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Abstract
In the discrete bamboo garden trimming problem we are given n bamboo that grow at rates v1, . . . , vn

per day. Each day a robotic gardener cuts down one bamboo to height 0. The goal is to find a
schedule that minimizes the height of the tallest bamboo that ever exists.

We present a 10/7-approximation algorithm that is based on a reduction to the pinwheel problem.
This is consistent with the approach of earlier algorithms, but some new techniques are used that
lead to a better approximation ratio.

We also consider the continuous version of the problem where the gardener travels in a metric
space between plants and cuts down a plant each time he reaches one. We show that on the
star graph the previously proposed algorithm Reduce-Fastest is a 6-approximation and the known
Deadline-Driven Strategy is a (3 + 2

√
2)-approximation. The Deadline-Driven Strategy is also a

(9 + 2
√

5)-approximation on star graphs with multiple plants on each branch.
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1 Introduction

In the discrete bamboo garden trimming problem (BGT), first introduced by Gasieniec et
al. [8] we are given a set of n bamboo that grow at rates v1, . . . , vn per day, i.e. the height
of bamboo i extends by vi each day. We assume that these growth rates are arranged such
that v1 ≥ v2 ≥ · · · ≥ vn. Initially the height is set to zero. Each day a robotic gardener cuts
down one bamboo to height zero. The goal is to design a trimming schedule such that the
height of the tallest bamboo is minimized. Gasieniec et al. [8] gave a 2-approximation for
discrete BGT which has been improved by van Ee [14] to a 12

7 -approximation.
Both results are obtained by reducing BGT to the pinwheel scheduling problem. The

pinwheel scheduling problem is motivated by the communication between a satellite and its
ground station. The ground station wants to receive messages from n satellites. Time is
slotted and a satellite i sends a message for pi consecutive timeslots before switching to a
different message. Each timeslot the ground station receives a message from a single satellite.
This means in order to guarantee that no message is missed we need to find a schedule that
allocates at least one timeslot to satellite i in any interval of pi units of time. We discuss the
literature on pinwheel scheduling in Section 2.
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16:2 Bamboo Garden Trimming

If a BGT algorithm maintains a height of K then each bamboo i must be visited at
least once in a period of p∗

i := ⌊ K
vi

⌋ time steps. That is, there is a BGT schedule that
maintains height K for the input (v1, . . . , vn) if and only if the pinwheel problem (p∗

1, . . . , p∗
n)

is schedulable.
There are also a number of results that do not use the connection to the pinwheel problem,

using various greedy-type algorithms. The Deadline-Driven Strategy always cuts the bamboo
with the earliest deadline provided that the height of this bamboo has reached a certain
threshold. The deadline of a bamboo is the time it reaches the height the algorithm wants to
maintain. This algorithm has already been considered for discrete BGT and there it is a
2-approximation as shown by J. Kuszmaul [12].

A second simple algorithm is Reduce-Fastest which is a 2.62-approximation for discrete
BGT as shown by Bilò et al. [2] This algorithm always cuts the fastest plant which has
reached a certain threshold. A similar algorithm is Reduce-Max that always cuts the highest
bamboo and is a 4-approximation. Both of these algorithms are online algorithms based on
simple queries. This means they are flexible and can easily adapt to changes in the input
(the set of growth rates).

In the first part of this paper we present an algorithm based on a pinweel reduction that
improves the approximation ratio for discrete BGT to 10

7 . This algorithm combines a binary
search with the known technique of porous schedules for pinwheel scheduling. This marks
the first time that porous schedules are used to approximate the BGT problem.

In the second part, we consider the continuous version of the BGT problem, also introduced
by Gasieniec et al. [8]. In this version the bamboo are located in some metric space and the
gardener needs to travel between the bamboo to cut them. Cutting is done instantly and the
goal is to find a route that minimizes the maximum height of the bamboos. Gasieniec et
al. give a O(log n)-approximation algorithm that works in any metric space.

We consider the case where the underlying metric is a star graph. In this context we
study some of the simple algorithms above (compared to the relative complicatedness of a
pinwheel schedule) that achieve constant approximation ratios for this case.

1.1 Our results
For discrete BGT we propose a 10/7-approximation algorithm that is based on a reduction
to the pinwheel-problem. Previous work used only the sum of the speeds H as a lower bound
on the optimum value. We improve on this by using binary search in the interval [H, 2H]
and by planning to lose a certain factor in advance. By this we mean that all periods are
multiplied by our goal ratio after calculating them from the speeds, making it easier to find a
pinwheel schedule. We can show that our algorithm always finds a schedule of height at most
10K/7 if a schedule of height K exists. This is achieved by using the technique of porous
schedules which we will discuss in Section 2. Thus, the binary search is used to essentially
find the best possible lower bound for the optimal value within this framework.

The result can be improved to 7
5 using a computer-assisted proof. Unfortunately the

proof is too long to fit into the appendix but can be found under the link https://github.
com/Felixhhne/bamboo

In the continuous version of the problem we consider a star graph. We show that the
2.62-approximate algorithm Reduce-Fastest for discrete BGT, which can be seen as a special
instance of a star graph, still works on arbitrary star graphs with one bamboo on each branch
and we show that it is a 6-approximation in this case.

Furthermore the deadline driven algorithm gives us a (3+2
√

2)-approximation on the star.
This result can be extended to the case where there are multiple bamboo on each branch of the
star. Here we pay a price in the approximation ratio and achieve a (9 + 2

√
5)-approximation.

https://github.com/Felixhhne/bamboo
https://github.com/Felixhhne/bamboo
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1.2 Related work
Both the discrete and continuous version of BGT were first introduced by Gasieniec et al. [8].
They provide a variety of results. The first algorithm they present is Reduce-Fastest, which in
each step cuts the fastest growing bamboo above a certain height treshhold. This algorithm
is a 2.62-approximation as shown by Bilò el al. [2]. A similar algorithm is Reduce-Max
that always cuts the highest bamboo and is a 4-approximation. The final algorithm in
this set of algorithms based on simple queries is the Deadline-Driven Strategy which is a
2-approximation. The results for Reduce-Max as well as the Deadline-Driven Strategy are
from J. Kuszmaul [12].

Gasieniec et al. also give a fully offline 2-approximation algorithm that preprocesses the
input and reduces the problem to a pinwheel-instance. This approach has been improved by
van Ee [14] to a 12

7 -approximation.
There are other problems where the goal is to minimize the maximum height or backlog

reached on a machine. One example is the Minimum Backlog Problem [3, 1, 13] where an
adversary distributes water among a set of cups and the player may empty one or more cups
on their turn.

