested:

min 1/2
∑
j∈[ℓ]

Wj ·
∑

I∈Iv,j

yv,j,I (LPv)

s.t.
∑

j

∑
I∈Iv,j :t∈I

yv,j,I ≥ 1 ∀t ∈ Rv

yv,j,I ≥ 0.

By the covering property of Lemma 8, the variables y∗
v,j,I defined in (11) are feasible solutions

for (LPv) for all locations v. Furthermore, by the lemma’s cost property (and the scaling
down by ℓ), the total cost

∑
v

∑
j Wj ·

∑
I y∗

v,j,I is at most O(1/ε) times the optimal cost of
(LP2).
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Finally, the constraint matrix for (LPv) satisfies the consecutive-ones property: if the
constraints are ordered chronologically, then a variable yv,j,I appears in the constraints
corresponding to times t ∈ I where σt = v, which is a contiguous subsequence of all times t

where σv = j. Constraint matrices with this property are totally unimodular (see, e.g., [18]).
Therefore, each of the solutions {y∗

v,j,I : j ∈ [ℓ], I ∈ Iv,j} for LPv can be rounded to a feasible
integral solution without any increase in cost, which proves Theorem 3.

4 Online Algorithm

In this section, we describe an efficient online algorithm for Weighted k-Server and prove
the following result:

▶ Theorem 4 (Online Algorithm). Let I be an instance of Weighted k-Server with kj

servers of weight Wj for all j ∈ [ℓ]. There is a randomized (polynomial time) online algorithm
for I that uses at most 2ℓkj servers of weights Wj for each j ∈ [ℓ] and has expected server
movement cost at most O(ℓ2 log ℓ) times the optimal cost of I.

We begin by re-writing the LP relaxation (LP2) in terms of the “anti-page” variables, as
in [4]. Recall that (LP2) has variables yv,j,I representing the (fractional) weight Wj server
mass present at location v during the interval I; instead we first rewrite it in terms of the
“page” variables xv,j,t, which denote the total amount of weight Wj server mass at location v

at time t, as given in (4). The objective of this LP in terms of xv,j,t is:∑
v,j,I

Wj · yv,j,I =
∑
v,j,I

Wj · (xv,j,t − xv,j,t−)+.

We can constrain any algorithm to values xv,j,t ∈ [0, 1] for all v, j, t (since having multiple
servers at a location is not beneficial). This allows us to work with non-negative anti-page
variables zv,j,t := 1 − xv,j,t. The objective, now rewritten in terms of these new variables
zv,j,t, becomes:∑

v,j,I

Wj · (xv,j,t − xv,j,t−)+ =
∑
v,j,I

Wj · (zv,j,t− − zv,j,t)+. (12)

We shall also maintain the following invariant for each server weight Wj and time t:∑
v

xv,j,t = kj ⇐⇒
∑

v

zv,j,t = n − kj ∀j, t. (13)

We write the covering constraint (5) (or equivalently (2)) in terms of zv,j,t as:∑
j

zσt,j,t ≤ ℓ − 1 (14)

The algorithm follows the standard relax-and-round paradigm in the online setting. The first
step is to compute a feasible fractional solution to an LP consisting of objective (12) and
constraints (13) and (14), in an online setting. We show in §4.1 that we can find a fractional
solution that uses O(ℓkj) servers of weight Wj for each class j, and has a competitive ratio
of O(ℓ2). The second step is to give an online rounding algorithm to convert this fractional
solution to an integral solution: our rounding algorithm given in §4.2 uses the standard
online rounding algorithm for the paging problem and increases the cost of the solution by a
constant factor.
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4.1 Online Fractional Algorithm
In this section, we give an online algorithm for maintaining a fractional solution to the LP
involving zv,j,t variables. We obtain the following result:

▶ Theorem 9. There is a deterministic (polynomial time) online fractional algorithm that
maintains the condition that for every request time t, there exists an index j ∈ [ℓ] such that
there is unit server mass of weight Wj at location σt at time t. The algorithm uses 2ℓkj

servers of weight Wj for each j ∈ [ℓ], and whose cost is at most O(ℓ2 log ℓ) times that of an
optimal fractional solution.

