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Abstract
We give the first constant-factor approximation algorithm for quasi-bipartite instances of Directed
Steiner Tree on graphs that exclude fixed minors. In particular, for Kr-minor-free graphs our
approximation guarantee is O(r ·

√
log r) and, further, for planar graphs our approximation guarantee

is 20.
Our algorithm uses the primal-dual scheme. We employ a more involved method of determining

when to buy an edge while raising dual variables since, as we show, the natural primal-dual scheme
fails to raise enough dual value to pay for the purchased solution. As a consequence, we also
demonstrate integrality gap upper bounds on the standard cut-based linear programming relaxation
for the Directed Steiner Tree instances we consider.
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1 Introduction

In the Directed Steiner Tree (DST) problem, we are given a directed graph G = (V, E)
with edge costs c(e) ≥ 0 for all e ∈ E, a root node r ∈ V , and a collection of terminals
X ⊆ V \ {r}. The nodes in V \ (X ∪ {r}) are called Steiner nodes. The goal is to find
a minimum cost subset F ⊆ E such that there is an r − t path using only edges in F for
every terminal t ∈ X. Note any feasible solution that is inclusion-wise minimal must be an
arborescence rooted at r. Throughout, we let n denote |V |.

One key aspect of DST lies in the fact that it generalizes many other important problems,
e.g. Set Cover, (non-metric, multilevel) Facility Location, and Group Steiner Tree.
Halperin and Krauthgamer [23] showed Group Steiner Tree cannot be approximated
within O(log2−ϵ n) for any ϵ > 0 unless NP ⊆ ZTIME (npolylog (n)) and therefore the same
result holds for DST.

Building on a height-reduction technique of Calinescu and Zelikovsky [5, 36], Charikar et
al. give the best approximation for DST which is an O(|X|ϵ)-approximation for any constant
ϵ > 0 [8] and also an O(log3 |X|)-approximation in O(npolylog(|X|)) time (quasi-polynomial
time). More recently, Grandoni, Laekhanukit, and Li [21] obtained a quasi-polynomial time
O( log2 |X|

log log |X| )-approximation factor for Directed Steiner Tree which is the best possible
for quasi-polynomial time algorithms, assuming both the Projection Game Conjecture
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and NP ⊈
⋂

0<δ<1 ZTIME(2nδ ). Ghuge and Nagarajan [18] studied a variant of DST called
the Directed Tree Orienteering problem and presented an O( log |X|

log log |X| )-approximation
in quasi-polynomial time which yields the same approximation guarantee as in [21] for DST.

Methods based on linear programming have been less successful. Zosin and Khuller [38]
showed the integrality gap of a natural flow-based LP relaxation is Ω(

√
|X|) but n, the

number of vertices, in this example is exponential in terms of |X|. More recently, Li and
Laekhanukit [27] provided an example showing the integrality gap of this LP is at least
polynomial in n. On the positive side, [33] shows for ℓ-layered instances of DST that applying
O(ℓ) rounds of the Lasserre hierarchy to a slight variant of the natural flow-based LP
relaxation yields a relaxation with integrality gap O(ℓ · log |X|). This was extended to the
LP-based Sherali-Adams and Lovász-Schrijver hierarchies by [14].

We consider the cut-based relaxation (Primal-LP) for DST, which is equivalent to
the flow-based relaxation considered in [38, 27]; the flow-based relaxation is an extended
formulation of (Primal-LP). Let δin(S) be the set of directed edges entering a set S ⊆ V ,

minimize:
∑
e∈E

c(e) · xe (Primal-LP)

subject to: x(δin(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩X ̸= ∅ (1)
x ≥ 0

It is useful to note that if |X| = 1 (the shortest s− t path problem) or X ∪ {r} = V (the
minimum cost arborescence problem), the extreme points of (Primal-LP) are integral, see
[29] and [11] respectively.

The undirected variant of Steiner Tree has seen more activity1. A series of papers
steadily improved over the simple 2-approximation [37, 25, 30, 32] culminating in a ln 4 + ϵ

for any constant ϵ > 0 [4]. Bern and Plassmann [2] showed that unless P = NP there is
no approximation factor better than 96

95 for Steiner Tree. However, there is a PTAS for
Steiner Tree on planar graphs [3] and more generally [1] obtains a PTAS for Steiner
Forest on graphs of bounded-genus.

Another well-studied restriction of Steiner Tree is to quasi-bipartite graphs. These
are the instances where no two Steiner nodes are connected by an edge (i.e., V \ (X ∪ {r})
is an independent set). Quasi-bipartite instances were first studied by Rajagopalan and
Vazirani [31] in order to study the bidirected-cut relaxation of the Steiner Tree problem:
this is exactly (Primal-LP) where we regard both directions of an undirected edge as
separate entities. Feldmann et al. [13] studied Steiner Tree on graphs that do not have an
edge-induced claw on Steiner vertices, i.e., no Steiner vertex with three Steiner neighbours,
and presented a faster ln(4)-approximation than the algorithm of [4]. Currently, the best
approximation in quasi-bipartite instances of Steiner Tree is 73

60 -approximation [19].
A natural question is to study the complexity of DST on these restricted instances. Hibi

and Fujito [24] presented an O(log |X|)-approximation algorithm for this case. Assuming
P ̸= NP, this result asymptotically matches the lower bound (1− o(1)) · ln |X| for any ϵ > 0;
this lower bound comes from the hardness of Set Cover [12, 10] and the fact that the
quasi-bipartite DST problem generalizes the Set Cover problem. Friggstad, Könemann,
and Shadravan [15] showed that the integrality gap of (Primal-LP) is also O(log |X|) by a
primal-dual algorithm and again this matches the lower bound on the integrality gap of this

1 One usually does not specify the root node in Steiner Tree, the goal is simply to ensure all terminals
are connected.
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LP up to a constant. Chan et al. [7] studied the k-connected DST problem on quasi-bipartite
instances in which the goal is to find a minimum cost subgraph H such that there are k

edge-disjoint paths (in H) from r to each terminal in X. They gave an upper bound of
O(log |X| · log k) on the integrality gap of the standard cut-based LP (put k instead of 1 in
the RHS of the constraints in (Primal-LP)) by presenting a polynomial time randomized
rounding algorithm.

