
An AFPTAS for Bin Packing with Partition
Matroid via a New Method for LP Rounding
Ilan Doron-Arad #

Computer Science Department, Technion, Haifa, Israel

Ariel Kulik #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Hadas Shachnai #

Computer Science Department, Technion, Haifa, Israel

Abstract

We consider the Bin Packing problem with a partition matroid constraint. The input is a set
of items of sizes in [0, 1], and a partition matroid over the items. The goal is to pack the items in
a minimum number of unit-size bins, such that each bin forms an independent set in the matroid.
This variant of classic Bin Packing has natural applications in secure storage on the Cloud, as well
as in equitable scheduling and clustering with fairness constraints.

Our main result is an asymptotic fully polynomial-time approximation scheme (AFPTAS) for
Bin Packing with a partition matroid constraint. This scheme generalizes the known AFPTAS for
Bin Packing with Cardinality Constraints and improves the existing asymptotic polynomial-time
approximation scheme (APTAS) for Group Bin Packing, which are both special cases of Bin Packing
with partition matroid. We derive the scheme via a new method for rounding a (fractional) solution
for a configuration-LP. Our method uses this solution to obtain prototypes, in which items are
interpreted as placeholders for other items, and applies fractional grouping to modify a fractional
solution (prototype) into one having desired integrality properties.

2012 ACM Subject Classification Theory of computation

Keywords and phrases bin packing, partition-matroid, AFPTAS, LP-rounding

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.22

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2212.01025 [9]

Funding Ariel Kulik: This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 852780-ERC (SUBMODULAR).

1 Introduction

The bin packing (BP) problem involves packing a set of items in a minimum number of
containers (bins) of the same (unit) size. Bin Packing is one of the most studied problems in
combinatorial optimization. Indeed, in many real-life scenarios, a solution for BP is essential
for optimizing the allocation of resources. In this paper, we consider the Bin Packing problem
with a partition matroid constraint. The input is a set of items of sizes in [0, 1], and a
partition matroid over the items. The goal is to pack all the items in a minimum number of
unit-size bins, such that each bin forms an independent set in the matroid.

Formally, a bin packing with partition matroid (BPP) instance is a tuple I = (I, G, s, k),
where I is a set of items, G is a partition of I into groups, s : I → [0, 1] gives the item
sizes, and k : G → N>0 sets a cardinality constraint for each group. The instance matroid
of I is the partition matroid M = (I, S) where S = {S ⊆ I | ∀G ∈ G : |S ∩ G| ≤ k(G)}.

© Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idoron-arad@cs.technion.ac.il
mailto:ariel.kulik@cispa.de
mailto:hadas@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.22
https://arxiv.org/abs/2212.01025
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 An AFPTAS for Bin Packing with Partition Matroid

A configuration of the instance I is a subset of items C ⊆ I such that
∑

ℓ∈C s(ℓ) ≤ 1 and
C ∈ S. That is, the total size of items in C is at most one, and for each group G ∈ G the
configuration C contains at most k(G) items from G. A packing of I is a partition of I into
m subsets called bins (A1, . . . , Am) such that Ab is a configuration for all b ∈ [m].1 The
objective is to find a packing of all items in a minimal number of bins. Indeed, the special
case where each group consists of a single item and k(G) = 1 for all G ∈ G is the classic Bin
Packing problem.

Bin Packing with Partition Matroid has natural application in secure storage of project
data in the Cloud. Computational projects of large data scale often rely on cloud computing.
Commonly, the project data is also stored in the cloud. In this setting, a main concern is
that a malicious entity might gain access to confidential data [13]. To strengthen security,
data is dispersed among multiple cloud storage devices [24]. Projects are fragmented into
critical tasks, so that access to several tasks cannot reveal substantial information about
the entire project. To this end, at most n(P ) tasks of each project P can be stored on a
single storage device. Viewing a cloud storage device as a bin and each project as a group
containing a collection of critical tasks (items), the problem of storing a set of projects on a
minimal number of (identical) storage devices yields an instance of BPP.

BPP arises also in machine scheduling. Consider the following variant of equitable
scheduling on a single machine [25]. The input is a set of n clients, each having a collection
of jobs with arbitrary processing times, and a single machine that is available at any day
for a limited amount of time. To ensure fairness, at most k jobs of the same client can be
processed in a single day, for some k ≥ 1. The objective is to complete processing all the
jobs in a minimum number of days, subject to the equitability constraints. An instance of
the problem can be cast as an instance of BPP, where days are the bins, jobs are the items,
and the set of jobs of each client forms a group.

Another application of BPP comes from clustering problems with fairness constraints,
where we have a set of items, each belongs to certain category, and we seek a partition of the
items into clusters (or, groups) with restriction on the number of items from each category
selected to each cluster, to ensure fairness. One real-life example is grouping students for
educational activities, in which there is some cost associated with each participating student,
and an overall budget for each group. The goal is to partition the students into a minimal
number of working groups subject to the budget constraints, such that each group is balanced
in terms of protected attributes like gender or race (since studies indicate that students
might learn better in a diverse group). This variant of the multi-fair capacitated grouping
problem [39] yields an instance of BPP.

Let OPT = OPT(I) be the value of an optimal solution for an instance I of a minimization
problem P . As in the Bin Packing problem, we distinguish between absolute and asymptotic
approximation. For α ≥ 1, we say that A is an absolute α-approximation algorithm for
P if for any instance I of P it holds that A(I)/OPT(I) ≤ α, where A(I) is the value of
the solution returned by A. Algorithm A is an asymptotic α-approximation algorithm if
A(I) ≤ αOPT(I) + o(OPT(I)) for any instance I of P. An asymptotic polynomial-time
approximation scheme (APTAS) is a family of algorithms (Aε)ε>0 such that, for every ε > 0,
Aε is a polynomial-time asymptotic (1 + ε)-approximation algorithm for P. An asymptotic
fully polynomial-time approximation scheme (AFPTAS) is an APTAS (Aε)ε>0 such that
Aε(I) runs in time poly(|I|, 1

ε ), where |I| is the encoding length of the instance I; that is,
there is a bivariate polynomial p such that Aε(I) runs in time p(|I|, 1

ε ) or less.