Note that the condition in the theorem is stronger than (14), the feasibility condition for
(LP2), because we are using server from a single weight class to service this request.

Consider a time t, and the request arriving at location σt. We first set zv,j,t = zv,j,t− for
all v ∈ V, j ∈ ℓ. Now the algorithm moves fractional server mass to σt until a relaxed version
of the covering constraint (14) for time t gets satisfied. The relaxed constraint is given by

∃j ∈ [ℓ] such that zσt,j,t ≤ 1 − 1
2ℓ

. (15)

Indeed, if the constraint is violated, then for each vertex v ̸= σt and each j ∈ [ℓ], if v has
non-zero server mass of weight Wj (i.e., zv,j,t < 1), then the algorithm moves server mass
of weight Wj from v to σt using the following differential equation. (The derivative is with
respect to a variable s which starts from 0 and increases at uniform rate.)

żv,j,t = 1
Wj |Sj |

· (zv,j,t + δ) ∀j ∈ [ℓ], ∀v ∈ Sj . (16)

Here, Sj ⊆ V denotes the instantaneous set of locations (i.e., at the current value of the
variable s) that have zv,j,t < 1, not including the location σt, and δ > 0 is a parameter that
we shall fix later. Correspondingly, we reduce zσt,j,t by the total amount of server mass of
weight Wj entering σt:

żσt,j,t = − 1
Wj |Sj |

·
∑
v∈Sj

(zv,j,t + δ) ∀j ∈ [ℓ]. (17)

Note that server mass is moved away other locations and into location σt only if zσt,j,t > 1− 1
2ℓ

for all j. Since zσt,j,t ≤ 1 for all j, it follows that zv,j,t ∈ [1 − 1
2ℓ , 1] for all j, t. Hence,

zv,j,t ≥ 1 − 1
2ℓ

for all j, t =⇒ |Sj | ≥ 2ℓkj − 1 ≥ 3ℓkj

2 ≥ 3 for all j, t, (18)

since ℓ ≥ 2, kj ≥ 1.
To analyze the algorithm, we use a potential function Φ. The potential function depends

on the offline (integral) optimal solution – let us call it O, and let optv,j,t be the indicator
variable for the location v containing a server of weight Wj at time t. The potential at time
t is defined as follows:

Φ(t) :=
∑

v,j:optv,j,t=0
Wj · ln

(
1 + δ

zv,j,t + δ

)
.

Let cost(t) denote the algorithm’s server movement cost at time t and costO(t) denote the
corresponding quantity for the optimum solution O. Our goal is to show that:

cost(t)
4ℓ

+ Φ(t + 1) − Φ(t) ≤ ln(1 + 1/δ) · costO(t). (19)

The following properties of Φ(t) can verified easily:
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Nonnegativity: Φ is always nonnegative, since zv,j,t ≤ 1.
Lipschitzness property: When the optimal solution moves a server of weight Wj from
one location to another, the increase in Φ is at most Wj · ln(1 + 1/δ).

The Lipschitzness property implies that (19) holds when O serves the request at σt. It
remains the analyze the cost and change in potential when the algorithm changes its solution.
Consider the process when we transfer server mass to σt.

We first bound the online algorithm’s cost. Since all the weight classes incur the same
server movement cost while transferring to σt, the movement cost is ℓ times the movement
cost incurred while transferring servers of a fixed class, say j⋆. The latter is at most

Wj⋆

∑
v∈Sj⋆

żv,j⋆,t
(16)= 1

|Sj⋆ |
∑

v∈Sj⋆

(zv,j⋆,t + δ) = |Sj⋆ | + 1 − kj⋆ + δ|Sj⋆ |
|Sj⋆ |

≤ 1 + δ. (20)

Thus, the upper bound on the cost(t)
4ℓ term in the LHS of (19) is at most 1+δ

4 ≤ 1/3 provided
δ ≤ 1/3.