Very recently, [17] show a combinatorial O(log |X|)-approximation algorithm for DST
on planar graphs based on shortest path separators in planar graph by Thorup [35]. It is
also worth noting that Demaine, Hajiaghayi, and Klein [9] show that if one takes a standard
flow-based relaxation for DST in planar graphs and further constraints the flows to be
“non-crossing”, then the solution can be rounded to a feasible DST solution while losing
only a constant factor in the cost. To date, we do not know how to compute a low-cost,
non-crossing flow in polynomial time for DST instances on planar graphs.

It remains an open question whether DST on planar graphs admits a constant factor
approximation or even a PTAS, or not. We make some progress on this question. We show
quasi-bipartite DST on planar graphs and more generally graphs excluding a fixed minor
admit a constant factor approximation. In contrast to the approach in [17], our algorithm is
LP-based and bounds the integrality gap of the natural cut-based LP. Our algorithm also
works in the more general setting of minor-free graphs, whereas the DST approximation
in [17] is specific only to planar graphs.

1.1 Primal-Dual Approximations for Steiner Tree Problems

Consider the Node-Weighted Steiner Tree (NWST) problem which is similar to undir-
ected Steiner Tree except the weight function is on the Steiner vertices instead of edges
and can also be viewed as a special case of DST. Guha et al. [22] presented a primal-dual
algorithm with guarantee of O(ln n) which is asymptotically tight since NWST also general-
izes set cover. Könemann, Sadeghian, and Sanità [26] give an O(log n)-approximation using
the primal-dual framework for a generalization of NWST called Node-Weighted Prize
Collecting Steiner Tree2.

Demaine, Hajiaghayi, and Klein [9] considered a generalization of NWST called Node-
Weighted Steiner Forest (NWSF) on planar graphs and using the generic primal-dual
framework of Goemans and Williamson [20] they showed a 6-approximation and further they
extended their result to minor-free graphs. Later Moldenhauer [28] simplified their analysis
and showed an approximation guarantee of 3 for NWSF on planar graphs.

An interesting, non-standard use of the primal-dual scheme is in the work of Chakrabarty,
Devanur, and Vazirani [6] for undirected, quasi-bipartite instances of Steiner Tree. They
introduce a new “simplex-embedding” LP relaxation and their primal-dual scheme raises dual
variables with different rates. It is worth noting that although they also obtain upper bound
for the integrality gap of the so-called bidirected cut relaxation (BCR) of quasi-bipartite
instances of Steiner Tree, the algorithm and the simplex-embedding LP relaxation itself
are valid only in the undirected setting.

2 A key aspect of their algorithm is that it is also Lagrangian multiplier preserving.

APPROX/RANDOM 2023
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1.2 Our contributions
We present a primal-dual algorithm for quasi-bipartite DST on minor-free graphs.

Generally, it is difficult to effectively utilize primal-dual algorithms in directed network
design problems. This is true in our setting as well: we begin by showing a standard primal-
dual algorithm (similar to the primal-dual algorithm for the minimum-cost arborescence
problem) does not grow sufficiently-large dual to pay for the set of edges it purchases within
any constant factor.

We overcome this difficulty by highlighting different roles for edges in connecting the
terminals to the root. For some edges, we maintain two slacks: while raising dual variables
these two slacks for an edge may be filled at different rates (depending on the edge’s role
for the various dual variables being raised) and we purchase the edge when one of its slacks
is exhausted. Furthermore, unlike the analysis of standard primal-dual algorithms where
the charging scheme is usually more local (i.e., charging the cost of purchased edges to the
dual variables that are “close by”), we need to employ a more global charging scheme. Our
approach also provides an O(1) upper bound on the integrality gap of the natural cut-based
relaxation (Primal-LP) for graphs that exclude a fixed minor.

We summarize our results here.

▶ Theorem 1. There is an O(r ·
√

log r)-approximation algorithm for Directed Steiner
Tree on quasi-bipartite, Kr-minor free graphs. Moreover, the algorithm gives an upper
bound of O(r ·

√
log r) on the integrality gap of (Primal-LP) for DST instances on such

graphs.

▶ Remark 2. The running time of our algorithm is O(|V |c) where c is a fixed constant that is
independent of r. Also, we only require that every (simple) minor of the graph has bounded
average degree to establish our approximation guarantee. In particular, if every minor of the
input (quasi-bipartite) graph has degree at most d, then the approximation factor will be
O(d).

▶ Theorem 3. There is a 20-approximation algorithm for Directed Steiner Tree on
quasi-bipartite, planar graphs. Moreover, the algorithm gives an upper bound of 20 on the
integrality gap of (Primal-LP) for Directed Steiner Tree instances on such graphs.

We also verify that Steiner Tree (and, thus, Directed Steiner Tree) remains
NP-hard even when restricted to quasi-bipartite, planar instances. Similar results are known,
but we prove this one explicitly since we were not able to find this precise hardness statement
in any previous work.

▶ Theorem 4. Steiner Tree instances on bipartite planar graphs where the terminals are
on one side and the Steiner nodes are on the other side is NP-hard.

The above hardness result shows DST instances on quasi-bipartite, planar graphs is
NP-hard as well.

