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Abstract
Optimization problems often involve vector norms, which has led to extensive research on developing
algorithms that can handle objectives beyond ℓp norms. Our work introduces the concept of
submodular norms, which are a versatile type of norms that possess marginal properties similar
to submodular set functions. We show that submodular norms can either accurately represent or
approximate well-known classes of norms, such as ℓp norms, ordered norms, and symmetric norms.
Furthermore, we establish that submodular norms can be applied to optimization problems such as
online facility location and stochastic probing. This allows us to develop a logarithmic-competitive
algorithm for online facility location with symmetric norms, and to prove logarithmic adaptivity gap
for stochastic probing with symmetric norms.
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1 Introduction

In the field of combinatorial optimization, norm objectives are frequently encountered.
Canonical problems, such as the min-weight spanning tree and the k-median, involve searching
for a feasible solution that minimizes the sum of costs, which is equivalent to the ℓ1 norm
of the edge cost vector. On the other hand, canonical problems like bottleneck spanning
tree and k-center aim to minimize the maximum of costs, which is equivalent to the ℓ∞
norm of the edge cost vector. However, because ℓ1 and ℓ∞ norms only capture the extreme
Utilitarian and Egalitarian objectives respectively, significant research has been devoted to
developing combinatorial optimization algorithms for more general norms (see references
in Section 1.3). Among the commonly studied norms are ℓp norms, ordered norms, Orlicz
norms, symmetric norms, and arbitrary monotone norms.

Over the past decade, there is also a lot of effort towards designing online and stochastic
algorithms for more general norms. For instance, remarkable progress has been made
in developing algorithms beyond ℓp norms for various problems, such as load balancing
[16, 17, 29, 30, 31, 32], set cover [7, 36], spanning trees [28], and bandits with knapsacks
[33, 32]. Notably, most of the recent progress is for the class of symmetric norms, i.e.,
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monotone norms that remain unchanged upon permutation of coordinates. This progress is
partly due to Ky Fan’s Dominance Theorem (refer to [11]), which reduces the problem of
designing algorithms for symmetric norms to ordered norms (see Section 1.1 for a formal
definition). Ordered norms are comparatively more manageable due to their explicit form.
Given this progress on some combinatorial problems for symmetric norms, a natural question
arises:

What general norms and what combinatorial problems admit algorithms with good
performance guarantees?

A challenge in making progress beyond symmetric norms is that such norms are not
explicit, e.g., they may not be well approximated by ordered norms. In this work we introduce
the class of submodular norms, which is a broad class of norms with marginals properties
mimicking submodular set functions. We show that submodular norms either capture or
approximate popular classes of norms like ℓp norms, ordered norms, and symmetric norms.
Moreover, submodular norms are amenable to some of the optimization problems that were
previously intractable like online facility location and stochastic probing.

1.1 Norms and Submodularity
We start with the definitions of monotone, symmetric, and ordered norms. We will be only
interested in norms defined in the positive orthant.

▶ Definition 1 (Monotone Norm). A monotone norm is a function ∥ · ∥ : Rn
+ → R+ and is

defined as

∥x∥ := sup
a∈A

∑
i

aixi,

i.e, by a max of non-negative linear functions over set A. This is equivalent to saying that
∥x∥ ≥ ∥y∥ whenever x ≥ y ≥ 0 coordinatewise (hence, the name monotone).

▶ Definition 2 (Symmetric Norm). A monotone norm ∥ · ∥ is a symmetric norm if, for any
vector x ∈ Rn

+ and for all of its coordinate permutations π : [n] → [n], ∥x∥ = ∥(xπ(i))i∈[n]∥.

We remark that any symmetric norm can be written as supa∈A⟨a, x↓⟩, where x↓ represents
the sorted (in descending order) vector x, and A is a set on non-negative descending vectors.
This follows from the fact that maxπ

∑
i aixπ(i) = ⟨a↓, x↓⟩ for non-negative vectors a, x. In

the special case where A is a singleton, we have ordered norms.

▶ Definition 3 (Ordered Norm). A monotone norm is an ordered norm if it can be written
as ∥x∥ =

∑
i aix

↓
i , where a1 ≥ . . . ≥ an ≥ 0.

Submodular Norms

Submodular set functions and their applications to optimization have been extensively
studied; see books [38, 22]. Intuitively, they capture the notion of decreasing marginal
gains. Although submodular functions were originally defined for discrete settings, the notion
has been generalized to arbitrary lattices, in particular to real vectors [8]. This leads to
the following notion of continuous submodularity, which has found several applications in
machine learning [12, 10] and will be crucial in our definition of submodular norms. We
discuss standard properties of continuous submodularity in Appendix A.1.
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▶ Definition 4 (Continuous Submodularity). A real-valued function f : Rn
+ → R+ is continu-

ously submodular if for all x, y ∈ Rn
+, we have f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y), where

x ∨ y and x ∧ y are the coordinate-wise max and min of x and y respectively.

Our first contribution is to define the following natural class of submodular norms.

▶ Definition 5 (Submodular Norm). A monotone norm ∥·∥ is submodular if it is continuously
submodular.

Examples of submodular norms include all ℓp norms and Ordered norms (see Observa-
tion 12). Moreover, the following theorem proved in Section 2.2 shows that any symmetric
norm can be approximated by a submodular norm.

▶ Theorem 6. Any symmetric norm can be O(log ρ) approximated by a submodular norm,
where ρ := ∥(1,1,...,1)∥

∥(1,0,0,...,0)∥ ≤ n. This approximation factor is tight up to O(loglog ρ) terms.

There is an intimate connection between submodular norms and submodular set functions.
Given a submodular norm ∥·∥, the set function f : 2[n] → R+ by f(S) := ∥1S∥ is submodular,
so every submodular norm is an extension of a submodular function. Moreover, if f is a
monotone submodular function with f(∅) = 0, then f can be extended to a submodular
norm ∥ · ∥ by the Lovász extension:

∥x∥ :=
∫ ∞

0
f({j : t ≤ xj})dt.

This observation that every submodular set function induces a continuously submodular norm
via its Lovász extension has appeared several times before [9, 8]. However, our definition of
submodular norms can capture many more natural norms. E.g., all ℓp norms are submodular
but for 1 < p < ∞ they cannot be written as a Lovász extension of a submodular set function
since the dual-norm unit ball has an infinite number of vertices.
▶ Remark 7. A commonly studied variant of continuous submodularity is DR-submodularity
[13, 20, 37]: a function f : Rd

+ → R+ is DR-submodular if it satisfies diminishing returns
meaning f(w + aei) − f(w) ≤ f(x + aei) − f(x) for all x, w ∈ Rd

+ with x ≤ w, i ∈ [d], and
a ≥ 0. It is known that continuous submodularity is equivalent to having this diminishing
returns inequality only when xi = wi; hence continuous submodularity is a weaker property.
The class of DR submodular functions turns out to be uninteresting when looking at norms
since the only DR-submodular norm is the ℓ1-norm (up to rescaling coordinate-wise). See
Appendix A.1 for proofs.

1.2 Applications
In addition to being a natural class of norms, submodular norms find multiple applications.
We will explore two specific applications-one in the domain of online algorithms and another
in the field of stochastic optimization.