1 For any n ∈ N we denote by [n] the set {1, 2, . . . , n}.



I. Doron-Arad, A. Kulik, and H. Shachnai 22:3

By known results for the special case of Bin Packing [20], BP cannot be approximated
within (absolute) ratio better than 3

2 , unless P=NP. Thus, we focus in this paper on
deriving better asymptotic approximation ratio for BPP. Given that classic BP admits an
AFPTAS [32, 26], it is natural to ask whether the same holds for the problem with the added
partition matroid constraint. We answer this question affirmatively.

▶ Theorem 1. There is an AFPTAS for BPP.

As a special case, our scheme improves upon the recent APTAS of Doron-Arad et al. [8] for
group bin packing (GBP), where the cardinality constraint of all groups is equal to one (i.e.,
k(G) = 1 ∀G ∈ G). This problem has been studied since the mid-1990’s [37, 31].2 Theorem 1
also generalizes the AFTPASs of [15, 30] for bin packing with cardinality constraints (BPCC),
the special case of BPP where all items belong to a single group (i.e., G = {I}).3

1.1 Our Technique
We derive our scheme via a new technique for rounding a (fractional) configuration LP (c-LP)
solution. Our technique interprets the standard c-LP solution as a prototype for a solution
which is then modified via a sequence of rounding steps; a polytope associated with the
prototype is used to ensure the prototype represents a valid solution following each of the
rounding steps.

High Level Approach

To obtain a packing of the input BPP instance I, our scheme partitions the set of items
I into subsets I1, . . . , Ir; for each subset of items Ij it generates a packing A′

1, . . . , A′
m of

the large items Lj ⊆ Ij (of sizes at least δ), and extends the packing (in the packing phase)
to include the small items Sj = Ij \ Lj using a greedy algorithm (see Section 2). For this
procedure to work, the following crucial properties must be satisfied.
1. The size s(ℓ) ≤ δ of a small item ℓ ∈ Sj is much smaller than the free space δ ≪ 1 − s(A′

b)
in a bin A′

b.
2. There is an upper bound kj,G on the number of large items from each group G ∈ G in

any bin A′
b.

3. For each group G ∈ G, there cannot be “too many” small items from G in Sj .
Figure 1 illustrates the packing of items in Ij . By the above properties, a main part of our
scheme deals with generation of a partition of I into I1, . . . , Ir and the corresponding partial
packings.4

Let C denote the set of configurations of a BPP instance I = (I, G, s, k). Our rounding
technique interprets the vectors x̄ ∈ RC

≥0 (i.e., vectors having a non-negative entry for each
configuration C ∈ C) as prototypes. The prototype x̄ ∈ RC

≥0 serves as a blueprint for a
(fractional) packing. Within the context of prototypes, each item ℓ ∈ C of a configuration C

is interpreted as a placeholder (or, “slot”) for items which can replace it. Also, some items
may be added, thus utilizing the available capacity of the configuration C (given by 1−s(C)),
while the items replacing the slots utilize the capacity s(C) of the configuration. The value
x̄C represents a solution in which x̄C configurations match the blueprint corresponding to C.

2 See Table 1 for a summary of known results for GBP.
3 An outline of the organization of this paper is given in Section 1.3.
4 See the details in Section 3.

APPROX/RANDOM 2023



22:4 An AFPTAS for Bin Packing with Partition Matroid

Figure 1 The set Ij in the partition I1, . . . , Ir, along with a partial packing A′
1, . . . , A′

m of the
large items, Lj ; the set Sj of remaining small items is represented by circles, whose colors indicate
the groups. The items in Sj are added using a greedy algorithm.

A main building block in our scheme is an association of a polytope with each prototype.
A non-empty polytope indicates the feasibility of a prototype. The partition of I into
I1, . . . , Ir and S, and the generation of the partial packings (A′

1, . . . , A′
m) relies on integrality

properties of vertices in the polytope (associated with a prototype). However, for the
integrality properties to be useful, we must obtain a good prototype z̄, having a small number
of configurations on the support (i.e, {C ∈ C | z̄C > 0}), while the number of items in each
configuration on the support must be small. We give below a high level description of how
we construct a good prototype.

Figure 2 An illustration of the rounding process. Starting from a prototype x̄, we follow a
configuration C0. The eviction process generates a prototype ȳ, where the value x̄C0 is added to
ȳC1 . In the shifting phase, ȳ is transformed into a good prototype z̄ in which items are replaced by a
small number of representatives, and the entry ȳC1 is added to z̄C2 . The partition phase uses the
prototype z̄ to define a partition I1, . . . , Ir of the items, and an initial packing A1, . . . , Am for each
Ij (containing the bin Ab in our example). Finally, in the packing phase, the remaining small items
are added to the existing bins.

An initial prototype is obtained by solving a standard configuration-LP formulation of
the problem. In this prototype, each item serves as a placeholder for itself. The algorithm
modifies the prototype sequentially using two steps: eviction and shifting. The eviction step
reduces the number of items per configuration on the support of the prototype. The shifting
step reduces the overall number of distinct items used by configurations on the support.
Thus, after the shifting, an item (or, a slot) may be used as a placeholder for many other
items in the same group. Our construction in this step is non-trivial. Specifically, we use
the fractional grouping technique introduced in [16] constructively (see the full version of the
paper [9]). By the above, the number of configurations on the support of the constructed
prototype is small, and our scheme can easily find a packing of the instance. We illustrate
the main components of our multi-step rounding process in Figure 2.

Our technique may be useful in solving other packing problems, including, e.g., bin
packing with matching constraints (see Section 4).



I. Doron-Arad, A. Kulik, and H. Shachnai 22:5

1.2 Prior Work
The special case of Group Bin Packing (GBP) (in which k(G) = 1 for all G ∈ G) was first
studied by Oh and Son [37]. This problem is a special case of bin packing with conflicts
(BPC), where the conflict graph is a cluster graph (see, e.g., [11] for a survey on recent results
on BPC). An approximation ratio of 2.5 follows from the results of Jansen and Öhring [31]
(for a generalization of GBP); this ratio was later improved by Epstein and Levin [14].
Better constants were given in several papers (e.g., [36, 1]). The best known asymptotic
approximation for GBP prior to our work is an APTAS due to Doron-Arad et al. [8]. We
summarize the known results for GBP in Table 1.

Table 1 Known Results for the special case of Group Bin Packing; V (I) = maxG∈G |G|. The
results of [31, 14, 1] for GBP follow as a special case from results for more general problems.

