
Algorithms for 2-Connected Network Design and
Flexible Steiner Trees with a Constant Number of
Terminals
Ishan Bansal #

Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Joe Cheriyan # Ñ

Department of Combinatorics and Optimization, University of Waterloo, Canada

Logan Grout #

Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Sharat Ibrahimpur #Ñ

Department of Mathematics, London School of Economics and Political Science, UK

Abstract
The k-Steiner-2NCS problem is as follows: Given a constant (positive integer) k, and an undirected
connected graph G = (V, E), non-negative costs c on the edges, and a partition (T, V \ T) of V into
a set of terminals, T , and a set of non-terminals (or, Steiner nodes), where |T | = k, find a min-cost
two-node connected subgraph that contains the terminals. The k-Steiner-2ECS problem has the
same inputs; the algorithmic goal is to find a min-cost two-edge connected subgraph that contains
the terminals.

We present a randomized polynomial-time algorithm for the unweighted k-Steiner-2NCS problem,
and a randomized FPTAS for the weighted k-Steiner-2NCS problem. We obtain similar results for a
capacitated generalization of the k-Steiner-2ECS problem.

Our methods build on results by Björklund, Husfeldt, and Taslaman (SODA 2012) that give a
randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem; this problem
has the same inputs as the unweighted k-Steiner-2NCS problem, and the algorithmic goal is to find
a min-cost simple cycle C that contains the terminals (C may contain any number of Steiner nodes).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation algorithms, Capacitated network design, Network design,
Parametrized algorithms, Steiner cycle problem, Steiner 2-edge connected subgraphs, Steiner 2-node
connected subgraphs

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.14

Category APPROX

Related Version Previous Version: https://doi.org/10.48550/arXiv.2206.11807

Funding Joe Cheriyan: Supported in part by NSERC, RGPIN-2019-04197.
Sharat Ibrahimpur : Received funding from the following sources: NSERC grant 327620-09 and an
NSERC DAS Award, European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no. ScaleOpt–757481), and Dutch Research
Council NWO Vidi Grant 016.Vidi.189.087.

1 Introduction

The k-Steiner-cycle problem is as follows: Given a constant k, and an undirected connected
graph G = (V, E), non-negative costs c on the edges, and a partition (T, V \T) of V into a set
of terminals, T , and a set of non-terminals (or, Steiner nodes), where |T | = k, find a minimum-
cost simple cycle C that contains all the terminals (and any subset of Steiner nodes). Note
that this is an optimization problem and not a search problem. To the best of our knowledge,

© Ishan Bansal, Joe Cheriyan, Logan Grout, and Sharat Ibrahimpur;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ib332@cornell.edu
mailto:jcheriyan@uwaterloo.ca
https://www.math.uwaterloo.ca/~jcheriyan
mailto:lcg58@cornell.edu
mailto:s.ibrahimpur@lse.ac.uk
http://www.math.uwaterloo.ca/~s26ibrah
https://orcid.org/0000-0002-1575-9648
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.14
https://doi.org/10.48550/arXiv.2206.11807
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Algorithms for 2-Connected Network Design with O(1) Terminals

no polynomial-time (deterministic or randomized) algorithm is known for finding an optimal
solution of the (weighted) k-Steiner-cycle problem, even for k = 3; this problem has been
open for several decades, see [7]. Björklund, Husfeldt, and Taslaman (SODA 2012) [3] give a
randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem; also, see
Taslaman’s thesis [26]. Further research on the same problem is presented by Wahlström [27],
and by Fafianie and Kratsch [10]. The algorithm of [3] extends easily to a randomized FPTAS
for the weighted k-Steiner-cycle problem, by using techniques from Ibarra & Kim [15] and
Hochbaum & Shmoys [14], see Proposition 6. All the results in our paper are based on the
key result of Björklund et al. [3]. Below, in the section on related work, we discuss several
papers that pertain to the k-Steiner-cycle problem, but we stress that the methods and
techniques of these papers have no direct implications for the k-Steiner-cycle problem.

Network design encompasses a wide class of problems that find applications in sectors
like transportation, facility location, information security, resource connectivity, etc. Due
to its wide scope and usefulness, the area of network design has been studied for decades
and it has spawned major algorithmic innovations. Most of the problems in network design
are NP-Hard, and researchers in the area have focused on designing good approximation
algorithms. The nodes of a network are designated as terminals (i.e., “essential” nodes) or
non-terminals (i.e., Steiner nodes or “optional” nodes). A well-known goal of network design
is to construct cheap networks that can survive the failure of one element (i.e., one edge or
one node); “surviving” means that all the (remaining) terminals stay connected even after
the deletion of one element, that is, there exists a path between every pair of (remaining)
terminals after deleting one element.

In the Steiner-2ECS problem, the input is an undirected graph G = (V, E), a set of
terminals T ⊆ V , and non-negative costs c on the edges. The goal is to find a minimum-cost
2-edge-connected subgraph containing all the terminals. The Steiner-2NCS problem is defined
similarly, where the goal is to find a minimum-cost 2-node-connected subgraph containing all
the terminals. Both these problems are NP-Hard. The best known approximation algorithms
achieve an approximation ratio of two, see [29].

Another paradigm to address NP-Hard problems is to develop parameterized algorithms.
In this setting, a parameter of the input is chosen (e.g., the number of terminals, or the size
of an optimal solution) and the goal is to develop algorithms whose running time depends on
the input size and the parameter.

Feldmann, Mukherjee and van Leeuwen [11] presented parametrized algorithms for the
Steiner-2ECS and Steiner-2NCS problems (among others) where the parameter is the optimal
solution size, which is denoted by ℓ. They showed that if ℓ is bounded by a constant, then
these problems can be solved in polynomial time. In particular, they present a fixed parameter
tractable (FPT) algorithm that runs in time nO(1)f(ℓ) and computes an optimal solution,
where f(·) denotes some computable function.