1.3 Organization of the paper
In Section 2, we state some definition and notation where we use throughout the paper. In
Section 3 we present an example that shows the most natural primal-dual algorithm fails to
prove our approximation results, this helps the reader understand the key difficulty we need
to overcome to make a primal-dual algorithm work and motivates our more refined approach.
In Section 4 we present our primal-dual algorithm and in Section 5 we present the analysis.
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The analysis contains three main subsections where in each section we present a charging
scheme. The first two charging schemes are straightforward but the last one requires some
novelty. Finally, we put all these charging schemes together in Subsection 5.4 and prove
Theorems 1 & 3. The proof of the hardness result (Theorem 4) is deferred to the full version
of the paper [16].

2 Preliminaries

In this paper, graphs are simple directed graphs unless stated otherwise. By simple we mean
there are no parallel edges3. Note that we can simply keep the cheapest edge in a group of
parallel edges if the input graph is not simple; the optimal value for DST problem does not
change.

Throughout this paper, we fix a directed graph G = (V, E), a cost function c : E → R≥0,
a root r, a set of terminals X ⊆ V \ {r}, and no edge between any two Steiner nodes, as the
input to the DST problem. We denote the optimal value for DST instance by OPT.

Given a subgraph G′ of G we define δin
G′(S) = {e = (u, v) ∈ E(G′) : u ∈ V \ S, v ∈ S}

(i.e., the set of edges in G′ entering S) we might drop the subscript if the underlying subgraph
is G itself. For an edge e = (u, v), we call u the tail and v the head of e. By a dipath we
mean a directed path in the graph. By SCCs of F ⊆ E we mean the strongly connected
components of (V, F ) that contains either the root node or at least one terminal node. So
for example, if a Steiner node is a singleton strongly connected component of (V, F ) then we
do not refer to it as an SCC of F . Due to the quasi-bipartite property, these are the only
possible strongly connected components in the traditional sense of (V, F ) that we will not
call SCCs. Observe F is a feasible DST solution if and only if each SCC is reachable from r.

An arborescence T = (V, E) rooted at r ∈ V is a directed tree oriented away from the
root such that every vertex in V is reachable from r. By height of a vertex u in T we mean
the number of edges between r (the root) and u in the dipath from r to u in T . We let Tu

denotes the subtree of T rooted at u.
Our discussions, algorithm, and the analysis rely on the concept of active sets, so we

define them here.

▶ Definition 5 (Violated set). Given a DST instance and a subset F ⊆ E, we say S ⊆ V \{r}
where S ∩X ̸= ∅ is a violated set with respect to F if δin

F (S) = ∅.

▶ Definition 6 (Active set). Given a DST instance and a subset F ⊆ E, we call a minimal
violated set (no proper subset of it, is violated) an active set (or active moat) with respect
to F .

We use the following definition throughout our analysis and (implicitly) in the algorithm.

▶ Definition 7 (F -path). We say a dipath P is a F -path if all the edges of P belong to
F ⊆ E. We say there is a F -path from a subset of vertices to another if there is a F -path
from a vertex of the first set to a vertex of the second set.

In quasi-biparitite graphs, active moat have a rather “simple” structure, our algorithm
will leverage the following properties.

▶ Lemma 8. Consider a subset of edges F and let A be an active set with respect to F .
Then, A consists of exactly one SCC CA of F , and any remaining in A \ CA are Steiner
nodes. Furthermore, for every Steiner node in A \ CA there are edges in F that are oriented
from the Steiner node to CA.

3 Two edges are parallel if their endpoints are the same and have the same orientation.

APPROX/RANDOM 2023
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Proof. By definition of violated sets, A does not contain r. If A contains only one terminal,
then the first statement holds trivially. So consider two terminals t and t′ in A. We show
there is a F -path from t to t′ and vice versa. Suppose not and wlog assume there is no
F -path from t′ to t. Let B := {v ∈ A : ∃F − path from v to t}. Note that B is a violated
set and B ⊆ A \ {t′} which violates the fact that A is a minimal violated set. Therefore,
exactly one SCC of F is in A.

Next we prove the second statement. Let s be a Steiner node (if exists) in A \ CA. If
there is no edge in F oriented from s to CA, then A \ {s} is a violated set, because the graph
is quasi-bipartite and the fact that A is a violated set itself, contradicting the fact that A is
a minimal violated set. ◀

Note that the above lemma limits the interaction between two active moats. More
precisely, two active moats can only share Steiner nodes that lie outside of the SCCs in the
moats.

▶ Definition 9 (The SCC part of active moats). Given a set of edges F and an active set A

(with respect to F ), we denote by CA the SCC (with respect to F ) inside A.

We use CA rather than CF
A because the set F will always be clear from the context.

Finally we recall bounds on the size of Kr-minor free graphs that we use at the end of
our analysis.

▶ Theorem 10 (Thomason 2001 [34]). Let G = (V, E) be a Kr-minor free graph with no
parallel edges. Then, |E| ≤ O(r ·

√
log r)|V | and this bound is asymptotically tight. The

constant in the O-notation in the above theorem is at most 3 for large enough r.

Bipartite planar graphs are K5-minor free, but we know of explicit bounds sizes. The
following is the consequence of Euler’s formula that will be useful in our tighter analysis for
quasi-bipartite, planar graphs.

▶ Lemma 11. Let G = (V, E) be a bipartite planar graph with no parallel edges. Then,
|E| ≤ 2 · |V |.