Authors Year Approximation
Oh and Son [37] 1995 1.7 · OPT(I) + 2.19 · V (I)

Jansen and Öhring [31] 1997 2.5 · OPT(I)

McCloskey and Shankar [36] 2005 2 · OPT(I) + V (I)

Epstein and Levin [14] 2008 7
3 · OPT(I)

Adany et al. [1] 2013 2 · OPT(I)

Doron-Arad et al. [8] 2021 APTAS

This paper 2023 AFPTAS

The APTAS of [8] for GBP is based on extensive guessing of properties of an optimal
solution which are then used as guidance for the assignment of items to bins; such enumeration
is commonly used in studies of BP (e.g., [3]). We note that the algorithm of [8] does not
round a solution for a configuration-LP, and cannot be viewed as a rounding algorithm in
general. The extensive guessing leads to running time that is exponential in 1

ε . For a special
case of GBP, where the maximum cardinality of a group is some constant, an AFPTAS
follows from a result of [27].

GBP was studied also in the context of scheduling on identical machines. Das and
Wiese [6] introduced the problem of makespan minimization with bag constraints. In this
generalization of the classic makespan minimization problem, each job belongs to a bag. The
goal is to schedule the jobs on a set of m identical machines, for some m ≥ 1, such that no
two jobs in the same bag are assigned to the same machine, and the makespan is minimized.
Das and Wiese [6] developed a PTAS for the problem with bag constraints. Later, Grage et
al. [21] obtained an EPTAS.

Another special case of BPP is Bin Packing with Cardinality Constraints (BPCC), in
which |G| = 1, i.e., we have a single group G with k(G) = k, for some integer k ≥ 1. BPCC
has been studied since the 1970’s [34, 35, 33, 4]. Epstein and Levin [15] presented an AFPTAS
which relies on rounding a non-standard configuration-LP formulation of the problem. Later,
Jansen et al. [30] gave an AFPTAS with improved additive term. The AFPTASs of [15, 30]
rely on the property that if k < 1

ε then only 1
ε items fit into a bin; thus, linear shifting can

be applied to the whole instance. We note that in a BPP instance (which consists of multiple
groups) the cardinality bound for each group may be small (or even equal to 1), yet the
number of items that can be packed in a single bin may be arbitrarily large. This is one
of several hurdles encountered when attempting to adapt the techniques of [15, 30] to our
setting of BP with a partition matroid constraint.

APPROX/RANDOM 2023



22:6 An AFPTAS for Bin Packing with Partition Matroid

In the matroid partitioning problem, we are given a ground set U and a matroid M =
(U, S), where S is a family of subsets of U , known as the independent sets of the matroid. We
seek a partition of U into as few independent sets as possible. The problem is polynomially
solvable for any matroid M over U using a combinatorial algorithm (see, e.g., [12, 19]).
When M is a partition matroid, the matroid partitioning problem can be viewed as a variant
of BPP with unbounded bin capacities.

The use of configuration-LP (c-LP) in approximation algorithms started in the seminal
paper of Karmakar and Karp on BP [32]. Their approach is to round the item sizes prior
to solving a c-LP. Similar approaches, in which item sizes are rounded or the instance is
restructured prior to solving the c-LP, can be found also in later works (e.g., [15]). Other
works obtain an integral solution by applying randomized rounding to the solution of a
standard c-LP. This includes the Round & Approx technique of Bansal et al. [2] and the
tight approximation for the separable assignment problem (SAP) due to Fleischer et al. [18].
In [28] and [29], Jansen combines techniques for 2D strip packing to round the solution of
c-LP for multiple knapsack. Our deterministic rounding technique deviates significantly from
these known approaches.

To the best of our knowledge, Bin Packing with Partition Matroid is studied here for the
first time.

1.3 Organization
In Section 2 we include some definitions and notation. Section 3 gives an overview of our
scheme, that is applied to a structured instance. Due to space constraints, the technical
sections along with most of the proofs are relegated to the full version of the paper [9]. In
Section 4 we give a summary and directions for future work.

2 Preliminaries

Let A be an algorithm that accepts as input ε > 0. We say the running time of A is
poly(|I|, 1

ε ) if there is a two-variable polynomial p(x, y) such that p(|I|, 1
ε ) is an upper bound

on the running time of A(I, ε). To allow a simpler presentation of the results, we assume
throughout the paper that the set of items I is {1, 2, . . . , n}, and the items are sorted in
non-increasing order by sizes, i.e., s(1) ≥ s(2) ≥ . . . s(n).

2.1 Tackling the Small Items
The classic asymptotic approximation schemes for Bin Packing (see, e.g., [17, 32]) rely on the
key property that small items can be added to a partial packing of the instance with little
overhead, using simple algorithms such as First-Fit (see, e.g., [40]). We note that packing
small items in the presence of a partition matroid constraint is more involved. Even for the
special case of BP with a cardinality constraint, the small items cannot be packed using
simple classic BP heuristics (see, e.g., [15]).

We show below that an efficient packing of the small items of a BPP instance can still be
found using a relatively simple algorithm; however, the setting in which the algorithm can
be applied is more restrictive, and items cannot be easily added to a partial packing of the
instance (i.e., a set of configurations). Furthermore, the quality of such a packing depends on
the cardinality bound of the BPP instance I = (I, G, s, k), defined by V (I) = maxG∈G

⌈
|G|

|k(G)|

⌉
.

Formally,



I. Doron-Arad, A. Kulik, and H. Shachnai 22:7

▶ Lemma 2. Given a BPP instance I = (I, G, s, k) and δ ∈ (0, 0.5), such that s(ℓ) ≤ δ for
all ℓ ∈ I, there is an algorithm Greedy that returns in polynomial time a packing of I in at
most (1 + 2δ) · max {s(I), V (I)} + 2 bins.

The proof of Lemma 2 is given in [9].

2.2 Structuring the Instance
Our scheme initially transforms a given BPP instance into one having a structure which
depends on the parameter ε > 0. In this new instance, only a small number of groups may
contain relatively large items. Let K : (0, 0.1) → R, where K(ε) = ε−ε−2 for all ε ∈ (0, 0.1).
We use K for defining a structured instance.

▶ Definition 3. Given a BPP instance I = (I, G, s, k) and ε ∈ (0, 0.1), we say that I is
ε-structured if there is B ⊆ G such that |B| ≤ K(ε) and for all G ∈ G \ B and ℓ ∈ G it holds
that s(ℓ) < ε2.