Feldmann et al. [11] recently high-lighted the following open question in the area of
network design: Is there a polynomial-time algorithm for the Steiner-2NCS problem, where
the number of terminals is a constant? We use the term k-Steiner-2NCS problem (respectively,
k-Steiner-2ECS problem) to refer to the special case of the Steiner-2NCS problem (respectively,
Steiner-2ECS problem) with k terminals. Usually, we assume that the number of terminals
is a constant, i.e., k = O(1). We present a randomized polynomial-time algorithm for
the unweighted k-Steiner-2NCS problem. We also consider the weighted k-Steiner-2NCS
problem, and we provide a randomized fully polynomial time approximation scheme (FPTAS)
for this problem.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 14:3

We obtain similar results for the following generalization of the k-Steiner-2ECS problem:
In the k-Flexible Steiner Tree (k-FST) problem, the input consists of an undirected graph
G = (V, E), a partition of the edge-set E into a set S of safe edges and a set U of unsafe edges,
a set of terminals T ⊆ V with |T | = k, and non-negative costs c on the edges. The goal is to
find a minimum-cost connected subgraph H = (U, F) such that T ⊆ U and for any unsafe
edge e ∈ F , the graph H − e is connected. This problem is equivalent to the capacitated
k-Steiner-2ECS problem, where the input is the same as that of the k-FST problem, except
that there is a a positive integral capacity u on the edges (instead of the partition E = S

⋃
U);

the goal is to find a minimum-cost connected subgraph H = (U, F) such that T ⊆ U and
for any unit-capacity edge e ∈ F , the graph H − e is connected. (The two problems are
equivalent because the unsafe edges of the k-FST problem correspond to the unit-capacity
edges of the latter problem, and the safe edges of the k-FST problem correspond to edges
of capacity at least two of the latter problem.) We present a randomized polynomial-time
algorithm for the unweighted k-FST problem; this easily extends to a randomized FPTAS
for the weighted k-FST problem.

1.1 Our Results and Techniques
We prove that the k-Steiner-2NCS problem can be solved in randomized slicewise polynomial
time, and hence it is in the complexity class randomized XP.

▶ Theorem 1. For any η > 0, ϵ > 0 and constant k,
(i) there exists a randomized algorithm for the unweighted k-Steiner-2NCS problem that

outputs an optimal solution with probability 1− η in time O(
(

n
2k

)
·B(3k) ·

(3k
2

)k · 23k ·
nO(1) · log k

η) = O
(

nO(k) · log 1
η

)
, where B(i) denotes the ith ordered Bell number.

(ii) there exists a randomized algorithm for the weighted k-Steiner-2NCS problem that runs
in time O(nO(k) · (1/ϵ)O(k) · log(1/η)) such that, with probability at least 1 − η, the
solution returned by the algorithm costs at most (1 + ϵ) times the cost of an optimal
solution.

Our methods build on results by Björklund, Husfeldt, and Taslaman (SODA 2012) [3] that
give a randomized polynomial-time algorithm for the unweighted k-Steiner-cycle problem.
Given an instance of the k-Steiner-2NCS problem, we guess an ear decomposition of an
optimal solution by enumeration, and repeatedly use the algorithm in [3] to construct an
optimal subgraph. It can be seen that naively attaching new ears does not lead to an
optimal solution. Hence, we also keep track of the high degree nodes in the optimal subgraph.
Subsequently, we obtain our randomized FPTAS for the weighted k-Steiner-2NCS problem,
by using the scaling techniques from Ibarra & Kim [15] and Hochbaum & Shmoys [14]. We
present similar results for the k-FST problem.

▶ Theorem 2. For any η > 0, ϵ > 0 and constant k,
(i) there exists a randomized algorithm for the unweighted k-FST problem that outputs an

optimal solution with probability 1− η in time O
(

nO(k) · log 1
η

)
.

(ii) there exists a randomized algorithm for the weighted k-FST problem that runs in time
O(nO(k) · (1/ϵ)O(k) · log(1/η)) such that, with probability at least 1 − η, the solution
returned by the algorithm costs at most (1 + ϵ) times the cost of an optimal solution.

Our methods here rely on the block decomposition of an optimal solution, in conjunction
with our results on the k-Steiner-2NCS problem. We use Theorem 1 to find the individual
blocks optimally, and then paste these blocks together using the results by Adjiashvili,

APPROX/RANDOM 2023

14:4 Algorithms for 2-Connected Network Design with O(1) Terminals

Hommelsheim, Mühlenthaler, and Schaudt [1] who give a polynomial-time algorithm for
finding an optimal solution to the 2-FST problem; see Proposition 1 and Theorem 5 of [1].
As a corollary, we obtain the same results for the capacitated k-Steiner-2ECS problem.

▶ Corollary 3.
(i) The capacitated k-Steiner-2ECS problem can be solved in slicewise polynomial time with

high probability, hence, it is in randomized XP.
(ii) There exists a randomized FPTAS for the weighted capacitated k-Steiner-2ECS problem.

1.2 Related Work
1.2.1 k-Steiner-cycle problem
One of the key applications of the Graph Minors theory of Roberston and Seymour [23] is a
polynomial-time algorithm for the decision/search version of the k disjoints paths problem for
constant k. In this problem, we are given an undirected graph G = (V, E) and k source-sink
pairs si, ti, and the goal is to decide (or, find) if there exist k node-disjoint paths Pi where
the end-nodes of Pi are si and ti. The Graph Minors theory (as of now) cannot address the
optimization version of this problem.

There are many papers on the k disjoint paths problem, and a few on problems related
to the k-Steiner-cycle problem. Kawarabayashi [19] presented improved algorithms for the
search version of the latter problem, by improving on the methods from Graph Minors theory.
There are a few other relevant results from the last few decades; for example, Fleischner and
Woeginger present results for the unweighted 3-Steiner-cycle problem, see [13].

Recently, Lochet [21] and Bentert et al. [2] presented interesting algorithms for the
so-called k disjoint shortest paths problem, i.e., each of the paths Pi (of the disjoint paths
problem) is required to be a shortest path between si and ti; this problem is not directly
related to the optimization problems of interest to us.

1.2.2 k-Steiner-2NCS problem and k-Steiner-2ECS problem
Network design problems involving finding a cheapest subgraph subject to connectivity
requirements have been studied for decades. One of the simplest such problems is the
minimum spanning tree problem which is known to have polynomial-time algorithms. However,
increasing the connectivity requirements makes these problems intractable. The 2-edge-
connected spanning subgraph (2-ECSS) problem is Max-SNP-Hard, see [6]. In the weighted
setting, the best known approximation algorithm achieves an approximation ratio of two,
see Khuller and Vishkin [20]. The best known approximation ratio for the minimum-cost
2-node-connected spanning subgraph (2-NCSS) problem is two, see the survey by Nutov [22].

