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Abstract
We consider the Generalized Makespan Problem (GMP) on unrelated machines, where we are given
n jobs and m machines and each job j has arbitrary processing time pij on machine i. Additionally,
there is a general symmetric monotone norm ψi for each machine i, that determines the load on
machine i as a function of the sizes of jobs assigned to it. The goal is to assign the jobs to minimize
the maximum machine load.

Recently, Deng, Li, and Rabani [8] gave a 3 approximation for GMP when the ψi are top-k
norms, and they ask the question whether an O(1) approximation exists for general norms ψ? We
answer this negatively and show that, under natural complexity assumptions, there is some fixed
constant δ > 0, such that GMP is Ω(logδ n) hard to approximate. We also give an Ω(log1/2 n)
integrality gap for the natural configuration LP.
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1 Introduction

We consider a question by Deng, Li and Rabani [8] about scheduling jobs to minimize
makespan on unrelated machines in the setting of more general norms. Recall that in the
unrelated machines setting, we are given n jobs and m machines where each job j ∈ [n]
has some arbitrary processing time pij on machine i ∈ [m]. Given an assignment of jobs to
machines, the load on a machine is the sum of the processing times of all the jobs assigned
to it. In a seminal result, Lenstra, Shmoys and Tardos [14] gave a 2-approximation for
minimizing the makespan (the maximum machine load). These results were later extended
to the problem of minimizing the ℓp-norm of the machine loads [1, 4, 13, 16].

In a breakthrough work [5], Chakrabarty and Swamy introduced a substantial gener-
alization of the problem to general symmetric monotone norms. Recall that a function
ϕ : Rm → R≥0 is a norm if it satisfies (i) ϕ(u) = 0 iff u = 0n, (ii) ϕ(αu) = |α|u for all u
and α ∈ R and, (iii) ϕ(u + v) ≤ ϕ(u) + ϕ(v). We say that ϕ is symmetric if ϕ(u) = ϕ(u′)
where u′ is some permutation of u, and it is monotone if ψ(u) ≤ ψ(v) for all u, v satisfying
0 ≤ u(i) ≤ v(i) for all i ∈ [m].

Surprisingly, they showed that for any arbitrary symmetric monotone norm ϕ : Rm → R≥0,
that determines the overall objective as a function of the individual machine loads, there is
an O(1) approximation. The approximation ratio was subsequently improved to 4 + ϵ [6]
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and more recently to 2 + ϵ [11], which remarkably almost matches the bound for makespan.
These results introduce several new ideas to handle general norms by relating them to the
special class of top-k norms1, and algorithmic techniques to work with them.

General inner and outer norms. An even further generalization was considered by Deng,
Li and Rabani [8], which we refer to as the generalized load-balancing (GLB) problem. Here,
additionally, each machine i also has an arbitrary symmetric monotone norm ψi : Rn → R≥0
referred to as the inner-norm, that determines the machine’s load as a function of the sizes
of the jobs assigned to it (note that all the results described previously have inner norm
ℓ1). Formally, given an assignment ρ : [n] → [m] of jobs to machines, the load on machine
i is load(i) = ψi(pρ

i ) where pρ
i is the vector of sizes of jobs assigned to i, i.e., pρ

i (j) = pij if
ρ(j) = i and 0 otherwise. The overall objective is ϕ(load), where load = (load(1), . . . , load(m))
is the vector of machine loads (where ϕ : Rm → R≥0 is the norm as in [5]). We shall refer
to ϕ as the outer-norm. Throughout this paper a general norm always means a symmetric
monotone norm.

In its full generality (when the ψi and ϕ are general), GLB becomes Ω(logn) hard
to approximate, as it generalizes2 the Set Cover problem when ψ = ℓ∞ and ϕ = ℓ1.
Interestingly, [8] gave a matching O(logn) approximation for general ψ and ϕ, based on
solving and rounding a novel configuration LP.

Generalized Makespan Problem (GMP). Given the Ω(logn) hardness for the general
case, [8] also consider the interesting and natural special case where the outer-norm ℓ∞, but
the inner norm is general (i.e., the goal is to minimize makespan but where the machine loads
are given by general inner-norms ψi). We refer to this problem as the Generalized Makepsan
Problem (GMP). In a sense, this problem can be considered as a “dual” of the problem
considered by Chakrabarty and Swamy (where the inner-norm is ℓ1, but the outer-norm is
general).

For GMP, Deng, Li and Rabani gave a 3-approximation for the special case when each
ψi is a top-k norm. The main open question they ask is whether an O(1) approximation
is achievable for general inner-norms. Apriori this seems quite plausible as there is close
connection between top-k norms and general norms (see e.g. [5, 6]). Moreover, the O(1)
approximation of Chakrabarty and Swamy [5] for the “dual” problem, also suggests that
GMP may have an O(1) approximation.

Our Results
Our main result is that GMP does not admit an O(1)-approximation under standard
complexity-theoretic assumptions, answering the main open problem in [8].