Following the structuring step, our scheme proceeds to solve BPP on the structured
instance. As a final step, the packing found for the structured instance is transformed into a
packing of the original instance. This is formalized in the next result.

▶ Lemma 4. There is a pair of algorithms, Reduce and Reconstruct, which satisfy the
following.
1. Given a BPP instance J and ε > 0 such that ε−1 ∈ N, algorithm Reduce returns in time

poly(|I|, 1
ε ) an ε-structured BPP instance I, where OPT(I) ≤ OPT(J ).

2. Given a BPP instance J , ε > 0 such that ε−1 ∈ N, and a packing A′ for I = Reduce(J , ε)
of size m′, algorithm Reconstruct returns in time poly(|I|, 1

ε ) a packing A for the instance
J of size m, where m ≤ m′ + 13ε · OPT(J ) + 1.

The structured instance I is obtained from J by reassigning items of size at least ε2 from
all but a few groups to a new group. The reconstruction algorithm modifies the packing of
I such that each bin in the solution is a configuration of J . The proof of Lemma 4 (given
in [9]) is inspired by ideas of [6, 21, 8]. By Lemma 4, an AFTPAS for ε-structured BPP
instances implies an AFTPAS for general BPP instances.

3 Approximation Algorithm for ε-Structured Instances

In this section we give an overview of our scheme. For ε ∈ (0, 0.1) such that ε−1 ∈ N, let
I = (I, G, s, k) be an ε-structured BPP instance. Recall that a configuration of I is a subset
of items C ⊆ I such that

∑
ℓ∈C s(ℓ) ≤ 1, and |C ∩ G| ≤ k(G) for all G ∈ G. Let C(I) be

the set of all configurations of I; we use C when the instance I is clear from the context.
Also, for every item ℓ ∈ I let C[ℓ] = {C ∈ C | ℓ ∈ C} be the set of configurations of I that
contain ℓ. A key component in our scheme is the construction of a prototype of a packing; a
prototype gives a non-negative value to each configuration, which (informally) indicates the
selection of the configuration. Specifically,

▶ Definition 5. Given a BPP instance I, a prototype is a vector x̄ ∈ RC
≥0.

In the context of prototypes, each configuration C ∈ C is interpreted as a set of placeholders
called types. Each item j ∈ C is a slot-type, which is a placeholder for a smaller or equally sized
item of the same group. Also, the unused capacity of the configuration C (i.e., 1−s(C)) serves

APPROX/RANDOM 2023



22:8 An AFPTAS for Bin Packing with Partition Matroid

as a placeholder for additional items; we refer to this placeholder as the configuration-type C.
Thus, C is interpreted as the set of slot-types of j for each j ∈ C and the configuration-type
of C itself.

Intuitively, a slot-type (configuration-type) can be replaced by an item (items) which fit
into it. For any j ∈ I define group(j) = G, where G ∈ G is the unique group such that j ∈ G.
The subset of items that fit in place of the slot-type j ∈ I is

fit(j) = {ℓ ∈ group(j) | s(ℓ) ≤ s(j)} ∀j ∈ I. (1)

For our algorithm to work, the items which fit into the configuration-type C ∈ C must be
small relative to the unused capacity of C. We define the subset of items that fit into the
configuration-type C ∈ C by

fit(C) = {ℓ ∈ I | s(ℓ) ≤ min{ε2, ε · (1 − s(C))}} ∀C ∈ C. (2)

In words, fit(C) contains items of sizes smaller than ε2 and also at most ε-fraction of the
unused capacity of C. Figure 3 illustrates the above definitions.

For any prototype x̄ we define the x̄-polytope as a set of fractional packings, in which
items are fractionally assigned to slot-types and configuration-types. The set of types of
the instance I is I ∪ C. That is, the slot-types I and configuration-types C. A point in the
x̄-polytope has an entry for each pair of an item ℓ ∈ I and a type t ∈ I ∪ C which represents
the fractional assignment of the item to the type. Formally,

▶ Definition 6. Given a BPP instance I, the set C of configurations for I, and a prototype
x̄ of I, the x̄-polytope is the set containing all points γ̄ ∈ [0, 1]I×(I∪C) which satisfy the
following constraints.

γ̄ℓ,t = 0 ∀ℓ ∈ I, t ∈ I ∪ C s.t. ℓ /∈ fit (t) (3)∑
ℓ∈I

γ̄ℓ,C · s(ℓ) ≤ (1 − s(C)) · x̄C ∀C ∈ C (4)

∑
ℓ∈G

γ̄ℓ,C ≤ x̄C · (k(G) − |C ∩ G|) ∀G ∈ G, C ∈ C (5)

∑
ℓ∈I

γ̄ℓ,j ≤
∑

C∈C[j]

x̄C ∀j ∈ I (6)

∑
t∈I∪C

γ̄ℓ,t ≥ 1 ∀ℓ ∈ I (7)

Constraints (3) indicate that an item ℓ ∈ I cannot be assigned to type t if ℓ does not fit
in t. Constraints (4) set an upper bound on the total (fractional) size of items assigned to
each configuration-type C ∈ C. This bound is equal to the residual capacity of C times the
fractional number of bins packed with C, given by x̄C . Constraints (5) bound the number
of items in each group G assigned to configuration-type C; at most k(G) − |C ∩ G| items
in G can be added to C without violating the cardinality constraint of G. Constraints (6)
bound the number of items assigned to slot-type j ∈ I by the total selection of configurations
containing j in x̄. Finally, constraints (7) guarantee that each item is fully assigned to the
types.



I. Doron-Arad, A. Kulik, and H. Shachnai 22:9

Figure 3 An example of items ℓ1, . . . , ℓ5 of sizes ε3, ε2, 0.2, 0.4, 0.6, respectively, along with a
configuration C = {j1, j2} ∈ C interpreted as the slot-types j1, j2 of sizes 0.5, 0.2 and the configuration-
type C. The colors of the items and slot-types indicate their corresponding groups. An arrow
indicates that the item on the left fits with a slot-type or with the configuration-type C.