Online Facility Location

In this problem we are given a metric space (M, d) equipped with metric d : M × M → R≥0,
along with a cost function f : M → R+ and a norm ∥ · ∥ : Rn

+ → R+. At each time step
i ∈ [n], an adversary produces a new request xi ∈ M and the algorithm decides to either
assign xi to the closest already-open facility in the set Fi−1, thereby incurring a connection
cost d(xi, Fi−1), or to open a new facility q and assign request xi to facility q, thereby

APPROX/RANDOM 2023
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incurring a connection cost d(xi, q) and an opening cost f(q). Let F be the final set of
opened facilities, let Fi be the set of facilities opened until (and including) the i-th request,
and let d = (d1, . . . , dn) ∈ Rn

+ be the vector of connection costs di := d(xi, Fi). Our goal is
to minimize the total cost

∑
q∈F f(q) + ∥d∥.

Online facility location was introduced by Meyerson for ℓ1 norm [35], where he showed
an O(log n) competitive algorithm. A tight competitive ratio of Θ(log n/loglog n) was later
obtained by Fotakis [21]. When all requests are given up front (offline setting), it is a classical
NP-hard problem where we can design O(1) approximation algorithm, even for general
norms [27]. In the online setting, however, no non-trivial algorithm was previously known
beyond ℓ1 norms.

▶ Theorem 8. For online facility location problem with a submodular norm ∥ · ∥, there exists
a randomized online algorithm that obtains cost at most O(log ρ) ·

∑
z∈F ∗ f(z) + O(1) · ∥d∗∥,

where F ∗ and d∗ are the set of facilities and vector of assignment distances respectively given
by the offline optimum algorithm and ρ := ∥(1,1,...,1)∥

mini ∥ei∥ ≤ n · maxi ∥ei∥
mini ∥ei∥ .

Since any symmetric norm can be O(log ρ) approximated by a submodular norm by
Theorem 6, we get the following corollary.

▶ Corollary 9. For online facility location problem with a symmetric norm, there exists an
O(log ρ)-competitive randomized algorithm.

For concreteness, this corollary implies an O(log n)-competitive algorithm for ℓ1 norm,
which matches Meyerson’s bound [35], an O(1)-competitive algorithm for ℓ∞ norm, and an
O(log k)-competitive algorithm for Top-k norm. This is tight up to an O(log log ρ) factor for
any symmetric norm by the lower bound construction given in Theorem 31.

The proof of Theorem 8 relies on generalizing Meyerson’s algorithm beyond ℓ1 norms.
Meyerson’s algorithm constructs a new facility at each demand point xi with probabil-
ity d(xi, Fi−1)/f , thereby balancing the cost of assigning the demand against the cost
of constructing a new facility. A natural generalization of this algorithm to general
norms is to construct a new facility with probability δi/f , where marginal cost δi =
∥(d1, . . . , di−1, d(xi, Fi−1), 0, . . . , 0)∥ − ∥d≤i−1∥. Unfortunately, we will show that such an
algorithm is Ω(n)-competitive even for the ℓ∞ norm. Our crucial change to Meyerson’s
algorithm is to carefully define auxiliary assignment costs d̂i which upper bound the true costs
di. Now we use d̂i instead of di to calculate the marginal cost δi. Due to norm submodularity,
this underestimates the marginal costs, making the algorithm more inclined to assign demand
points instead of constructing new facilities.

Next, we discuss a stochastic optimization application of submodular norms.

Stochastic Probing

This problem is a natural stochastic generalization of constrained submodular maximiz-
ation. Here, we are given probability distributions of n independent random variables
X = (X1, . . . , Xn) ∈ R+, a downward-closed set family F ⊆ 2[n], and a monotone objective
f : Rn

+ → R+. The goal is to select a feasible set S ∈ F of variables in order to maximize
f(XS). The optimal strategy for this problem is generally adaptive, i.e., it selects elements of
S one at a time and may change its decisions based on observations of the selected variables.

Since adaptive strategies are complicated (could be an exponential-sized decision tree)
and hard to implement for many applications of stochastic probing, we are interested in
finding non-adaptive algorithms that maximize maxS∈F E[f(XS)]. The main question, which
has been studied in several papers [5, 24, 25, 26, 14, 19], is how much do we lose when we



K. Patton, M. Russo, and S. Singla 23:5

move from adaptive to non-adaptive algorithms, i.e., if Adap(X, F , f) denotes the optimal
adaptive strategy and NA(X, F , f) denotes the optimal non-adaptive algorithm, then what
is the maximum possible adaptivity gap Adap(X,F,f)

NA(X,F,f) .
For submodular set functions, the worst-case adaptivity gap is known to be 2 [26, 14].

An interesting conjecture posed in [26] is whether the adaptivity gap for XOS set functions
is poly-logarithmic in n, where an XOS set function f : 2[n] → R+ is a max over linear set
functions. Since a monotone norm is nothing but a max over linear functions (given by the
dual-norm unit ball), they form an extension of XOS set functions from the hypercube to all
non-negative real vectors. Thus, we can generalize the conjecture of [26] to the following:

▶ Conjecture 10. The adaptivity gap for stochastic probing with monotone norms is poly-
log(n).

Although we are not able to resolve this general conjecture, we make progress by resolving
it for all symmetric norms.

▶ Theorem 11. The adaptivity gap for stochastic probing with symmetric norms is O(log n).

The proof of this result relies on first approximating the symmetric norm by a submodular
norm as given in Theorem 6. Next, we generalize the technique of bounding adaptivity gaps
for submodular set functions in [14] to submodular norms.

1.3 Further Related Work

In recent years, there has been a surge of interest in the study of general norms. Some of the
combinatorial problems that have been studied beyond ℓp norms are load balancing [16, 17, 29,
30], k-clustering [15, 16], vector scheduling [32, 18, 31], set cover [7, 36], spanning trees [28],
and generalized assignment with convex costs [23, 32]. Beyond combinatorial optimization,
general norms have been recently studied for problems such as mean estimation with
statistical queries [34], nearest-neighbor search [4, 3], regression [2, 39], and communication
complexity [1].

Continuous submodular functions have been extensively studied in the machine learning
literature. We refer to the beautiful article of Bach [8] for their properties. Some of their
applications to combinatorial optimization are discussed in [6, 37] and to learning are discussed
in [40, 20]. The fact that submodular set function induces a norm via its Lovász extension
has found several applications for regression since they induce sparsity [9, 10].

Paper Outline

Our work revolves around submodular norms and combinatorial optimization problems where
the objective function is a submodular norm. In Section 2, we illustrate the key properties of
submodular norms and the extent to which they serve as a good proxy for other classes of
norms. In this respect, we identify a crucial parameter ρ that structurally characterizes a
given submodular norm and may be of independent interest. In Section 3, we leverage these
properties to derive a competitive algorithm for online facility location. Finally, in Section 4,
we provide an application of submodular norms to adaptivity gaps for stochastic probing.

APPROX/RANDOM 2023
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2 Submodular Norms

We study properties of submodular norms and how they relate to other commonly studied
norms.

2.1 Properties and Important Special Cases
We first discuss some common examples of submodular norms.

▶ Observation 12. The following norms are submodular:
1. All ℓp norms are submodular.
2. All Top-k and ordered norms are submodular.
3. For a matroid M = ([n], I), the matroid rank norm ∥x∥ := maxS∈I(

∑
i∈S xi) is submod-

ular.

