
Online Matching with Set and Concave Delays
Lindsey Deryckere #

School of Computer Science, The University of Sydney, Australia

Seeun William Umboh #Ñ

School of Computing and Information Systems, The University of Melbourne, Australia

Abstract
We initiate the study of online problems with set delay, where the delay cost at any given time is
an arbitrary function of the set of pending requests. In particular, we study the online min-cost
perfect matching with set delay (MPMD-Set) problem, which generalises the online min-cost perfect
matching with delay (MPMD) problem introduced by Emek et al. (STOC 2016). In MPMD, m

requests arrive over time in a metric space of n points. When a request arrives the algorithm must
choose to either match or delay the request. The goal is to create a perfect matching of all requests
while minimising the sum of distances between matched requests, and the total delay costs incurred
by each of the requests. In contrast to previous work we study MPMD-Set in the non-clairvoyant
setting, where the algorithm does not know the future delay costs. We first show no algorithm
is competitive in n or m. We then study the natural special case of size-based delay where the
delay is a non-decreasing function of the number of unmatched requests. Our main result is the
first non-clairvoyant algorithms for online min-cost perfect matching with size-based delay that are
competitive in terms of m. In fact, these are the first non-clairvoyant algorithms for any variant of
MPMD. A key technical ingredient is an analog of the symmetric difference of matchings that may
be useful for other special classes of set delay. Furthermore, we prove a lower bound of Ω(n) for
any deterministic algorithm and Ω(log n) for any randomised algorithm. These lower bounds also
hold for clairvoyant algorithms. Finally, we also give an m-competitive deterministic algorithm for
uniform concave delays in the clairvoyant setting.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases online algorithms, matching, delay, non-clairvoyant

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.17

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2211.02394

1 Introduction

Studying online problems with delay is a line of work that has recently gained traction in
online algorithms (e.g. [4, 19,21,23]). In such problems, request arrive over time requiring
service. Delaying the service of a request accumulates a delay cost given by a delay function
associated with the request. The total cost of a solution is the cost of servicing all requests
plus the sum of all delay costs incurred by each request.

We initiate the study of online problems with set delay. In this model, we generalize the
notion of delay to one where the instantaneous delay cost at any point in time is determined
by an arbitrary monotone non-decreasing function of the set of pending requests, rather
than the sum of individual delay functions associated with each request. In particular, we
study the online min-cost perfect matching with set delay (MPMD-Set) problem, which
generalizes of the min-cost perfect matching with delays (MPMD) problem introduced by
Emek et al. [19].

© Lindsey Deryckere and Seeun William Umboh;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lindsey.deryckere@sydney.edu.au
mailto:william.umboh@unimelb.edu.au
http://williamumboh.com
https://orcid.org/0000-0001-6984-4007
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.17
https://arxiv.org/abs/2211.02394
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Online Matching with Set and Concave Delays

In MPMD, m requests arrive over time in a metric space of n points. Upon arrival of
a request the algorithm must choose to either match the request, incurring a cost equal to
the distance between the two requests, or to delay the request, incurring a cost given by a
delay function associated with the request. Prior results for MPMD have mostly focused
on each request sharing the same delay function (in particular, linear, concave, and convex)
and achieve competitive ratios that solely depend either on n or m. Moreover, existing
algorithms rely on clairvoyance, where the algorithm has full knowledge of future delay
costs. Furthermore, existing randomised algorithms rely on metric embeddings which require
knowledge of the metric space in advance.

In this paper, our main contribution is to study the more general MPMD-Set in the least
restrictive setting where the algorithm does not know the metric space in advance and has no
knowledge of future delay costs. We begin by showing that, in contrast to prior results, the
MPMD-Set problem does not admit a deterministic competitive ratio that solely depends on
n or m.

▶ Theorem 1. Every deterministic algorithm for MPMD-Set has competitive ratio Ω(Φ),
where Φ is the aspect ratio of the metric space.

Our lower bound holds even for simple instances where n and m are constants. Thus, we
restrict our attention to designing a competitive solution for the MPMD-Set problem where
the instantaneous delay cost at any point in time is a monotone non-decreasing function of
the number of unmatched requests at that time. We call such a delay cost function size-based
(See Section 2 for a formal definition). MPMD-Set with size-based delay (MPMD-Size)
has natural applications in practical settings with service-level agreements such as cloud
computing.1

Our main result is the first competitive algorithms for MPMD-Size, where the competitive
ratio is a function of the number of requests. At the core of our result is a reduction from
MPMD-Size to the well-known Metrical Task System (MTS) problem (defined in Section 1.1).

▶ Theorem 2. For any f(N)-competitive algorithm for MTS with N states, there is an
f(2m)-competitive algorithm for MPMD-Size.

We obtain our main result by applying state-of-the-art algorithms for MTS with some
modifications.

▶ Corollary 3. For MPMD-Size, there is an O(2m)-competitive deterministic algorithm and
an O(m4)-competitive randomised algorithm.

We emphasise that our algorithms are non-clairvoyant and do not need to know the metric
space in advance. To the best of our knowledge, this is the first non-clairvoyant online
algorithm for this problem. Non-clairvoyant algorithms nevertheless have been designed for
other online problems such as the Set Cover problem [4], the k-server problem [25], and
multi-level aggregation [26]. We also remark that every deterministic algorithm for known
variants of online matching with delays has a competitive ratio that depends on m.

We complement Corollary 3 with the following lower bounds.

▶ Theorem 4. Every deterministic algorithm for MPMD-Size has competitive ratio Ω(n).

▶ Theorem 5. Every randomised algorithm for MPMD-Size has competitive ratio Ω(log n).

1 In these settings, the service level agreement requires the cloud provider to provide a certain level of
service and the provider incurs penalties if the level is not met.

L. Deryckere and S. W. Umboh 17:3

Finally, we consider MPMD with uniform concave delay in the clairvoyant setting and
give the first deterministic algorithm for it. In this problem, we are given a non-negative,
non-decreasing concave function f . The delay cost incurred by a request r is f(wr) where
wr is the time between r’s arrival and when it was matched. The total delay cost is the sum
of the delay cost of each request.

▶ Theorem 6. There exists an O(m)-competitive deterministic algorithm for MPMD with
concave delay.