3 Standard primal-dual algorithm and a bad example

Given a DST instance with G = (V, E), r ∈ V as the root, and X ⊆ V − {r} as the terminal
set, we define S := {S ⊊ V : r /∈ S, and S ∩X ≠ ∅}. We consider the dual of (Primal-LP).

maximize:
∑
S∈S

yS (Dual-LP)

subject to:
∑

S∈S:
e∈δin(S)

yS ≤ c(e) ∀e ∈ E (2)

y ≥ 0

As we discussed in the introduction, a standard primal-dual algorithm solves arborescence
problem on any directed graph [11]. Naturally, our starting point was to investigate this
primal-dual algorithm for DST instances. We briefly explain this algorithm here. At the
beginning we let F := ∅. Uniformly increase the dual constraints corresponding to active
moats and if a dual constraint goes tight, we add the corresponding edge to F . Update
the active sets based on F (see Definition 6) and repeat this procedure. At the end, we
do a reverse delete, i.e., we go over the edges in F in the reverse order they have been
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added to F and remove it if the feasibility is preserved. Unfortunately, for DST instances in
quasi-bipartite planar graphs, there is a bad example (see Figure 1), that shows the total
growth of the dual variables is 2 + k · ϵ while the optimal solution costs 2 + k + k · ϵ for
arbitrarily large k. So the dual objective is not enough to pay for the cost of the edges in F

(i.e., we have to multiply the dual objective by O(k) to be able to pay for the edges in F ).

What is the issue and how can we fix it? One way to get an O(1)-approximation is to
ensure at each iteration the number of edges (in the final solution) whose dual constraints
are losing slack at this iteration is proportioned to the number of active moats. In the bad
example (Figure 1), when the bottom moat is paying toward the downward blue edges, there
are only two active moats but there are k downward blue edges that are currently being paid
for by the growing dual variables.

To avoid this issue, we consider the following idea: once the bottom active moat grew
enough so that the dual constraints corresponding to all the downward blue edges are tight
we purchase an arbitrary one of them, say (r, zk) for our discussion here. Once the top active
moat reaches z1 instead of skipping the payment for this edge (since the dual constraint for
(w2, z1) is tight), we let the active moat pay towards this edge again by ignoring previous
payments to the edge, and then we purchase it once it goes tight. Note that now we violated
the dual constraint for (w2, z1) by a multiplicative factor of 2. Do the same for all the other
downward blue edges (except (r, zk) that was purchased by the bottom moat). Now it is
easy to see that we grew enough dual objective to approximately pay for the edges that we
purchased. We make this notion precise by defining different roles for downward blue edges
in the next section. In general, each edge can serve up to two roles and has two “buckets” in
which it receives payment: each moat pays towards the appropriate bucket depending on the
role that edge serves for that moat. An edge is only purchased if one of its buckets is filled
and some tiebreaking criteria we mention below is satisfied.

4 Our primal-dual algorithm

As we discussed in the last section, we let the algorithm violate the dual constraint cor-
responding to an edge by a factor of 2 and hence we work with the following modified
Dual-LP:

maximize:
∑
S∈S

yS (Dual-LP-Modified)

subject to:
∑

S∈S:
e∈δin(S)

yS ≤ 2 · c(e) ∀e ∈ E (3)

y ≥ 0

Note that the optimal value of (Dual-LP-Modified) is at most twice the optimal value
of (Dual-LP) because consider a feasible solution y for the former LP then y

2 is feasible for
the latter LP.

Let us define the different buckets for each edge that are required for our algorithm.

Antenna, expansion and killer buckets. We say edge e = (u, v) is an antenna edge if
u /∈ X ∪ {r} and v ∈ X, in other words, if the tail of e is a Steiner node and the head of e is
a terminal. For every antenna edge we associate an antenna bucket with size c(e). For every
non-antenna edge e, we associate two buckets, namely expansion and killer buckets, each of
size c(e). The semantics of these labels will be introduced below.

APPROX/RANDOM 2023
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a

r

b

v

w1 w2 w3 wk−2 wk−1 wk

1

z1 z2 z3 zk−2 zk−1 zk

k

k

1
ϵ

Figure 1 This is an example to show why a standard primal-dual algorithm fails. The square
vertices are terminals. The downward blue edges (i.e., (wi, zi−1)’s for 2 ≤ i ≤ k) have cost 1, the
upward blue edges (i.e., (zi, wi)’s for 1 ≤ i ≤ k) have cost ϵ. The cost of the black edges are 0 except
(w1, v) who has cost 1. Note any feasible solution contains all the blue edges and the cost of an
optimal solution is k + k · ϵ + 1. However, it is easy to see the total dual variables that are grown
using a standard primal-dual algorithm is 2 + k · ϵ.

Now we, informally, describe our algorithm, see Algorithm 1 for the detailed description.
Recall the definition of active moats (Definition 6).

Growth phase. At the beginning of the algorithm we set F := ∅ and every singleton terminal
is an active moat. As long as there is an active moat with respect to F do the following:
uniformly increase the dual variables corresponding to the active moats. Let e /∈ F be an
antenna edge with its head in an active moat, then the active moat pays towards the antenna
bucket of e. Now suppose e = (u, v) /∈ F is a non-antenna edge, so u ∈ X ∪ {r}. For every
active moat A that contains v, if CA (see Definition 9) is a subset of an active set A′ with
respect to F ∪ {e}, then A pays toward the expansion bucket of e and otherwise A pays
towards the killer bucket of e.

Uniformly increase the dual variables corresponding to active moats until a bucket for an
edge e becomes full (antenna bucket in case e is an antenna edge, and expansion or killer
bucket if e is a non-antenna edge), add e to F . Update the set of active moats A according
to set F .

Pruning. Finally, we do the standard reverse delete meaning we go over the edges in F in
the reverse order they have been added and if the resulting subgraph after removing an edge
is still feasible for the DST instance, remove the edge and continue.

The following formalizes the different roles of a non-antenna edge that we discussed above.