Next, we lower bound the rate of decrease of potential Φ. We begin by bounding the rate
of decrease in potential due to because of server mass leaving all locations except σt:

∆− = −
∑

j∈[ℓ],v ̸=σt:optv,j,t=0

Wj

zv,j,t + δ
· żv,j,t

(16)= −
∑

j,v∈Sj :optv,j,t=0

1
zv,j,t + δ

· zv,j,t + δ

|Sj |

= −
∑

j

|{v ∈ Sj : optv,j,t = 0}|
|Sj |

(18)
≤ −

∑
j

|Sj | − kj

|Sj |
≤ −ℓ

(
1 − 2

3ℓ

)
= −ℓ + 2/3.

(21)

Next, we bound the rate of increase in potential due to server classes j ̸= j∗ because of server
mass entering σt:

∆+ =
∑
j ̸=j∗

Wj

zσt,j,t + δ
· żσt,j,t

(16)=
∑

j ̸=j∗,v∈Sj

Wj

zσt,j,t + δ
· zv,j,t + δ

|Sj |Wj

=
∑
j ̸=j∗

∑
v∈Sj

(zv,j,t + δ)
|Sj |(zσt,j,t + δ) =

∑
j ̸=j∗

(|Sj | − kj + (1 − zσt,j,t)) + δ · |Sj |
|Sj |(zσt,j,t + δ)

(18)
≤

∑
j ̸=j∗

(|Sj | − kj + 1/2ℓ) + δ · |Sj |
|Sj |(1 − 1/2ℓ + δ)

(18)
≤

∑
j ̸=j⋆

1 − 2/3ℓ + 1/6ℓ + δ

1 − 1/2ℓ + δ
≤ ℓ − 1,

provided δ = 1/2ℓ. Combining with (21), we see that the overall change in potential is
∆− + ∆+ ≤ −1/3. Consequently, we get that the change in potential pays for the increase
in the algorithm’s cost (divided by 4ℓ) – which shows (19) – when the fractional solution
changes.

This implies that we have an algorithm for maintaining zv,j,t that satisfies (15). In terms
of the competitive ratio, the algorithm loses 4ℓ in (19) and ln(1 + 1/δ) = O(log ℓ) in the
Lipschitzness of the potential function. Note that (15) implies that for all t, there exists j

such that xσt,j,t ≥ 1
2ℓ . We scale the fractional variables to obtain x̃v,j,t := min(2ℓxv,j,t, 1);

then, for all t, there exists j such that x̃σt,j,t = 1. Note that this satisfies the condition in
Theorem 9. Equivalently, the corresponding “anti-page” variables z̃v,j,t := 1 − x̃v,j,t satisfy
the following condition for all t:

∃j such that z̃σt,j,t = 0. (22)

The last scaling step creates a resource augmentation of 2ℓ, and increases the competitive
ratio to O(ℓ2 log ℓ). This completes the proof of Theorem 9.
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4.2 Rounding the Fractional Solution Online
We round the fractional solution for each weight class j separately. Let Tj represent the
request times t when (22) is satisfied by weight class j. Note that the solution z̃v,j,t for
weight class j represents a feasible fractional solution for an instance of the paging problem
with 2ℓkj cache slots, where there is a page request for each time t ∈ Tj at location σt.

We now invoke the following known online rounding algorithm for the paging problem
separately in each weight class j to complete the proof of Theorem 4.

▶ Lemma 10 ([9]). There is a randomized (polynomial time) online algorithm that converts
any feasible fractional solution for an instance of the Paging problem to an integral solution
using the same number of cache slots, and incurs constant times the cost of the fractional
solution.