The correctness and competitiveness of our algorithm only relies on the fact that the time-
augmented space satisfies the properties of a metric space. Similar to previous deterministic
solutions for uniform linear delay, our algorithm does not need the metric space to be finite,
and does not need to know it in advance.

The proofs of theorems 4, 5 and 6 can be found in the full version.

1.1 Our Techniques
Our main technical contribution is an online reduction from the MPMD-Set problem to
MTS, which constitutes the proof of Theorem 2. The Metrical Task System (MTS) problem,
introduced by Borodin et al. [15], is a cost minimisation problem defined by a set of states
S = {s1, s2, ..., sk} and a cost matrix c that defines the cost of moving between states. The
input consists of an initial state S0 and a sequence of tasks T = (t1, ..., tℓ). Each task tj

is associated with a k-dimensional cost vector Cj whose i-th coordinate defines the cost of
servicing task tj in state si. For a given input task sequence T , a solution is a sequence of
states (called a schedule) σ = (S1, S2, ..., Sℓ), where Sj is the state that task j is processed in.
The total cost of a schedule consists of the costs associated with moving states (transition
cost), as well as the cost of processing the tasks (processing cost).The aim is to produce a
schedule of minimum cost.

We briefly outline the three main parts of the reduction below.

Step 1: MPMD-Set to MTS. The first part of the reduction transforms an instance of
MPMD-Set into an instance of MTS. A natural approach at a reduction to MTS is to use
the set of all possible matchings of requests as the set of states for the MTS instance. The
transition cost between two states is then the total length of the edges in the symmetric
difference of the corresponding matchings. Finally, there is a task for each timestep in the
matching problem and the cost of processing the task in a state is the instantaneous delay
incurred by the set of unmatched requests. Unfortunately, the number of states is equal
to the number of possible matchings between the requests which is ∼ (m

e)m/2 e
√

m

(4e)1/4 for m

requests.
Instead, we use the set of all possible even-sized subsets of the requests as the set of MTS

states. Each state represents a set of requests that are matched. The set of input states thus
develops over time as more requests arrive. The initial state is the empty set.

We now define the transition costs of the MTS. We define a transition graph G(V, E)
where V is the set of even-sized subsets of requests. The transition graph G has an edge
between two states S and S′ if S ⊂ S′ and |S′| = |S| + 2. In other words, S2 consists of the
same requests as S1 with 2 additional requests, say p, q. The cost of the edge between the
two states is d(p, q), the distance between p and q in the original MPMD-Set instance. The
transition cost between any two states in the MTS instance is defined to be the minimum
cost path between the two corresponding nodes in G. The delay cost is translated into the

APPROX/RANDOM 2023

https://arxiv.org/abs/2211.02394

17:4 Online Matching with Set and Concave Delays

vector costs associated with serving tasks: for any timestep t, the cost of servicing a task in
state is simply the instantaneous delay cost accumulated by the set of requests that have
arrived so far in the original MPMD-Set instance, that are not in that state.

Henceforth, we refer to an instance of MTS that is reduced from MPMD-Set as MPMD-
Set-MTS, and an MTS instance that is reduced from MPMD-Set with size-based delay as
MPMD-Size-MTS.

▶ Definition 7 (Monotone). A schedule σ = (S1, . . . , Sℓ) is monotone if every transition only
adds requests to the current state, i.e. Si−1 ⊆ Si for every i. In other words, the path never
involves moving to a strictly smaller state. An algorithm for MPMD-Set-MTS is monotone
if it always produces a monotone schedule.

It is easy to see that a monotone schedule can be converted into a solution for the MPMD-Set
instance without any increase in cost: when the schedule adds a set of requests S′ to its
current state, we add a min-cost perfect matching on S′ to our matching. However, when we
run existing MTS algorithms on the MPMD-Set-MTS instance, there is no guarantee that
they will return a monotone schedule.

Step 2: Converting to Monotone. Fortunately, it is possible to convert, in an online
manner, an arbitrary MPMD-Size-MTS solution to a monotone solution at no extra cost.
We do this by designing an online algorithm which, given an online sequence of states
σ = (S1, . . . , Sℓ), produces for each state Si a corresponding state S′

i such that the resulting
schedule produced by the algorithm is monotone. We refer to an algorithm that transforms
a given state as a state conversion algorithm.

Since the instantaneous delay in the MPMD-Size instance is a non-increasing function
of currently matched requests, for every task in the MPMD-Size-MTS instance created by
the reduction, the processing cost is a monotone non-increasing function of the state size.
Our algorithm will exploit this by maintaining the invariant that our state is always at least
large as that of σ. The technical crux here is to show that when our state is smaller, we
can augment our state in a cost-efficient manner. If the MTS states were matchings, we
can consider augmenting paths in the symmetric difference of our matching and that of σ.
Motivated by this, we define analogs of the symmetric difference and augmenting paths to
augment our state. We believe these ideas are useful for other interesting special classes of
set delay functions.

Step 3: Applying MTS algorithms. There are two issues that prevent us from applying
existing MTS algorithms directly. First, the cost bounds of all known algorithms for MTS
have an additive term that is equal to the diameter of the MTS state space, and the MTS
instance created by our reduction has state space with diameter much larger than the
optimal. The second issue is that our reduction creates an MTS instance whose state space
is constructed online, i.e. the states arrive over time. At a high level, the first issue can be
overcome by a guess-and-double approach. The second issue is a problem for randomised
MTS algorithms that rely on embedding the state space into a tree as a pre-processing step.
This is overcome by using the online embedding of [10]. See Section 4.3 for a more detailed
discussion.

Designing a deterministic algorithm for MPMD with Concave Delay. We use the (offline)
moat-growing framework (generally used for constrained connectivity problems) by Goemans
and Williamson [22], to design an online deterministic linear programming-based algorithm

L. Deryckere and S. W. Umboh 17:5

for MPMD with uniform concave delay. Our algorithm is a modification of an existing
linear programming-based algorithm due to Bienkowski et al. [12], who give a deterministic
competitive algorithm for MPMD with uniform linear delay. Their algorithm heavily relies
on the fact that, when the delay function is linear, requests accumulate delay cost at the
same rate at all times, regardless of their arrival time. The main challenge in applying
the framework to concave delay is that, unlike in the case of linear delay, the requests can
accumulate delay at different rates at any point in time, depending on their arrival time. See
the full version of the paper on ArXiv for a detailed discussion.