▶ Definition 12 (Relation between non-antenna edges and active moats). Given a subset of
edges F ⊆ E, let A be the set of all active moats with respect to F . Consider a non-antenna
edge e = (u, v) (so u ∈ X ∪ {r}). Suppose v ∈ A where A ∈ A. Then,
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B

B′

s

s′

e

e′′

e′Fl

Fl

Fl

A
A′

A′′

Figure 2 Above is a part of a graph at the beginning of iteration l in the algorithm. Fl denotes
the set F at this iteration. The circles are SCCs in (V, Fl). Blue circles are inside some active moats
shown with ellipses. The black dots s and s′ are Steiner nodes. The black edges and the zigzag
paths are in Fl. The edges e, e′, and e′′ have not been purchased yet (i.e., e, e′, e′′ /∈ Fl). Since CA is
a subset of an active moat namely A ∪ B ∪ {s} with respect to Fl ∪{e}, e is an expansion edge with
respect to A. However, e is a killer edge with respect to A′ and e′′ is a killer edge with respect to A.
Finally, e′ is a killer edge with respect to A′ (and A′′) because there is a Fl ∪{e′}-path from CA to
CA′ (and CA′′ ), therefore CA′ (and CA′′ ) cannot be inside an active moat with respect to Fl ∪{e′}.

we say e is an expansion edge with respect to A under F if there is a subset of vertices A′

that is active with respect to F ∪ {e} such that CA ⊊ A′,
otherwise we say e is a killer edge with respect to A.

For example, all exiting edges from r that are not in F is a killer edge with respect to any
active moat (under F ) it enters. See Figure 2 for an illustration of the above definition.

Intuition behind this definition. A non-antenna edge e = (u, v) is a killer edge with respect
to an active moat A, if and only if, there is a dipath in F ∪ {e} from r or CA′ to CA where
A′ ̸= A is an active moat with respect to F . Note that adding e to F will make the dual
variable corresponding to A stop growing and that is why we call e a killer edge with respect
to A. For example, in Figure 2, both e and e′ are killer edges with respect to A′. On the
other hand, if e = (u, v) is an expansion edge with respect to A, then CA will be a part
of a “bigger” active moat with respect to F ∪ {e} and hence the name expansion edge for
e. For example, in Figure 2, e is an expansion edge with respect to A because in F ∪ {e},
A ∪B ∪ {s} is an active moat whose SCC contains CA.

The complete description of the algorithm is given in Appendix A. Note that the purchased
edge el at iteration l enters some active moat at iteration l.

After the algorithm finishes, then we label non-antenna edges by expansion/killer as
determined by the following rule:

▶ Definition 13 (Killer and expansion edges). Consider iteration l of the algorithm where we
added a non-antenna edge el to F . We label el as expansion (killer) if the expansion (killer)
bucket of e becomes full at iteration l, break ties arbitrarily.

Following remark helps to understand the above definition better.

▶ Remark 14. It is possible that one bucket becomes full for an edge yet we do not purchase
the edge with that bucket label (killer or expansion) due to tiebreaking when multiple buckets
become full. For example, this would happen in our bad example for the downward blue
edges: their killer buckets are full yet all but one are purchased as expansion edges.
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Let us explain the growth phase of Algorithm 1 on the bad example in Figure 1. Since the
early iterations of the algorithm on this example are straightforward, we start our explanation
from the iteration where the active moats are A = {b, z1, z2, ..., zk} and A′ = {a, v}.

Every (wi, zi−1) for 2 ≤ i ≤ k is a killer edge with respect to A so A pays toward the
killer buckets of these edges. At the same iteration, (w1, v) is an expansion edge with respect
to A′ so A′ pays toward the expansion bucket of this edge. Now the respected buckets for
all mentioned edges are full. Arbitrarily, we pick one of these edges, let us say (wk, zk−1),
and add it to F . Then, A stops growing. In the next iteration, we only have one active
moat A′. Since (w1, v) is still expansion edge with respect to A′ and its (expansion) bucket
is full, in this iteration we add (w1, v) to F and after updating the active moats, again we
only have one active moat {a, v, w1} which by abuse of notation we denote it by A′. Next
iteration we buy the antenna edge (z1, w1) and the active moat now is A′ = {a, v, w1, z1}. In
the next iteration, the crucial observation is that the killer bucket of (w2, z1) is full (recall
the A payed toward the killer bucket of (w2, z1)); however, (w2, z1) is an expansion edge with
respect to A′ so A′ will pay towards its expansion bucket and then purchases it. Similarly,
the algorithm buys (wi, zi−1)’s except (wk, zk−1) because this edge is in F already (recall we
bought this edge with A). Finally, (r, zk) is a killer edge with respect to the active moat in
the last iteration and we purchase it.

5 The analysis

Because of the space constraints, we defer most of the proofs to the full version of the
paper [16] and defer to the full version.

The general framework for analyzing primal-dual algorithms is to use the dual constraints
to relate the cost of purchased edges and the dual variables. However, here we do not use
the dual constraints and rather we use the buckets we created for each edge. Recall F is
the solution output by Algorithm 1. We define F Killer to be the set of edges in F that was
purchased as killer edge (recall definition 13). Similarly define F Exp and F Ant. For each
iteration l, we denote by Fl the set F at this iteration, Al denotes the set of active moats with
respect to Fl, and ϵl is the amount we increased the dual variables (corresponding to active
moats) with at iteration l. Finally, Let y∗ be the dual solution for (Dual-LP-Modified)
constructed in the course of the algorithm. We use the following notation throughout the
analysis.

▶ Definition 15. Fix an iteration l. For any A ∈ Al, let

∆l
Killer(A) := {e ∈ F Killer : e is killer with respect to A under Fl},

in other words, ∆l
Killer(A) is the set of all killer edges in F such that they are killer edge with

respect to A at iteration l. Similarly define ∆l
Exp(A).

Let ∆l
Ant(A) := {e ∈ F Ant : e ∈ δin(A)}. Finally, we define

∆l(A) := ∆l
Killer(A) ∪∆l

Exp(A) ∪∆l
Ant(A).

Note ∆l
Killer(A), ∆l

Exp(A), and ∆l
Ant(A) are pairwise disjoint for any A ∈ Al.