Our starting point is an integrality gap instance for the natural configuration LP for
GMP.

▶ Theorem 1. There is an instance of GMP with a symmetric monotone norm ψ, for which
the natural configuration LP has an integrality gap of Ω((logn)1/2).

1 The top-k norm of a non-negative vector v is the sum of its largest k entries.
2 Given subsets S1, . . . , Sm of [n], consider the scheduling instance on m machines (one per set) and n

jobs (one per element), with pij = 1 iff element j ∈ Si and pij = ∞ otherwise. That is, only jobs in Si

can be assigned to i. The point is that as ψ = ℓ∞, we have load(i) = 0 if no job is assigned to i, and
exactly 1 otherwise (even if all jobs in Si are assigned to i). As ϕ = ℓ1, the objective is exactly the
number of machines (sets) needed to cover all the jobs.
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The gap instance is based on a probabilistic construction and a key idea is to work with
a suitably chosen norm ψ, defined as the sum of top-k norms at various different scales, that
interacts nicely with properties of random set cover instances. This construction is described
in Section 3, and it forms a key gadget in our following hardness result.

▶ Theorem 2. There is a universal constant δ > 0, such that any polynomial-time ap-
proximation algorithm for GMP has approximation ratio Ω(logδ n) provided that NP ̸⊆
ZTIME(nO(log log n)).

Our construction for this hardness result builds on the ideas of Lund and Yannakakis
[15], who showed the Ω(logn) hardness of Set Cover by a gap reduction from the Label
Cover problem. However, we require some additional ideas as reducing the Label Cover
problem to a scheduling instance and exploiting the properties of the norm ψ requires much
more care. Specifically, even though our gadget in Theorem 1 has the Ω((logn)1/2) gap,
embedding it into Label Cover imposes extra constraints on the number of labels in the
Label Cover instance, and only leads to an Ω(logδ n) hardness, for some constant δ > 0.
Interestingly, this constant δ depends on the soundness parameter of label cover as a function
of the number of labels, based on Raz’s parallel repetition theorem [18] and its subsequent
improvements [10, 17].
▶ Remark. The constant δ can be computed explicitly, but we do not attempt to do this
here. This construction is described in Section 4. We remark that there are extensive work
on improving the soundness in PCP constructions as a function of the number of labels. The
best known result in this direction is due to Chan [7] that achieves soundness roughly L−1/2

for L labels. However, Chan’s result does not have perfect completeness and hence cannot
be used in our constructions. Roughly speaking, this is because each job must be assigned to
some machine (this is similar to the reason that one requires perfect completeness in reducing
label cover to set cover, as each element must be covered).
▶ Remark. In personal communication, Amey Bhangale has pointed out that in an unpublished
manuscript, they can show that assuming the 2-to-2 conjecture with perfect completeness,
there is a label cover instance with L labels that has perfect completeness and soundness
L−1/2. Using a such a label cover, our construction in Section 4 would imply a hardness of
Ω(log1/8 n) in Theorem 2. We note that currently, proving the 2-to-2 conjecture with perfect
completeness remains open, and in particular the breakthrough results of Khot, Minzer and
Safra [12] on the 2-to-2 conjecture assume imperfect completeness.

2 Preliminaries

2.1 (n, m, ℓ, β) Set-System
The constructions of the integrality gap instance in Section 3 and the reduction from label
cover to GMP presented in Section 4 both use the following set system as a building block.

▶ Definition 3 ((n,m, ℓ, β) Set-system). Let n,m, ℓ be positive integers, β ∈ (0, 1), U be a set
with |U | = n, and A1, . . . , Am be subsets of U . The sets (U ;A1, . . . , Am) form an (n,m, ℓ, β)
set-system if for every set I of at most ℓ indices from [m], |∪i∈IBi| ≤ (1 − β)|U |, where Bi

is either Ai or Ai.

Intuitively, an (n,m, ℓ, β) set-system has the property that any set cover which uses at
most ℓ subsets necessarily uses a complementary pair of subsets Ai and Ai. Moreover, any
collection of at most ℓ subsets that do not contain any complementary pair can cover at most

APPROX/RANDOM 2023
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a (1 − β) fraction of the elements in U . The following lemma shows that for a particular
choice of parameters n,m, ℓ, and β, there is a simple and efficient randomized construction
of an (n,m, ℓ, β) set-system.

▶ Lemma 4. For a sufficiently large positive integer n and a positive integer m ∈
[
√

logn, 2
√

logn] there exists an (n,m, ℓ, β) set-system (U ;A1, . . . , Am) with ℓ = m/10
and β = exp(−m) = exp(−O(

√
logn)). There is a polynomial-time algorithm that constructs

such a set system with high probability.

Proof. Let U be a set of n elements, and initialize m empty sets A1, . . . , Am. For each
element e ∈ U , sample a random index set J ⊂ [m] of size exactly m/2 and add e to sets Aj

for j ∈ J .
We show that this construction gives an (n,m, ℓ, β) set-system with high probability.