1.2 Related Work

MPMD was introduced by Emek et al. [19] where the delay functions associated with each
request are uniform linear. They designed a randomised algorithm that achieves a competitive
ratio of O(log2 n + log ∆), where n is the number of points in the metric space and ∆ is
its aspect ratio. Azar et al. [3] used a randomised HST embedding to provide a O(log n)-
competitive almost-deterministic algorithm, improving Emek et al.’s bound and removing
the dependency on the aspect ratio of the metric space. Furthermore, they provided a lower
bound of Ω(

√
log n) for any randomised algorithm in the case of linear delay. Ashlagi et

al. [1] improved this lower bound to Ω(log n
log log n) and Ω(

√
log n

log log n) for the bipartite case, which
are the best known so far. Liu et al. furthermore adapted the algorithm by Azar et al. to the
bipartite setting and improved the analysis of Emek et al.’s algorithm to O(log n). The next
deterministic algorithm for simple metrics was by Emek et al. [20] who proved a competitive
ratio of 3 for the simple metric space of 2 points. The first deterministic algorithm for general
metric spaces was by Bienkowski et al. [13] and their analysis resulted in a competitive
ratio of O(m2.46). Bienkowski et al. [12] and Azar et al. [6] concurrently and independently
improved this bound to O(m) and O(m0.59) respectively, introducing the first linear and
sub-linear deterministic solutions to the problem. The algorithms above assumed the delay
cost to be given by a uniform linear delay function associated with each individual request.

Liu et al. [27] was the first to consider convex delay functions and demonstrated an
interesting gap between the solutions for the case with linear delay and convex delay on a
uniform metric space by giving a deterministic asymptotically optimal O(m)-competitive
algorithm for the uniform metric space.

Azar et al. [8] subsequently considered the problem with concave delay and achieved an
O(1)-competitive deterministic algorithm for the single point metric space and an O(log n)
randomised algorithm for general metric spaces.

The above algorithms assumed all requests incurred delay in accordance with uniform
delay functions and regarded the delay function to be associated with each individual
request. Furthermore, all prior solutions to MPMD assumed clairvoyance. To the best of our
knowledge, no one has considered the non-clairvoyant generalisation of the problem where
the delay function depends on the set of unmatched requests.

Non-clairvoyant algorithms nevertheless have been designed for other online problems such
as the Set Cover problem [4,26], the k-server problem [25], and multi-level aggregation [26].

The notion of introducing delay to online problems originated well before it was applied
to online metric matching and finds applications in amongst others aggregating messages in
computer networks, aggregating orders in supply-chain management, and operating systems.
See [4, 5, 7, 9, 11, 14, 17, 18, 21, 23, 26, 28] for further reading. All problems above define the
cost of delay as a function associated with each request. To the best of our knowledge, no
online problems with delay have so far defined the cost of delay as an arbitrary function of
the set of unmatched requests.

APPROX/RANDOM 2023

https://arxiv.org/abs/2211.02394

17:6 Online Matching with Set and Concave Delays

2 Preliminaries

In this section we introduce our notation and give formal definitions for set delay and
size-based delay functions, as well as MPMD-Set.

2.1 Min-cost Perfect Matching with Delay

The min-cost perfect matching with delays (MPMD) problem, introduced by Emek et. al [19]
is defined on a metric space (V, d), which consists of a set of points V and distance function
d : V ×V → R+. An online input instance over (V, d) is a sequence of requests R = (r1, ..., rm)
that arrive at points in the metric space over time. Each rk ∈ R has an associated position
and arrival time. We assume, without loss of generality, that time is divided into discrete
timesteps.

Upon the arrival of a request, the algorithm must choose to either match the request,
incurring a cost equal to the distance between the two requests in the metric space, or to
delay the request, incurring a cost given by a delay function associated with the request, in
the hope of finding a more suitable match in the near future.

A solution produced by an online matching algorithm is a sequence of matchings M =
(M0...Mfinal), where Mi is the matching associated with the ith timestep. Note that we
assume that requests only arrive at the start of a timestep. A solution M must satisfy the
following properties:

M0 = ∅
Mfinal is a perfect matching
For all i, Mi ⊆ Mi+1

We refer to the third property as monotonicity. The cost associated with a solution M
consists of the sum of the distances between matched requests in Mfinal plus the sum of the
delay costs incurred by all requests. The aim of an online matching algorithm is to produce
a sequence of matchings that satisfies the above properties with minimal cost.

In the original MPMD problem, the delay cost incurred by a request is the time between
its arrival and when it was matched. In MPMD-Set, the instantaneous delay incurred at a
timestep t can be an arbitrary function of the set of currently unmatched requests Ut. The
total delay cost is the sum over timesteps t of ft(Ut) where ft is a set delay function as
defined below.

▶ Definition 8 (Set delay function). Let U be a set of requests. We define a delay function
ft : 2U → R≥0, for any timestep t, to be a set delay function if it satisfies the following
properties:

ft(∅) = 0
A ⊆ B ⇒ ft(A) ≤ ft(B)
For all ∅ ≠ U ∈ 2V , we have

∑∞
t=0 ft(U) = ∞

The last property implies that all requests must eventually be matched.

In MPMD-Size, the set delay function is a size-based delay function, as defined below.

▶ Definition 9 (Size-based delay function). We define a delay function ft : 2U → R≥0 to
be size-based if, for any timestep t, it satisfies all properties of a set delay function and is
monotone non-decreasing as a function of the size of the set of requests U .

L. Deryckere and S. W. Umboh 17:7

3 A Lower Bound for MPMD-Set

In this section, we prove Theorem 1.

Proof of Theorem 1. Consider a four-point metric space (as depicted in figure 1) with three
points at distance ϵ from one another, and the fourth point (p4) at distance D from the other
points, where D is the diameter of the metric space.

Figure 1 A visualisation of the four-point metric space.

We define a request sequence of six requests R = (r1, r2, r3, r4, r5, r6) where the first four
requests arrive at time t = 0 and the latter two arrive at time t = 2. For each i ∈ {1...4}, we
place request ri on point pi. At t = 2, we then place request r5 on p3 and r6 on p4. In terms
of delay, we are working with the special case of deadline functions. A deadline function is a
delay function that is 0 up until some time d, called the deadline, and ∞ afterwards. When
the deadline of a request is reached, the algorithm must ensure that the request is matched.