Proof. To see that ℓp norms are submodular, it suffices to show that for any monotone
concave g : R+ → R+, and submodular f : Rn

+ → R+, the function g ◦ f is submodular. We
can then apply this when f = ∥x∥p

p and g(y) = y1/p.
To prove the claim, notice that for x, y ∈ Rn

+,

g(f(x ∨ y)) − g(f(x)) ≤ g(f(x ∨ y) − f(x) + f(x ∧ y)) − g(f(x ∧ y)) ≤ g(f(y)) − g(f(x ∧ y)).

On the other hand, Top-k norms and matroid rank norms are special cases of Lovász
extensions. The matroid rank norm is the Lovász extension of the rank function, and a Top-k
norm is a matroid rank norm for the k-uniform matroid. ◀

Submodular norms are also closed under several natural operations.

▶ Lemma 13. The following operations return a submodular norm:
1. Any rescaling of the coordinates of a submodular norm.
2. Sums of partial1 submodular norms.
3. Any conical combination of submodular norms is submodular.2

Proof. The first property follows since coordinate-wise rescaling of vectors commutes with
coordinate-wise max and min.

The second property follows from the fact that a partial submodular norm is a submodular
semi-norm (i.e., a norm without the requirement to be positive definite). A sum of semi-
norms remains a semi-norm, and from [8], a sum of continuously submodular functions is
continuously submodular.

Finally, it is folklore that conical combinations of norms are norms, and it is also easy to
show that such combinations also preserve continuous submodularity (see [8]). ◀

Besides their strict containment of many common norms, submodular norms are also
powerful because they can be used to approximate other norms. In Section 2.2, we will
discuss how symmetric norms can be approximated by submodular norms up to logarithmic
factors. In addition, we note in Section 2.3 that submodular norms may approximate a much
larger class of norms than just symmetric, although they are still far from the most general
class of monotone norms. These approximation relations are summarized in Figure 1.

1 Partial means norms defined on a subset of coordinates with every other coordinate treated as 0.
2 Let x1, . . . , xm ∈ Rn be real-valued vectors. We say that y =

∑
i∈[m] αixi is a conical combination of

the vectors if αi ≥ 0 for all i ∈ [m].
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Monotone Norms

Submodular Norms

Symmetric Norms

ℓp-norms

Ordered norms

Lovász extensions

√
n

n
≈ log n

Sum of partial ℓp-norms

Max of positive linear functionals
n

Figure 1 The containment relationships between monotone norms, submodular norms, and
symmetric norms, along with some examples. The “distances” shown indicate the worst-case
approximation factor (up to constants) for a norm in each outer class by a norm in the corresponding
inner class.

2.2 Approximation of Symmetric Norms
A major benefit of studying submodular norms is that they can approximate any symmetric
norm. Indeed, previous works have noted that symmetric norms can be approximated by an
ordered norm up to a factor of O(log n) [16, 32]. For our purposes, it will be useful to make
this approximation more precise by replacing log n with log ρ, where parameter ρ is defined
as follows:

▶ Definition 14. If e1, . . . , en denote the standard basis vector and let 1≤i :=
∑

1≤j≤i ej

denote the vector with 1s at the first i coordinates and 0 otherwise. Then for any monotone
norm ∥ · ∥ we define the parameter

ρ∥·∥ := ∥1≤n∥
mini∈[n] ∥ei∥

.

When the norm is clear from context, we simply write ρ = ρ∥·∥.

Notice that for symmetric norms, we have ρ = ∥1≤n∥
∥e1∥ ≤ n. One can think of ρ for symmetric

norms as a measure of how closely a norm behaves like ∥ · ∥1 (large ρ) versus ∥ · ∥∞ (small ρ).

▶ Observation 15. For ℓp norms, we have ρ∥·∥p
= n1/p. For Top-k norms, we have

ρ∥·∥Top-k = k.

As we will see, the parameter ρ appears again in both the upper and lower bound analysis
in Section 3 and Appendix B.3, making the improvement from log n to log ρ in Lemma 16
necessary for tight bounds in our applications.

▶ Lemma 16. For any symmetric norm ∥ · ∥ with ρ∥·∥ = ρ, there is an ordered norm ∥ · ∥′

such that ∥x∥ ≤ ∥x∥′ ≤ 2(log ρ + 1) · ∥x∥.

APPROX/RANDOM 2023
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Proof. Let ∥x∥ = maxa∈A⟨a, x↓⟩. Without loss of generality, assume ∥e1∥ = 1, so ∥1≤n∥ =
∥(1, . . . , 1)∥ = ρ.

Let 1 = m0 ≤ m1 ≤ · · · ≤ m⌊log ρ⌋ be such that mj is the least integer with ∥1≤mj
∥ ≥ 2j .

Let a0, . . . , a⌊log ρ⌋ ∈ A be such that ∥1≤mj ∥ = ⟨aj , 1≤mj ⟩.
Now consider the ordered norm ∥x∥′ := 2⟨a∗, x↓⟩, where a∗ =

∑
j aj . Clearly, we have

1
2(⌊log ρ⌋ + 1)∥x∥′ ≤ max

j
⟨aj , x↓⟩ ≤ max

a∈A
⟨a, x↓⟩ = ∥x∥.

Additionally, notice that for any x ∈ Rn
+, we can write x↓ =

∑
k∈[n] λk1≤k for some λk ≥ 0.

We have

∥x∥′ = 2
∑

j

∑
k

λk⟨aj , 1≤k⟩ ≥ 2
∑

k

λk max
j

⟨aj , 1≤k⟩ ≥†
∑

k

λk∥1≤k∥ ≥ ∥x∥.

Here, † follows from rounding each k down to the nearest mj and using

⟨aj , 1≤k⟩ ≥ ⟨aj , 1≤mj
⟩ = ∥1≤mj

∥ ≥ 1
2∥1≤k∥. ◀

Tightness of approximation

In the worst case where ρ = Ω(n), the log n factor turns out to be nearly the best possible
factor for approximation of a symmetric norm by a submodular norm. The following lemma
shows that the construction in Lemma 16 is tight up to O(loglog n) factors.

▶ Lemma 17. For any ε ∈ (0, 1/2), define

∥x∥ := max
k∈[n]

k−ε · ⟨1≤k, x↓⟩.

For any submodular norm ∥ · ∥′ such that ∥x∥′ ≥ ∥x∥ for all x ∈ Rn
+, there exists y ∈ Rn

+
such that ∥y∥′ ≥ C ε

1−ε (log n)1−ε∥y∥. Taking ε = 1
log log n gives ∥y∥′ ≥ Ω( log n

log log n )∥y∥.

Proof. Let y be defined by yk := kε−(k−1)ε

ε . A simple calculation yields that

k−(1−ε) ≤ yk ≤ (k − 1)−(1−ε).

Additionally, we have

∥y∥ = max
k∈[n]

k−ε ·
k∑

i=1
yi = max

k∈[n]
k−ε · kε

ε
= 1

ε
.

Now to estimate ∥y∥′, first note that we may assume ∥ · ∥′ to be symmetric, otherwise
replace ∥ · ∥′ with its average over all permutations of inputs. We will inductively show that
for j ∈ [n/log n], we have ∥y≤j∥′ ≥ bj := (log(j+1))1−ε

4(1−ε) .
For j = 1, we check

b1 ≤ 1
4(1 − ε) ≤ 1

2 ≤ 1 = ∥y≤1∥ ≤ ∥y≤1∥′.