Consider an index set I ⊂ [m] with |I| = ℓ and a collection of sets Bi for i ∈ I such that each
Bi is either Ai or Ai. For a fixed e ∈ U , let p denote the probability that e is not contained
in ∪i∈IBi, i.e., p = Pr[e /∈ ∪i∈IBi]. We have,

p ≥
(
m− ℓ

m/2

)
/

(
m

m/2

)
≥

(
m− ℓ

m/2

)m/2
/

(
em

m/2

)m/2
≥

(
m− ℓ

em

)m/2
≥ exp(−0.6m),

where the second inequality uses that
(

n
k

)k ≤
(

n
k

)
≤

(
en
k

)k.
The probability that ∪i∈IBi contains a fixed subset of cardinality greater than or equal

to (1 − β)n is at most (1 − p)(1−β)n. By a union bound over at most
(

n
βn

)
n possible subsets

with cardinality at least (1 − β)n,

Pr [|∪i∈IBi| ≥ (1 − β)n] ≤
(
n

βn

)
n · (1 − p)(1−β)n ≤ (e/β)βn

n · e−(1−β)np

≤ exp (3nβ log(1/β) − np/2) ≤ exp(−np/4) ≤ exp(−n0.9),

where in the second to last inequality we use that 3β log(1/β) < p/4.
A union bound over the at most 2ℓ ·

(
m
ℓ

)
≤ exp(

√
logn) possible choices to pick the ℓ

sets Bi, gives that with high probability, the union of any ℓ sets Bi has cardinality less than
(1 − β)n. ◀

2.2 Label Cover
In Section 4, we prove the hardness of approximation of GMP via a reduction from the
standard label cover problem as defined below.

▶ Definition 5. A label cover instance L is defined by a tuple ((U, V,E), L,Π). Here (U, V,E)
is a bipartite graph with vertices U ∪ V and edges E ⊆ U × V ; L is a positive integer and Π
is a set of functions one for each edge e ∈ E i.e., Π = {πe : [L] → [L] | e ∈ E}. A labeling of
the vertices σ : U ∪ V → [L] is said to satisfy an edge e = (u, v) if πe(σ(u)) = σ(v). Given L,
the goal of the label cover problem is to find a labeling σ∗ that satisfies the maximum number
of edges in E. We use OPT (L) to denote the fraction of the edges in E satisfied by σ∗.

As we will need the explicit dependence between the number of labels and the soundness,
for completeness we sketch below the precise gap version of the label cover problem that we
will use.

▶ Lemma 6 (Hardness of Gap Label Cover). Given a label cover instance L = ((U, V,E), L,Π)
satisfying:
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(i) |U | = |V | = N

(ii) The degree of every vertex in U ∪ V is d = O((logN)c1) for some constant c1.
(iii) L =

√
logN

There is some constant c > 0, for which there is no polynomial-time algorithm to decide if
OPT (L) = 1 or OPT (L) ≤ (logN)−c provided that NP ̸⊆ DTIME(NO(log log N)).

Proof. Using a standard argument (see for ex., [9, 2]) one can obtain a reduction from a
3SAT-5 instance ϕ with t variables to a Label Cover instance L1 = ((U1, V1, E1), 8,Π), where
|U1| = |V1| = O(t) and the graph (U1, V1, E) is 15-regular. The instance L1 has the following
property: if ϕ has a satisfying assignment then OPT (L1) = 1; else if any assignment satisfies
at most (1 − ϵ) fraction of clauses in ϕ, then OPT (L1) ≤ (1 − Θ(ϵ)). By the PCP-theorem
[3] it follows that, for some constant ϵ0 > 0, deciding if OPT (L1) = 1 or OPT (L1) ≤ 1 − ϵ0
is NP-hard.

The following well-known construction [2] gives stronger inapproximability results for
label cover. We define the kth power of the label cover instance Lk = ((Uk, Vk, Ek), 8k,Πk),
where Uk, Vk are k-tuples of vertices in U1, V1 respectively, Ek is the set of all k-tuples of
edges in E1. The resulting graph has N = tO(k) vertices and is (15)k-regular. The new set
of labels3 consist of k-tuples of {1, . . . , 8}. For an edge e = (e1, . . . , ek) ∈ Ek, we define the
function πk

e (a1, . . . , ak) = (πe1(a1), . . . , πek
(ak)). Raz’s Parallel Repetition Theorem [18],

shows that for the label cover instance constructed above, there exists a constant α such
that OPT (Lk) ≤ (OPT (L1))αk.