5 Discussion

In this work, we have given the first efficient offline and online algorithms with non-trivial
guarantees for Weighted k-Server. Several interesting problems remains open:
1. For the case of two distinct weight classes, we show in Appendix A that it is UG-Hard to

obtain an Ω(N c)-approximation algorithm for some constant c > 0, even with (2 − ε)-
resource augmentation. Can we extend such a hardness result to more weight classes?
For example, can we show that for three distinct weight classes, it is UG-Hard to obtain a
C-approximation algorithm for any constant C, even with (3 − ε)-resource augmentation?
The principal reason why our hardness proof for ℓ = 2 does not extend here is because
one needs to recursively cycle through all subsets (of a certain size) of V to create an
integrality gap instance for the natural LP relaxation. If the size of these subsets is large,
then the length of the input becomes very large. If the size of these subsets is small, then
it is not clear how to extend this to a hardness proof.

2. In Section 3, we give an offline constant approximation algorithm which requires slightly
more than 2ℓ-resource augmentation. Can we get a constant approximation algorithm
(or even an optimal algorithm) with exactly ℓ-resource augmentation? We conjecture
that the integrality gap of LP is constant (or even 1) if the integral solution is allowed
ℓ-resource augmentation.

3. In the online case, we give a O(ℓ2 log ℓ)-competitive algorithm with 2ℓ-resource augment-
ation in Section 4. Can we get a constant-competitive algorithm with O(ℓ)-resource
augmentation, i.e., a result in the same vein as our offline algorithm?
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A The Unique Games Hardness

In this section, we consider the special case of Weighted k-Server when there are only two
weight classes. Assume wlog that the two distinct weights are 1 and W , where W ≫ 1. Our
first main result shows that getting a good approximation algorithm with (2 − ε)-resource
augmentation for any constant ε > 0 is as hard as getting a better-than-two approximation
for the vertex cover problem.

▶ Theorem 1 (Hardness). For any constant ε > 0, it is UG-hard to obtain an N 1/2−ε-
approximation algorithm for Weighted k-Server with two weight classes, even when we
are allowed c-resource augmentation for any constant c < 2. Here N represents the size of
the input (including the request sequence length).

Proof. We give a reduction from the Vertex Cover problem. Let d = d(ε) be a constant
to be fixed later, and let c < 2 be a constant as in the statement of the theorem. Let
I = (G = (V, E), t) be an instance of the Vertex Cover problem on n vertices. We know
that it is UG-hard to distinguish between the following two cases: (i) G has a vertex cover of
size at most t, or (ii) every vertex cover of G must have size strictly larger than ct.

We map I to an instance I ′ of Weighted k-Server as follows: the set of points in I ′

is given by V ∪ {v0}, where v0 is a special vertex. There are t servers of weight W = nd and
one server of unit weight. Let the edges in E be e1, . . . , em. A subsequence of the request
sequence consists of m phases, where we have a phase for each edge ei. During phase i

corresponding to edge ei = (ui, vi), the request sequence toggles between ui and vi for W

times. Finally, the subsequence is repeated W times. In other words, it is the following
sequence(

u1, v1, u1, v1, . . . , u1, v1︸ ︷︷ ︸
W times

, . . . , um, vm, um, vm, . . . , um, vm︸ ︷︷ ︸
W times

)W
.

We also have to specify the initial location of the servers. Assume that all servers are at
location v0 in the beginning. This completes the description of the instance I ′. Observe that
N , the number of requests in instance I ′ is O(m · n2d).

▷ Claim 11. Suppose G has a vertex cover of size at most t. Then the cost of the optimal
solution for I ′ is at most 2mW .

Proof. Let V ′ ⊆ V be a vertex cover of size t. Consider the following solution: we move the t

heavy servers from v0 to V ′ at the beginning. From now on, the heavy servers will not move at
all. During a phase corresponding to an edge ei = (ui, vi), we know that at least one of these
vertices will be occupied by a heavy server. If the other end-point, say vi, is not occupied by
a heavy server, we move the server of weight 1 to vi. Now we have two servers occupying ui

and vi respectively until the end of this phase. The total movement cost is incurred either at
the beginning (which is tW overall), or at the beginning of each phase (when the cost is 1).
Since there are mW phases, the overall cost is at most tW + mW ≤ 2mW . ◁
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▷ Claim 12. Suppose every vertex cover in G has size strictly larger than ct. Then cost of
the optimal solution for I ′, even with c-resource augmentation, is at least W 2.