The analogous problems with Steiner nodes are usually harder. For instance, the minimum-
cost Steiner tree problem is already NP-Hard [18]. The best known approximation ratio for
this problem is ≈ 1.39, due to Byrka et al. [5]. The best known approximation ratios for the
(weighted) Steiner-2ECS/Steiner-2NCS problem is two, see [29, 16, 12].

In the context of parameterized algorithms, Dreyfus and Wagner [9] showed that the
Steiner tree problem can be solved in FPT time where the parameter is the number of
terminals. Feldmann et al. [11] showed that the Steiner-2ECS and Steiner-2NCS problems
can be solved in FPT time where the parameter is the size of an optimal solution.

Sami [24], in his master’s thesis, has some results related to our paper. He notes that there
is a reduction from the k-Steiner-2ECS problem to the k-Steiner-2NCS problem.

(
We can

“inflate” each node v of the graph G of the k-Steiner-2ECS problem to a complete graph, i.e.,

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 14:5

clique, Cv on degG(v) nodes with edges of cost zero, and replace the edges incident to v in G

by edges incident to distinct nodes of Cv while preserving the edge costs.
)

Moreover, he shows
that the FPT (in the solution size parameter ℓ) algorithm of [11] for the k-Steiner-2ECS
problem can be combined with a result of Jordan [17] to give an FPT (in parameter k = |T |)
algorithm for the k-Steiner-2ECM problem where the solution subgraph may pick multiple
copies of any edge (and incurs cost ce for each copy of e).

Borradaile and Klein [4] presented a PTAS for the planar case of the Steiner-2ECM
problem (i.e., the multi-edge variant of the Steiner-2ECS problem).

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent
with [8], and readers are referred to that text for further information.

Let G = (V, E) be a loopless multi-graph with non-negative costs c ∈ RE
≥0 on the edges.

We take G to be the input graph, and we use n to denote |V (G)|. For a set of edges F ⊆ E(G),
c(F) :=

∑
e∈F c(e), and for a subgraph G′ of G, c(G′) :=

∑
e∈E(G′) c(e).

For a positive integer k, we use [k] to denote the set {1, . . . , k}.
For a graph H and a set of nodes S ⊆ V (H), ΓH(S) := {w ∈ V (H) \ S : v ∈ S, vw ∈

E(H)}, thus, ΓH(S) denotes the set of neighbours of S.
For a graph H and a set of nodes S ⊆ V (H), δH(S) denotes the set of edges that have

one end node in S and one end node in V (H) \ S; moreover, H[S] denotes the subgraph of
H induced by S, and H − S denotes the subgraph of H induced by V (H) \ S. For a graph
H and a set of edges F ⊆ E(H), H − F denotes the graph (V (H), E(H) \ F). We may use
relaxed notation for singleton sets, e.g., we may use δH(v) instead of δH({v}), and we may
use H − v instead of H − {v}, etc.

We may not distinguish between a subgraph and its node set; for example, given a graph
H and a set S of its nodes, we use E(S) to denote the edge set of the subgraph of H induced
by S.

2.1 2EC, 2NC and related notions

A multi-graph H is called k-edge connected if |V (H)| ≥ 2 and for every F ⊆ E(H) of
size < k, H − F is connected. Thus, H is 2-edge connected if it has ≥ 2 nodes and the
deletion of any one edge results in a connected graph. A multi-graph H is called k-node
connected if |V (H)| > k and for every S ⊆ V (H) of size < k, H − S is connected. We use
the abbreviations 2EC for “2-edge connected,” and 2NC for “2-node connected.”

For any instance H, we use opt(H) to denote the minimum cost of a feasible subgraph
(i.e., a subgraph that satisfies the requirements of the problem). When there is no danger of
ambiguity, we use opt rather than opt(H).

By a bridge we mean an edge of a connected (sub)graph whose removal results in two
connected components, and by a cut-node we mean a node of a connected (sub)graph whose
deletion results in two or more connected components. A maximal connected subgraph
without a cut-node is called a block. Thus, every block of a given graph G is either a maximal
2NC subgraph, or a bridge (and its incident nodes), or an isolated node. For any node v of
G, let Γblocks

G (v) denote the set of 2NC blocks of G that contain v.

APPROX/RANDOM 2023

14:6 Algorithms for 2-Connected Network Design with O(1) Terminals

2.2 Ear decompositions
An ear decomposition of a graph is a partition of the edge set into paths or cycles,
P0, P1, . . . , Pℓ, such that P0 is the trivial path with one node, and each Pi (1 ≤ i ≤ ℓ)
is either (1) a path that has both end nodes in Vi−1 = V (P0) ∪ V (P1) ∪ . . . ∪ V (Pi−1) but
has no internal nodes in Vi−1, or (2) a cycle that has exactly one node in Vi−1. For an ear
Pi, let int(Pi) denote the set of nodes V (Pi) \ Vi−1. Each of P1, . . . , Pℓ is called an ear ; note
that P0 is not regarded as an ear. We call Pi, i ∈ {1, . . . , ℓ}, an open ear if it is a path, and
we call it a closed ear if it is a cycle. An open ear decomposition P0, P1, . . . , Pℓ is one such
that all the ears P2, . . . , Pℓ are open. (The ear P1 is always closed.)

▶ Proposition 4 (Whitney [28]).
(i) A graph is 2EC ⇐⇒ it has an ear decomposition.
(ii) A graph is 2NC ⇐⇒ it has an open ear decomposition.

2.3 Algorithms for basic computations
There are well-known polynomial-time algorithms for implementing all of the basic computa-
tions in this paper, see [25]. We state this explicitly in all relevant results, but we do not
elaborate on this elsewhere.

3 FPTAS for k-Steiner-cycle

Björklund, Husfeldt, and Taslaman [3] presented a randomized algorithm for finding a
min-cost simple cycle that contains a given set of terminals T of an unweighted, undirected
graph G = (V, E) with a running time of 2knO(1), where k = |T | and n = |V |. In other words,
they present a randomized FPT-algorithm for the unweighted k-Steiner-cycle problem.

▶ Theorem 5. Consider a graph G = (V, E) and a set of terminals T ⊆ V of size k. Let
η > 0 be a parameter. A minimum-size k-Steiner-cycle can be found, if one exists, by a
randomized algorithm in time 2knO(1) log 1

η with probability at least 1− η.

We present a simple (randomized) FPTAS for the weighted k-Steiner-cycle problem,
based on the algorithm of [3].