Suppose we want to show that the performance guarantee of Algorithm 1 is 2 ·α for some
α ≥ 1, it suffices to show the following: for any iteration l we have∑

S∈Al

|∆l(S)| ≤ α · |Al|. (4)
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Once we have (4), then the (2 · α)-approximation follows easily:∑
e∈F

c(e) =
∑

e∈F Killer

∑
l

∑
S∈Al:

e∈∆l
Killer(S)

ϵl +
∑

e∈F Exp

∑
l

∑
S∈Al:

e∈∆l
Exp(S)

ϵl +
∑

e∈F Ant

∑
l

∑
S∈Al:

e∈∆l
Ant(S)

ϵl (5)

=
∑

l

ϵl ·
∑

S∈Al

|∆l(S)| (6)

≤ α ·
∑

l

|Al|ϵl (7)

= α ·
∑

S⊆V \{r}

y∗
S (8)

≤ α ·
(
2 ·OPT(Dual− LP)

)
(9)

= 2 · α ·OPT(Primal− LP) (10)
≤ 2 · α ·OPT, (11)

where the first equality follows from the algorithm, the second equality is just an algebraic
manipulation, (7) follows from (4). Equality (8) follows from the fact we uniformly increased
the dual variables corresponding to active moats by ϵl at iteration l, (9) follows from feasibility
of y∗

2 for (Dual-LP), and (10) follows from strong duality theorem for linear programming.
It remains to show (4) holds. Consider iteration l. Using the bound on the total degree of

nodes in G (using minor-free properties) to show (4), it suffices to bound the number of edges
in F̄Ant ∪ F̄Killer ∪ F̄Exp that are being paid by some active moat at iteration l, by O(|Al|).
We provide charging schemes for each type of edges, separately. Since G is quasi-bipartite,
it is easy to show that for each active moat A ∈ Al, there is at most one antenna edge in
F̄ that enters A, this is proved in Section 5.1. The charging scheme for killer edges is also
simple as one can charge a killer edge to an active moat that it kills; this will be formalized
in Section 5.2. However, the charging scheme for expansion edges requires more care and
novelty. The difficulty comes from the case that an expansion edge is not pruned because it
would disconnect some terminals that are not part of any active moat that e is entering this
iteration.

Our charging scheme for expansion edges is more global. In a two-stage process, we
construct an auxiliary tree that encodes some information about which nodes can be reached
from SCCs using edges in Fl (which is the information we used in the definition of expansion
edge). Then using a token argument, we leverage properties of our construction to show the
number of expansion edges is at most twice the number of active moats in any iteration.
These details are presented in 5.3. Finally, in Section 5.4 we put all the bounds we obtained
together and derive our approximation factors.

5.1 Counting the number of antenna edges in an iteration

Fix an iteration l. Recall Fl denotes the set F at iteration l, and Al denotes the set of active
moats with respect to Fl. It is easy to bound the number of antenna edges in F against |Al|.
We do this in the next lemma.

▶ Lemma 16. At the beginning of each iteration l, we have
∑

A∈Al

|∆l
Ant(A)| ≤ |Al|.
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5.2 Counting the number of killer edges in an iteration
We introduce a notion called alive terminal which helps us to bound the number of killer
edges at a fixed iteration against the number of active moats in that iteration. Also this
notion explains the name killer edge. Throughout the algorithm, we show every active moat
contains exactly one alive terminal and every alive terminal is in an active moat.

We consider how terminals can be “killed” in the algorithm by associating active moats
with terminals that have not yet been part of a moat that was killed. At the beginning of the
algorithm, we mark every terminal alive, note that every singleton terminal set is initially
an active moat as well. Let el = (u, v) be the edge that was added to Fl at iteration l. If
el = (u, v) is a non-antenna edge, then for every active set A such that el is a killer edge with
respect to A under Fl, mark the alive terminal in A as dead4. If el = (u, v) is an antenna
edge, then for every active moat A such that el ∈ δin(A) and CA is not in any active moat
with respect to Fl ∪{el}, then mark the alive terminal in A as dead5.

The important observation here is that by definition, if el is a killer edge, then there
must be an active set that satisfies the above condition, hence there is at least one alive
terminal that will be marked dead because of el. In the case that el is bought as killer edge,
arbitrarily pick an alive terminal tel

that dies because of el and assign el to tel
. Note that

tel
was alive until el was added to Fl.

▶ Definition 17. Fix an iteration l. We define

F
l

Killer :=
⋃

A∈Al

∆l
Killer(A),

in other words, F
l

Killer is the set of all killer edges in F such that some active moat(s) is
paying toward their killer bucket at iteration l.

Now we can state the main lemma of this section.

▶ Lemma 18. At the beginning of each iteration l, we have |F l

Killer| ≤ |Al|.

Note that the above lemma does not readily bound
∑

A∈Al

|∆l
Killer(A)| against |Al| which

is required to prove inequality (4). We need the properties of minor-free graphs to do so. In
the next section we prove a similar result for expansion edges and then using the properties
of the underlying graph, we demonstrate our approximation guarantee.

5.3 Counting the number of expansion edges in an iteration
The high level idea to bound the number of expansion edges is to look at the graph F ∪ Fl

and contract all SCCs6 of (V, Fl). Then, we construct an auxiliary tree that highlights the
role of expansion edges to the connectivity of active moats. Finally, using this tree we provide
our charging scheme and show the number of edges in F Exp that are being paid by some
active moats at iteration l is at most twice the number of active moats.

4 It is possible, el is bought as an expansion edge but kills some alive terminals. For example, in Figure
2 suppose e is being added to Fl at iteration l as an expansion edge (note that A pays toward the
expansion bucket of e). Then, we mark the alive terminal in A′ as dead because e is a killer edge with
respect to A′ under Fl.