At t = 0, request r1 reaches its deadline and hence the algorithm will need to match
two requests. Since the algorithm is non-clairvoyant, the algorithm has no knowledge of the
deadlines of future requests. We therefore assume without loss of generality that it matches
r1 to r3 and pays a distance cost of ϵ. At t = 1, r2 reaches its deadline and the algorithm is
forced to match it to r4 at a distance cost of D. At t = 2, the final two requests will arrive
and instantly reach their deadline. The algorithm will consequently need to match r5 to r6
at a distance cost of D. The total cost of ALG is 2D + ϵ.

The optimal offline solution OPT is to match r1 to r2 and match locally at t = 2 on points
p3 and p4. The total cost of OPT is therefore ϵ. The competitive ratio of the algorithm is
Ω(D/ϵ) and D/ϵ is the aspect ratio of the metric space, as desired. ◀

4 An Online Reduction from MPMD-Set to MTS

In this section, we prove Theorem 2 by defining a reduction from MPMD-Set to MTS.
We start by translating an arbitrary instance of MPMD-Set into an instance of MTS in
Section 4.1. In Section 4.2, we show that we can transform an arbitrary MPMD-Size-MTS
solution into a monotone solution of the same or less cost. As observed in the Introduction,
a monotone schedule directly corresponds to a solution for the online matching with delay
problem of equal cost. This completes the proof of Theorem 2. We finish this section with a
proof of Corollary 3.

4.1 Translating an instance of MPMD-Set into and instance of MTS
We define the set of internal states of the MTS instance to be the set of all possible subsets
of the requests that have arrived so far in the MPMD-Set instance. In order to define the
transition cost associated with moving between states, we define the following graph.

APPROX/RANDOM 2023

17:8 Online Matching with Set and Concave Delays

▶ Definition 10 (Transition graph G). The nodes of G are the states of the MPMD-Set-MTS
instance. We define an undirected edge (S, S′) ∈ E between states S and S′ if S = S′ ∪ {r, r′}
and define its cost c(S, S′) to be d(r, r′). Paths in the transition graph are called transition
paths.

We define the transition cost c(S, S′) of moving between arbitrary states S and S′ in the
MTS instance to be the cost of the shortest path between them in the transition graph G.
Note that a path in G between states S, S′ corresponds to a sequence of transitions from S to
S′, where each edge in the path corresponds to a transition that either adds two requests or
removes two requests. Also, note that any schedule σ, produced by an online MTS algorithm,
corresponds to a path in the metric completion of G and the total transition cost incurred
by σ is simply the total cost of the path. Each task in the MTS instance is associated with a
given timestep in the MPMD-Set problem. The cost vector associated with each task is, for
every state S, the instantaneous delay cost accumulated by the set of requests not in S.

▶ Definition 11 (Ri). We define Ri to be the set of requests that have arrived up to and
including timestep i in the original MPMD-Set instance.

The total cost of a schedule σ = (S0, ..., ST) can be expressed as follows.

cost(σ) =
T −1∑
i=0

c(Si, Si+1) + fi(Ri \ Si).

By construction, the cost associated with processing the tasks represent the delay cost
incurred by the requests, while the distance cost is represented by the transition costs
associated with moving between states.

4.2 Size-based delay functions admit monotone scheduling algorithms
In this subsection, we prove the existence of an online algorithm that converts an arbitrary
MPMD-Size-MTS solution into a monotone solution, without incurring any extra cost.

▶ Lemma 12. There exists an online algorithm that converts an arbitrary MPMD-Size-MTS
solution into a monotone solution of the same or less cost.

Proof. To prove Lemma 12, we define an online state conversion algorithm (Sensible-ALG)
which, for every state Si in a schedule σ, produced by an arbitrary online scheduling algorithm
(OSA), produces a state S′

i such that the cost of the schedule σ′ = (S′
0, . . . , S′

|σ|) is at most
the cost of the original schedule σ, and σ′ is monotone.

The state conversion algorithm aims to maintain the invariant that |S′
i| ≥ |Si| and the

main property of a monotone schedule, which is that S′
i−1 ⊆ S′

i for every i. At a high
level, it does this by adding requests to its current state when the invariant is violated that
allows it to also move closer to the current state of σ. The algorithm Sensible-ALG uses the
following analog of the symmetric difference of two matchings to augment its current state
in a cost-efficient manner.

▶ Definition 13 ((A, B)-difference graph). Let H be a (multi-)graph with vertex set R, and
A, B be states. The graph H is an (A, B)-difference graph if it is a T -join with T = A △ B:
for every r ∈ R, the degree of r in H is odd if and only if r ∈ A △ B.

For example, one way to obtain an (A, B)-difference graph is by taking a perfect matching
MA on A and a perfect matching MB on B and then taking the symmetric difference of MA

and MB .

L. Deryckere and S. W. Umboh 17:9

▶ Definition 14 (P -difference graph and realisable difference graphs). Let A, B be states and
P be a transition path between A and B. The P -difference graph diff(P) is a (multi-)graph
on vertex set R where the multiplicity of the edge (p, q) is equal to the number of transitions
along the path P that adds or removes the {p, q}. An (A, B)-difference graph H is realisable
if it is the P -difference graph for a transition path P between A, B.

Note that if P is a transition path between states A, B, then a P -difference graph is an
(A, B)-difference graph. Moreover, if P is a shortest path between S and S′, then the total
cost of the edges in diff(P) is exactly equal to c(S, S′). We also note that not all difference
graphs are realisable2

We now characterise the structure of difference graphs that correspond to shortest paths
in the transition graph.

▶ Definition 15 (Canonical difference graphs). Let H be an (A, B)-difference graph. We say
that H is canonical if it can be decomposed into a collection of ℓ := |A △ B|/2 edge-disjoint
paths Q1, . . . , Qℓ between disjoint pairs (pi, qi) of A △ B such that for each i, Qi consists of
a single edge (pi, qi) if either both p, q are in A \ B or both in B \ A, and Qi consists of two
edges (p, s), (s, q) for some other request s if exactly one of p, q is in A \ B and the other in
B \ A.

▶ Proposition 16. If H is a canonical (A, B)-difference graph, then H is realisable.