Now assume the claim holds for a given j ≥ 1. Consider z ∈ Rd
+ defined by

zi =


yi 1 ≤ i ≤ j,

yj+1 j < i ≤ j + ℓ,

0 j + ℓ < i,
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where ℓ := ⌈(j + 1) log(j + 1)⌉. Notice that by submodularity and symmetry, we have

∥y≤j+1∥′ ≥ ∥y≤j∥′ + ∥z∥′ − ∥y≤j∥′

ℓ
≥ bj + ∥z∥′ − bj

ℓ
.

We see that

∥z∥′ ≥ ∥z∥ ≥ (j + ℓ)−ε · (j + ℓ)yj+1 ≥
(

j + ℓ

j + 1

)1−ε

≥ log(j + 1)1−ε
.

Thus, we have ∥z∥′ − bj ≥ 1
2 log(j + 1)1−ε. Finally, we have

∥y≤j+1∥′ ≥ bj + log(j + 1)1−ε

2ℓ
≥ bj + log(j + 1)−ε

4(j + 1) ≥ bj +
∫ j+2

j+1

(log x)−ε

4x
dx = bj+1. ◀

2.3 Beyond Symmetric Norms
Given that submodular norms allow us to approximate symmetric norms up to log n factors,
we may ask if other classes of norms can be similarly approximated. We note that there
exist submodular norms that are an Ω(n) factor away from any symmetric norm, which
suggests that symmetric norms are not the largest class of norms which are approximated by
submodular norms. Indeed, sums of partial ℓp or Top-k norms, such as those considered in [36],
are submodular but can be highly asymmetric. Thus, although we focus on approximating
symmetric norms by submodular norms, it is likely that many asymmetric norms admit
submodular approximations. However, we leave the problem of characterizing these norms
for future work.

In the following lemmas, we adopt the notation xS for x ∈ Rn and S ⊆ [n] to denote x

after zeroing out all entries except those at indices in S, as well as 1S to denote the indicator
vector of S.

▶ Lemma 18. There exists a submodular norm ∥ · ∥′ for which any symmetric norm ∥ · ∥
satisfying ∥x∥ ≤ ∥x∥′ for all x ∈ Rn

+, also has ∥y∥′ ≥ Ω(n) · ∥y∥ for some y ∈ Rn
+.

Proof. Let A := {1, . . . , n/2} and B := {n/2 + 1, . . . , n}. Define the norm ∥x∥′ := ∥xA∥∞ +
∥xB∥1. Notice that ∥ · ∥′ is a sum of partial ℓp norms, so it is submodular by Lemma 13. Now
suppose ∥ · ∥ is a symmetric norm with ∥x∥ ≤ ∥x∥′ for all x ∈ Rn

+. Then ∥1A∥ ≤ ∥1A∥′ = 1.
However, we also have ∥1B∥ = ∥1A∥ by symmetry, and ∥1B∥′ = n/2. Thus, taking y = 1B,
we have our lemma. ◀

In the most general setting of monotone norms, however, submodular norms cannot give
better than an Ω(

√
n) approximation. The proof of this fact is similar to the canonical proof

of the Ω(
√

n) factor gap between submodular set functions and XOS set functions.

▶ Lemma 19. There exists a monotone norm ∥ · ∥ for which any submodular norm ∥ · ∥′

satisfying ∥x∥ ≤ ∥x∥′ for all x ∈ Rn
+, also has ∥y∥′ ≥ Ω(

√
n) · ∥y∥ for some y ∈ Rn

+.

Proof. Partition [n] into
√

n blocks B1, . . . , B√
n, each of size

√
n. Define the norm ∥x∥ :=

maxk∈[
√

n]
(∑

i∈Bk
xi

)
. Now suppose ∥ · ∥′ is a submodular norm satisfying ∥x∥ ≤ ∥x∥′ for

all x ∈ Rn
+. We will construct y by starting with the zero vector and iteratively choosing one

element ik of each Bk to activate (set yik
= 1). Clearly ∥y∥ = 1, so we just need to show

∥y∥′ ≥ Ω(
√

n).
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23:10 Submodular Norms with Applications

Formally, let y(0) = 0, and for each k = 1, . . . ,
√

n
2 , do the following. If ∥y(k−1)∥′ ≥

√
n

2 ,
we are done and simply choose y = y(k−1). Otherwise, notice that ∥y(k−1) + 1Bk

∥′ ≥
∥y(k−1) + 1Bk

∥ =
√

n, so ∥y(k−1) + 1Bk
∥′ − ∥y(k−1)∥ ≥

√
n

2 . By submodularity, there exists
some ik ∈ Bk such that ∥y(k−1) +eik

∥′ ≥ ∥y(k−1)∥′ + 1
2

√
n

, for which we set y(k) := y(k−1) +eik

By induction, if we do not terminate early, we have ∥y(
√

n)∥′ ≥ n
2

√
n

=
√

n
2 . ◀

3 Online Facility Location with Submodular Norms

In this section, we illustrate how submodular norms can be applied to Online Facility Location.
Recall from Section 1.2, in this problem we are given a metric space (M, d) along with a
cost function f : M → R+. At each time step i ∈ [n], an adversary produces a new request
xi ∈ M, and the algorithm decides whether to assign xi to the closest open facility Fi−1 or
to open a new facility q and assign request xi to q. The goal is to minimize the total facility
opening costs plus a given norm ∥ · ∥ of the connection costs, i.e., min

∑
q∈F f(q) + ∥d∥,

where d = (d1, . . . , dn) ∈ Rn
+ is the vector of connection costs di := d(xi, Fi).

In the case of uniform costs, f(q) = f for all q, so the total facility opening cost becomes
f · |F |. We use d≤i = (d1, . . . , di, 0, . . . , 0) to denote the first i coordinates of vector d.

3.1 Uniform Costs
For now, we will focus on the case when facility costs are uniformly f .

▶ Theorem 20. Let ∥ · ∥ be a submodular norm, and let ρ := ρ∥·∥. For the ∥ · ∥ norm
online facility location problem with uniform facility costs f , there exists a randomized online
algorithm that obtains cost at most O(log ρ) · |F ∗|f + O(1) · ∥d∗∥, where F ∗ and d∗ are the
set of facilities and vector of assignment distances, respectively, given by the optimal offline
algorithm.

Notice that because our algorithm obtains a constant factor approximation for the
assignment costs, we have the following corollary.

▶ Corollary 21. There is an O(log ρ)-competitive algorithm for uniform costs online facility
location with symmetric norms.