5 For example, suppose the antenna edge el = (u, v) ∈ δin(A) is being added to Fl and u is in CA′ for
some active moat A′. Then, after adding el to Fl, we mark the alive terminal in A as dead.

6 Recall that we do NOT call a Steiner node that is a singleton strongly connected component of (V, Fl)
an SCC. So every SCC in (V, Fl) is either {r} or contains at least one terminal node.
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We fix an iteration l for this section. First let us recall some notation and definition that
we use extensively in this section. (i) F is the output solution of the algorithm. (ii) Fl ⊆ E

is the set of purchased edges in the growing phase up to the beginning of iteration l (i.e., set
F in the algorithm at iteration l). (iii) Al is the set of active moats with respect to Fl (see
Definition 6). Recall each A ∈ Al is consists of an SCC (with respect to edges in Fl) and
bunch of Steiner nodes. Denote by CA the SCC part of A.

We define an analogous of Definition 17 for expansion edges.

▶ Definition 19. Fix an iteration l. Then, we define

F
l

Exp :=
⋃

A∈Al

∆l
Exp(A),

in other words, F
l

Exp is the set of all expansion edges in F \Fl such that some active moat(s)
is paying toward their expansion bucket at iteration l.

This section is devoted to prove the following inequality.

▶ Lemma 20. At the beginning of each iteration l of the algorithm, we have |F l

Exp| ≤ 2 · |Al|.

Sketch of the proof. We start by giving a sketch of the proof of Lemma 20. Consider the
subgraph Fl ∪F of G. Contract every SCC of (V, Fl) and denote the resulting subgraph by H

(keeping all copies of parallel edges that may result). For every non-root, non-Steiner node
v ∈ V (H), we call v active if it is a contraction of an SCC that is a subset of an active moat
in Al, otherwise we call v inactive. Note that r is a singleton SCC in (V, Fl) and therefore
r ∈ V (H). We call an edge in E(H) an expansion edge, if its corresponding edge is in F

l

Exp.
Note that every non root vertex in V (H) is either labeled active/inactive, or it is a Steiner
node. Lemma 20 follows if we show the number of expansion edges in H is at most twice
the number of active vertices in H. As we stated at the beginning of this section, we use an
arborescence that highlights the role of expansion edges to the connectivity of active vertices
in H. A bit more formally, we show if every expansion edge is “good” with respect to the
arborescence, which is formalized below, then every expansion edge is “close” to an active
vertex in H and we use this in our charging scheme.

Given an arborescence T , define ElevelT (v) to be the expansion level of v with respect to
T , i.e., the number of expansion edges on the dipath from r to v in T .

▶ Definition 21. Given an arborescence T and an expansion edge e = (u, v), we say e is a
good expansion edge with respect to T if one of the following cases happens:

Type 1: If u has an active ancestor w such that ElevelT (w) = ElevelT (u).
Type 2: If e is not of type 1 and the subtree rooted at u has an active vertex w such that
ElevelT (w) ≤ ElevelT (u) + 1.

Every expansion edge that is not of type 1 or type 2, is called a bad expansion edge with
respect to T .

A starting point for an arborescence that every expansions edge is good, is a shortest
path arborescence rooted at r in H where each expansion edge has cost 1 and the rest of the
edges have cost 0. However, as Figure 3 shows, there could be some bad expansion edges in
this arborescence. For example, e is a bad expansion edge with respect to the arborescence
in Figure 3 (b). Since B2, the tail of e, is an inactive vertex, there must be an active vertex,
namely A3, that has a dipath from A3 to B2 in Fℓ. Then, we can “cut” the subtree rooted
at B2 and “paste” it under A3 as shown in Figure 3(c). It is easy to verify that now every
expansion edge is good with respect to the arborescence in Figure 3(c). We formalize this
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r

A1

A2

A3

A4

A5

B1

B2

B3

B4

B5

e

(a)

r

B2
e

A3

(b)

r

B2
e

A3

(c)

Figure 3 (a) shows subgraph Fl ∪F̄ of G, in particular, the SCCs of (V, Fl) are shown with circles
but the nodes inside SCCs are not shown for simplicity. The blue SCCs are inside some active moats
shown with dashed ellipses. Contracting all the SCCs result in the graph H discussed before. Black
edges are in Fl, blue edges are in F̄ \ Fl, and green edges are in F̄ l

Exp. In (b), we have a shortest path
arborescence rooted at r in H where the cost of edges is one if it is green and zero otherwise. Recall
the definition of H at the beginning of this sketched proof. Note that e is a bad expansion edge with
respect to this arborescence. In (c), we show how to construct an arborescence using cut-and-paste
procedure so that every expansion edge is a good expansion edge in the resulting arborescence.

“cut and paste” procedures in Algorithm 2 in the full version of the paper and prove the
output of the algorithm is an arborescence with the property that every expansion edge is
good. Given an arborescence that every expansion edge is good, we show there is a rather
natural charging scheme that proves Lemma 20.

Charging scheme. At the beginning we label every token unused. We process all the
vertices with height l. For each expansion edge whose tail has height l we assign an unused
token to it and change the label of the assigned token to used. Then we move to height
l − 1 and repeat the process. Fix height l. We do the following for every vertex u with this
height: if there is no expansion edge whose tail is u then mark u as processed. Otherwise let
(u, v1), ..., (u, vk) be all the expansion edges whose tail is u. Note that by definition of type 1
and 2, either (i) all (u, vi)’s are type 1 or (ii) all are type 2. Base on these two cases we do
the following:

(i) Let (u, v1), ..., (u, vk) be the expansion edges of type 1. For each 1 ≤ i ≤ k there is at
least one unused token in T ∗

vi
. Pick one such unused token and assign it to (u, vi) and

change its label to used. Mark u as processed.
(ii) Let (u, v1), ..., (u, vk) be the expansion edges of type 2. For each 1 ≤ i ≤ k there is

at least one unused token in T ∗
vi

. Pick one such unused token and assign it to (u, vi)
and change its label to used. Furthermore, after this there is at least one more unused
token in T ∗

u . Mark u as processed.
The proof of correctness of this charging scheme is based on induction on the height l. ◀

5.4 Putting everything together
Fix an iteration l. We use Lemmas 18 & 20 and the properties of graph G to bound∑
A∈Al

|∆l
Killer(A) ∪∆l

Exp(A)|. Consider an active moat A and its SCC CA. We show there is

at most one killer/expansion edge that enters CA. So the remaining killer/expansion edges
must enter some Steiner node in A \ CA. We use this fact later.
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▷ Claim 22. Fix an iteration l and an active moat A ∈ Al. There is at most one edge in
∆l

Killer(A) ∪∆l
Exp(A) whose head is in CA.