▶ Proposition 6. Consider a graph G = (V, E) with nonnegative costs c ∈ RE
≥0 on the edges,

and a set of k terminals T ⊆ V . Let ε, η > 0 be some parameters. There is a randomized
algorithm that finds a (1 + ε)-approximate k-Steiner-cycle, if one exists, with probability at
least 1− η. The running time of the algorithm is O

(
2k · nO(1) ·

(1
ε

)O(1) · log 1
η

)
.

Proof. Let E = {e1, e2, . . . , em} where ce1 ≤ ce2 ≤ · · · ≤ cem
. Let η′ := η/2. Let j ∈ [m]

denote the smallest index such that the graph (V, {e1, . . . , ej}) contains a k-Steiner-cycle.
Note that if G does not have a k-Steiner-cycle, then the weighted-version of the problem
is trivially infeasible. Using at most m applications of Theorem 5 with the η-parameter
set to η′, we can find the index j with probability at least 1 − η/2. Suppose that we
have the correct index j. Let β := c(ej). Let Q∗ denote an optimal k-Steiner-cycle in
G, and opt := c(Q∗) denote the optimal cost. By the definition of j, β ≤ opt ≤ nβ.
In particular, every edge in Q∗ has cost at most nβ. We now describe our randomized
algorithm for obtaining a k-Steiner-cycle with cost at most (1 + ε)opt. First, we discard
all edges e of G with cost ce > n β. Let µ := εβ/n; this is our “scaling parameter”.
For each edge e, define c̃e := µ · max(1, ⌈ce/µ⌉). Note that c̃e = µ if ce = 0.

(
Observe

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 14:7

that this rounding introduces errors, but the total error incurred on any cycle is ≤ n µ ≤
ϵβ ≤ ϵopt.

)
Consider the graph G̃ = (Ṽ , Ẽ) obtained from G by replacing each edge e

by a path of c̃e/µ edges (of unit cost). Note that |Ṽ | ≤ |V | + |E| · (nβ)/µ = O(mn2/ε).
Using a single application of Theorem 5, we can obtain a minimum-size k-Steiner-cycle
Q̃ ⊆ Ẽ with probability at least 1− η/2 in O

(
2k ·

(
n2m

ε

)O(1) · log 1
η

)
time. Let Q denote the

k-Steiner-cycle in G corresponding to Q̃. By our choice of c̃, we have c(Q) ≤ c̃(Q) ≤ µ · |Q̃|.
Since the optimal k-Steiner-cycle Q∗ consists of at most n edges each with cost at most nβ,
the (unweighted) k-Steiner-cycle Q̃∗ in G̃ corresponding to Q∗ satisfies µ|Q̃∗| ≤ c̃(Q∗) ≤
c(Q∗) + nµ ≤ opt(1 + ε). By the above discussion, we can obtain a k-Steiner-cycle Q

satisfying c(Q) ≤ µ|Q̃| ≤ µ|Q̃∗| ≤ (1 + ε)opt with probability at least 1 − η. Clearly, the
overall running time is O

(
2k · nO(1) ·

(1
ε

)O(1) · log 1
η

)
. ◀

4 Algorithms for k-Steiner-2NCS

In this section, we consider the k-Steiner-2NCS problem. First, we present a randomized
polynomial-time algorithm for finding an optimal subgraph for the special case of unweighted
k-Steiner-2NCS; then, using the method from Section 3 we extend our algorithm to a
(randomized) FPTAS for weighted k-Steiner-2NCS.

We denote an instance of the k-Steiner-2NCS problem by (G = (V, E), c ∈ RE
≥0, T ⊆ V);

G is the input graph with non-negative edge costs c, and T is the set of terminals, |T | ≥ 3
(we skip the easy case of |T | = 2). We assume (w.l.o.g.) that G is a feasible subgraph, that
is, all terminals are contained in one block of G.

For any graph H, let D3(H) denote the set of nodes that have degree ≥ 3 in H.

▶ Lemma 7. Let H = (V ′, E′) be an (edge) minimal 2NC subgraph that contains T . Then
H has an open ear decomposition P0, P1, . . . , Pℓ such that

(i) each of the ears Pi (i ∈ [ℓ]) contains a terminal as an internal node (i.e., int(Pi)∩T ̸= ∅),
and P0 contains a terminal,

(ii) |D3(H)| ≤ 2(|T | − 2).

Proof.
(i) Pick any terminal to be P0. Suppose we have constructed open ears P1, . . . , Pi−1 and

that each int(Pj)(j ∈ [i − 1]) contains a terminal. Let F = ∪i−1
j=1E(Pj). Let t be a

terminal in T \ V (F) (we have the required ear decomposition, if T ⊆ V (F)). Suppose
i = 1; then, G has two openly disjoint paths between t and P0, and we take P1 to be
the edge-set of these two paths. Suppose i ≥ 2; then, G has a two-fan P between t and
V (F) (i.e., P is the union of two paths between t and V (F) that have only the node t

in common); we take Pi to be P .
(ii) Clearly, ℓ ≤ |T |−1 for the ear decomposition of part (i), and each of the ears P2, . . . , Pℓ

contributes at most 2 (new) nodes to D3(H). ◀

The next lemma states an extension of Proposition 4.

▶ Lemma 8. Let G = (V, E) be a graph, and let H = (V ′, E′) be a 2NC subgraph of G. Let
P be a path of G that has both end nodes in V ′. Then, H ∪P = (V ′ ∪ V (P), E′ ∪E(P)) is a
2NC subgraph of G.

Each set S ⊆ V of size ≤ 2|T | − 4 is a candidate for D3(H) for a 2NC subgraph H that
contains T , and we call T ∪ S the set of marker nodes.

APPROX/RANDOM 2023

14:8 Algorithms for 2-Connected Network Design with O(1) Terminals

Our algorithm has several nested loops. The outer-most loop picks a set S ⊆ V of size
≤ 2|T | − 4, and then applies the following main loop. Each iteration of the main loop
attempts to construct a 2NC subgraph that contains the set of marker nodes T ∪ S, by
iterating over all ordered partitions (T̃1, T̃2, . . . , T̃r) of T ∪ S such that |T̃1| ≥ 2 and the
number of sets in the partition, r, is a positive integer, r ≤ k = |T |.