We now pick k so that L =
√

logN . Since L = 8k and N = tO(k), this gives k =
Θ(log log t). This choice of k ensures that d = (15)k = (logN)c1 for some constant c1.
Moreover, if OPT (L1) ≤ (1 − ϵ0), then OPT (Lk) ≤ (1 − ϵ0)αk ≤ (log t)−c′ ≤ (logN)−c for
some positive constants c, c′. ◀

3 Integrality Gap for Configuration LP

We begin by describing the configuration LP for GMP. We then explain the high-level
ideas behind the gap construction and the properties we need from the norm ψ. We then
describe the norm ψ and the integrality gap instance formally and then prove Theorem 1.
As mentioned earlier, this gap instance and the norm ψ form the key gadget in our hardness
construction in Section 4.1, and understanding it is crucial to the results in Section 4.

Configuration LP. The most natural LP relaxation of GMP is to consider assignment
variables xij ∈ [0, 1] that determine the fraction of job j assigned to machine i, and impose
natural constraints. However, simple examples show that such an LP is too weak to handle
general norms ψ. A stronger relaxation is the configuration LP, where we have exponentially
many variables xi,C , one for each machine i, and a possible subset of jobs C that can be
feasibly assigned to machine i.

Let J denote the set of jobs, and M = [m] be the set of machines. For a machine i ∈ M ,
and subset C ⊆ J , let pi[C] = (pij ·1[j ∈ C])j∈J denote the vector of sizes of jobs in C. Let T
be a guess on the optimum makespan (we can do a binary search on T ). Call a configuration
C valid for machine i if the load ψi(pi[C]) of C on i is at most T . We will slightly abuse
notation and denote ψi(pi[C]) by ψi(C). Consider the following feasibility LP.

3 The labels are essentially numbers from 1 to 8k.

APPROX/RANDOM 2023
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∑
C⊆J

xi,C ≤ 1 ∀i ∈ M (1a)

∑
i∈M,C:j∈C

xi,C = 1 ∀j ∈ J (1b)

xi,C = 0 if ψi(C) > T (1c)

The first constraint says that each machine has at most one configuration. The second
constraint says that each job is assigned to a machine, and the last constraint ensures that
only valid configurations are considered and hence the generalized makespan on any machine
is at most T . This LP can be solved efficiently for any desired accuracy ϵ > 0 (so the
configurations satisfy ψi(C) ≤ (1 + ϵ)T ), see e.g., [8].

The main idea. We start with a simple instructive example, that motivates our choice of
the norm and the choice of parameters that lead to the Ω(

√
logn) integrality gap. Consider a

random set system on a universe U of n elements and m sets A1, . . . , Am where each element
independently lies in m/2 randomly chosen sets. We will set m ≪ logn. Create an unrelated
machine (in fact restricted assignment) scheduling instance I with m machines, where only
the jobs in Ai can be assigned to machine i (all other jobs have infinite size on i). As each
element lies in m/2 sets, the LP solution that picks the configuration Ai on each machine i
with xi,Ai

= 2/m is feasible, and uses only 2 machines in total.
However, in any integral solution, we claim that several machines must pick a non-trivial

fraction of jobs from their sets Ai. Roughly, this is because the union of any ℓ ≪ m sets
Ai still leaves about 2−ℓ|U | uncovered (as each element lies in a set with probability 1/2).
Hence in any feasible integral solution, for any ℓ > 0, at least ℓ machines must be assigned
at least 2−ℓ|U |/m jobs.

To exploit this, suppose we define ψ as the top-k norm with k ≈ Ω(2−ℓn/m), so that
any machine with ≥ k jobs incurs the same load, say T . Then in any integral solution, at
least ℓ machines have load T , while fractionally at most 2 machines (in total) have load T .
By creating m/2 disjoint copies I(1), . . . , I(m/2) of these set-cover instances, one would then
expect that fractionally each machine has load T , while integrally the average load becomes
Ω(ℓ).

Unfortunately, this does not quite work as stated above, because once there are several
instances I(1), . . . , I(m/2), as these jobs share the same machines, an algorithm can find a
low makespan even if it cannot figure out the good underlying set cover solution. In fact,
this is provably so, as [8] gave a 3-approximation when ψ is a Topk norm.

However, our key observation is that this idea can still be made to work by choosing
the instances I(1), . . . , I(m/2) at different scales (of the number of jobs and processing times)
and defining the norm ψ as a suitable mixture of the top-k norms at these different scales.
Roughly, this norm ψ still behaves as a top-k norm at each individual scale, but when jobs
from different scales are combined, it takes on a large value, which be used to create a large
gap in the reduction above.

Implementing this idea requires separating every two scales by Ω(2ℓ). So the ℓ scales
leads to instances with size about 2ℓ2 leading to the choice of ℓ = Θ(

√
logn) to produce the

Ω(ℓ) gap. We now give the details.