In the problem of Buffer minimization with conflicts [5] there is a set of machines on a
graph and load may arrive on these machines at any time. The algorithm runs machines to
decrease their load but machines that are adjacent to each other on the graph may not run
at the same time.

2 Pinwheel problems

We represent an instance of the pinwheel scheduling problem by the vector p = (p1, . . . , pn)
of periods with which each plant should be cut (or: each machine should be scheduled).

▶ Definition 1. The density of a pinwheel scheduling instance p = (p1, . . . , pn) is d(p) =∑n
i=1

1
pi

.

For example, the instance (2, 3) has density 5
6 and can be scheduled by repeating the

sequence 12. Because 121212 . . . is the only feasible schedule, the instance (2, 3, p3) can not
be scheduled regardless of the value of p3.

The pinwheel problem was first introduced by Holte et al. [11] and then picked up by
Chan and Chin [4]. They conjecture that any pinwheel instance with density up to 5/6
can be scheduled. The above example shows that a better guarantee is not possible. This
conjecture is supported by a variety of works, including Fishburn and Lagarias [7] who show
that any instance with p1 = 2 and density up to 5/6 can be scheduled. Dei Wing [6] shows
that the claim also holds for low-dimensional vectors with dimension up to 5 and more
recently Gasieniec et al. [9] improve this result further by proving the claim for instances
with up to 12 elements. Additionally they give a set of schedules that solve all schedulable
instances with at most 5 tasks.

Without loss of generality, the elements of the pinwheel instance are in nondecreasing order.
An obvious requirement for schedulability is d(p) ≤ 1. Hence, aside from the instance (1) an
instance can only be scheduled if p1 ≥ 2. Consequently we assume 2 ≤ p1 ≤ p2 ≤ · · · ≤ pn.

Given a pinwheel instance p = (p1, . . . , pn), a successful schedule for p is an infinite
sequence over {1, . . . , n} such that any subsequence of length pi contains at least one i. An
important consideration for pinwheel scheduling and BGT is the representation of a solution.
This is because in general an explicit representation of the schedule may take exponential
space. The solutions for pinwheel scheduling provided by Fishburn and Lagarias as well as

APPROX/RANDOM 2023
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Chan and Chin come in the form of fast online schedulers. These are algorithms that can
decide whether they can schedule an instance in polynomial time and then generate each
symbol of the schedule in constant time.

Porous schedules

Fishburn and Lagarias introduced the concept of porous schedules [7] as a useful tool in the
construction of pinwheel schedules.

Let p = (p1, . . . , pn). Let S be a subset of {1, . . . , n} and define U = {1, . . . , n} \ S. A
porous schedule for S (the set of scheduled tasks) is a schedule that allocates a slot for plant
i ∈ S at least once every pi positions, but also contains slots that are not allocated to any
plant. When writing out the schedule the first type of slot is denoted by i and the second
type, which we also call a hole, is denoted by . In this paper we will only consider schedules
that consist of infinite repeats of finite lists, and describe such a schedule by giving only that
list. Even that part may have exponential size as a function of the size of the input.

Let

DU = 1 −
∑
k /∈U

1
p∗

k

be the maximum possible density of the unscheduled machines.
For example, given the instance (2,4,8,9), we could set U = {3, 4}, which corresponds

to the (unscheduled) plants with speed 8 and 9, and S = {1, 2}, which corresponds to the
plants with speed 2 and 4. The schedule 12 (meaning 12 12 12 . . . ) is a porous schedule
for the scheduled tasks S, while U is the set of leftover plants that still need to be scheduled.

▶ Definition 2. Let p = (p1, . . . , pn) be a pinwheel instance and let f be a porous schedule
for S ⊆ {1, . . . , n}. Then for i ∈ U = {1, . . . , n} \ S, we define hi as the minimum number
of holes in pi consecutive positions of f .

Sometimes we also write the function h(x) to represent the minimum number of holes in
x consecutive positions. The set h = {hi|i ∈ U} is again a pinwheel instance unless there
exists an i with hi = 0. Of course, in general h might not be schedulable. Lemma 2 of [7]
explains how solving the pinwheel problem h can lead to a solution of p. A version of it is
given below.

▶ Lemma 3. Consider a pinwheel instance p and let a porous schedule f for a subset S of
the tasks. Let U := {1, . . . , n} \ S. If h = {hi|i ∈ U} is a schedulable pinwheel instance, then
p is schedulable.

Proof. By assumption, there is a schedule g : Z → U (that we can enumerate using a fast
online scheduler) for the input h. Let β be an order preserving map from the set of holes in
f to Z. Let f ′ = f except for the holes in f where f ′(k) = g(β(k)). Then f ′ is a schedule
for p. ◀

Let b ∈ [0, 1]. We say that b is a density guarantee for the pinwheel problem if all instances
p with d(p) ≤ b can be scheduled. This is always taken to mean that there exists a schedule
for p and we can efficiently find a fast online scheduler to generate the sequence. Our results
rely on the following theorem.

▶ Theorem 4 ([7]). The value 3/4 is a density guarantee for the pinwheel problem. For
instances with p1 = 2, the density guarantee is 5/6. In both instances, schedules can be found
in time O(n3).



F. Höhne and R. van Stee 16:5

Note that solving or scheduling a pinwheel instance for our purposes means finding a
fast online scheduler but does not include explicitly writing out the schedule (not even just
the finite part that repeats). Chan and Chin give an algorithm that runs in time O(n3)
and schedules any instance with density at most 7

10 . Their algorithm achieves the following
guarantees based on p1:

p1 2 3 4 5 6 7 8 ≥ 9
guarantee 0.75 0.70 0.708 0.721 0.733 0.738 0.744 > 0.75

In particular this means any instance with p1 ≥ 9 and density at most 0.75 can be
scheduled in time O(n3). Fishburn and Lagarias find schedules for the remaining cases with
small values for p1 and density up to 0.75 based on the following idea.

They find a porous schedule for the first few elements and they extend this schedule using
the results from Chan and Chin and Lemma 3 to find a schedule for the remaining machines
that fits into the holes. For example for the instance (3, 4, p3, . . . ) we can create a porous
schedule 12 as discussed above which has a hole at every third position. The remaining
machines after removing machines 1 and 2 have density at most 3

4 − 1
3 − 1

4 = 1
6 , thus pi ≥ 6

for i ≥ 3. For this pattern of holes we get the values for hi by dividing the remaining periods
by 3. For p3 = 6, 7, 8 we get h3 = 2 which increases the density by a factor of not more than
4, thus the density of the resulting instance is at most 1

6 · 4 < 3
4 with the first element of the

new instance being 2. By the table of Chan and Chin this is schedulable. A similar argument
holds for p3 ≥ 9 with the density of the new schedule being not more than 7

10 . They further
refine this approach in the paper.