Proof. Given the uniform cost facility location problem with a monotone symmetric norm
∥ · ∥, let F ∗ and d∗ be the set of facilities and assignments distances given by the optimal
offline algorithm. For our online algorithm, we will approximate ∥ · ∥ by a submodular norm
∥ · ∥′ using Lemma 16, and then run the algorithm in Theorem 20 on norm ∥ · ∥′. Since
log ρ = log ρ∥·∥ = Θ(log ρ∥·∥′), this algorithm will incur cost at most

|F |f +∥d∥ ≤ |F |f +∥d∥′ ≤ O(log ρ)|F ∗|f +O(1)∥d∗∥′ ≤ O(log ρ)|F ∗|f +O(log ρ)∥d∗∥. ◀

Proof outline for Theorem 20

We want to generalize Meyerson’s algorithm beyond ℓ1 norms and use submodularity to
complete the analysis. Meyerson’s algorithm constructs a new facility at each demand
point xi with probability d(xi, Fi−1)/f , thereby balancing the cost of assigning the demand
against the cost of constructing a new facility. To adapt this algorithm to more general
norms, it is natural to construct a new facility at xi with probability δi/f , where δi =
∥(d1, . . . , di−1, d(xi, Fi−1), 0, . . . , 0)∥ − ∥d≤i−1∥ is the marginal cost of assigning xi.
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Unfortunately, the above natural generalization of Meyerson’s algorithm can have an Ω(n)
competitive ratio. For instance, consider the star graph K1,n equipped with the standard
unweighted graph distance metric. Suppose that our construction costs are f = 1, our
submodular norm is the ℓ∞ norm, and the demand points are all the leaves of the star
graph. The optimal solution constructs a single facility at the center, yielding a total cost of
1 + ∥(1, . . . , 1)∥∞ = 2. On the other hand, the suggested algorithm constructs a facility for
every demand point, as δi = 2 for each i ≥ 2, incurring a total cost of n.

To get around this issue, we will define auxiliary assignment costs d̂i that upper bound
the true costs di. The key modification to the algorithm is that we will use d̂i instead of di for
calculating the marginals δi. By overestimating the assignment costs that we have incurred,
the algorithm underestimates potential marginal costs due to submodularity, making it
more inclined to assign demand points instead of constructing new facilities. Moreover, the
flexibility of the analysis allows us to show that the increased costs of d̂i still obtain an
O(log ρ) competitive ratio.

We now present the formal proof.

Proof of Theorem 20. To formalize the outline above, we will first inductively define our
auxiliary cost vector d̂ and the marginals δi by

d̂i := min
{

d(xi, Fi−1), max{z ≥ 0 : f ≥ ∥(d̂1, . . . , d̂i−1, z, 0, . . . , 0)∥ − ∥d̂≤i−1∥}
}

and

δi := ∥d̂≤i∥ − ∥d̂≤i−1∥.

Thus, d̂i is the assignment distance d(xi, Fi−1) capped such that δi ≤ f . For our algorithm,
we construct a facility at xi with probability δi/f , and assign xi to the nearest facility
otherwise. These are well-defined probabilities since δi ≤ f . To see the upper-bound di ≤ d̂i,
notice that if δi < f , then d̂i = d(xi, Fi−1) ≥ d(xi, Fi) = di. If δi = f , then di = 0 since a
facility is constructed at xi with probability 1, so di = 0 ≤ d̂i.

Let cost(i) := f · 1|Fi|>|Fi−1| + δi be the marginal increase in auxiliary cost at step i, so∑
i∈[n] cost(i) = f · |F | + ∥d̂∥. We will bound separately the cost of demand points that

arrive before and after the first nearby facility is constructed. Similar to Meyerson’s proof,
we have the following bound on costs incurred before a facility is constructed in a given set.

▷ Claim 22. Let A ⊆ [n] be a fixed set of indices, and let S ⊆ A be the subset of indices that
arrive before the first facility is constructed at any step in A. Then E[

∑
i∈S cost(i)] ≤ 2f .

The proof of this claim is essentially identical to Meyerson’s, so we will defer it to
Appendix B.1.

Now, let us enumerate our offline algorithm’s facility set as F ∗ = {c∗
1, . . . , c∗

K}, where
K = |F ∗|. Let C∗

1 , . . . , C∗
K be the offline clusters, i.e., C∗

k is the set of i ∈ [n] for which xi is
assigned to c∗

k.
Let r := ∥d∗∥

∥(1,...,1)∥ . We partition each cluster into rings as C∗
k =

⋃L
ℓ=0 Cℓ

k, where L =
⌈log ρ⌉,

C0
k := {i ∈ C∗

k : d(xi, c∗
k) ≤ r}, and

Cℓ
k := {i ∈ C∗

k : 2ℓ−1r ≤ d(xi, c∗
k) ≤ 2ℓr} for ℓ ∈ {1, . . . , L}.

Notice that this is a partition since

max
i∈C∗

k

d(xi, C∗
k) ≤ ∥d∗∥∞ ≤ ∥d∗∥

mini ∥ei∥
= rρ ≤ 2Lr.
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We will analyze the costs incurred by our algorithm on demand points in each ring.
Within each ring, we will consider two types of demands separately: long-distance demands
LDℓ

k and short-distance demands SDℓ
k, defined as

LDℓ
k := {i ∈ Cℓ

k : d(c∗
k, Fi−1) > 2ℓr} and SDℓ

k := {i ∈ Cℓ
k : d(c∗

k, Fi−1) ≤ 2ℓr}.

In other words, long (respectively, short) distance demands arrive before (respectively,
after) a facility has been constructed within the outer perimeter of its corresponding ring.
We now make the following claims.

▷ Claim 23. We have

E
[ L∑

ℓ=0

K∑
k=1

∑
i∈LDℓ

k

cost(i)
]

≤ 2(L + 1)Kf.

▷ Claim 24. We have

E
[ L∑

ℓ=0

K∑
k=1

∑
i∈SDℓ

k

cost(i)
]

≤ 8∥d∗∥.

These claims together give Theorem 20, since L = O(log ρ).
Notice that Claim 23 follows immediately from Claim 22 since long-distance demands

must arrive before a facility is constructed in C
(j)
ℓ . This implies E

[∑
i∈LDℓ

k
cost(i)

]
≤ 2f for

each ℓ and k.
To show Claim 24, let SD :=

⋃L
ℓ=0

⋃K
k=1 SDℓ

k. We seek to show that
∑

i∈SD cost(i) ≤ 8∥d∗∥.
Notice that if i ∈ SD0

k for some k, then we have d̂i ≤ d(xi, Fi−1) ≤ d(xi, c∗
k) + d(c∗

k, Fi−1) ≤
d∗

i + r. Similarly, if i ∈ SDℓ
k for some k and ℓ ̸= 0, we have d̂i ≤ 3d∗

i . Thus, we can say that
d̂i ≤ 3d∗

i + r for all i ∈ SD. This gives

E
[ ∑

i∈SD

cost(i)
]

≤ E
[ ∑

i∈SD

2δi

]
≤ 2E

[
∥d̂SD∥

]
≤ 2∥r1≤n +3d∗∥ = 2r∥1≤n∥+6∥d∗∥ ≤ 8∥d∗∥,

where the second inequality comes from the submodular property, the third comes from
norm monotonicity, and the last inequality is by choice of r. In particular, for the second
inequality, we crucially use the submodularity of the norm to say∑

i∈SD
δi =

∑
i∈SD

(
∥d̂≤i∥ − ∥d̂≤i−1∥

)
≤

∑
i∈SD

(
∥d̂SD∩[i]∥ − ∥d̂SD∩[i−1]∥

)
= ∥d̂SD∥. ◀

3.2 Non-Uniform Costs
In this section, we argue how one could develop the ideas of the previous section further to
extend the algorithm to Online Facility Location with different opening costs across facilities.
We will show how to modify Meyerson’s algorithm for non-uniform costs in a similar manner
to the uniform cost setting, but in a way that also handles new challenges that arise. We
motivate and describe the new algorithm, but to avoid clutter, we defer most of the proof
details to Appendix B.2.