The Instance. The instance will have n jobs and m =
√

logn machines. We first create h =
m/8 disjoint set-cover instances I(1), . . . , I(h), where I(s) = (U(s);A1(s), A2(s), . . . , Am(s))
forms an (ns,m, ℓ, β) set-system with ℓ = m/10, β = exp(−m) and ns = (

√
n/2) ·exp(4ms) =

(
√
n/2)β−4s. Note that ns increases as β−4s with s, and n1 ≥

√
n and nh = n/2, and it is

easily checked that parameters for each I(s) satisfy the condition in Lemma 4.
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For each s ∈ [h], the elements in U(s) correspond to jobs with size p(s) = βs−1 (or infinite
if the job cannot be assigned to a machine). Each job j in U(s) has size pij = p(s) on machine
i iff j ∈ Ai(s) and pij = ∞ otherwise. We abuse the notation slightly to refer to the resulting
scheduling instance also as I(s). As the instances I(1), . . . , I(h) are at different scales in terms
of the number of jobs and processing times, we refer to jobs in I(s) as being in the s-th size
class 4.

We define the inner norm ψ =
∑

s∈[h] ψ
(s), where each ψ(s) is a scaled top-k norm given by

ψ(s)(v) =
Topβ2ns

(v)
(β2nsp(s))

. (2)

Each machine i will have the same inner norm ψi = ψ. Informally, ψ has the following key
property: for any subset C of Ai(s) with at least β2ns jobs, ψ(s)

i (C) = 1 and ψ
(s′)
i (C) ≈ 0

for s′ ̸= s. This in particular implies that ψi(Ai(s)) ≈ 1 for any class s. Moreover, if C is
an arbitrary subset of jobs with at least a β2 fraction of jobs from r distinct sets among
Ai(1), Ai(2), · · · , Ai(h), then ψi(C) ≈ r (roughly, each such size-class s affects a different
term ψ(s) of the norm). This property motivates the following definition.

▶ Definition 7 (Heavy Size Class). Given an assignment of jobs ρ : J → M , we say that size
class s ∈ [h] is heavy on machine i ∈ M , if at least β2ns jobs from Ai(s) are assigned to
machine i.

We now formally state and prove the property of the norm described above.

▶ Lemma 8. For any s ∈ [h] and i ∈ M , ψi(Ai(s)) = 1 + o(1). Furthermore, for an
assignment ρ : J → M , if C is the set of jobs assigned to machine i, then ψi(C) is at least
the number of heavy size classes s ∈ [h] on machine i.

Proof. We first show that ψi(Ai(s)) = 1 + o(1) by computing the value of ψ(s′) for different
s′. By the definition of ψ(s′),

ψ
(s′)
i (Ai(s)) =

Topβ2ns′ (pi[Ai(s)])
(β2ns′p(s′))

= min{β2ns′ , |Ai(s)|} · p(s)

(β2ns′p(s′))
=

(
min

{
1, |Ai(s)|

β2ns′

})
p(s)

p(s′)

For s = s′, this exactly equals 1 (as β ≪ 1 and |Ai(s)| ≈ ns

2 ).
For s′ < s, we have ψ(s′)

i (Ai(s)) ≤ p(s)

p(s′) = β(s−s′) ≤ β.

Finally, for s′ > s, we have

ψ
(s′)
i (Ai(s)) ≤ |Ai(s)|

β2ns′
· p

(s)

p(s′) ≤ ns

β2ns′
· p

(s)

p(s′) = β3(s′−s)−2 ≤ β.

Let us now consider an arbitrary set of jobs C assigned to machine i. By the monotonicity
of the norm,

ψ
(s)
i (C) ≥ ψ

(s)
i (C ∩Ai(s)) = min

{
1, |C ∩Ai(s)|

β2ns

}
≥ 1[s is heavy on i].

As ψi(C) =
∑

s∈[h]
ψ

(s)
i (C), it follows that ψi(C) is at least the number of heavy size classes

on i. ◀

4 The total number of jobs in the h instances is
∑h

i=1 ns ≈ n/2. To make the total number of jobs n, we
add dummy jobs that have processing time 0 on all machines.
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Fractional Solution. We claim that the following solution is feasible for the configuration
LP Equation (1) with T = 2: for each machine i ∈ M , set xi,Ai(s) = 2/m for each s ∈ [h].

Clearly, Equation (1a) is satisfied for each i ∈ M as there are h < m/2 sets of jobs
Ai(1), Ai(2), . . . , Ai(h), each with value 2/m. Equation (1b) is satisfied as each job j ∈ U(s),
for each s ∈ [h], lies in m/2 sets in A1(s), A2(s), . . . , Am(s). Equation (1c) is also satisfied
as ψi(Ai(s)) = 1 + o(1) < 2 = T by Lemma 8.

Integral Solution. We now show that any integral solution has generalized makespan
Ω(

√
logn).

▶ Lemma 9. For any assignment ρ : J → M , there is some machine with load Ω(
√

logn).