Let supp(x̄) = {C ∈ C | x̄C > 0} be the support of x̄. Throughout this paper, we use
prototypes x̄ for which supp(x̄) is polynomial in the input size; thus, these prototypes have
sparse representations. Our scheme first converts an initial prototype x̄ (defined by a solution
for the configuration-LP) into a good prototype z̄ as defined below, and then constructs a
packing based on z̄. Let Q : (0, 0.1) → R where Q(ε) = exp(ε−17) for all ε ∈ (0, 0.1). Then,

▶ Definition 7. Given ε ∈ (0, 0.1) and an ε-structured BPP instance I, a prototype z̄ of I
is a good prototype if the z̄-polytope is non-empty, |supp(z̄)| ≤ Q(ε), and |C| ≤ ε−10 for all
C ∈ supp(z̄).

To construct a good prototype, our algorithm first finds an initial prototype x̄ using a
Configuration-LP of the problem.5 However, x̄ is not necessarily a good prototype, since it
may have a support of large size. Therefore, we apply a non-trivial rounding process, starting
from the initial prototype x̄, and eventually generate a good prototype z̄. We consider this
rounding process, along with the notions of prototype and x̄-polytope, the core technical
contribution of this paper. The next result summarizes the main properties of our algorithm
for finding a good prototype, presented in Section 3.1. We use ∥x̄∥ =

∑
C∈C x̄C to denote

the ℓ1-norm of a prototype x̄.

▶ Lemma 8. There is an algorithm Prototype that given ε ∈ (0, 0.1) and an ε-structured
BPP instance I, returns in time poly(|I|, 1

ε ) a good prototype z̄ of I such that ∥z̄∥ ≤
(1 + 19ε) · OPT(I) + Q(ε).

Given a good prototype z̄, our scheme finds an efficient packing of the instance. This phase
relies on integrality properties of the z̄-polytope, combined with a matching-based algorithm
and a greedy assignment of relatively small items using Algorithm Greedy (Lemma 2).

▶ Lemma 9. There is an algorithm Solution that given ε ∈ (0, 0.1), an ε-structured BPP
instance I, and a good prototype z̄ of I, returns in time poly(|I|, 1

ε ) a packing of I in at
most (1 + 2ε) · ∥z̄∥ + 5ε−22 · Q2(ε) bins.

The proof of Lemma 9 is given in Section 3.2. Using the above components, we obtain an
AFPTAS for ε-structured instances. The pseudocode of the scheme is given in Algorithm 1.

▶ Lemma 10. Given ε ∈ (0, 0.1), ε−1 ∈ N, and an ε-structured BPP instance I, Algorithm 1
returns in time poly(|I|, 1

ε ) a packing of I of size at most (1 + 60ε) · OPT(I) + (Q(ε))3.

5 See Section 3.1.

APPROX/RANDOM 2023



22:10 An AFPTAS for Bin Packing with Partition Matroid

Algorithm 1 AFPTAS(I, ε).

Input : An ε-structured instance I and ε ∈ (0, 0.1) such that ε−1 ∈ N
Output : A packing of I

1 Find a good prototype z̄ = Prototype(I, ε).
2 Return a packing Φ = Solution(I, ε, z̄).

Lemma 10 follows from Lemmas 8 and 9. Theorem 1 can be easily derived using
Lemmas 10 and 4. We give the full proofs in [9].

3.1 Algorithm Prototype
In this section we present Algorithm Prototype which finds a good prototype for a given
ε-structured instance. The algorithm uses an LP relaxation of the given BPP instance. For
ε ∈ (0, 0.1) such that ε−1 ∈ N, let I = (I, G, s, k) be an ε-structured BPP instance. Define
the configuration-LP of I as:

min
∑
C∈C

x̄C

s.t.
∑

C∈C[ℓ]

x̄C = 1 ∀ℓ ∈ I

x̄C ≥ 0 ∀C ∈ C

(8)

A solution for the LP (8) assigns to each configuration C ∈ C a real number x̄C ∈ [0, 1]
which indicates the fractional selection of C for the solution such that each item is fully
covered. Observe that a solution for (8) is in particular a prototype of I.

Note that the configuration-LP (8) has an exponential number of variables; thus, it cannot
be solved in polynomial time by applying standard techniques. A common approach for
solving such linear programs is to use a separation oracle for the dual program.

Consider the configuration maximization problem (CMP) in which we are given a BPP
instance I = (I, G, s, k) and a weight function w : I → R≥0; the objective is to find a
configuration C ∈ C such that

∑
ℓ∈C w(ℓ) is maximized. By a well known connection between

separation and optimization, an FPTAS for CMP implies an FPTAS for the configuration-LP
of I [22, 18, 23, 38]. CMP can be solved via an easy reduction to knapsack with partition
matroid, that is known to admit an FPTAS [10]. Thus, we have

▶ Lemma 11. There is an algorithm SolveLP that given a BPP instance I and ε > 0, returns
in time poly(|I|, 1

ε ) a solution for the configuration-LP of I of value at most (1 + ε)OPT,
where OPT is the value of an optimal solution for the configuration-LP of I.

We give the proof of Lemma 11 in [9]. A solution x̄ for the Configuration-LP (8) is a
prototype of the instance such that the x̄-polytope is non-empty; in particular, it contains
the point γ̄ where γ̄ℓ,j = 1 ∀ℓ, j ∈ I such that ℓ = j, and γ̄ℓ,t = 0 otherwise (note that this
property does not hold for the good prototype z̄ returned by Algorithm Prototype). Our
intermediate goal is an evicted prototype ȳ, having configurations of bounded cardinality on
its support, but with properties similar to those of solutions for (8). We say that an item
ℓ ∈ I is ε-large if s(ℓ) ≥ ε2. We use L(ε, I) to denote the set of ε-large items of an instance
I. If I and ε are known by context we simply use L (instead of L(ε, I)). We now formalize
the above.



I. Doron-Arad, A. Kulik, and H. Shachnai 22:11

▶ Definition 12. Let ε ∈ (0, 0.1) such that ε−1 ∈ N and I an ε-structured BPP instance. A
prototype ȳ of I is called an evicted prototype if the following holds.
1. For all C ∈ supp(ȳ) it holds that |C| ≤ ε−10 and s(C \ L) ≤ ε.
2. There exists γ̄ in the ȳ-polytope such that γ̄ℓ,j = 0 for all ℓ, j ∈ I where ℓ ̸= j.
3.

∑
C∈C[ℓ] ȳC ≤ 2 for every ℓ ∈ I.