▶ Theorem 8. For online facility location problem with a submodular norm ∥ · ∥, there exists
a randomized online algorithm that obtains cost at most O(log ρ) ·

∑
z∈F ∗ f(z) + O(1) · ∥d∗∥,

where F ∗ and d∗ are the set of facilities and vector of assignment distances respectively given
by the offline optimum algorithm and ρ := ∥(1,1,...,1)∥

mini ∥ei∥ ≤ n · maxi ∥ei∥
mini ∥ei∥ .
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Recall that previously, the algorithm’s only choice at step i was whether to construct
a facility at xi or not. In the non-uniform setting, it might not be feasible to only ever
construct at xi, since the cost of opening there might be prohibitively high. Meanwhile a
nearby location might have a much lower cost. Instead, the algorithm must consider all
possible cost levels at which it could construct and how far facilities at different cost levels
are from xi.

First, let us recap how Meyerson’s algorithm handles this in the ℓ1 norm setting. By
losing at most a factor of 2, we can assume that all opening costs are in some set {f1, . . . , fm},
where each fj is a power of 2. For each j ∈ [m], we define the W

(j)
i to be the set of facilities

which at step i are open or have opening cost at most fj :

W
(j)
i := Fi−1 ∪ {x ∈ M : f(x) ≤ fj}.

Additionally, W
(0)
i := Fi−1. Now Meyerson’s algorithm [35] will, for each j ∈ [m], open a

facility at the nearest location in Wj with probability d(xi,W
(j−1)
i

)−d(xi,W
(j)
i

)
fj

, capped at 1,
then assign xi to the nearest open facility. As in the uniform case, we can see that the
expected facility opening cost incurred is d(xi, W

(0)
i ) = d(xi, Fi−1). This allows us to again

consider a “long-distance” and “short-distance” phase within each ring of each optimal
cluster.

To adapt this algorithm to the submodular norm setting, the idea will again be to consider
construction probabilities, not based on the distances d(xi, W

(j)
i ), but instead based on the

marginal increase in an auxiliary assignment cost ∥d̂∥. However, the definition of d̂ is not as
straightforward as in the uniform cost setting. In particular, we need to satisfy di ≤ d̂i for
each i deterministically. However, without carefully controlling dependencies between facility
construction (for instance, by constructing independently for each j), it may be possible that
di = d(xi, Fi−1) if no facilities are constructed. This would force d̂i to be too large to serve
as a useful upper bound.

To avoid this, we instead construct facilities by sampling a single cost level fj at which to
build a facility. The probability of sampling fj is given by a version of the probabilities used
above. Suppose these probabilities sum to a value greater than 1. In that case, we crucially
limit the probabilities for smaller fj (corresponding to a facility at a greater distance) until
the total probability is capped at 1: We name these probabilities p

(j)
i ’s (Definition 30). This

ensures that the true assignment distance di is never too large, which allows us to pick a
conveniently small upper bound d̂i.

Algorithm 1 Non-Uniform Submodular Online Facility Location.

Data: Metric space (M, d) and online requests x1, . . . , xn

Result: Opened facilities set F and assignment of requests to facilities (at the time
of arrival)

for request xi, i = 1, . . . , n do
Sample j ∈ {0, . . . , m} according to the distribution given by p

(j)
i ;

Assign xi to the nearest location in W
(j)
i , constructing a facility there if necessary;

end

Our analysis proceeds by considering the partition of arrival indices into optimal clusters
[n] =

⋃
k∈[K] Ck, each with center c∗

k. Similarly to the uniform cost setting, we partition
each cluster into rings as C∗

k =
⋃L

ℓ=0 Cℓ
k, where L = ⌈log ρ⌉ and

C0
k := {i ∈ C∗

k : d(xi, c∗
k) ≤ r},

Cℓ
k := {i ∈ C∗

k : 2ℓ−1r ≤ d(xi, c∗
k) ≤ 2ℓr}, for ℓ ∈ [L].
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For each ring Cℓ
k, we divide the analysis into two main stages: the short-distance and

long-distance stages. We leave the formal definition of these stages for the proof details, but
intuitively, each demand is considered a long-distance demand until a facility is constructed
at a distance which is a constant multiple of the radius of Cℓ

k. After this happens, subsequent
demands in the ring are considered short-distance demands. In each of these stages, the
algorithm obtains the following.

▶ Lemma 25 (Short-Distance Stage). The expected cost incurred by the algorithm in the
short-distance stage is

E [ALGSD] = E
[ ∑

i∈SD
cost(i)

]
≤ 36∥d∗∥.

▶ Lemma 26 (Long-Distance Stage). The expected cost incurred in the long-distance stage is

E
[
ALGLD

]
≤ 48(log ρ + 1) ·

∑
k∈[K]

f(c∗
k).

It is now easy to see that Theorem 8 directly follows by combining Lemma 25 and
Lemma 26. The proofs of these lemmas, along with a more formal definition of the probabilities
p

(j)
i , are given in Appendix B.2.

4 Adaptivity Gaps for Stochastic Probing

In this section, we use submodular norms to prove small adaptivity gaps for the stochastic
probing problem. Recall the stochastic probing problem from Section 1.2: Given n independ-
ent random variables X = (X1, . . . , Xn) ∈ R+, a downward closed set family F ⊆ 2[n], and
a monotone objective f : Rn

+ → R+, the stochastic probing problem (X, F , f) is to open a
feasible set S ∈ F of variables to maximize f(XS).

Denote by Adap(X, F , f) the maximum expected objective achievable by an adaptive
algorithm, i.e., one which selects elements of S one at a time, and may change its strategy
based on its observations of the selected variables. We denote by NA(X, F , f) the maximum
expected objective by a non-adaptive algorithm, i.e., NA(X, F , f) := maxS∈F E[f(XS)].

▶ Theorem 27. If f is a submodular norm, then Adap(X, F , f) ≤ 2 · NA(X, F , f).

The following result for symmetric norms is an immediate corollary due to Theorem 6.

▶ Theorem 11. The adaptivity gap for stochastic probing with symmetric norms is O(log n).

Proof of Theorem 27. We follow the same proof approach as in [14]. Consider an adaptive
algorithm Adap, and a non-adaptive algorithm Alg which selects each S ∈ F with the same
probabilities as Adap, only non-adaptively. We will show by induction on n that Adap
achieves an expected objective at most twice that of Alg. This is trivially true for n = 1, so
we only need to show the inductive step.

We can compare the performance of these two algorithms by coupling their actions. Let’s
say Adap runs on random variables X = (X1, . . . , Xn), and let S ∈ F be the (random) set of
adaptively chosen variables. We can say Alg runs on variables Y = (Y1, . . . , Yn), i.i.d. copies
of X, by choosing the same set S as Adap. Without loss of generality, say that Adap starts
by selecting X1. Since 1 ∈ S deterministically, we have that Adap achieves reward

E[f(XS)] = E[f(X1)] + E
[
fX1(XS\{1}) | X1

]
≤ E[f(X1 ∨ Y1)] + E

[
fX1∨Y1(XS\{1}) | X1

]
≤ 2E[f(Y1)] + E

[
fX1∨Y1(XS\{1}) | X1, Y1

]
,
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where fx(Z) := f(x, Z) − f(x, 0) for Z = (Z2, . . . , Zn) ∈ Rn−1
+ . Notice that, since f is

submodular, we have fx is submodular and decreasing in x for all x ∈ R+.
Now, notice that Alg achieves reward

E[f(YS)] = E[f(Y1)] + E
[
fY1(YS\{1}) | X1

]
≥ E[f(Y1)] + E

[
fX1∨Y1(YS\{1}) | X1, Y1

]
.