Proof. We first show that each size class is heavy on at least ℓ =
√

logn/10 machines.
Suppose this is not true for some size class s ∈ [h]. Let H ⊆ M be the set of machines on
which s is heavy, and so |H| < ℓ. As I(s) forms an (ns,m, ℓ, β) set-system, by Definition 3,
| ∪i∈H Ai(s)| ≤ (1 − β)ns, and hence at least βns jobs from U(s) are assigned to machines
i /∈ H. However, as any machine i /∈ H can have at most β2ns jobs from Ai(s), the machines
in i /∈ H can have is at most m ·β2ns < βns, contradicting that each job in U(s) was assigned
to some machine.

By averaging over machines, there exists a machine i on which at least (hℓ/m) = Ω(
√

logn)
size classes are heavy. By Lemma 8, this implies that ψi = Ω(

√
logn). ◀

This concludes the proof of Theorem 1.

4 Reduction from Label-Cover

We now prove Theorem 2 by reducing Label Cover to a GMP instance.

Overview. Our construction builds on the ideas used by Lund and Yannakakis [15] to show
the Ω(logn) hardness of set cover, using a gadget based on a natural Ω(logn) integrality gap
instance. We first give a rough sketch of their idea (see e.g. [2] for an excellent exposition),
and then explain the additional steps needed in our setting and why we only get a logδ n

hardness for some small δ > 0, despite the Ω(log1/2 n) integrality gap instance above.
Consider a label cover instance L = ((U, V,E), L,Π), as defined in Definition 5, with

label set [L] and vertex sets U and V . The main idea in [15] is the following. For each
edge e = (u, v) ∈ E, one associates a (n,m, ℓ, β)-system Ie = (Ue;Ae

1 . . . , A
e
m) (with disjoint

universes for each edge). The sets will be associated with labels for vertices (so that L = m)
and we associate the set Ae

πe(a) with label a for u and A
e

b with label b for vertex v. The
point is that in the completeness case, where the labels a′ and b′ for u and v satisfy e

(i.e., πe(a′) = b′), Ue can be covered by just the two corresponding sets Ae
πe(a′) and A

e

b′ .
Conversely, in the soundness case, if Ue is covered using less than ℓ sets, there must be a pair
of sets that are complements of each other, which can be used to produce a good labeling
for L.

To adapt this to our setting, suppose we create a job for each element in Ue, and m

machines per vertex, one for each label in [L]. Also suppose that for labels a, b, we set
the processing times of jobs in the set Ae

πe(a) to be finite on the a-th machine of vertex u

and the processing times of jobs in set Ae
b to be finite on the b-th machine of vertex v. In

the completeness case, any perfect labeling gives an assignment where jobs are assigned to
exactly one out of the m machines per vertex (similar to the value of the LP solution in
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the gap example in Section 3). However, the soundness argument fails, as a low makespan
assignment can spread jobs from Ue on multiple machines, and not give any information to
recover a good labeling (this is similar to the reason we needed multiple size classes in the
gap example in Section 3).

To get around this, for each e, we will use h different set systems Ie,1, . . . , Ie,h

(of geometrically increasing sizes) where the s-th set system is the following Ie,s =
(Ue(s);Ae

1(s), . . . , Ae
m(s)). Each vertex will have m machines, one for each label. The intended

solution is that if vertex u is assigned label a, then we pick the sets Ae
πe(a)(1), . . . , Ae

πe(a)(h),
and assign the corresponding jobs to the m machines for u with small makespan (this requires
some care so that for any label a, jobs from different classes s can be assigned to different
machines, but we ignore this issue here).

Using the properties of the norm ψ and the arguments in Section 3 for the integrality
gap, one can show that if h = Ω(m), then given any schedule with low makespan, one can
construct a good labeling thereby proving soundness. A key new idea here beyond [15] is to
show that there is some fixed size class s∗, such that the assignment of jobs in class s∗ gives
a small set of good candidate labels for a large fraction of edges. However, as the hardness
of Label-Cover is only Ω(Lc) for some small constant c as a function of the number of labels,
our resulting hardness is only Ω(logc′

n) for some small c′ > 0, instead of Ω(log1/2 n).

4.1 The Reduction
Suppose that we are given a label cover instance, L = ((U, V,E), L,Π) satisfying the
properties of Lemma 6, i.e., the number of vertices |U | = |V | = N , the degree of every
vertex is d = O((logN)c1) and the number of labels L =

√
logN . We now describe a

polynomial-time (randomized) reduction from L to a GMP instance I with machines M ,
jobs J and assign processing times for each machine i ∈ M and job j ∈ J .

Machines. For each vertex w ∈ U ∪ V , we create m = L =
√

logN machines. We denote
the set of machines corresponding to vertex w by Mw = {w1, . . . , wm}. We denote the set of
all machines by M =

⋃
w∈U∪V Mw. In total, we have 2N

√
logN machines.