3 A 10/7-approximation for discrete BGT

We claim that H =
∑n

i=1 vi is a lower bound on the optimal value. As long as all bamboo
have height at most H ′ < H the sum of all bamboo heights increases by at least H − H ′ > 0
each step until it eventually exceeds nH ′. Then there must be a bamboo with height more
than H ′. On the other hand, there is an algorithm that produces a schedule of height 2H [8].
Thus, the optimal value is indeed somewhere in the interval [H, 2H].

Our algorithm is based on the following key result.

▶ Lemma 5. Consider a pinwheel instance p and a porous schedule f for a subset S of the
tasks. Let U := {1, . . . , n} \ S. If hi

pi
≥ DU for each i ∈ U in a porous schedule for S and

1
pi

≤ 3
4p∗

i
for all i ∈ U , then (p1, . . . , pn) is schedulable for Alg.

Proof. If hi

pi
≥ DU then∑

i∈U

1
hi

≤ 1
DU

∑
i∈U

1
pi

≤ 1
DU

3
4DU = 3

4 .

Thus the instance is schedulable by Lemma 3 and by Theorem 4. ◀

Our algorithm begins by defining periods for the pinwheel problem based on the growth
speeds. These periods are then multiplied by a certain factor to get an instance that is
easier to schedule. It would be easiest if we could multiply all periods by 4/3. That way we
would get an instance with density at most 3/4 which is therefore schedulable by Theorem 4.
However, the input for the pinwheel problem must be a set of natural numbers. This means
that we must round down after scaling the periods. Even when choosing a scaling factor
larger than 4/3 (in our case, 10/7), after rounding down there can still be some periods that
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16:6 Bamboo Garden Trimming

become too small, resulting in a density that is too high. This means that we cannot rely on
the previous work as a black box. Typically, there will be a few difficult periods remaining.
For instance, the period 4 becomes ⌊ 10

7 · 4⌋ = 5 after scaling, and 5 becomes 7. Typically,
longer periods are easier to handle as the condition ⌊ 10

7 p∗⌋ ≥ 4
3 p∗ is often satisfied.

We overcome this difficulty by finding a porous schedule for the few difficult periods by
hand and then showing that the remaining periods can be scheduled in the holes. To do
this we need to consider some inputs for the pinwheel problem that were not considered in
previous works, since (as discussed) the overall density of the instance may still be above 3/4
at this point. Thus we need to find a porous schedule for the cases not covered by the table
of Chan and Chin and a schedule for the remaining machines.

Algorithm 1 Binary Search for BGT.

Let H =
∑n

i=1 vi and R = 10
7 . Using binary search in the interval [H, 2H] find the

smallest K such that the following procedure returns a valid schedule and return
this schedule.

1. Given K define p∗
i = ⌊ K

vi
⌋ and pi = ⌊Rp∗

i ⌋.
2. Solve the pinwheel problem (p1, . . . , pn).

In order to analyze Algorithm 1, we first show that whenever there exists a schedule for
the pinwheel problem p∗, then the algorithm can find a schedule for p.

Assume that there exists a schedule for p∗. Then d(p∗) ≤ 1. Whenever p∗
i

pi
≤ 3

4 for all i

we have d(p) ≤ 3
4 which means p is schedulable.

We can find schedules for cases that contain i with pi

p∗
i

> 3
4 by assigning those periods

to the subset S and applying Lemma 5. We create a porous schedule for S and define hi

for i ∈ U := {1, . . . , n} \ S as the minimum number of holes in pi consecutive positions of
the porous schedule. In some cases, the porous schedule is completely regular, with holes in
every k-th location (and only there). In that case we get

hi

pi
=

⌊ 1
k ⌊ 10

7 p∗
i ⌋⌋

⌊ 10
7 p∗

i ⌋

and for Lemma 5 we need to show that hi/pi ≥ DU . If we write p∗
i = 7a + b for some values

a, b then this means showing that

5a + ⌊ 1
k ⌊ 10

7 b⌋⌋
10a + ⌊ 10

7 b⌋
≥ DU .

▶ Lemma 6. If there is a schedule of height K then the procedure in Algorithm 1 finds a
schedule of height at most 10

7 K.

Proof. Let p∗
i = ⌊ K

vi
⌋. Assume there is a schedule of height K. Then there is a solution to

the pinwheel problem p∗ = (p∗
1, ..., p∗

n) and thus
∑n

i=1
1

p∗
i

≤ 1. If p∗
1 = 1 then there is only

one plant and the schedule is trivial. Thus we consider p∗
1 ≥ 2. The algorithm calculates the

periods pi = ⌊ 10p∗
i

7 ⌋ and solves the resulting pinwheel problem. Because of the definition of
p∗

i the resulting schedule has height at most 10K
7 .

We show that if a schedule of height K exists, there is always a schedule for the pinwheel
problem of Alg. If p∗

i ≥ 11 then 1
pi

is smaller then 1
p∗

i
by a factor of at least 3

4 since

1
pi

= 1
⌊10/7p∗

i ⌋
≤ 1

(10/7p∗
i − 1) ≤ 3

4
1
p∗

i

for p∗
i ≥ 11.
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The same is true for every other value of p∗
i except p∗

i = 2 and p∗
i = 4 which can easily

be verified. Thus if there is no p∗
i with value 2 or 4 the density of the pinwheel problem is at

most 3/4 and it can be scheduled. We now consider all cases where these values do occur
and use Lemma 5 to show that the pinwheel problem can be solved.

We denote these cases by listing the initial values of the instance p∗. For example, the
notation 4,4,5 means that we are considering the case where p∗

1 = p∗
2 = 4 and p∗

3 = 5. In that
case p = (5, 5, 7, . . . ) with zero or more plants after the first three.

For each case, we create a porous schedule for a subset S of periods in p. We then need
to show that hi

pi
≥ DU as well as 1

pi
≤ 3

4p∗
i

holds for all periods U that are not yet scheduled
by the porous schedule. If that is the case, then p is schedulable by Lemma 5.

2 We have pi/p∗
i ≥ 6/5 for all pi. This can easily be verified for p∗

i = 2 and p∗
i = 4 and it

holds for all other periods because for those periods we have pi/p∗
i ≥ 4/3. This means

the density in the pinwheel problem of Alg is at most 5/6. Since p1 = 2 this problem
can be solved.