Consider one of these ordered partitions (T̃1, T̃2, . . . , T̃r). We attempt to find a min-cost
Steiner-cycle C1 that contains T̃1 using the algorithm of [3]; if G has no Steiner-cycle that
contains T̃1, then this iteration has failed, otherwise, we take C1 to be the first (closed) ear
of an open ear decomposition of our candidate 2NC subgraph that contains T ∪ S. Then, for
i = 1, . . . , r − 1, we pick a pair of nodes si, ti ∈ T̃1 ∪ · · · ∪ T̃i, and attempt to find a min-cost
Steiner-path Pi+1 between si and ti that contains T̃i+1; if G has no such Steiner-path, then
this iteration has failed, otherwise, we augment the current subgraph H := C1 ∪P2 ∪ · · · ∪Pi

by Pi+1.
The algorithm maintains an edge-set F̂ ; initially, F̂ = E, and, at termination, F̂ is the

edge-set of a min-cost 2NC subgraph that contains T .
Pseudo-code for the algorithm is presented below.
We use ABHT-cycle(G, T̃1, η) to denote a call to the Steiner-cycle algorithm of [3] where

the inputs are the graph G, the terminal set T̃1 ⊆ V (G), and the desired probability of
failure η. With probability at least 1−η, this call either returns the edge-set of a minimum-size
cycle of G that contains all nodes of T̃1 or reports an error if G has no such cycle.

We use ABHT-path(G, T̃1, s, t, η) to denote a call to the following subroutine that
attempts to find an s, t-path of G that contains all nodes of T̃1. First, construct an auxiliary
graph G′ from G by adding a node u′ and two edges u′s, u′t. Then call ABHT-cycle(G′, T̃1 ∪
{u′, s, t}, η); report an error if the call returns an error, and, otherwise, return the path
obtained by deleting the node u′ (and its two incident edges) from the cycle returned by the
call.

Algorithm 1 A2NC(G, T, η) for the unweighted k-Steiner-2NCS problem.

η′ ← η/k

F̂ ← E

for S ⊆ V such that |S| ≤ 2k do
for r = 1, . . . , k do

for Ordered partitions (T̃1, . . . , T̃r) of T ∪ S such that |T̃1| ≥ 2 do
for i = 1, . . . , r − 1 and node pairs (si, ti) ∈ ∪i

j=1T̃i, where si ̸= ti do
H ← ABHT-cycle(G, T̃1, η′)

⋃r−1
i=1 ABHT-path(G, T̃i+1, si, ti, η′)

continue the loop if any call to any subroutine reports an error
if |E(H)| < |F̂ | then

F̂ ← E(H)
end if

end for
end for

end for
end for
return F̂

▶ Lemma 9. Let H∗ = (V ∗, E∗) be an optimal subgraph for k-Steiner-2NCS. Assume that
each of the calls to the subroutines (namely, ABHT-cycle,ABHT-path) returns a valid subgraph
whenever one exists. Let H = (U, F̂) denote the output of the above algorithm. Then H is a
2NC subgraph, U ⊇ T , and |F̂ | ≤ |E∗| = opt.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 14:9

Proof. By Lemma 7, H∗ has an open ear decomposition P1, P2, . . . , Pr∗ such that each of
the ears Pi contains at least one terminal as an internal node; hence, r∗ ≤ k = |T |. Let
S∗ = D3(H∗) be the set of nodes of degree ≥ 3 of H∗; clearly, |S∗| ≤ 2r∗ ≤ 2k.

For i = 1, . . . , r∗, let T ∗
i = Pi ∩ (T ∪ S∗). For i = 1, . . . , r∗ − 1, let (s∗

i , t∗
i) denote the

end nodes of the ear Pi+1; clearly, (s∗
i , t∗

i) ∈ ∪i
j=1(T ∗

i).
Now consider the loop in the algorithm where S = S∗, r = r∗, T̃i = T ∗

i for i = 1, . . . , r∗

and (si, ti) = (s∗
i , t∗

i) for i = 1, . . . , r∗ − 1. Observe that the calls to the subroutines
ABHT-cycle and ABHT-path return minimum-size subgraphs, hence, |ABHT-cycle(G, T̃1)| ≤ |P1|
and |ABHT-path(G, T̃i+1, si, ti)| ≤ |Pi+1| for i = 1, . . . , r∗ − 1. Since |E∗| =

∑r∗

i=1 |Pi|, we
conclude that the 2NC subgraph H found by this iteration satisfies |E(H)| ≤ |E∗|. Thus,
the algorithm outputs an optimal 2NC subgraph that contains T . ◀

4.1 Proof of Theorem 1
Proof. As seen in the proof of Lemma 9, if the subroutines ABHT-cycle and ABHT-path
run correctly when S = S∗, r = r∗, T̃i = T ∗

i for i = 1, . . . , r∗ and (si, ti) = (s∗
i , t∗

i) for
i = 1, . . . , r∗ − 1 corresponding to an ear decomposition of an optimal solution H∗, then
the above algorithm outputs an optimal solution. During this loop, there are at most
r∗ ≤ k = |T | calls to the subroutines ABHT-cycle and ABHT-path. Hence, with probability at
least (1− η′)k ≥ 1− η, Algorithm A2NC outputs an optimal solution.

The running time is analyzed as follows: the term 2k ·
(

n
2k

)
= O(

(
n
2k

)
) comes from choosing

S ⊆ V, |S| ≤ 2k (in the outer-most loop), the term B(3k) comes from choosing ordered
partitions of S ∪ T , the term

(3k
2

)k comes from choosing the node pairs (si, ti) for the
r − 1(≤ k) calls to ABHT-path, and the term 23knO(1)log k

η comes from the running time of
the algorithm of [3] for the Steiner-cycle problem, with error probability η

k .
Having solved the unweighted k-Steiner-2NCS problem, we can directly use the methods

from Section 3 to obtain an FPTAS for the weighted k-Steiner-2NCS problem. ◀

5 FPTAS for k-FST and k-Steiner-2ECS

In this section we present a randomized polynomial-time algorithm for finding an optimal
subgraph for the special case of unweighted k-FST; then, using the method from Section 3,
we extend our algorithm to a (randomized) FPTAS for weighted k-FST. We assume that
k = |T | ≥ 3 is a positive integer. Note that the capacitated k-Steiner-2ECS problem can
be reduced to the k-FST problem by defining the set of safe edges to be the set of edges
with capacity at least 2 and defining the set of unsafe edges to be the set of edges with
capacity exactly 1. Hence the results in this section can also be applied to the capacitated
k-Steiner-2ECS problem.