Proof. We show by induction on ℓ = |A △ B|/2 that there is a transition path P from A to
B. Consider the base case ℓ = 1. Suppose Q1 consists of a single edge (p, q). If p, q ∈ A \ B,
then we can transition directly from A to B by removing p, q; otherwise, we add p, q. Next,
suppose that Q1 consists of two edges (p, s), (s, q). Consider the case that p ∈ A \ B and
q ∈ B \ A. If s ∈ A ∩ B, then we can transition from A to B by first removing p, s and then
adding s, q; otherwise we first add s, q and then remove p, s. The case when q ∈ A \ B and
p ∈ B \ A follows similarly. In all of these cases, we have that H is exactly the P -difference
graph where P is the transition path corresponding to the sequence of transitions used.

Suppose the statement is true for ℓ up to k − 1 and let H be a canonical difference graph
with k edge-disjoint paths. Let A′ be the state after executing the above procedure on Q1
and P1 be the transition path corresponding to the sequence of transitions from A to A′. As
argued above, Q1 is the P1-difference graph. Since H \ Q1 is a canonical (A′, B)-difference
graph with k − 1 edge-disjoint paths, we can apply induction to get a transition path P2
from A′ to B such that H \ Q1 is the P2-difference graph. By concatenating P1 and P2, we
get a transition path P from A to B. Moreover, H is the P -difference graph, as desired. ◀

▶ Lemma 17. Let A, B be states. There exists a shortest path P in the transition graph
between A, B such that diff(P) is canonical.

Proof. Since diff(P) is an (A △ B)-join, it contains a collection of ℓ := |A △ B|/2 edge-disjoint
paths Q1, . . . , Qℓ connecting disjoint pairs of requests pi, qi ∈ A △ B.

We now shortcut these paths to produce a canonical (A, B)-difference graph H. In
particular, for each i, if pi, qi ∈ A \ B or pi, qi ∈ B \ A, add the edge (pi, qi) to H; otherwise,
pi ∈ A \ B and qi ∈ B \ A (or vice versa), there must be an intermediate node si on the path

2 For example, consider the difference graph H consisting of requests p, q, r and edges (p, q) and (q, r).
Observe that H is an ({p, r}, ∅)-difference graph but there is no transition path P from {p, r} to ∅ such
that diff(P) = H.

APPROX/RANDOM 2023

17:10 Online Matching with Set and Concave Delays

Qi and we add the edges (pi, si), (si, qi). The existence of si is because if Qi only consists of
a single edge (pi, qi) then pi and qi must be both in A \ B or B \ A, otherwise the transition
in P that adds or removes pi, qi is invalid.

By triangle inequality, the total cost of the edges in H is at most that of Q1 ∪ · · · ∪ Qℓ

which in turn is contained in diff(P). Since H is a canonical (A, B)-difference graph, there
exists a transition path P ′ with diff(P ′) = H. Since c(P ′) is equal to the total cost of the
edges in diff(P ′) = H, we get the lemma. ◀

▶ Proposition 18. Let A, B be states such that |A| = |B| + 2. Let P be a shortest path
in the transition graph between A, B such that diff(P) is canonical and Q1, . . . , Qℓ be the
corresponding collection of |A △ B|/2 edge-disjoint paths connecting disjoint pairs of A △ B.
Then, one such path Qi is a single edge (p, q) with p, q ∈ A \ B.

This proposition follows from the fact that |A \ B| = |B \ A| + 2 and so there must be a path
Qi connecting p, q ∈ A \ B. By definition of canonical difference graphs, Qi is a single edge
(p, q).

We are now ready to formally define Sensible-ALG.

Description of Sensible-ALG. Our online algorithm takes as input a sequence of states
σ = (S1, . . . , S|σ|) produced by an online scheduling algorithm. We assume that σ satisfies
that for all 0 ≤ i < |σ|−1, Si and Si+1 are neighbours in G. This is without loss of generality:
if the input schedule does not satisfy these properties then we can add intermediate timesteps
and all states on the shortest path between Si and Si+1 such that it satisfies the above
property, and the cost remains the same. When a new state Si arrives, if |Si| ≤ |S′

i−1|, the
algorithm sets S′

i = S′
i−1; otherwise, it computes a shortest transition path P between Si

and S′
i−1 such that diff(P) is canonical, and sets S′

i = S′
i−1 ∪ {p, q} where p, q ∈ Si \ S′

i−1
and (p, q) is a path in the path decomposition of diff(P).

Since Sensible-ALG always transitions to a state that is a superset of its previous state,
its solution σ′ is monotone.

Next, we analyse the transition cost of σ′.

▶ Lemma 19.
∑|σ|−1

i=0 c(S′
i−1, S′

i) ≤
∑|σ|−1

i=0 c(Si−1, Si).

Proof. We prove this lemma by introducing the potential ϕi = c(Si, S′
i).

We claim that in each iteration i, the transition cost of σ′ is at most the transition cost
of σ plus the decrease in the potential.

▷ Claim 20. For all i, we have c(S′
i−1, S′

i) ≤ c(Si−1, Si) − (ϕi − ϕi−1).

Proof of Claim 20. By triangle inequality, we have

c(Si, S′
i−1) ≤ c(Si−1, Si) + c(Si−1, S′

i−1). (1)

Next, we will show that

c(S′
i−1, S′

i) ≤ c(Si, S′
i−1) − c(Si, S′

i). (2)

Combining these two inequalities yields the claim.
Observe that Inequality (2) holds when S′

i = S′
i−1. Suppose S′

i ̸= S′
i−1. In this case,

the algorithm computes the shortest path P between Si and S′
i−1 that is canonical and set

S′
i = S′

i−1 ∪ {p, q} where p, q ∈ Si \ S′
i−1 and (p, q) is a path in the path decomposition of

diff(P). We have that diff(P) \ (p, q) is a canonical (Si, S′
i)-difference graph and thus, by

L. Deryckere and S. W. Umboh 17:11

Proposition 16, corresponds to a transition path between Si, S′
i with length c(Si, S′

i−1) −
c(p, q) = c(Si, S′

i−1) − c(S′
i−1, S′

i). Thus, c(Si, S′
i) ≤ c(Si, S′

i−1) − c(S′
i−1, S′

i). Rearranging
this inequality yields Inequality (2). This completes the proof of the claim. ◁

Using Claim 20, we determine the total transition cost incurred by σ′ as follows.

|σ|∑
i=1

c(S′
i−1, S′

i) ≤
|σ|∑
i=1

c(Si−1, Si) −
|σ|∑
i=1

(ϕi − ϕi−1)

=
|σ|∑
i=1

c(Si−1, Si) − ϕ|σ| + ϕ0

≤
|σ|∑
i=1

c(Si−1, Si).