3, 3, 4 and 3, 4, 4 In this case there are only three plants and the schedule is 123.

3, 4, p∗
3 ≥ 5 Then p = (4, 5, p3 ≥ 7, . . . ). Alg schedules plants 1 and 2 using the schedule

1 2 . Then DU = 5/12 and hi

pi
= ⌊ 1

2 ⌊ 10
7 p∗

i ⌋⌋
⌊ 10

7 p∗
i

⌋ . Let p∗ = 7a + b. Then hi

pi
= 5a+⌊ 1

2 ⌊ 10
7 b⌋⌋

10a+⌊ 10
7 b⌋ .

If 5a+⌊ 1
2 ⌊ 10

7 b⌋⌋
10a+⌊ 10

7 b⌋ ≥ DU then 5(a+1)+⌊ 1
2 ⌊ 10

7 b⌋⌋
10(a+1)+⌊ 10

7 b⌋ ≥ DU since 5
10 > DU .

Therefore if the inequality holds for a particular p∗
i , then it also holds for all subsequent

p∗
i that have the same remainder after division by 7. In particular, this means that if

there are 7 consecutive periods p∗
i with hi/pi ≥ DU then hi/pi ≥ DU also holds for all

subsequent periods p∗
i .

We can determine that hi/pi ≥ DU holds for p∗
i ≥ 5 by looking at enough periods (in

this case periods 5 to 11). This argument is repeated in many of the subsequent cases.
Appendix A contains tables that show the values for each case.

Furthermore 1
pi

≤ 3
4p∗

i
holds for p∗

i ≥ 5. This means we can schedule this case.

4, 4 Then p = (5, 5, . . . ). Alg schedules plants 1 and 2 using the schedule 1 2 . Then
DU = 1/2. For p∗ = 7a + b we get hi

pi
= 6a+h(⌊ 10

7 b⌋)
10a+⌊ 10

7 b⌋ . By looking at 7 periods we can
determine that hi/pi ≥ DU holds for p∗

i ≥ 4.

Since 1
pi

≤ 3
4p∗

i
holds for p∗

i ≥ 5 but not p∗
i = 4 we still need to consider the case where

p∗
1 = p∗

2 = p∗
3 = 4 but we can schedule this case for p∗

3 ≥ 5.

4, 4, 4 Then p = (5, 5, 5, . . . ). Alg schedules plants 1 to 3 using the schedule 123 . Then
DU = 1/4. Using the same approach as in the previous case we can determine that
hi/pi ≥ DU holds for p∗

i ≥ 4. As in the previous case this means we can schedule all cases
except the case where p∗

1 = · · · = p∗
4 = 4 since in this case 1

pi
≤ 3

4p∗
i

is not guaranteed.
However in this case there are only four plants and therefore this case can be scheduled
as well.

In all subsequent cases, all periods except the first are greater than 4. This means 1
pi

≤ 3
4p∗

i

holds for all periods after the first and we only need to verify hi/pi ≥ DU . We get the
following results.

APPROX/RANDOM 2023



16:8 Bamboo Garden Trimming

p∗ p Schedule DU p∗
i hi/pi

4, 5, ≥ 9 5, 7 1 2 11/20 − −
4, 5, 6 5, 7, 8 31 2 13 21 3 12 23/60 14a + b

10a+h(⌊ 10
7 b⌋)

20a+⌊ 10
7 b⌋

4, 5, 6, 6 5, 7, 8, 8 see 3,4,5
4, 5, 7 5, 7, 10 see next line
4, 5, 8 5, 7, 11 1 3 12 1 32 1 2 17/40 14a + b

11a+h(⌊ 10
7 b⌋)

20a+⌊ 10
7 b⌋

4, 6, ≥ 9 5, 8 1 1 2 1 2 7/12 21a + b
20a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋
4, 6, 6 5, 8, 8 see next line
4, 6, 7 5, 8, 10 1 3 1 2 13 2 37/84 21a + b

16a+h(⌊ 10
7 b⌋)

30a+⌊ 10
7 b⌋

4,6,8 5,8,11 1 3 1 2 1 32
1 1 23 1 2

11
24

21a + b
17a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋

4,6,8,8 5,8,11,11 1 3 1 24 1 32
1 4 1 23 1 42

1
3

21a + b
14a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋

4, 7 5, 10 see next line
4, 8 5, 11 1 2 1 5/8 7a + b

7a+h(⌊ 10
7 b⌋)

10a+⌊ 10
7 b⌋

4, ≥ 9 5, ≥ 12 1 3/4 7a + b
8a+⌊ 4

5 ⌊ 10
7 b⌋⌋

10a+⌊ 10
7 b⌋

◀

▶ Theorem 7. Algorithm 1 is a polynomial-time 10
7 -approximation.

Proof. The approximation ratio follows directly from Lemma 6. Since any height K that is
at least the optimal height is schedulable, the procedure in algorithm 1 finds a valid schedule
of height 10

7 K for any height that is at least Opt. This means the binary search settles on a
value that is at most Opt (since it is integer) and the algorithm returns a schedule of height
at most 10

7 times that value.
The porous schedules are given in the paper of Fishburn and Lagarias (in particular see

table 1 of [7]) and are thus available in O(1). Then the algorithm in [4] with runtime O(n3)
is used to schedule the remaining machines. This means pinwheel instances with density
at most 0.75 can be solved in time O(n3). In addition, as mentioned above Fishburn and
Lagarias show that instances with p1 = 2 and density up to 5

6 can also be solved in time
O(n3). ◀

4 Continuous BGT on a star

We now examine the continuous case of the BGT-problem. For this problem Gasieniec et al.
propose a O(log n)-approximation algorithm that works in any metric space. We consider
the star graph and show that many of the constant approximation factor algorithms for
discrete BGT can be extended to this case with only small losses in the approximation ratio.

4.1 Notation
Plants 1, . . . , n grow at the end of each of n branches on a star graph. We define di as the
time it takes the server to travel to plant i cut it and return to the center. The growth rate
of plant i is denoted by hi. Each round the server visits a plant and returns back to the
center.
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A schedule for continuous BGT on a star graph, is an infinite sequence over {1, . . . , n},
that describes the order plants are visited in. While BGT is an infinite problem, it is sufficient
to consider cyclic schedules. This is because any schedule that maintains a finite maximum
height of a must visit each plant i at least once in a

hib rounds, where b is the minimum
distance needed to visit a plant. This means a schedule for BGT (on a star) solves the
pinwheel problem with periods a

hib . Since any pinwheel schedule is cyclic (see Theorem 2.1
in [10]) the same is true for BGT schedules.