Given a solution x̄ for the configuration-LP (8), we construct an evicted prototype ȳ

with ∥ȳ∥ ≈ ∥x̄∥. Our technique fractionally maps each configuration C ∈ supp(x̄) to other
configurations, where relatively small items are discarded in the mapping. To show that the
ȳ-polytope is non-empty, we generate a point in the ȳ-polytope by assigning (fractionally)
discarded items to configuration-types (see Definition 6). The result of this process is outlined
in the next lemma.

▶ Lemma 13. There is an algorithm Evict which given ε ∈ (0, 0.1) such that ε−1 ∈ N, an
ε-structured BPP instance I, and a solution x̄ for the configuration-LP (8), returns in time
poly(|I|, 1

ε ) an evicted prototype ȳ such that ∥ȳ∥ ≤ (1 + ε)∥x̄∥.

A complete presentation of algorithm Evict and the proof of Lemma 13 are given in [9].
Observe that property 2 of Definition 12 allows γ̄ℓ,C > 0 for item ℓ ∈ I and a configuration-
type C ∈ C; the property that γ̄ℓ,j > 0 for ℓ ̸= j is obtained only in the next step. Moreover,
note that Evict does not return the vector γ̄ but only guarantees its existence.

Given an evicted prototype ȳ, our scheme uses algorithm Shift to generate a good
prototype z̄ with ∥z̄∥ ≈ ∥ȳ∥. As in algorithm Evict, we rely on a fractional mapping between
configurations to construct z̄; here, our goal is to significantly decrease |supp(z̄)| w.r.t.
|supp(ȳ)| while keeping the z̄-polytope non-empty. One key observation utilizes combinatorial
properties of the instance to show that items from most groups can be discarded in the
mapping (the items may be assigned to configuration-types in the z̄-polytope). Items of
the remaining groups are mapped to a small number of representatives, using a non-trivial
application of fractional grouping.

▶ Lemma 14. There is an Algorithm Shift that given ε ∈ (0, 0.1) such that ε−1 ∈ N, an
ε-structured BPP instance I and an evicted prototype ȳ, returns in time poly(|I|, 1

ε ) a good
prototype z̄ such that ∥z̄∥ ≤ (1 + 5ε)∥ȳ∥ + Q(ε).

An elaborate presentation of Algorithm Shift and the proof of Lemma 14 are given in [9].
Finally, Algorithm Prototype finds a good prototype by computing Algorithms SolveLP, Evict,
and Shift sequentially. We give the pseudocode in Algorithm 2. The proof of Lemma 8 easily
follows from Lemmas 11, 13, and 14; we give the proof in [9].

Algorithm 2 Prototype(I, ε).

Input : An ε-structured instance I and ε ∈ (0, 0.1) such that ε−1 ∈ N
Output : A good prototype

1 Find a solution for the configuration-LP of I; that is, x̄ = SolveLP(I, ε).
2 Find an evicted prototype ȳ = Evict(I, x̄, ε).
3 Return a good prototype z̄ = Shift(I, ȳ, ε).

APPROX/RANDOM 2023



22:12 An AFPTAS for Bin Packing with Partition Matroid

3.2 Algorithm Solution
In this section we show how integrality properties of a good prototype yield an efficient
packing of the instance. For ε ∈ (0, 0.1) such that ε−1 ∈ N, let I = (I, G, s, k) be an
ε-structured BPP instance. The next lemma shows that if a prototype x̄ has a small support,
and each configuration in the support contains a few items (as for good prototypes), then
the vertices of the x̄-polytope are almost integral. Thus, given a vertex λ̄ of such x̄-polytope,
the items assigned fractionally by λ̄ can be packed using only a small number of extra bins.

▶ Lemma 15. Let I be a BPP instance, k ∈ N≥1, and a prototype x̄ of I such that for all
C ∈ supp(x̄) it holds that |C| ≤ k and x̄C ∈ N. Then, for any vertex λ̄ in the x̄-polytope for
which constraints (7) hold with equality,∣∣{ℓ ∈ I | ∃t ∈ I ∪ C s.t. λ̄ℓ,t ∈ (0, 1)

}∣∣ ≤ 8k2 · |supp(x̄)|2.

The proof of Lemma 15 bears some similarity to a proof of [7], which shows the integrality
properties of a somewhat different polytope. We give the detailed proof in [9].

Given a good prototype z̄, our scheme finds a packing of the instance using a partition of
the items into slot-types and configuration-types; intuitively, items assigned to slot-types
are already packed (using the integrality property of the z̄-polytope) and items assigned to
configuration-types will be added using Greedy. This relies on the following construction.

For configurations S, C ∈ C, we say that S is allowed in C if each item ℓ ∈ S can be
mapped to a distinct slot j ∈ C, such that ℓ ∈ fit(j). We consider packings of a subset
of items to which we call a category. Each category is associated with (i) a configuration
C ∈ C such that all bins in the category are allowed in C, and (ii) a completion: a subset of
(unpacked) items bounded by total size and number of items per group, where each item fits
with C. This is formalized in the next definition.

▶ Definition 16. Let ε ∈ (0, 0.1), an ε-structured BPP instance I = (I, G, s, k), a configura-
tion C ∈ C, a packing B = (B1, . . . , Bm) of a subset of I (category), and D ⊆ I (completion).
We say that B is a category of C and D if the following holds.

For any i ∈ [m], Bi is allowed in C.
D ⊆ fit(C).
s(D) ≤ (1 − s(C)) · m.
For any G ∈ G it holds that |D ∩ G| ≤ m · (k(G) − |C ∩ G|).

The motivation behind this construction, is that Algorithm Greedy (Lemma 2) can be
used to assign the completion to the existing bins of the category using only a small number
of extra bins. Thus, our end-goal from the good prototype z̄ is to obtain an ε-nice partition:
a packing of a subset of I such that the bins in the packing are partitioned into a bounded
number of categories; also, we require that each item ℓ ∈ I is either in this packing or in a
completion of a category. The above constraints are analogous to constraints (3)-(7) of the
z̄-polytope, that is used for finding an assignment of the items to slots and configurations.
This is formalized in Definition 17. An example is given in Figure 4.

▶ Definition 17. Given ε ∈ (0, 0.1), an ε-structured BPP instance I = (I, G, s, k), an ε-nice
partition B of I is a packing (A1, ..., Am) of a subset of I, configurations H ⊆ C, categories
(BC)C∈H, and completions (DC)C∈H such that the following holds.

|H| ≤ ε−22Q2(ε).
{BC}C∈H is a partition of {Ai | i ∈ [m]}.
{DC}C∈H is a partition of I \

⋃
i∈[m] Ai.