Proof. Consider any solution for I ′. Recall that the input consists of W subsequences, call
these S1, . . . , SW , where each subsequence Sj consists of m phases, one for each edge of G.
We claim that during each such subsequence Sj , the solution must pay movement cost of at
least W . Indeed, consider a subsequence Sj . If the solution moves a heavy server during
Sj , then the claim follows directly. Else observe that the size of any vertex cover is strictly
larger than the number of heavy servers ct, so there is some edge ei = (ui, vi) not covered by
the heavy servers during Sj . Now the phase for ei in Sj would require the unit weight server
to toggle between ui and vi for W times. In either case, the cost of each subsequence is at
least W , and the overall cost of the solution is at least W 2. ◁

The above two results along with the UG-hardness result for Vertex Cover impliy that
it is UG-hard to obtain a W 2

2mW -approximation for Weighted k-Server with two weight
classes. This ratio is equal to W

2m ≥ nd−2 ≥ N 1/2−ε, assuming d is Ω(1/ε), which proves
Theorem 1. ◀

B Missing proofs from §2

▶ Lemma 6. Let ε > 0 be a small enough constant. Assume that the integral solution is
allowed (ℓ − ε)kr servers of weight Wr for each r ∈ [ℓ]. Any integral solution for the input
sequence generated by Algorithm 1 (with C = ℓ/ε) has movement cost at least M ℓ−1.

Proof of Lemma 6. We prove the following more general statement by reverse induction
on r: any integral solution for the sequence generated by Generate(S0, . . . , Sr) for a valid
tuple (S0, . . . , Sr) which does not use any server of weight class W1, . . . , Wr (at any location
in Sr) has cost at least M ℓ−1. It suffices to prove this statement, because the case when
r = 0 implies the lemma.

Consider the base case when r = ℓ − 1. Consider the sequence generated by such a
procedure Generate(S0, . . . , Sr) such that no server of weight W1, . . . , Wℓ−1 is used for serving
the requests at Sℓ−1. Thus all requests generated by this procedure must be served by servers
of weight Wℓ. Now, |Sℓ−1| = n

Cℓ−1 , whereas the number of weight Wℓ servers available to
the algorithm is (ℓ − ε)kℓ < n

Cℓ−1 . Therefore, during each iteration of the repeat-until loop
in lines 1.2–1.8 in Algorithm 1, at least one server of weight Wℓ must move. So the overall
movement cost during this input sub-sequence is at least Wℓ · Lℓ−1 = M ℓ−1. This proves the
base case.

The inductive case is proved in an analogous manner. Suppose the statement is true for
r + 1, and now consider the sub-sequence generated by Gen(S0, . . . , Sr) for some valid tuple
(S0, . . . , Sr). Assume that no server of weight W1, . . . , Wr is present at any node in Sr during
this time. We claim that the algorithm must incur movement cost of at least Wr+1 during
each iteration of the repeat-until loop. Indeed, fix such an iteration. Two cases arise: (a)
The algorithm moves a server of weight Wr+1 then the claim follows trivially, or (b) No server
of weight Wr+1 is moved during this period. Now observe that |Sr| = n

Cr , and the number of
weight Wr+1 servers available to the algorithm is (ℓ − ε)kr+1 = |Sr| − εkr+1 = |Sr|

(
1 − 1

C

)
.

Thus, there is a subset Sr+1 of S of size |Sr|
C = n

Cr+1 where no server of weight Wr+1 appears
during this input sub-sequence. Consider the recursive call Generate(S0, . . . , Sr, Sr+1) in
line 1.8. The induction hypothesis implies that the movement cost during this recursive call
is at least M ℓ−1 ≥ Wr+1.
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Thus, we have shown that the movement cost during each iteration of the repeat-until
loop during Generate(S0, . . . , Sr) is at least Wr+1. Since there are Lr such iterations, the
overall movement cost is at least Wr+1 ·Lr = M ℓ−1. This completes the proof of the induction
hypothesis, and implies the lemma. ◀
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