4.2 A lower bound for the star
Consider a cyclic schedule of length L. Let mi be the amount of times plant i is visited in a
segment of length L. Then L

mi
is the average period between visits of i.

▶ Lemma 8. The average height of p after a cut is hp(dp +
∑

i ̸=p
mi

mp
di).

Proof. Consider a plant p. Let λ1, . . . , λmp
be the heights plant p reaches in the schedule.

The sum of all heights is the same as the sum of all distances that are traversed times the
speed of the plant, i.e.

∑mp

k=1 λk = hp

∑n
i=1 dimi. The average height is

1
mp

mp∑
k=1

λk = 1
mp

hp

n∑
i=1

dimi = hp(dp +
∑
i̸=p

mi

mp
di). ◀

Naturally the average height of p is a lower bound on the maximum height of p. This
inspires the following model: The algorithm may visit each plant i at a certain fixed period
fi. These periods do not need to match a feasible schedule and may even be fractional. We
only require that

∑n
i=1

1
fi

= 1 which means that the frequencies add up to one plant visited
per round. The height a plant p reaches in this model is defined as hp(dp +

∑
i̸=p

fp

fi
di).

By setting fi = L
mi

we get a solution for the new model with a height that is equal to the
average height of a schedule in the original model and not more than the maximum height.
This means a lower bound on the height in the new model is also a lower bound on the
average as well as maximum height for continuous BGT on a star graph.

▶ Lemma 9. R :=
∑n

i=1 hidi is a lower bound on the optimal height for continuous BGT on
a star graph.

Proof. Consider the new model. We set K =
∑n

i=1 hi and fi = K
hi

. Then
∑n

i=1
1
fi

= 1 and
this is a valid solution to the new model. Then the height of plant p is hp(dp +

∑
i̸=p

fp

fi
di) =

hp(dp +
∑

i̸=p
hi

hp
di) =

∑n
i=1 hidi = R.

It follows that all plants reach a height of R. Because of the requirement
∑n

i=1
1
fi

= 1
it is not possible to reach a maximum height lower than R, since visiting one plant more
often would mean visiting other plants less often. This means R is a lower bound on the
maximum height in the new model and therefore also a lower bound on the maximum height
for continuous BGT on a star graph. ◀

4.3 Algorithms on the star
The algorithm Reduce-Fastest(x), introduced by Gasieniec et al. [8], cuts the next fastest
growing bamboo among those with height at least x · R. The proof of the following lemma
is structured in a way similar to the proof by J. Kuszmaul for discrete BGT [13]; see the
appendix.
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▶ Lemma 10. Reduce-Fastest(2(R + Dhmax)) is a 6-approximation on the star.

Proof. Assume that at some point there is a bamboo bi that reaches height 3(R + Dhmax).
Let t1 be the most recent time bi reaches height 2(R + Dhmax) and t3 the time it reaches
height 3(R + Dhmax). Furthermore let t2 be the first time in between t1 and t2 where the
gardener visits the center. Since it takes at most distance D to visit a plant and return to
the center the height of bi is at most 2R + 3Dhmax at this time. We consider the set S of
bamboo that are cut at least once during the time interval [t2, t3). For bamboo j ∈ S, let
mj be the number of times the bamboo is cut in the interval [t2, t3).

Since bi already has height at least 2(R + Dhmax) when the algorithm decides to cut j

we have hj ≥ hi for all j ∈ S.
For mj ≥ 2 we have hj(t3 − t2) > 2(R + Dhmax)(mj − 1) or hj(t3−t2)

2(mj−1) > R + Dhmax

because bamboo bj needs to grow to height 2(R+Dhmax) at least mj −1 times in the interval
in order to be cut mj times. Meanwhile bamboo bi grows by at most R + Dhmax during this
interval and therefore R + Dhmax > hi(t3 − t2). It follows that hj > 2(mj − 1)hi ≥ mjhi.

During the interval the algorithm visits each plant bj ∈ S a total of mj times and travels
distance dj each time. Additionally distance di

2 is traversed to reach plant bi.

t3 − t2 =
∑
bj∈S

mjdj + di

2

<
∑
bj∈S

hjdj

hi
+ di

2 = 1
hi

∑
bj∈S

hjdj + di

2

≤ 1
hi

(R − hidi) + di

2 = R

hi
− di

2

This however means that the inverval is too short for plant bi to grow by height R

since this takes time R
hi

. This is a contradiction and thus no plant can reach height
3(R + Dhmax) ≤ 6L. ◀

Define L = max(R, Dh1), where D is the diameter of the star and h1 is the growth rate
of the fastest bamboo. This is a lower bound on Opt.

The Deadline-Driven algorithm always cuts the bamboo with the earliest deadline among
those with height at least L where the deadline is determined by some height the algorithm
wants to maintain. This means that in each round the algorithm chooses the plant with the
earliest deadline, travels towards this plant and cuts it before returning to the center. The
algorithm does not turn around when a more urgent plant reaches height L.

We say a plant is requested when it reaches height (1 +
√

2)L and before that this request
is initialized at the time the plant has height 0. This happens either after a cut or at the
beginning of the process. We choose the deadline as the time a bamboo reaches height
(3 + 2

√
2)L.

This means each request to cut a plant consists of an initialization time, a request time
and a deadline.

▶ Lemma 11. The Deadline-Driven algorithm maintains a height of (3 + 2
√

2)L.

Proof. Assume plant i reaches height (3 +
√

2)L at time T and is not cut. We scale the time
(and distance) such that L/hi = 1 which means plant i grows by L in one timestep. This is
possible because whenever we scale the length of all edges by a factor then the heights of all
plants reached in any schedule is scaled by the same factor. This holds for both Alg and
Opt which means the approximation ratio is unaffected. We can also see this as changing
the timescale using L/hi as our unit of time.



F. Höhne and R. van Stee 16:11

Let t1 be the last time the algorithm is idle or busy processing a request with deadline
after T . Let time 0 be the most recent time before t1 where plant i has height 0.

This means between time t1 and T the algorithm is only processing requests with deadlines
at or before T and it is not idle. Let the set of these requests be S and let v be the earliest
request time among all request in S. We have i ∈ S, so v ≤ 1 +

√
2 and t1 ≥ v.