For all C ∈ H it holds that BC is a category of C and DC .
The size of B is m.



I. Doron-Arad, A. Kulik, and H. Shachnai 22:13

Figure 4 An example of an ε-nice partition, which consists of a packing in five bins partitioned
into two categories H = {BC1 , BC2 }. In addition, DC1 and DC2 are the completions of BC1 and
BC2 , respectively. Colors indicate groups: if the cardinality bound of the blue group is 1, then DC1

contains at most 2 blue items and DC2 cannot contain blue items.

To obtain an ε-nice partition, Algorithm Partition initially rounds up the entries of z̄ to
obtain the prototype z̄∗. It then finds a vertex λ̄ of the z̄∗-polytope, which is almost integral
by Lemma 15. Thus, with the exception of a small number of items, each item is fully assigned
either to a slot or to a configuration. Algorithm Partition uses λ̄ to construct an ε-nice
partition. We generate a category for each C ∈ supp(z̄∗) and let DC = {ℓ ∈ I |λ̄ℓ,C = 1} be
the set of all items assigned to C. We also generate z̄∗

C copies (bins) of each configuration
and replace its slots by items via matching.

▶ Lemma 18. There is an algorithm Partition that given ε ∈ (0, 0.1) such that ε−1 ∈ N, an
ε-structured BPP instance I, and a good prototype z̄ of I, returns in time poly(|I|, 1

ε ) an
ε-nice partition of I of size at most ∥z̄∥ + ε−22Q2(ε).

Algorithm Partition is presented in [9]. Given an ε-nice partition of size m, a packing of
the instance in roughly m bins is obtained using the next lemma.

▶ Lemma 19. There is a polynomial-time algorithm Pack which given ε ∈ (0, 0.1) such that
ε−1 ∈ N, an ε-structured BPP instance I, and ε-nice partition of I of size m, returns in
time poly(|I|, 1

ε ) a packing of I in at most (1 + 2ε)m + 2ε−22Q2(ε) bins.

Algorithm Pack utilizes Algorithm Greedy to add the items in a completion of a category
to the bins of this category, possibly using a few extra bins. Algorithm Pack and Algorithm
Greedy are presented in [9]. Finally, we construct Algorithm Solution, which first finds an
ε-nice partition and then use it to find a packing for the instance. We give the pseudocode
in Algorithm 3.

Proof of Lemma 9. By Lemma 18, B is an ε-nice partition with size at most ∥z̄∥+ε−22·Q2(ε).
Then, by Lemma 19, Φ is a full packing of I using at most (1 + 2ε) · ∥z̄∥ + 5ε−22 · Q2(ε) bins.
The running time is poly(|I|, 1

ε ) by Lemmas 18, 19. ◀

Algorithm 3 Solution(I, z̄, ε).

Input : ε ∈ (0, 0.1), ε−1 ∈ N, an ε-structured instance I, a good prototype z̄ of I
Output : A packing of I

1 Find an ε-nice partition B of I by Partition(I, z̄, ε).
2 Return a packing Φ = Pack(I, B, ε).

APPROX/RANDOM 2023



22:14 An AFPTAS for Bin Packing with Partition Matroid

4 Discussion

In this paper we present an AFPTAS for Bin Packing with Partition Matroid. While BPP
is a natural generalization of Bin Packing variants that have been studied in the past, to
the best of our knowledge it is studied here for the first time. Our result improves upon the
APTAS of [8] for the well studied special case of Group Bin Packing, and generalizes the
AFPTASs of [15, 30] for the special case of Bin Packing with Cardinality Constraints. Our
scheme applies a novel rounding method to solutions of the configuration-LP formulation of
the problem. The rounding process relies on the key notion of a prototype, in which items are
placeholders for other items, and sophisticated use of fractional grouping [16]. Our scheme
demonstrates the power of this fractional version of linear grouping in solving constrained
packing problems; it also shows how fractional grouping can be used constructively.

The rounding method introduced in this paper seems useful also for other settings. A
preliminary study shows we can apply our method to obtain a polynomial time approximation
scheme for Multiple Knapsack with Partition Matroid, a generalization of the Multiple
Knapsack problem (see, e.g., [5, 28]) in which the items assigned to each bin form an
independent set of a partition matroid. Furthermore, we can derive approximation algorithms
for Machine Scheduling with Partition Matroid, a generalization of the classic Machine
Scheduling problem in which the jobs assigned to a machine must be an independent set of a
partition matroid. We note that this problem is a generalization of Machine Scheduling with
Bag Constraints studied in [6, 21].

Another intriguing direction for future work is to apply our framework to Bin Packing
with other types of constraints. We give two potential examples. The problem of Bin Packing
with Partition Matroid is a special case of Bin Packing with Matroid, for which the input is a
set of items I, a size function s : I → [0, 1] and a matroid M. The objective is to partition I

into a minimal number of bins A1, . . . , Am such that Ab is an independent set of the matroid
M, and s(Ab) ≤ 1 for all b ∈ [m]. While this problem is a natural generalization of both Bin
Packing and Matroid Partitioning, we were unable to find any published results. It would be
interesting to obtain an APTAS for Bin Packing with Matroid using our framework. To this
end, the reduction of the instance to a structured instance and the fractional shifting (see
the full version of the paper [9]) need to be modified to tackle general matroids.

Finally, consider the Bin Packing with Matching Constraints problem (or, equivalently:
Bin Packing with Line Graph Conflicts). The input is a graph G = (V, E) and a size function
on the edges s : E → [0, 1]. The objective is to partition E into a minimal number of
bins A1, . . . , Am such that Ab ⊆ E is a matching in G, and s(Ab) ≤ 1 for all b ∈ [m]. Our
preliminary results suggest it may be possible to adapt the main components of our scheme
for solving this problem.

References
1 Ron Adany, Moran Feldman, Elad Haramaty, Rohit Khandekar, Baruch Schieber, Roy

Schwartz, Hadas Shachnai, and Tami Tamir. All-or-nothing generalized assignment with
application to scheduling advertising campaigns. In Integer Programming and Combinatorial
Optimization - 16th International Conference, IPCO, pages 13–24, 2013.

2 Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for
set covering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2010.

3 Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin
packing. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on discrete
algorithms, pages 1561–1579. SIAM, 2016.