The last inequality holds because ϕ0 = 0 and the potential is non-negative. ◀

The cost of an MPMD-Set-MTS solution consists of the transitions cost, as well as the
processing cost. Since in every iteration i, we have |S′

i| ≥ |Si| and the processing cost of a
state is a monotone non-increasing function of the size of the state, we get that the total
processing cost of σ′ is at most that of σ. Together with Lemma 19, we get that the total
cost of σ′ is at most that of σ. This concludes the proof of Lemma 12. ◀

4.3 Applying MTS Algorithms to MPMD-Set-MTS
In this section, we prove Corollary 3. Consider an instance of MPMD-Set with m requests
in a metric space of n points and the instance of MPMD-Set-MTS created by applying
Theorem 2. Let N be the number of states of the MPMD-Set-MTS instance.

There are two issues that arise when applying MTS algorithms to MPMD-Set-MTS
directly.

4.3.1 Eliminating the Diameter
The first issue is that all known MTS algorithms have a cost bound of the form f(N) ·
cost(OPT) + D where OPT is the optimal MTS solution and D is the diameter of the MTS
state space. Observe that D is at least the distance between the empty matching and the
max-cost perfect matching, i.e. the cost of the max-cost perfect matching. Unfortunately, the
cost of the max-cost perfect matching can be much larger than that of the optimal solution.
To overcome this, one could restrict the MTS solution to only use states whose distance
from the initial state is at most cost(OPT). This can be achieved by setting the costs of the
other states to be infinite. This effectively reduces the diameter of the state space to at most
2 · cost(OPT), and would give us a cost bound of O(f(N)) · cost(OPT) + 2 · cost(OPT). The
issue is that, since the MTS tasks arrive in an online fashion, the optimal solution remains
unknown until all tasks have arrived. To address this issue we use the Guess-and-Double
Method, which, maintains a guess of the value of the optimal solution as the tasks are
processed. This guess is used to determine the diameter of the state space used by the
algorithm. When the guess becomes too small, the value of the guess is increased and the
algorithm is simulated on the input that has already been processed, only this time on the
larger state space, to determine the state it would now be in, and processes the new tasks
accordingly. For the benefit of the reader, we give a high level overview of the method below.

APPROX/RANDOM 2023

17:12 Online Matching with Set and Concave Delays

The Guess-and-Double Method. Let R = [r1, r2, ...rT] be the sequence of tasks given by
the MTS problem. Let OPTt be the cost of the optimal solution for processing the tasks
that have arrived up to and including time t. At any time t we maintain a guess j such that

2j−1 < OPTt ≤ 2j . (3)

When our guess j no longer satisfies (3) we increase it’s value (thus doubling the radius
of the metric space) until it is back within our bounds. Each new guess instantiates a new
phase. At the start of each phase, we restart the MTS algorithm with a superset of the
previous state space, which now consists of all states within distance 2j from the original
start state. Note that by restart we mean that we simulate the MTS algorithm with the new
diameter on all tasks that have arrived so far, and process the new tasks in accordance with
the decisions made by the algorithm with the new diameter.

Our initial guess j satisfies 2j−1 < OPT1 ≤ 2j . We define MTSj to be the MTS algorithm
that operates on the given state space with diameter 2j . Let Rt = [r1, ..., rt] be the sequence
of tasks that have arrived up to and including timestep t. We define MTSj(Rt) to be the
state MTSj would end up in after processing Rt. The Guess-and-Double method, for every
timestep t, maintains a guess j that satisfies (3), and moves to MTSj(Rt).

Algorithm 1 Updating the guess and splitting the tasks into phases.

1 Initialise the first phase.
2 Choose j such that 2j−1 < OPT1 ≤ 2j .
3 for Every timestep t do
4 if 2j−1 < OPTt ≤ 2j then
5 Move to state MTSj(Rt)
6 end
7 else
8 End the previous phase and initialise a new phase.
9 Update the value of j such that 2j−1 < OPTt ≤ 2j .

10 Move to state MTSj(Rt)
11 end
12 end

Note that each time we update the value of our guess, the value of the optimal solution
has at least doubled since we made our last guess.

To analyse the total cost of the resulting schedule we look at two separate costs. The first
is the cost incurred within each phase. This includes the transition costs incurred during the
phase (from moving between states), plus the cost associated with servicing all tasks that
arrived during the phase in the states the algorithm moved through during the phase. We
refer to this cost as the internal phase cost. The second cost consist of the transition costs
incurred in moving between the last state of a phase i, and the first state of the consecutive
phase i + 1. We refer to this cost as the external phase cost.

We start by bounding the internal phase cost. Let cost(MTSj) denote the internal phase
cost of the phase associated with guess j. Because cost(MTSj) can be upper bounded by
the cost the algorithm would have incurred for processing all tasks that arrived prior to and
during the phase associated with guess j, we can bound cost(MTSj) as follows:

cost(MTSj) ≤ (O(f(N)) + 2) · cost(OPTj).

L. Deryckere and S. W. Umboh 17:13

Therefore, the total internal phase cost incurred over all k phases is

k∑
i=1

ALGi ≤ (O(f(N)) + 2) ·
k∑

i=1
cost(OPTi)

≤ 2 · (O(f(N)) + 2) · cost(OPTk).

Next, we bound the external phase cost. Let Si be the last state of a given phase i,
associated with a guess j, and let S′

i+1 be the first state of phase i + 1, associated with the
next guess j′. We bound c(Si, S′

i+1)3 as follows:
Let S0 be the empty start state.

c(Si, S′
i+1) ≤ c(Si, S0) + c(S′

i+1, S0).

For all consecutive phases i and i + 1, associated with guesses j and j′ respectively, it holds
that

c(Si, S0) ≤ (O(f(N)) + 2) · cost(OPTi)

and

c(S′
i+1, S0) ≤ (O(f(N)) + 2) · cost(OPTi+1).