We further divide the set S into old requests S0 which are initialised before v and new
requests S1 which are initialised after v. The time required to process S0 is

∑
j∈S0

dj because
any bamboo with an old request must be visited once to fulfill the request. Afterwards the
bamboo either has a deadline after T and is not visited again or becomes part of the bamboo
with new requests. We next show that all bamboo with new requests also have an old request.
Consider the earliest new request for a bamboo. This new request gets initialized inbetween
v and T . This means there was a previous request for that bamboo with a deadline between
v and T . This request is an old request.

The time required to process S1 is
∑

j∈S1
mjdj where mj is the number of new requests

of bamboo j which are requests with initialization time after v and a deadline before or at T .
(Here j ∈ S means there is a request for bamboo j in the set of requests S. We may also see
S as a multi-set of bamboo instead.)

It is possible that just before v a request with a deadline after T arrives and is processed
by the algorithm. The algorithm traverses a distance of r to serve this request if it exists,
otherwise r = 0. This means t1 ≤ v + r.

We now show that
∑

j∈S0
dj +

∑
j∈S1

mjdj + v + r < T which contradicts the assumption
that plant i is not cut before time T .

We begin by finding upper bounds on the time required to process the requests in S.
A bamboo with an old request must grow by at least (2 +

√
2)L in time at most T − v to

have a deadline before T which means hj(T − v) ≥ (2 +
√

2)L. Meanwhile plant i grows by
(T − v)L in time (T − v), that is hi(T − v) = (T − v)L. It follows that

hj

hi
≥ 2 +

√
2

T − v
for j ∈ S0 (1)

A bamboo with new requests must reach the threshold (1 +
√

2)L exactly mj times in
time at most T −v in order to be requested mj times before T . Then hj(T −v) ≥ mj(1+

√
2).

It follows that

hj

hi
≥ mj

1 +
√

2
T − v

for j ∈ S1 (2)

We can now find upper bounds for the processing times of the requests in S. We first get

∑
j∈S0

dj

(1)
≤ 1

hi

T − v

2 +
√

2

∑
j∈S0

djhj <
T − v

2 +
√

2
R

hi

and then∑
j∈S1

mjdj

(2)
≤ 1

hi

T − v

1 +
√

2

∑
j∈S0

djhj <
T − v

1 +
√

2
R

hi

Given the timescale and because R ≤ L it takes time less than T −v
2+

√
2 to process the old

requests and less than T −v
1+

√
2 to process the new requests.

It remains to show T −v
2+

√
2 + T −v

1+
√

2 + v + r ≤ T .
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We have r ≤ L/h1 ≤ L/hi = 1 where the first inequality holds because otherwise plant 1
would grow by more than L in the time it takes to travel distance r and the second follows
from the ordering of the plants by their growth rate. Furthermore since v < 1 +

√
2 and the

earliest deadline of i is 3 + 2
√

2 we have T − v ≥ (2 +
√

2).
It follows

r ≤ 1 =
(

1
2 +

√
2

) (
2 +

√
2
)

≤
(

1
2 +

√
2

)
(T − v)

and then

r ≤
(

1
2 +

√
2

)
(T − v)

⇒
(

1
2 +

√
2

)
v + r ≤

(
1

2 +
√

2

)
T

⇒
(

1
2 +

√
2

)
v + r ≤

(
1

2 +
√

2

)
T +

(
1 − 1

2 +
√

2

)
T −

(
1 − 1

2 +
√

2

)
T

⇒
(

1 − 1
2 +

√
2

)
T +

(
1

2 +
√

2

)
v + r ≤ T

⇒
(

1 − 1
2 +

√
2

)
T −

(
1 − 1

2 +
√

2

)
v + v + r ≤ T

⇒ T − v

2 +
√

2
+ T − v

1 +
√

2
+ v + r ≤ T

This means we can process all requests (including the request for bi with deadline at time
T ) before time T and plant i does not grow above height (3 + 2

√
2)L. ◀

4.4 Extending the star graph
It is also possible to extend some of these results to an extended version of a star graph,
where several plants are placed on each branch at different distances from the center. We
again number the plants from 1 to n and the definition of hi and di remains the same.

This means that di is the time it takes the server to travel the path leading up to node
i from the center two times (once in both directions). Additionally we denote with δi the
time it takes the server to travel the singular edge, connected to node i from direction of the
center, two times (once in both directions). The definitions of di and δi are visualized in
Figure 1.

We assume that the speeds are decreasing on each branch. (If there is a plant a that is
further away than plant b on a branch and has the same speed or more, then plant b gets
visited whenever plant a is visited.)

For the star graph with multiple plants on each branch, there is more than one possibility
to accurately represent the schedule. One possibility is to list each visit to a plant, but it is
also possible to omit plants that are visited by the server in passing, as it travels to a plant
further on the branch. The representation we will be using, lists all plants that are visited in
a round, but omits the second visit, where the server passes the plant again on its way to
the center.

▶ Lemma 12. The value 1
2 R with R =

∑n
i=1 hiδi is a lower bound on the optimal height for

continuous BGT on a star graph with multiple plants on each branch.
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Figure 1 Multiple plants on each branch: example for values di and δi.

For the star with multiple plants on each branch we use the Deadline-Driven algorithm
with a small modification. Whenever the algorithm visits a bamboo bj on a branch it walks
double the distance and cuts all additional bamboo it encounters. These bamboo can be
removed from the graph since they are always cut together with bj . Then the distance
between bj and the next bamboo bi (i.e δi) on the branch is at least as much as the distance
from bj to the center (i.e. di − δi). In particular it follows that δi ≥ di − δi and thus di ≤ 2δi.

Furthermore for the bamboo with multiple plants our lower bound is 1
2 R with R :=∑n

i=1 hiδi and therefore we define L = max( 1
2 R, Dh1) to get a lower bound on Opt. For the

star with multiple plants on each branch the deadline is the point in time a plant reaches
height (9+2

√
5)L and it gets requested at height (4+2

√
5)L. The initialization time remains

the same.

▶ Lemma 13. The modified Deadline-Driven algorithm maintains a height of (9 + 2
√

5)L.

5 Conclusions

It is possible to achieve a better approximation ratio by setting R in algorithm 1 to a lower
value but this requires a much larger case analysis. This is because the periods pi will be
smaller. Using some computer assistance it is for example possible to achieve a ratio of 7

5 but
the length of the proof encourages finding new ideas. Using more cases, we could potentially
get even closer to the ratio 4/3, but we could never reach it as long as we can only rely on
pinwheel instances with density at most 3/4 being schedulable.