Notice that given X1, the set S \ {1} ∈ F|−1 is adaptively chosen among the variables
X2, . . . , Xn by Adap. Thus, by induction we can say E

[
fX1∨Y1(XS\{1}) | X1, Y1

]
≤ 2 ·

E
[
fX1∨Y1(YS\{1}) | X1, Y1

]
. Combining this with the above inequalities gives

E[f(XS)] ≤ 2E[f(Y1)] + 2E
[
fX1∨Y1(YS\{1}) | X1, Y1

]
≤ 2E[f(YS)]. ◀

5 Conclusion

This paper introduces the concept of submodular norms and demonstrates their application in
proving the efficiency of optimization problems beyond traditional ℓp objectives. We provide
examples showcasing the utility of submodular norms in various scenarios. Specifically,
we establish bounds on the competitive ratio of online facility location problems and the
adaptivity gap of stochastic probing techniques when using symmetric norm objectives. These
bounds crucially depend on the norm parameter ρ, and are approximately tight in the case
of facility location. There are several natural directions for future work:

(i) General Monotone Norms: We have shown a logarithmic competitive ratio and ad-
aptivity gap for online facility location and stochastic probing, respectively, when the
objective is a symmetric norm or approximately a submodular norm. However, it
remains open whether poly-logarithm bounds exist for either problem when the norm
can be an arbitrary monotone norm.

(ii) Symmetric Norm Stochastic Probing. The logarithmic factor we get in our adaptivity
gap bound for symmetric norm stochastic probing comes from the loss in approximating
a symmetric norm by a submodular norm. However, it is not clear if such a loss
is necessary. It would be interesting to determine if the true adaptivity gap is sub-
logarithmic or even a constant.

(iii) Parameter ρ. Similar to online facility location, there are other optimization problems
(e.g., online fractional set cover) which are known to have differing performance guaran-
tees for ℓ1 and ℓ∞ objectives. We hypothesize that for such problems with symmetric
norm objectives, the parameter ρ could provide a way of interpolating between ℓ1
and ℓ∞.
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A Omitted Proofs from Section 2

A.1 Properties of Continuous Submodularity
As with submodular set functions, there are many equivalent definitions for continuous
submodularity which may be helpful in different settings. These are folklore properties, but
we prove them for completeness.

▶ Lemma 28. Let f : Rd
+ → R+. The following are equivalent.

1. f is continuously submodular.
2. For all x, y, z ∈ Rd

+ with Supp(y) ∩ Supp(z) = ∅, we have

f(x) + f(x + y + z) ≤ f(x + y) + f(x + z).

3. For all x, y ∈ Rd
+ with x ≤ w, and i ∈ [d] such that xi = wi, and a ≥ 0, we have

f(w + aei) − f(w) ≤ f(x + aei) − f(x).
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4. For all x ∈ Rd
+ and a, b ≥ 0 and distinct i, j ∈ [d], we have

f(x) + f(x + aei + bej) ≤ f(x + aei) + f(x + bej).

Proof of Lemma 28. (1 ⇐⇒ 2) Let x, y, z ∈ Rd
+ with y ⊥ z. Notice that for non-negative

vectors y, z, orthogonality implies that they have disjoint support. Hence, (x+y)∨(x+z) = x

and (x+y)∧(x+z) = x+y+z. Then 2 follows from the definition of continuous submodularity.
Likewise, if f satisfies condition 2, then applying condition 2 with x′ := x ∧ y, y′ := y{i:yi>xi},
and z′ := x{i:xi>yi} gives continuous submodularity.

(2 =⇒ 3) Simply take y = w − x and z = aei.
(3 =⇒ 4) Simply take w = a + bej .
(4 =⇒ 2) Let x(i,j) := x + y<i + z<j . Consider the sum

f(x + y) + f(x + z) − f(x) − f(x + y + z)

=
∑

i,j∈[d]

[
f(x(i,j) + yiei) + f(z(i,j)

i + bej) − f(x(i,j)) − f(x(i,j) + yiei + zjej)
]

.

By condition 4, every term in the RHS sum is non-negative, so the LHS is non-negative as
well. ◀

A commonly studied variant of continuous submodularity is DR-submodularity [13, 20, 37]:
a function f : Rd

+ → R+ is DR-submodular if it satisfies the stronger condition that for all
x, w ∈ Rd

+ with x ≤ w, i ∈ [d], and a ≥ 0, we have f(w + aei) − f(w) ≤ f(x + aei) − f(x).
In other words, f satisfies condition 3 of Lemma 28 even where wi ̸= xi. However, the only
DR-submodular norm is the ℓ1-norm.

▶ Lemma 29. Any DR-submodular norm is equivalent to ℓ1 up to rescaling the coordinates.

Proof. Suppose ∥ · ∥ : Rd
+ → R is a DR-submodular norm with ∥ei∥ = 1 for each i ∈ [d].

Clearly, ∥x∥ ≤
∑

xi = ∥x∥1 by triangle inequality. Suppose that ∥x∥ < ∥x∥1 for some
x ∈ Rd

+. Then for some i ∈ [d], we have ∥x≤i∥ − ∥x≤i−1∥ ≤ xi − ε, where ε > 0. By DR
submodularity, this means ∥x≤i−1 + kxiei∥ ≤ k(xi − ε) for all k ∈ N. However, with the
continuity of norms, this gives

xi − ε ≥ lim
k→∞

∥x≤i−1 + kxiei∥
k

= lim
k→∞

∥∥∥∥ 1
k

· x≤i−1 + xiei

∥∥∥∥ = ∥xiei∥ = xi,

which is a contradiction, so we have ∥x∥ = ∥x∥1. ◀

B Omitted Proofs from Section 3

B.1 Uniform Costs
▷ Claim 22. Let A ⊆ [n] be a fixed set of indices, and let S ⊆ A be the subset of indices that
arrive before the first facility is constructed at any step in A. Then E[

∑
i∈S cost(i)] ≤ 2f .

Proof. Consider the following game: For i ∈ A, a player is shown δi, and has to option to pay
a cost of δi to play a lottery, which has a δi

f chance of giving reward f . Since the expected
reward of playing the lottery is exactly the cost, the player is indifferent to playing at each
step. This means any strategy for the player has zero expected reward. In particular, the
strategy of playing the lottery only until the first win has an expected reward of 0.

Let R be the total lottery winnings of this strategy and C be the total cost of playing.
We have that E[R − C] = 0, and since at most one lottery is won, E[R] ≤ f . Thus,
E[R + C] = 2E[R] ≤ 2f . But R + C has exactly the distribution of

∑
i∈S cost(i), which gives

the desired result. ◁
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B.2 Non-uniform Costs

We now introduce the notation needed to prove that Algorithm 1 shows Theorem 8. Let us
recall that f : X → R+ is the cost function of opening a facility. First, we assume without
loss of generality that f(x) is a power of 2 for each x ∈ X.3 Let f (1) ≤ · · · ≤ f (m) be the
distinct cost levels, so 2f (i) ≤ f (i+1). Additionally, let f (0) := 0 for completeness. As before,
let Fi denote the set of facilities that have been opened after the arrival of xi, before the
arrival of xi+1.