Adjiashvili, Hommelsheim, Mühlenthaler, and Schaudt [1] give a polynomial-time al-
gorithm for finding an optimal solution to the 2-FST problem; see Proposition 1 and
Theorem 5 of [1]. We refer to their 2-FST algorithm as A2-FST. We refer to (inclusion-wise)
minimal feasible solutions to a 2-FST problem on G as 1-protected paths.

Informally speaking, our randomized polynomial-time algorithm for k-FST represents
minimal feasible solutions as 2NC blocks connected together using 1-protected paths. To
simplify our presentation, we first modify the k-FST instance G = (V, S ⊔ U, T) as follows.
For each terminal v ∈ T , we create a new node v′ and a new safe edge vv′. Let T ′ denote
the set of these new nodes and let E′ denote the set of the new safe edges. Consider the

APPROX/RANDOM 2023

14:10 Algorithms for 2-Connected Network Design with O(1) Terminals

modified instance G′ = (V ∪ T ′, (S ∪ E′) ⊔ U, T ′). Observe that (U, F) is a feasible solution
to the original instance if and only if (U ∪ T ′, F ∪ E′) is a feasible solution to the modified
instance.

▶ Definition 10 (Block-Tree). A block-tree of a graph G is a tree B(G) with the following
properties:
1. The nodes of B(G) are in one-to-one correspondence with the 2NC blocks of G.
2. If two 2NC blocks are connected by a bridge in G, then the two corresponding nodes in

B(G) are adjacent.
3. For each cut-node v of G, the subgraph of B(G) induced by Γblocks

G (v) is connected
(Γblocks

G (v) is the set of 2NC blocks of G that contain v). In other words, the unique path
of B(G) between any two nodes of Γblocks

G (v) has all its internal nodes in Γblocks
G (v).

Informally speaking, a block-tree of a graph G represents how the 2NC blocks of G are
connected together. Each edge of the block-tree either represents a bridge of G or connects a
pair of 2NC blocks of G that share a common cut-node. Let H be a minimal feasible k-FST
solution. Due to the modification above, we may assume that every leaf of B(H) corresponds
to a block of H that contains exactly one terminal. Then any path in B(H) corresponds
to a 1-protected path of H that connects either (i) two cut-nodes, or (ii) a cut-node and a
terminal, or (iii) two terminals.

For our algorithmic application, nodes of B(H) of degree two are redundant, and this
motivates the notion of a “non-redundant” block-tree.

▶ Definition 11 (Condensed Block-Tree). A condensed block-tree of a graph G is a tree B̂(G)
obtained from a block-tree B(G) with the following properties:
1. The nodes of B̂(G) are nodes b of B(G) such that degB(G)(b) ̸= 2.
2. Two nodes b1 and b2 are adjacent in B̂(G) if and only if every internal node in the path

connecting b1 and b2 in B(G) has degree two.

Figure 1 The original graph G.

Figure 2 A block tree B(G) and the corresponding condensed block tree B̂(G).

For any minimal feasible solution H of k-FST and a condensed block-tree B̂(H), we refer to
the 2NC blocks of H that correspond to internal nodes of B̂(H) as high-degree blocks. The
leaves of B̂(H) correspond to the terminals. Edges of B̂(H) correspond to 1-protected paths

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 14:11

in H that connect either (i) two high-degree blocks, or (ii) a high-degree block and a terminal,
or (iii) two terminals. The end-points of these 1-protected paths are either cut-nodes of H

or terminals. Note that some of these 1-protected paths could be trivial paths corresponding
to cut-nodes that are common to two high-degree blocks. We now state some useful lemmas
that follow from the handshaking lemma applied to B̂(H).

▶ Lemma 12. The number of internal nodes (i.e., non-leaf nodes) of B̂(H) is at most k − 2
where k is the number of terminals.

▶ Lemma 13. The total number of cut-nodes (with repetitions) in high-degree blocks of H is
at most 3k − 6 where k is the number of terminals.

Now, we describe our algorithm for unweighted k-FST. We guess (via enumeration)
the high-degree blocks of an optimal solution optsoln corresponding to some condensed
block-tree B̂(optsoln). The guess would include the number of high-degree blocks and the
cut-nodes in each of these high-degree blocks. This is done by picking 3k− 6 nodes of V with
replacement and then picking a partition P̂ of these 3k− 6 nodes into at most k− 2 sets. Let
r ≤ k−2 be the number of sets in the partition P̂ . Thus, P̂ = (X1, X2, . . . , Xr). For each set
Xi, we use algorithm A2NC to find Bi, a minimum size 2NC subgraph of G containing the
specified cut-nodes in Xi, possibly, with some additional Steiner nodes. Finally, we construct
a tree that connects these 2NC subgraphs and terminals via 1-protected paths using the
following subroutine.

First, for every pair of nodes (u, v) ∈ V ′ × V ′, we use algorithm A2-FST to find Gmin
uv , the

minimum size 1-protected path connecting u and v in G′. We then construct a complete
graph K(X1, . . . , Xr) with r + k nodes that has one node for each set Xi and one node
corresponding to each terminal {t}. The cost of an edge between two nodes of K corresponding
to node sets V1 and V2 is given by min{|E(Gmin

uv)| : u ∈ V1, v ∈ V2}. Note that if there is
no 1-protected path connecting a node in V1 to a node in V2, then we fix the cost of the
edge to be infinity. Thus an edge ē of K corresponds to a subgraph Gmin

ē in G′ which is the
minimum size 1-protected path whose end points are in V1 and V2 respectively. We then
find a minimum spanning tree T̄ in K. Note that if T̄ has infinite cost, then we output an
error. Else, we output the subgraph of G′ defined by Gmin(X1, . . . , Xr) := ∪ē∈T̄ Gmin

ē .

Algorithm 2 Ak-FST(G′, T ′, η) for the unweighted k-FST problem.

η′ ← η/k

H ← G′

for S = (v1, . . . , v3k−6) ∈ V 3k−6 do
for r = 1, . . . , k − 2 do

for partitions (X1, . . . , Xr) of S do
Ĥ ← Gmin(X1, . . . , Xr) ∪r

i=1 A2NC(G, Xi, η′)
continue the loop if any call to any subroutine reports an error
if |E(Ĥ)| < |EH| then

H ← Ĥ

end if
end for

end for
end for
return H

APPROX/RANDOM 2023

14:12 Algorithms for 2-Connected Network Design with O(1) Terminals

▶ Lemma 14. Let H∗ = (V ∗, E∗) be an optimal subgraph for k-FST. Assume that each of
the calls to the subroutine A2NC(G, Xi, η′) returns a valid subgraph 2NC(G, Xi) whenever
one exists. Let H = (U, F) denote the output of the above algorithm. Then, H is a feasible
k-FST solution and |F | ≤ |E∗| = opt.