It should be noted that the pinwheel instances that our algorithm encounters are not
general ones. For instance, the 10/7-approximation never encounters the period 6. It is
conceivable that for the limited set of pinwheel instances that need to be considered, the
density guarantee could be improved. Finally, of course the conjecture by Chan and Chin
that all instances with density at most 5/6 are schedulable is still open. If that were proved,
we could potentially get close to 6/5 (instead of only to 4/3). An approximation scheme
currently seems out of reach.
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A Tables for checking hi/pi ≥ DU in the proof of Lemma 6

Case 3, 4, p∗
3 ≥ 5 with schedule 1 2 :

p∗
i pi hi hi/pi DU

5 7 3 0.429 0.417
6 8 4 0.5
7 10 5 0.5
8 11 5 0.45
9 12 6 0.5
10 14 7 0.5
11 15 7 0.47
12 17 8 0.47

Case 4, 4 with schedule 1 2

p∗
i pi hi hi/pi DU

4 5 3 0.6 0.5
5 7 4 0.57
6 8 4 0.5
7 10 6 0.6
8 11 6 0.54
9 12 7 0.58
10 14 8 0.57
11 15 9 0.6

Case 4, 4, 4 with schedule 123

p∗
i pi hi hi/pi DU

4 5 2 0.4 0.25
5 7 2 0.28
6 8 2 0.25
7 10 4 0.4
8 11 4 0.36
9 12 4 0.33
10 14 5 0.36
11 15 6 0.4

Case 4, 5 with schedule 1 2

p∗
i pi hi hi/pi DU

9 12 7 0.5833333333 0.55
10 14 8 0.5714285714
11 15 9 0.6
12 17 10 0.5882352941
13 18 10 0.5555555556
14 20 12 0.6
15 21 12 0.5714285714
16 22 13 0.5909090909

Case 4, 5, 6 with schedule 31 2 13 21
3 12

p∗
i pi hi hi/pi DU

7 10 5 0.5 0.38
8 11 5 0.45
9 12 5 0.42
10 14 6 0.43
11 15 7 0.47
12 17 8 0.47
13 18 8 0.44
14 20 10 0.5
15 21 10 0.48
16 22 10 0.45
17 24 11 0.45
18 25 12 0.48

19 27 13 0.48
20 28 13 0.46
21 30 15 0.5

APPROX/RANDOM 2023



16:16 Bamboo Garden Trimming

Case 4, 5, 8 with schedule 1 3 12 1 32
1 2

p∗
i pi hi hi/pi DU

7 10 5 0.5 0.425
8 11 5 0.45
9 12 6 0.5
10 14 7 0.5
11 15 7 0.47
12 17 8 0.47
13 18 9 0.5
14 20 11 0.55
15 21 11 0.52
16 22 11 0.5
17 24 12 0.5
18 25 13 0.52
19 27 14 0.525
20 28 14 0.5
21 30 16 0.53

Case 4, 6 with schedule 1 1 2 1 2

p∗
i pi hi h/p DU

9 12 7 0.58 0.583
10 14 9 0.64
11 15 10 0.67
12 17 10 0.59
13 18 11 0.61
14 20 13 0.65
15 21 13 0.62
16 22 14 0.64
17 24 15 0.63
18 25 16 0,64
19 27 17 0.63
20 28 18 0.64
21 30 20 0.67
22 31 20 0.65
23 32 20 0.63
24 34 22 0.65
25 35 23 0.66
26 37 24 0.65
27 38 25 0.66
28 40 26 0.65
29 41 26 0.63
30 42 27 0.649

Case 4, 6, 7 with schedule 1 3 1 2
13 2

p∗ p h h/p DA

7 10 6 0.6 0.440
8 11 6 0.54 0.458
9 12 7 0.58 0.458
10 14 8 0.57
11 15 8 0.53
12 17 10 0.58
13 18 10 0.55
14 20 11 0.55
15 21 12 0.57
16 22 12 0.55
17 24 14 0.58
18 25 14 0.56
19 27 15 0.56
20 28 16 0.57
21 30 16 0.53
22 31 17 0.55
23 32 18 0.56
24 34 19 0.56
25 35 19 0.54
26 37 20 0.54
27 38 21 0.55
28 40 22 0.55
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Case 4, 6, 8 with schedule 1 3 1 2
1 32 1 1 23 1 2

p∗ p h h/p DA

9 12 6 0.5 0.458
10 14 7 0.5
11 15 8 0.53
12 17 8 0.47
13 18 9 0.5
14 20 11 0.55
15 21 11 0.52
16 22 12 0.55
17 24 12 0.5
18 25 13 0.52
19 27 14 0.52
20 28 15 0.54
21 30 17 0.57
22 31 17 0.55
23 32 17 0.53
24 34 18 0.53
25 35 19 0.54
26 37 20 0.54
27 38 21 0.55
28 40 22 0.55
29 41 22 0.53
30 42 23 0.546

Case 4, 6, 8, 8 with schedule 1 3 1 24 1
32 1 4 1 23 1 42

p∗ p h h/p DA

4 5 2 0.4 0.333
5 7 3 0.43
6 8 3 0.375
7 10 4 0.4
8 11 4 0.36
9 12 5 0.42
10 14 6 0.43
11 15 7 0.47
12 17 7 0.41
13 18 7 0.39
14 20 9 0.45
15 21 9 0.43
16 22 10 0.45
17 24 10 0.42
18 25 11 0.44
19 27 12 0.44
20 28 12 0.43
21 30 14 0.47
22 31 14 0.45
23 32 14 0.44
24 34 15 0.44
25 35 16 0.46

Case 4, 8 with schedule 1 2 1

p∗ p h h/p DA

6 8 5 0.625 0.625
7 10 7 0.7
8 11 7 0.64
9 12 8 0.67
10 14 9 0.64
11 15 10 0.67
12 17 11 0.65
13 18 12 0.67

B Multiple plants on each branch

We now find a lower bound for continuous BGT on a star graph with multiple plants on each
branch. In this scenario, we make a distinction between cuts where the server comes from
the center, and cuts where the server comes from the direction opposite the center. For both
types of cuts, we find a lower bound on the maximum height a plant reaches in a particular
schedule.

Consider plant p, and let A be the set of plants that are on the same branch but further
from the center, and B the set of plants that are closer to the center on the same branch or
on another branch.
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16:18 Bamboo Garden Trimming

Since the algorithm needs to visit the end of the branch at some point, p reaches a height
of at least hp

∑
i∈A δi. This happens as the server is coming from the direction opposite the

center and this is a lower bound on the maximum height.
Next, we develop a lower bound based on the cuts where the server comes from the

direction of the center. Consider a cyclic schedule of length L, where only the first cut of
each round, where the server comes from the center, is listed in this schedule. Each round
the algorithm visits a branch and possibly multiple plants. We define mi as the amount of
rounds plant i is visited in. Then L

mi
is the average period between visits of plant i, but only

counting the first cut each round where the server comes from the direction of the center.