Jobs. For each edge e ∈ E, we create O(N) jobs and partition them into h = m/8 size-
classes Ue(1), Ue(2), . . . , Ue(h) of geometrically increasing size. More precisely, we pick the
number of jobs in the s-th set to be |Ue(s)| =

√
N · exp(4s

√
logN) which is always O(N)

since s ≤
√

logN/8. Therefore, the total number n of jobs created is poly(N). We also
remark that these sets can be constructed efficiently by the randomized procedure described
in Lemma 4 and that this is the only randomized step of the reduction.

Processing times. To assign processing times, for each edge e ∈ E and s ∈ [h], we
construct a (|Ue(s)|,m, ℓ, β) set system Ie,s = (Ue(s);Ae

1(s), . . . , Ae
m(s)) with ℓ = m/10 and

β = exp(−m). For every vertex u ∈ U , label a ∈ [L] and s ∈ [h], define the set

Su,a,s =
⋃

e∈δ(u)

Ae
πe(a)(s). (3)

Similarly for every vertex v ∈ V , label b ∈ [L] and s ∈ [h], define the set

Sv,b,s =
⋃

e∈δ(v)

Ae
b(s). (4)

APPROX/RANDOM 2023
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For every vertex w ∈ U ∪ V , label a ∈ [L] and size class s ∈ [h], we choose the processing
times of all the jobs in Sw,a,s to be p(s) = βs−1 on the machine wi if the index i satisfies
i ≡ (a+ s) (mod m). This way of assigning processing times ensures that for a fixed machine
wi and a label a, there is at most one set of jobs among Sw,a,1, Sw,a,2, . . . , Sw,a,h that have
finite processing time on wi. This is a useful property to have when we prove the completeness
of our reduction.

Norm. Define the norm ψ =
∑

s∈[h] ψ
(s), where each ψ(s) is a scaled top-k norm given by

ψ(s)(v) =
Topβ2ns

(v)
(β2nsp(s))

(5)

where ns =
∣∣∣⋃e∈δ(w) U

e(s)
∣∣∣ is the number of jobs of size class s contained in edges incident

to any vertex. Note that since the graph is d-regular this number is the same for each vertex.
The above reduction takes poly(N) time because there are only polynomially many jobs,

machines and the (n,m, ℓ, β) set systems required can be constructed efficiently by Lemma 4.

4.2 Analysis
The set of jobs Sw,a,s for any vertex w, label a and size class s, only contribute to the s-th
top-k term of ψ on machine wi. Similar to Definition 7, we define heavy and light size classes
and state a lemma whose proof is analogous to that of Lemma 8.

▶ Definition 10 (Heavy Size Class). For a vertex w, label a and size class s, consider the
set Sw,a,s of jobs and the machine wi satisfying i ≡ (a + s) (mod m). For an assignment
ρ : J → M , we say that size class s is heavy on machine wi, if ρ assigns at least β2ns jobs
from Sw,a,s to machine wi; otherwise, we say the size class s is light on machine wi.

▶ Lemma 11. For any vertex w, label a, size class s, and a machine wi satisfying i ≡ a+ s

(mod m), the norm ψwi
(Sw,a,s) = 1 + o(1). Furthermore, for an assignment ρ : J → M , let

S be the set of jobs assigned to machine wi. Then ψwi
(S) is at least the number of heavy

size classes heavy on wi.

4.2.1 Completeness
Given a labeling σ for the label cover instance L which satisfies all the edges, we use it to
construct an assignment of jobs ρ with a low makespan.

▶ Lemma 12. If the label cover instance L satisfies OPT (L) = 1, the instance I has an
assignment ρ : J → M with makespan less than 2.

Proof. Let σ be the labeling of vertices that satisfies all edges in the label cover instance L.
Consider the assignment ρ of jobs to machines constructed using σ in the following way: for
every vertex w ∈ U ∪ V , and size class s ∈ [h], assign the jobs in Sw,σ(w),s to machine wi

where the index i satisfies i ≡ σ(w) + s (mod m).
For an edge e = (u, v) ∈ E we first show that each job in the sets Ue(1), Ue(2), . . . , Ue(h)

is assigned to some machine. For a size class s ∈ [h], the jobs in Su,σ(u),s are assigned to a
machine in Mu, and similarly, the jobs in Sv,σ(v),s are assigned to a machine in Mv. Since
πe(σ(u)) = σ(v), we infer that Ae

σ(v)(s) = Ae
πe(σ(u))(s) ⊆ Su,σ(u),s and Ae

σ(v)(s) ⊆ Sv,σ(v),s.
It follows that each job in Ue(s) is assigned to some machine.
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We now bound the makespan of the assignment by showing that each machine is assigned
jobs from at most one size class. For a vertex w and i ∈ [m] consider the machine wi. Since
h < m, there is at most one s ∈ [h] for which σ(w) + s ≡ i (mod m). Therefore, wi is
assigned jobs from at most one of the sets Sw,σ(w),1, Sw,σ(w),2, · · · , Sw,σ(w),h. Therefore, by
Lemma 11 its norm is at most 1 + o(1) < 2. ◀

4.2.2 Soundness

Next, we show that if the instance I has a makespan much less than ℓ, then OPT (L) is
large. Towards this end, we first prove some useful lemmas. Consider an assignment ρ with
makespan T ≤ ℓ/100. Call a size class s to be good for a vertex w if it is heavy on at most
32T of the machines w1, . . . , wm; if not define it to be bad. We first show that a large fraction
of size classes are good for any vertex.