I. Doron-Arad, A. Kulik, and H. Shachnai 22:15

4 Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approximation schemes for ordered
vector packing problems. Naval Research Logistics (NRL), 50(1):58–69, 2003.

5 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

6 Syamantak Das and Andreas Wiese. On minimizing the makespan when some jobs cannot be
assigned on the same machine. In 25th Annual European Symposium on Algorithms, ESA,
pages 31:1–31:14, 2017.

7 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An APTAS for bin packing with clique-
graph conflicts. arXiv preprint, 2020. arXiv:2011.04273.

8 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An APTAS for bin packing with clique-
graph conflicts. In 17th International Symposium on Algorithms and Data Structures, WADS,
pages 286–299, 2021.

9 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. Bin packing with partition matroid can
be approximated within o(opt) bins. arXiv preprint, 2022. arXiv:2212.01025.

10 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An FPTAS for Budgeted Laminar Matroid
Independent Set. arXiv preprint, 2023. arXiv:2304.13984.

11 Ilan Doron-Arad and Hadas Shachnai. Approximating bin packing with conflict graphs via
maximization techniques. Proc. WG, 2023.

12 Jack Edmonds. Minimum partition of a matroid into independent subsets. J. Res. Nat. Bur.
Standards Sect. B, 69:67–72, 1965.

13 Ibtissam Ennajjar, Youness Tabii, and Abdelhamid Benkaddour. Securing data in cloud
computing by classification. In Proceedings of the 2nd international Conference on Big Data,
Cloud and Applications, pages 1–5, 2017.

14 Leah Epstein and Asaf Levin. On bin packing with conflicts. SIAM Journal on Optimization,
19(3):1270–1298, 2008.

15 Leah Epstein and Asaf Levin. AFPTAS results for common variants of bin packing: A new
method for handling the small items. SIAM Journal on Optimization, 20(6):3121–3145, 2010.

16 Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. Modular and submodular optimization with
multiple knapsack constraints via fractional grouping. In 29th Annual European Symposium
on Algorithms, ESA, pages 41:1–41:16, 2021.

17 W Fernandez de La Vega and George S. Lueker. Bin packing can be solved within 1+ ε in
linear time. Combinatorica, 1(4):349–355, 1981.

18 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approx-
imation algorithms for maximum separable assignment problems. Mathematics of Operations
Research, 36(3):416–431, 2011.

19 Harold N Gabow and Herbert H Westermann. Forests, frames, and games: algorithms for
matroid sums and applications. Algorithmica, 7(1):465–497, 1992.

20 Michael R Garey and David S Johnson. Computers and intractability. A Guide to the, 1979.
21 Kilian Grage, Klaus Jansen, and Kim-Manuel Klein. An EPTAS for machine scheduling with

bag-constraints. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures,
pages 135–144, 2019.

22 Michael D Grigoriadis, Leonid G Khachiyan, Lorant Porkolab, and Jorge Villavicencio. Ap-
proximate max-min resource sharing for structured concave optimization. SIAM Journal on
Optimization, 11(4):1081–1091, 2001.

23 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combin-
atorial optimization, volume 2. Springer Science & Business Media, 2012.

24 Marcos Guerine, Murilo B Stockinger, Isabel Rosseti, Luidi G Simonetti, Kary ACS Ocaña,
Alexandre Plastino, and Daniel de Oliveira. A provenance-based heuristic for preserving results
confidentiality in cloud-based scientific workflows. Future Generation Computer Systems,
97:697–713, 2019.

APPROX/RANDOM 2023

https://arxiv.org/abs/2011.04273
https://arxiv.org/abs/2212.01025
https://arxiv.org/abs/2304.13984


22:16 An AFPTAS for Bin Packing with Partition Matroid

25 Klaus Heeger, Danny Hermelin, George B Mertzios, Hendrik Molter, Rolf Niedermeier, and
Dvir Shabtay. Equitable scheduling on a single machine. Journal of Scheduling, pages 1–17,
2022.

26 Rebecca Hoberg and Thomas Rothvoß. A logarithmic additive integrality gap for bin packing.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2616–2625. SIAM, 2017.

27 Klaus Jansen. An approximation scheme for bin packing with conflicts. Journal of combinatorial
optimization, 3(4):363–377, 1999.

28 Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
Journal on Computing, 39(4):1392–1412, 2010.

29 Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In International
Conference on Current Trends in Theory and Practice of Computer Science, pages 313–324.
Springer, 2012.

30 Klaus Jansen, Marten Maack, and Malin Rau. Approximation schemes for machine scheduling
with resource (in-) dependent processing times. ACM Transactions on Algorithms (TALG),
15(3):1–28, 2019.

31 Klaus Jansen and Sabine R. Öhring. Approximation algorithms for time constrained scheduling.
Inf. Comput., 132(2):85–108, 1997.

32 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer
Science, pages 312–320. IEEE, 1982.

33 Hans Kellerer and Ulrich Pferschy. Cardinality constrained bin-packing problems. Annals of
Operations Research, 92:335–348, 1999.

34 Kenneth L Krause, Vincent Y Shen, and Herbert D Schwetman. Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems. Journal of the
ACM (JACM), 22(4):522–550, 1975.

35 KL Krause, Vincent Y Shen, and Herbert D Schwetman. Errata:“analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems”. Journal of the
ACM (JACM), 24(3):527, 1977.

36 Bill McCloskey and AJ. Shankar. Approaches to bin packing with clique-graph conflicts.
Computer Science Division, University of California, 2005.

37 Y. Oh and S.H. Son. On a constrained bin-packing problem. Technical Report CS-95-14, 1995.
38 Serge A Plotkin, David B Shmoys, and Éva Tardos. Fast approximation algorithms for

fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–301,
1995.

39 Tai Le Quy, Gunnar Friege, and Eirini Ntoutsi. Multiple fairness and cardinality constraints
for students-topics grouping problem. arXiv preprint, 2022. arXiv:2206.09895.

40 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

https://arxiv.org/abs/2206.09895

	1 Introduction
	1.1 Our Technique
	1.2  Prior Work
	1.3 Organization

	2  Preliminaries
	2.1 Tackling the Small Items
	2.2 Structuring the Instance

	3  Approximation Algorithm for {epsilon}-Structured Instances
	3.1  Algorithm Prototype
	3.2  Algorithm Solution

	4  Discussion