We thus bound the cost over all k − 1 phase transitions as follows

k−1∑
i=1

c(Si, S′
i+1) ≤ 2 ·

k−1∑
i=1

(O(f(N)) + 2) · cost(OPTi+1)

≤ 4 · (O(f(N)) + 2) · cost(OPTk).

The total cost of the solution produced by the Guess-and-Double method can thus be bounded
by 6 · (O(f(N)) + 2) · cost(OPTk).

We can now use the O(N)-competitive deterministic algorithm of [15] to obtain our
deterministic algorithm for MPMD-Size.

4.3.2 The Need for an Online Embedding
The second issue stems from the fact that the reduction in Theorem 2 creates an MTS
instance where the states are arriving over time. This is because the states correspond to
matchings of requests and the requests are arriving online. This does not pose a problem for
the deterministic O(N)-competitive Work Function Algorithm of [15]. However, we cannot
directly apply the current-best randomised algorithm for MTS of [16] as it pre-computes a
probabilistic embedding of the MTS metric space into a hierarchically separated tree (HST).
Instead, we need to use a probabilistic online embedding into a HST together with the
O(log N)-competitive randomized algorithm for MTS on HSTs of [16]. Using the online
embedding of [24] adds a factor of O(log N log Φ) where Φ is the ratio of the largest distance
to the smallest distance in the MTS state space, i.e. the aspect ratio. However, Φ can be
arbitrarily large. We deal with this by proving that the Abstract Network Design Framework
of [10] can be extended to apply to MTS. For the benefit of the reader, we give a short
overview of the Abstract Network Design Framework.

3 Recall that we denote the transition cost of going from state Si to S′
i+1 by c(Si, S′

i+1).

APPROX/RANDOM 2023

17:14 Online Matching with Set and Concave Delays

The Abstract Network Design Framework. In an instance of abstract network design,
the algorithm is given a connected graph G(V, E) with edge lengths d : E → R+. At each
timestep i, a requests that consists of a set of points in the graph, called terminals, arrive
in an online fashion. The algorithm provides a response Ri = (Gi, Ci), which consists of a
subgraph Gi ⊆ E, and a connectivity list Ci, which is an ordered subset of terminal pairs
from the terminals that have arrived so far, and determines what will become (and remain)
connected from this timestep onwards. The algorithm is given, at each timestep, a feasibility
function Fi : (C1, ..., Ci) → {0, 1} that maps a sequence of connectivity lists to either 0
(infeasible) or 1 (feasible). A solution Si, which consists of a sequence of responses for every
time step up to and including timestep i, is feasible if Fi(C1, ..., Ci) = 1 and all pairs in Cj

are connected in all Gi for all i ≥ j. To determine the cost of a solution to the first i requests
Si, the framework uses a load function ρi : 2{1,...,i} → R+, which takes as input the sequence
of timesteps in which the edge was used, and outputs a corresponding multiplier to the cost
of an edge d(e). It aims to model how the cost of using an edge grows as the edge is used
multiple times. The function must be subadditive, monotone non-decreasing, and satisfy
ρi(I) = 0 if and only if I = ∅. The total cost of a solution Si is defined as follows.

cost(Si) =
∑
e∈E

d(e) · ρ({j ≤ i : e ∈ Gj})

Extending the Abstract Network Design Framework. Though we can express the transition
cost of an instance of general MTS using this framework, we cannot express the cost vectors
associated with processing the tasks in MTS in the current state of the framework. In order
to address this issue, we propose the following alterations to generalise the framework.

We replace the feasibility function with a function F ′
i : (C1, ..., Ci) → R+, where

F ′
i (C1, ..., Ci) is the processing cost of the algorithm during timestep i if the solution

Si = ((G1, C1), . . . , (Gi, Ci)) is feasible, and ∞ otherwise.
We now re-define the cost of a solution to the first i requests Si to incorporate the total

processing cost incurred by the algorithm.

cost(Si) =
∑
e∈E

d(e) · ρ({j ≤ i : e ∈ Gj} +
i∑

l=1
F ′(C1, . . . , Cl)

Since the processing cost provided to the algorithm is independent of the metric space, it
follows that the processing cost remains unaffected by the online embedding. It therefore
does not affect the overhead due to the online embedding.

Note that the extension of this framework means it can now be used to model online
problems with delay, where the delay cost can be modelled as the processing cost.

Expressing MTS in the Abstract Network Design Framework. It remains to formulate the
general MTS problem in the Extended Abstract Network Design Framework defined above.

We define the terminal set of the ith request to be the set of states that have arrived so
far. We define the cost of an edge d((u, v)) to be the transition cost between states u, v. Let
Ti be the cost vector associated with processing task i, and Ti(w) be the cost of processing
task i in state w. Let v be the last terminal in Ci. The extended feasibility function Fi is
defined by Fi(C1, . . . , Ci) = Ti(v) if there is only a single ordered pair in each Cj for all j ≤ i

and the sequence of (C1, . . . , Ci) is a valid path. The load function is simply the cardinality
function because we pay the transition cost associated with the edge each time we transition
to a different state.

L. Deryckere and S. W. Umboh 17:15

Min-operator. Bartal et al. [10] show that if the problem can be captured by the Abstract
Network Design Framework and admits a min-operator, it is possible to reduce the overhead
due to the online embedding to O(log3 N).

▶ Definition 21 (Min-operator). An algorithm admits a min-operator with factor µ ≥ 1 if
there exists a competitive algorithm4 for the problem, and for any two deterministic online
algorithms A and B5, there exists a third online deterministic algorithm C such that the
cost of C satisfies cost(C) ≤ µ · min{cost(A), cost(B)}, where cost(A) and cost(B) are the
respective costs of algorithms A and B. If either algorithms A or B are randomised, the
expected cost of C must satisfy E[cost(C)] ≤ µ · min{E[cost(A)], E[cost(B)]}.

We have shown that the results by Bartal et al. [10] also hold for the extended Abstract
Network Design Framework. Since the MTS problem in general admits a min-operator [2],
using the framework of [10] allows us to reduce the overhead due to the online embedding to
O(log3 N) for an overall competitive ratio of O(log4 N).

References
1 Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul

Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with
delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2017, volume 81 of LIPIcs, pages 1:1–1:20. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.1.

2 Yossi Azar, Andrei Z. Broder, and Mark S. Manasse. On-line choice of on-line algorithms. In
Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
pages 432–440. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.
313847.