Proof. We argue that the subgraph Ĥ in any iteration of the algorithm is a feasible k-FST solu-
tion. This holds because the algorithm finds 2NC subgraphs 2NC(G, Xi) and then connects
them to one another and to the terminals using the 1-protected paths in Gmin(X1, . . . , Xr).
Thus, T ⊆ V (Ĥ) and any unsafe edge e ∈ E(Ĥ) either lies in a 2NC subgraph of Ĥ or a
1-protected path in Ĥ, hence, Ĥ − e is connected.

Now consider a condensed block-tree B̂(H∗). Let B∗
1 , . . . , B∗

r∗ be the high-degree blocks
of H∗ and let X∗

i be the set of cut-nodes in B∗
i . By Lemma 13, the total number of cut-nodes

in all the high-degree blocks B∗
i is at most 3k − 6. We may assume that it is exactly 3k − 6

by duplicating a cut-node v ∈ X∗
1 multiple times. Consider the iteration of the algorithm

where r = r∗ and Xi = X∗
i for i = 1, . . . , r∗. Then,

|E(2NC(G, Xi))| ≤ |E(B∗
i)| ∀i = 1, . . . , r.

Recall that the nodes of B̂(H∗) correspond to the high-degree blocks B∗
i (and hence to the

node sets X∗
i) or to the terminals {t}. Also an edge ē of B̂(H∗) between nodes corresponding

to node sets V1 and V2 represents a 1-protected path H∗
ē in H∗ whose end-points lie in V1 and

V2 respectively. Hence B̂(H∗) may be viewed as a subgraph of K(X1, . . . , Xr). Furthermore,
since any two nodes in H∗ have a 1-protected path between them, B̂(H∗) must be connected.
Finally, by construction of K, |E(H∗

ē)| ≥ c(ē) where c(ē) is the cost of the edge ē in K.
This implies that the cost of the minimum spanning tree in K is at most

∑
ē∈B̂(H∗) |E(H∗

ē)|.
Hence,

|E(Gmin(X1, . . . , Xr))| ≤
∑

ē∈B̂(H∗)

|E(H∗
ē)|.

Combining the two inequalities above we obtain

|E(Ĥ)| = |E(Gmin(X1, . . . , Xr) ∪r
i=1 2NC(G, Xi))|

≤ |E(Gmin(X1, . . . , Xr))|+
r∑

i=1
|E(2NC(G, Xi))|

≤
∑

ē∈B̂(H∗)

|E(H∗
ē)|+

r∑
i=1
|E(B∗

i)|

= |E∗|

The last equation holds because E∗ partitions into the edge-sets of the high-degree blocks B∗
i

and the edge-sets of the 1-protected paths H∗
ē . This completes the proof of the lemma. ◀

5.1 Proof of Theorem 2
Lemma 14 proves that algorithm Ak-FST outputs an optimal solution to the k-FST problem
with high probability. Let α denote the running time of the algorithm A2-FST and let β

denote the running time of the algorithm A2NC. Then, the running time of the algorithm
Ak-FST is bounded by

O(n2α · n3k−62kn2β · k2 log k) = O
(
α · β · n3k

)
.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 14:13

Since A2-FST has runtime nO(1) and A2NC has runtime nO(k), we can conclude that the
running time of the algorithm Ak-FST is O

(
nO(k) · log 1

η

)
.

Having solved the unweighted k-FST problem, we can directly use the methods from
Section 3 to obtain an FPTAS for the weighted k-FST problem.

References
1 David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. Fault-

Tolerant Edge-Disjoint s-t Paths — Beyond Uniform Faults. In Proceedings of the 18th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 227, pages
5:1–5:19, 2022. doi:10.4230/LIPIcs.SWAT.2022.5.

2 Matthias Bentert, André Nichterlein, Malte Renken, and Philipp Zschoche. Using a Geometric
Lens to Find k Disjoint Shortest Paths. In Proceedings of the 48th International Colloquium
on Automata, Languages, and Programming (ICALP), volume 198, pages 26:1–26:14, 2021.
doi:10.4230/LIPIcs.ICALP.2021.26.

3 Andreas Björklund, Thore Husfeldt, and Nina Taslaman. Shortest Cycle Through Specified
Elements. In Proceedings of the 23rd Symposium on Discrete Algorithms (SODA), pages
1747–1753, 2012. doi:10.1137/1.9781611973099.139.

4 Glencora Borradaile and Philip Klein. The Two-Edge Connectivity Survivable-Network
Design Problem in Planar Graphs. ACM Transactions on Algorithms, 12(3):30:1–30:29, 2016.
doi:10.1145/2831235.

5 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanita. An Improved LP-
based Approximation for Steiner Tree. In Proceedings of the 42nd Symposium on Theory of
Computing, pages 583–592, 2010. doi:10.1145/1806689.1806769.

6 Artur Czumaj and Andrzej Lingas. On Approximability of the Minimum-Cost k-Connected
Spanning Subgraph Problem. In Proceedings of the 10th Symposium on Discrete Algorithms
(SODA), pages 281–290, 1999. URL: https://dl.acm.org/doi/pdf/10.5555/314500.314573.

7 Nathaniel Dean. Open Problems. In Neil Robertson and Paul D. Seymour, editors, Graph
Structure Theory, Proceedings of a AMS-IMS-SIAM Joint Summer Research Conference
on Graph Minors, volume 147 of Contemporary Mathematics, pages 677–688. American
Mathematical Society, 1991.

8 Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2017. doi:
10.1007/978-3-662-53622-3.

9 Stuart E Dreyfus and Robert A Wagner. The Steiner Problem in Graphs. Networks, 1(3):195–
207, 1971. doi:10.1002/net.3230010302.

10 Stefan Fafianie and Stefan Kratsch. An Experimental Analysis of a Polynomial Compression
for the Steiner Cycle Problem. In Proceedings of the 14th International Symposium on
Experimental Algorithms (SEA), volume 9125 of Lecture Notes in Computer Science, pages
367–378, 2015. doi:10.1007/978-3-319-20086-6_28.