Consider the graph Fl ∪F . Remove all vertices that are not in an active moat at this
iteration. For each active moat A, remove all Steiner nodes in A \ CA that are not the head
of any edge in F

l

Killer ∪ F
l

Exp. Then, for each A ∈ Al contract CA to a single vertex and call
the contracted vertex by CA. Finally, if there are parallel edges, arbitrarily keep one of them
and remove the rest7. Call the resulting graph G′.

Now we relate the sum we are interested in to bound with the sum of the indegree of
vertices in G′.

▷ Claim 23. For each active moat A ∈ Al, we have

|∆l
Killer(A) ∪∆l

Exp(A)| ≤ |δin
G′(CA)|+ 1. (12)

Next, using Lemmas 18 & 20 we bound the number of vertices in G′.

▷ Claim 24. Fix an iteration l. Then, |V (G′)| ≤ 4 · |Al|.

Finally, we prove Theorems 1 & 3.

Proof of Theorem 1. Since G is Kr-minor free so does G′. So we can write∑
A∈Al

∣∣∆l
Killer(A) ∪∆l

Exp(A)
∣∣ ≤ ∑

A∈Al

(
|δin

G′(CA)|+ 1
)

= |E(G′)|+ |Al|

≤ O(r ·
√

log r) · 4 · |Al|+ |Al|

= O(r ·
√

log r)|Al|,

(13)

where the inequality follows from Claim 23 and the second inequality follows from Claim 24
together with Theorem 10.

Next we show (4) holds for α = O(r ·
√

log r).∑
A∈Al

|∆l(A)| =
∑

A∈Al

|∆l
Killer(A) ∪∆l

Exp(A)|+
∑

A∈Al

|∆l
Ant(A)|

≤ O(r ·
√

log r)|Al|+ |Al|

= O(r ·
√

log r)|Al|,

where inequality follows from inequality (13) and Lemma 16.
As we discussed at the beginning of Section 5 that if (4) holds for α then we have a

(2 · α)-approximation algorithm. Hence, Algorithm 1 is an O(r ·
√

log r)-approximation for
DST on quasi-bipartite, Kr-minor free graphs. ◀

Proof of Theorem 3. The proof is exactly the same as proof of Theorem 1 except instead of
O(r ·

√
log r) in (13) we have 2 because G′ is a bipartite planar graph, see Lemma 11. Now

we can write
∑

A∈Al

∣∣∆l
Killer(A) ∪∆l

Exp(A)
∣∣ ≤ 9 · |Al| and

∑
A∈Al

|∆l(A)| ≤ 10 · |Al|. Therefore,

(4) holds for α = 10 and hence we have a 20-approximation algorithm, as desired. ◀

7 Note that all the parallel edges are antenna edges and so removing them does not affect the quantity∑
A∈Al

|∆l
Killer(A) ∪ ∆l

Exp(A)| we are trying to bound.
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A Full description of the primal-dual algorithm

Algorithm 1 Primal-Dual Algorithm for DST on Quasi-Bipartite Graphs.
Input: Directed quasi-bipartite graph G = (V, E) with edge costs c(e) ≥ 0 for e ∈ E, a set
of terminal X ⊆ V \ ∅, and a root vertex r.
Output: An arborescence F rooted at r such that each
terminal is reachable from r in F .
A ← {{v} : v ∈ X}. {The active moats each iteration, initially all singleton terminal set.}
y∗ ← 0. {The dual solution}
F ← ∅. {The edges purchased}
l← 0. {The iteration counter}
bAnt

e ← 0, bExp
e ← 0 and bKiller

e ← 0. {The buckets}
Growing phase:
while until A ≠ ∅ do

Find the maximum value ϵ ≥ 0 such that the following holds:
(a) for every antenna edge e we have bAnt

e +
∑

A∈A:
e∈δin(A)

ϵ ≤ c(e).

(b) for every non-antenna edge e we have bExp
e +

∑
A∈A:

e is expansion
with resp. to A

ϵ ≤ c(e).

(c) for every non-antenna edge e we have bKiller
e +

∑
A∈A:

e is killer with
resp. to A

ϵ ≤ c(e).

Increase the dual variables y∗ corresponding to each active moat by ϵ.
for every antenna edge e do

bAnt
e ← bAnt

e +
∑

A∈A:
e∈δin(A)

ϵ.

end for
for every non-antenna edge e do

bExp
e ← bExp

e +
∑

A∈A:
e is expansion
with resp. to A

ϵ.

bKiller
e ← bKiller

e +
∑

A∈A:
e is killer with

resp. to A

ϵ.

end for
pick any single edge el ∈ ∪A∈Aδin(A) with one of (a)-(c) being tight (break ties
arbitrarily).
F ← F ∪ {el}.
update A based on the minimal violated sets with respect to F .
l← l + 1.

end while
Deletion phase:
F ← F .
for i from l to 0 do

if F \ {ei} is a feasible solution for the DST instance then
F ← F \ {ei}.

end if
end for
return F
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