3 Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the com-
petitiveness of min-cost perfect matching with delays. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1051–1061. SIAM, 2017.
doi:10.1137/1.9781611974782.67.

4 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay –
Clairvoyance is not required. In Proceedings of the 28th Annual European Symposium on
Algorithms, ESA 2020, volume 173 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2020.

5 Yossi Azar, Yuval Emek, Rob van Stee, and Danny Vainstein. The price of clustering in
bin-packing with applications to bin-packingwith delays. In Proceedings of the 31st ACM on
Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, pages 1–10. ACM,
2019. doi:10.1145/3323165.3323180.

6 Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. Theory
Comput. Syst., 64(4):572–592, 2020. doi:10.1007/s00224-019-09963-7.

7 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. ACM
Trans. Algorithms, 17(3):23:1–23:31, 2021. doi:10.1145/3459925.

8 Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays
problem. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, pages 301–320. SIAM, 2021. doi:10.1137/1.9781611976465.20.

4 This algorithm may be randomised.
5 Note that these algorithms need not be competitive on all instances of the problem.

APPROX/RANDOM 2023

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.1
http://dl.acm.org/citation.cfm?id=313559.313847
http://dl.acm.org/citation.cfm?id=313559.313847
https://doi.org/10.1137/1.9781611974782.67
https://doi.org/10.1145/3323165.3323180
https://doi.org/10.1007/s00224-019-09963-7
https://doi.org/10.1145/3459925
https://doi.org/10.1137/1.9781611976465.20

17:16 Online Matching with Set and Concave Delays

9 Yossi Azar and Noam Touitou. Beyond tree embeddings – A deterministic framework for
network design with deadlines or delay. In Sandy Irani, editor, Proceedings of the 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 1368–1379. IEEE,
2020. doi:10.1109/FOCS46700.2020.00129.

10 Yair Bartal, Nova Fandina, and Seeun William Umboh. Online probabilistic metric embedding:
A general framework for bypassing inherent bounds. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1538–1557. SIAM, 2020. doi:
10.1137/1.9781611975994.95.

11 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. Online algorithms
for multilevel aggregation. Oper. Res., 68(1):214–232, 2020. doi:10.1287/opre.2019.1847.

12 Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual online
deterministic algorithm for matching with delays. In Approximation and Online Algorithms –
Proceedings of the 16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-24,
2018, Revised Selected Papers, volume 11312 of Lecture Notes in Computer Science, pages
51–68. Springer, 2018. doi:10.1007/978-3-030-04693-4_4.

13 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine: Determ-
inistic online matching with delays. In Approximation and Online Algorithms – Proceedings of
the 15th International Workshop, WAOA 2017, volume 10787 of Lecture Notes in Computer
Science, pages 132–146. Springer, 2017. doi:10.1007/978-3-319-89441-6_11.

14 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line.
In Zvi Lotker and Boaz Patt-Shamir, editors, Structural Information and Communication
Complexity – Proceedings of the 25th International Colloquium, SIROCCO 2018, Ma’ale
HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, volume 11085 of Lecture Notes
in Computer Science, pages 237–248. Springer, 2018. doi:10.1007/978-3-030-01325-7_22.

15 Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical
task system. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

16 Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems
on trees via mirror descent and unfair gluing. SIAM J. Comput., 50(3):909–923, 2021.
doi:10.1137/19M1237879.

17 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, pages 1235–1244. SIAM, 2017. doi:10.1137/
1.9781611974782.80.

18 Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint
replenishment problem with delay. In Proceedings of the 49th International Colloquium on
Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 40:1–40:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

19 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, pages 333–344. ACM, 2016. doi:10.1145/2897518.2897557.

20 Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays
for two sources. Theor. Comput. Sci., 754:122–129, 2019. doi:10.1016/j.tcs.2018.07.004.

21 Leah Epstein. On bin packing with clustering and bin packing with delays. Discret. Optim.,
41:100647, 2021. doi:10.1016/j.disopt.2021.100647.

22 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995. doi:10.1137/
S0097539793242618.

23 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1137/1.9781611975994.95
https://doi.org/10.1137/1.9781611975994.95
https://doi.org/10.1287/opre.2019.1847
https://doi.org/10.1007/978-3-030-04693-4_4
https://doi.org/10.1007/978-3-319-89441-6_11
https://doi.org/10.1007/978-3-030-01325-7_22
https://doi.org/10.1145/146585.146588
https://doi.org/10.1137/19M1237879
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1016/j.tcs.2018.07.004
https://doi.org/10.1016/j.disopt.2021.100647
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1145/3357713.3384277

L. Deryckere and S. W. Umboh 17:17

24 Piotr Indyk, Avner Magen, Anastasios Sidiropoulos, and Anastasios Zouzias. Online em-
beddings. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, 13th International Workshop, APPROX 2010, and proceedings of the 14th
International Workshop, RANDOM 2010, volume 6302 of Lecture Notes in Computer Science,
pages 246–259. Springer, 2010.

25 Predrag Krnetic, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. The k-server problem
with delays on the uniform metric space. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020,
December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages
61:1–61:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ISAAC.2020.61.

26 Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for
multi-level aggregation and set cover with delay. In Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2023. To appear.

27 Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online matching. In
Proceedings of the 29th International Symposium on Algorithms and Computation, ISAAC 2018,
volume 123 of LIPIcs, pages 62:1–62:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.ISAAC.2018.62.

28 Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay.
In Proceedings of the 32nd International Symposium on Algorithms and Computation, ISAAC
2021, volume 212 of LIPIcs, pages 53:1–53:16. Schloss Dagstuhl – Leibniz-Zentrum für Inform-
atik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.53.

APPROX/RANDOM 2023

https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://doi.org/10.4230/LIPIcs.ISAAC.2018.62
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53

	1 Introduction
	1.1 Our Techniques
	1.2 Related Work

	2 Preliminaries
	2.1 Min-cost Perfect Matching with Delay

	3 A Lower Bound for MPMD-Set
	4 An Online Reduction from MPMD-Set to MTS
	4.1 Translating an instance of MPMD-Set into and instance of MTS
	4.2 Size-based delay functions admit monotone scheduling algorithms
	4.3 Applying MTS Algorithms to MPMD-Set-MTS
	4.3.1 Eliminating the Diameter
	4.3.2 The Need for an Online Embedding