▶ Lemma 13. There are at least 3h/4 good size classes for each vertex.

Proof. Let b be the number of bad size classes for some vertex w. By averaging over the m
machines on vertex w, there is a machine wi for which at least (32Tb)/m size classes are
heavy. By Lemma 11, wi has norm at least (32Tb)/m. As any machine has norm at most T ,
we get b ≤ m/32 = h/4 and hence the claim follows. ◀

Call a size class good for an edge (u, v) if it is good for both u and v. By Lemma 13 each
edge e has at least h/2 good size classes. By averaging over the edges e ∈ E, there must
exist a size class s∗ ∈ [h] which is good for at least |E|/2 edges.

We will fix the class s∗ henceforth, and use it to construct a good label cover solution by
assigning a suitable label to each vertex. These labels will only depend on the class s∗.

Constructing a good labeling. For each vertex w ∈ U ∪ V , we define L(w) to be the set
of all labels a such that size-class s∗ is heavy on wi where i ≡ (a+ s) (mod m). If no such
label exists, add an arbitrary label to L(w).

▶ Lemma 14. Let e = (u, v) be an edge for which s∗ is good. There exists a ∈ L(u) and
b ∈ L(v) such that πe(a) = b.

Proof. Assume there are no such labels a ∈ L(u) and b ∈ L(v) for which πe(a) = b. Since
|L(u)| + |L(v)| ≤ 64T < ℓ, then the union of all the sets Ae

πe(a)(s∗) and Ae
b(s∗) such that

a ∈ L(u) and b ∈ L(v) covers at most (1 − β)|Ue(s∗)| from Definition 3.
From the definition of a light size class, for all labels a /∈ L(u) (resp. b /∈ L(v)), at

most β2ns∗ = β2(|Ue(s∗)| · d) jobs from the sets Ae
πe(a)(s∗) (resp. Ae

b(s∗)) are assigned
to some machines on vertex u (resp. v) . Notice that the degree of the graph (U, V,E)
is d = O((logN)c1). So, the union of all the jobs assigned from the sets Ae

πe(a)(s∗) (resp.
Ae

b(s∗)) such that a /∈ L(u) (resp. b /∈ L(v)) has at most (2m · β2 · |Ue(s∗)| · d) < β|Ue(s∗)|
jobs which is a contradiction. ◀

For each vertex w, set σ(w) to be a label selected uniformly at random from L(w). We show
that σ satisfies a large fraction of edges of L completing the proof of soundness.

▶ Lemma 15. If the instance I has an assignment ρ : J → M with makespan T ≤ ℓ/100,
then OPT (L) ≥ 1/(2048T 2).
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Proof. Consider an edge e = (u, v) for which size class s∗ is good. In this case, we have
|L(u)| ≤ 32T and |L(v)| ≤ 32T . Also, by Lemma 14 there exists a ∈ L(u) and b ∈ L(w) for
which πe(a) = b. Therefore, πe(σ(u)) = σ(v) with probability at least 1/(32T )2. We have by
the analysis above that the number of edges for which s∗ is good is at least |E|/2. Therefore,
the expected number of edges satisfied by σ is at least |E|/(2(32)2T 2) = |E|/(2048T 2) and
the lemma follows. ◀

▶ Theorem 2. There is a universal constant δ > 0, such that any polynomial-time ap-
proximation algorithm for GMP has approximation ratio Ω(logδ n) provided that NP ̸⊆
ZTIME(nO(log log n)).

Proof. Suppose that we have an algorithm that in polynomial time can decide if the
GMP instance constructed has a makespan of at least T or at most 2. By the reduction
above, from Lemmas 12 and 15 this algorithm can also distinguish between label cover
instances that have value 1 and those that have value at most 1/2048T 2. Due to the
hardness of label cover (Lemma 6), this is not possible if 1/2048T 2 ≥ 1/(logN)c, i.e., if
T ≤ O((logN)c/2) = O((logn)c/2) since the number of jobs n = poly(N). This, in particular,
implies that any approximation algorithm for GMP has an approximation ratio of at least
Ω((logn)c/2) provided that NP ̸⊂ ZTIME(nO(log log n)). ◀

5 Concluding Remarks

We conjecture that GMP admits an O(
√

logn) approximation, based on suitably rounding
the configuration LP. However, we are unable to prove any o(logn) approximation even in
the restricted assignment case (note that the integrality gap and hardness instances in this
paper only use restricted assignment). Finding a o(logn) approximation algorithm for any
of these variants would be extremely interesting.
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