▶ Lemma 14. The average height of p after a cut, with the server coming from the direction
of the center, is hp(δp +

∑
i∈B

mi

mp
δi).

Proof. Consider a plant p. Let λ1, . . . , λmp
be the heights plant p reaches in the schedule,

while only considering cuts coming from the center. The sum of these heights is the same as
the sum of all distances travelled to visit plants in set B ∪ {p} multiplied by the speed of the
plant. This means

∑mp

k=1 λk = hp

∑
i∈B∪{p} δimi. The average height is

1
mp

mp∑
k=1

λk = 1
mp

hp

∑
i∈B∪{p}

δimi = hp(δp +
∑
i∈B

mi

mp
δi) ◀

We now adapt our model. The algorithm may visit each plant i at a certain fixed period
fi. Let C be the set of all plants, that are closest to the center on their branch. We
require

∑
i∈C

1
fi

= 1, which means that the frequencies add up to one branch visited each
round. Furthermore, the periods of plants on the same branch should be non decreasing as
distance to the center increases. We define the height of a plant p as max(hp(

∑
i∈A δi, hp(δp +∑

i∈B
fp

fi
δi)).

By setting fi = L
mi

we get a solution for the new model with a height that is equal to the
average height of a schedule in the original model and not more than the maximum height.
A lower bound on the maximum height in this new model is then a lower bound on the
maximum height for continuous BGT on a star graph with multiple plants on each branch.

▶ Lemma 12. The value 1
2 R with R =

∑n
i=1 hiδi is a lower bound on the optimal height for

continuous BGT on a star graph with multiple plants on each branch.

Proof. Consider the new model. We set K =
∑n

i∈C hi and fi = K
hi

. Let Hp be the
maximum height that plant p reaches in the new model. By the definition of height we get
Hp ≥ hp

∑
i∈A δi as well as Hp ≥ hp(dp +

∑
i∈B

fp

fi
di). Then

2Hp ≥ hp

∑
i∈A

δi + hp(dp +
∑
i∈B

fp

fi
δi) =

∑
i∈A

hpδi + hpδp +
∑
i∈B

hiδi ≥
n∑

i=1
hiδi

The last inequality follows from the fact that the speeds are decreasing with distance to the
center and therefore hp ≥ hi for i ∈ A. It follows that all plants reach a height of at least 1

2 R

and again it is not possible to achieve a lower height on all plants, since visiting one plant
more often increases the height on other plants. ◀

▶ Lemma 13. The modified deadline driven algorithm maintains a height of (9 + 4
√

5)L.

Proof. Assume plant i reaches height (9+4
√

5)L at time T . We scale the time (and distance)
such that L/hi = 1 which means plant i grows by L in one timestep. The old and new
requests S0 and S1 as well as v and r are defined analogously to the proof for the star.
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The time required to process S0 is at most
∑

j∈S0
dj because any bamboo with an old

request must be visited once to fulfill the request and in the worst case we start from the
center traversing distance dj to fulfill the request. It is possible that the algorithm is more
efficient whenever plants with consecutive deadlines lie behind each other on the same branch.

Similarly the time required to process S1 is at most
∑

j∈S1
mjdj where mj is the number

of new requests on plant bj .
Therefore in order to arrive at a contradiction we again need to show

∑
j∈S0

dj +∑
j∈S1

mjdj + v + r < T which means plant i can be cut before time T .
Again we find upper bounds on the time required to process the old and new requests.

These bounds are slightly different due to the changes in the algorithm as well as the lower
bound.

A bamboo with an old request must grow by at least (5 + 2
√

5)L in time at most T − v

to have a deadline before T which means hj(T − v) ≥ (5 + 2
√

5)L. Meanwhile plant i grows
by (T − v)L in time (T − v), that is hi(T − v) = (T − v)L. It follows that

hj

hi
≥ 5 + 2

√
5

T − v
for j ∈ S0 (3)

A bamboo with new requests must grow by (4 + 2
√

5)L exactly mj times in time at most
T − v in order to have mj deadlines before T . Then hj(T − v) ≥ mj(4 + 2

√
5). It follows that

hj

hi
≥ mj

4 + 2
√

5
T − v

for j ∈ S1 (4)

We now get∑
j∈S0

dj

(3)
≤ 1

hi

T − v

5 + 2
√

5

∑
j∈S0

djhj ≤ 1
hi

T − v

5 + 2
√

5

∑
j∈S0

2δjhj <
T − v

5 + 2
√

5
2R

hi
≤ T − v

5 + 2
√

5
4L

hi

where we are using di ≤ 2δi in the second inequality and R ≤ 2L in the last inequality.
Analogously the following holds for the time required to process the new requests∑

j∈S1

mjdj

(4)
≤ 1

hi

T − v

4 + 2
√

5

∑
j∈S0

djhj ≤ 1
hi

T − v

4 + 2
√

5

∑
j∈S0

2δjhj <
T − v

4 + 2
√

5
2R

hi
≤ T − v

4 + 2
√

5
4L

hi

Given the timescale this means it takes time at most 4 T −v
5+2

√
5 to process the old requests

and at most 4 T −v
4+2

√
5 to process the new requests. Furthermore since v < 4 + 2

√
5 and the

earliest deadline of i is 9 + 4
√

5 we have T − v ≥ (5 + 2
√

5). It follows

r ≤ 1 =
(

1
5 + 2

√
5

)
(5 + 2

√
5) ≤

(
1

5 + 2
√

5

)
(T − v)

⇒
(

1
5 + 2

√
5

)
v + r ≤

(
1

5 + 2
√

5

)
T

⇒
(

1
5 + 2

√
5

)
v + r ≤

(
1

5 + 2
√

5

)
T +

(
1 − 1

5 + 2
√

5

)
T −

(
1 − 1

5 + 2
√

5

)
T

⇒
(

1 − 1
5 + 2

√
5

)
T +

(
1

5 + 2
√

5

)
v + r ≤ T

⇒
(

1 − 1
5 + 2

√
5

)
T −

(
1 − 1

5 + 2
√

5

)
v + v + r ≤ T

⇒ 4 T − v

5 + 2
√

5
+ 4 T − v

4 + 2
√

5
+ v + r ≤ T

This means we can process all requests (including the request for bi with deadline at time T )
before time T and plant i does not grow above height (9 + 4

√
5)L. ◀
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