11 Andreas Emil Feldmann, Anish Mukherjee, and Erik Jan van Leeuwen. The Parameterized
Complexity of the Survivable Network Design Problem. In Proceedings of the 5th Symposium
on Simplicity in Algorithms (SOSA), pages 37–56, 2022. doi:10.1137/1.9781611977066.4.

12 Lisa Fleischer, Kamal Jain, and David P. Williamson. Iterative rounding 2-approximation
algorithms for minimum-cost vertex connectivity problems. Journal of Computer and System
Sciences, 72(5):838–867, 2006. doi:10.1016/j.jcss.2005.05.006.

13 Herbert Fleischner and Gerhard J. Woeginger. Detecting cycles through three fixed vertices
in a graph. Information Processing Letters, 42(1):29–33, 1992. doi:10.1016/0020-0190(92)
90128-I.

14 Dorit S. Hochbaum and David B. Shmoys. A Unified Approach to Approximation Algorithms
for Bottleneck Problems. Journal of the ACM, 33(3):533–550, 1986. doi:10.1145/5925.5933.

15 Oscar H. Ibarra and Chul E. Kim. Fast Approximation Algorithms for the Knapsack and Sum
of Subset Problems. Journal of the ACM, 22(4):463–468, 1975. doi:10.1145/321906.321909.

APPROX/RANDOM 2023

https://doi.org/10.4230/LIPIcs.SWAT.2022.5
https://doi.org/10.4230/LIPIcs.ICALP.2021.26
https://doi.org/10.1137/1.9781611973099.139
https://doi.org/10.1145/2831235
https://doi.org/10.1145/1806689.1806769
https://dl.acm.org/doi/pdf/10.5555/314500.314573
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1007/978-3-319-20086-6_28
https://doi.org/10.1137/1.9781611977066.4
https://doi.org/10.1016/j.jcss.2005.05.006
https://doi.org/10.1016/0020-0190(92)90128-I
https://doi.org/10.1016/0020-0190(92)90128-I
https://doi.org/10.1145/5925.5933
https://doi.org/10.1145/321906.321909

14:14 Algorithms for 2-Connected Network Design with O(1) Terminals

16 Kamal Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

17 Tibor Jordán. On minimally k-edge-connected graphs and shortest k-edge-connected Steiner
networks. Discrete Applied Mathematics, 131(2):421–432, 2003. doi:10.1016/S0166-218X(02)
00465-1.

18 Richard M Karp. On the Computational Complexity of Combinatorial Problems. Networks,
5(1):45–68, 1975. doi:10.1002/net.1975.5.1.45.

19 Ken-ichi Kawarabayashi. An Improved Algorithm for Finding Cycles Through Elements. In
Proceedings of the 13th Integer Programming and Combinatorial Optimization (IPCO), volume
5035, pages 374–384. Springer, 2008. doi:10.1007/978-3-540-68891-4_26.

20 Samir Khuller and Uzi Vishkin. Biconnectivity Approximations and Graph Carvings. Journal
of the ACM, 41(2):214–235, 1994. doi:10.1145/174652.174654.

21 William Lochet. A Polynomial Time Algorithm for the k-Disjoint Shortest Paths Problem.
In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA), pages 169–178, 2021.
doi:10.1137/1.9781611976465.12.

22 Zeev Nutov. Node-Connectivity Survivable Network Problems. In Teofilo F. Gonzalez,
editor, Handbook of Approximation Algorithms and Metaheuristics, Second Edition, Volume 2:
Contemporary and Emerging Applications. Chapman and Hall/CRC, 2018.

23 Neil Robertson and Paul D Seymour. Graph Minors. XIII. The Disjoint Paths Problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

24 Sasha Sami. Parameterized Algorithms for 2-Edge Connected Steiner Subgraphs. Univerzita
Karlova, Matematicko-fyzikální fakulta, 2023. URL: https://dspace.cuni.cz/handle/20.
500.11956/179482.

25 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

26 Nina Taslaman. Exponential-Time Algorithms and Complexity of NP-Hard Graph Problems.
Number 83 in ITU-DS. IT-Universitetet i København, 2013. URL: https://pure.itu.dk/ws/
portalfiles/portal/39516792/nina_thesis.pdf.

27 Magnus Wahlström. Abusing the Tutte Matrix: An Algebraic Instance Compression for the
K-set-cycle Problem. In Proceedings of the 30th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 20, pages 341–352, 2013. doi:10.4230/LIPIcs.
STACS.2013.341.

28 Hassler Whitney. Non-Separable and Planar Graphs. Transactions of the American Mathem-
atical Society, 34:339–362, 1932. doi:10.1090/S0002-9947-1932-1501641-2.

29 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. URL: http://www.cambridge.org/knowledge/isbn/
item5759340/.

https://doi.org/10.1007/s004930170004
https://doi.org/10.1016/S0166-218X(02)00465-1
https://doi.org/10.1016/S0166-218X(02)00465-1
https://doi.org/10.1002/net.1975.5.1.45
https://doi.org/10.1007/978-3-540-68891-4_26
https://doi.org/10.1145/174652.174654
https://doi.org/10.1137/1.9781611976465.12
https://doi.org/10.1006/jctb.1995.1006
https://dspace.cuni.cz/handle/20.500.11956/179482
https://dspace.cuni.cz/handle/20.500.11956/179482
https://pure.itu.dk/ws/portalfiles/portal/39516792/nina_thesis.pdf
https://pure.itu.dk/ws/portalfiles/portal/39516792/nina_thesis.pdf
https://doi.org/10.4230/LIPIcs.STACS.2013.341
https://doi.org/10.4230/LIPIcs.STACS.2013.341
https://doi.org/10.1090/S0002-9947-1932-1501641-2
http://www.cambridge.org/knowledge/isbn/item5759340/
http://www.cambridge.org/knowledge/isbn/item5759340/

	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work
	1.2.1 k-Steiner cycle problem
	1.2.2 k-Steiner-2NCS problem and k-Steiner-2ECS problem

	2 Preliminaries
	2.1 2EC, 2NC and related notions
	2.2 Ear decompositions
	2.3 Algorithms for basic computations

	3 FPTAS for k-Steiner-cycle
	4 Algorithms for k-Steiner-2NCS
	4.1 Proof of Theorem 1

	5 FPTAS for k-FST and k-Steiner-2ECS
	5.1 Proof of Theorem 2