▶ Definition 30. For each step i ∈ [n] and cost level j ∈ {0, . . . , m}, let us define
1. W

(j)
i := Fi−1 ∪ {x ∈ X : f(x) ≤ f (j)} to be the set of locations which are open or have

an opening cost at most f (j);
2. d̂

(j)
i := min{d(xi, W

(j)
i ), τi} to be the capped value of d

(j)
i (where cap τi is defined in

Item 6);
3. d̂i := d̂

(0)
i = min{d(xi, Fi−1), τi} for simplicity.

4. δ
(j)
i := d̂

(j)
i

d̂
(0)
i

(
∥d̂

(0)
≤i ∥ − ∥d̂

(0)
≤i−1∥

)
to be the fraction of marginal increase in assignment cost

we attribute to cost levels ≤ j;

5. p
(j)
i := δ

(j−1)
i

−δ
(j)
i

f(j) for j ≥ 1 to be the assigned probability of opening a facility in W
(j)
i ,

and p
(0)
i := 1 −

∑m
j=1 p

(j)
i ;

6. τi := arg max{τ ∈ R≥0 ∪ {+∞} |
∑m

j=1 p
(j)
i ≤ 1} to be the cap value, i.e., the largest

nonnegative cap such that
∑m

j=1 p
(j)
i ≤ 1. This exists as each p

(j)
i is monotone decreasing

in τi.

Given the above definitions, we notice that since d
(j)
i is decreasing in j, this means for

some j we have

0 = d̂
(m)
i ≤ d̂

(m−1)
i ≤ · · · ≤ d̂

(j+1)
i ≤ τi = d̂

(j)
i = · · · = d̂

(0)
i .

We shall prove the following theorem as discussed in Section 3.2.

▶ Theorem 8. For online facility location problem with a submodular norm ∥ · ∥, there exists
a randomized online algorithm that obtains cost at most O(log ρ) ·

∑
z∈F ∗ f(z) + O(1) · ∥d∗∥,

where F ∗ and d∗ are the set of facilities and vector of assignment distances respectively given
by the offline optimum algorithm and ρ := ∥(1,1,...,1)∥

mini ∥ei∥ ≤ n · maxi ∥ei∥
mini ∥ei∥ .

To prove this theorem, we will separately the so-called short distance demands SDℓ
k and

long distance demands LDℓ
k in each ring Cℓ

k. Formally, we define

LDℓ
k := {i ∈ Cℓ

k : d̂
(0)
i > (λ + 1)2ℓr}, LD :=

K⋃
k=1

L⋃
ℓ=0

LDℓ
k,

SDℓ
k := {i ∈ Cℓ

k : d̂
(0)
i ≤ (λ + 1)2ℓr}, SD :=

K⋃
k=1

L⋃
ℓ=0

SDℓ
k.

3 That is, by rounding costs down to powers of 2, we lose only a factor of 2.
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B.2.1 Short-distance stage
▶ Lemma 25 (Short-Distance Stage). The expected cost incurred by the algorithm in the
short-distance stage is

E [ALGSD] = E
[ ∑

i∈SD
cost(i)

]
≤ 36∥d∗∥.

Proof. Let us fix a set Cℓ
k. If ℓ = 0, then for all i ∈ SDℓ

k, we have that d̂i ≤ (λ + 1)r. If
ℓ > 0, we still have that d̂i ≤ (λ + 1)2ℓr ≤ 2(λ + 1)d∗

i . Summing up overall demands arriving
in the short distance stage we have,

E [ALGSD] ≤
∑
i∈SD

E[cost(i)] ≤
∑
i∈SD

2δ
(0)
i =

∑
i∈SD:d∗

i
≤r

2δ
(0)
i +

∑
i∈SD:d∗

i
>r

2δ
(0)
i

≤ 2 · ∥(d̂i)i∈SD:d∗
i

≤r∥ + 2 · ∥(d̂i)i∈SD:d∗
i

>r∥

≤ 2(λ + 1) · r · ∥(1 . . . 1)∥ + 4(λ + 1) · ∥d∗∥
≤ 6(λ + 1) · ∥d∗∥.

Here, the second inequality comes from the fact that we need to account for the facility
opening cost as well as the connection cost. Moreover, the third inequality holds by norm
submodularity, the fourth by what was argued earlier on distances, and the last by definition
of r. The lemma then follows from choosing λ = 5, which is needed for the proof of
Lemma 26. ◀

B.2.2 Long-distance stage
▶ Lemma 26 (Long-Distance Stage). The expected cost incurred in the long-distance stage is

E
[
ALGLD

]
≤ 48(log ρ + 1) ·

∑
k∈[K]

f(c∗
k).

Proof. Let us fix a cluster ring Cℓ
k, and let j∗

k be defined such that f(c∗
k) = f (j∗

k). Denote
by γ

(j)
i := d(c∗

k, W
(j)
i ), the distance at step i between the cluster center and a facility whose

opening cost is at most f (j). We denote by E(j)
ℓ the event that a facility is opened within

a γ
(j)
0 + 2ℓ+1r distance from optimal center c∗

k. It is easy to see that such an event occurs
whenever the algorithm constructs a facility of cost f (j) or higher for a demand in Cℓ

k. We
now analyze the expected cost accumulated by the algorithm before, and after E(j)

ℓ has
occurred. We denote by t

(j)
ℓ the time of event E(j)

ℓ occurrence.
Before E(j)

ℓ has occurred, we have
∑

i≤t
(j)
ℓ

E[cost(j)(i)] ≤ 2f (j), by the same reasoning as

Claim 22. Hence, we have that the total cost all levels j ≤ j∗
k before event E(j)

ℓ is∑
j≤j∗

k

∑
i∈LDℓ

k

i≤t
(j)
ℓ

E[cost(j)(i)] ≤ 2
∑
j≤j∗

k

f (j) ≤ 4f (j∗
k).

We seek to demonstrate that these costs make up a constant fraction of all costs during the
long-distance stage. Notice that by re-indexing, we can write

∑
j≤j∗

k

∑
i∈LDℓ

k

i<t
(j)
ℓ

E[cost(j)(i)] =
j∗

k
−1∑

j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

j∗
k∑

j′=j+1

E[cost(j′)(i)] = E
j∗

k
−1∑

j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

2(δ(j)
i − δ

(j∗
k

)
i ),
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i.e., these are also the costs that occur in the range {j + 1, . . . , j∗
k}, during each period

between event E(j)
ℓ and E(j+1)

ℓ . In particular, we will show for each term in the sum,
(δ

(j)
i

−δ
(j∗

k
)

i
)/δ

(0)
i

≥ λ−4/λ+1, so these costs comprise a constant fraction of the total expected
cost 2δ

(0)
i at each step i.

We start with the simple observation that

δ
(j)
i − δ

(j∗
k)

i

δ
(0)
i

= d̂
(j)
i − d̂

(j∗
k)

i

d̂
(0)
i

≥ d(xi, W
(j)
i )

d(xi, Fi−1) − d(xi, c∗
k)

d̂
(0)
i

,

by definition and subadditivity. We now proceed with bounding each term. Since E(j)
ℓ has

occurred, but we are still in the long distance stage, we have

(λ + 1)2ℓr < d̂
(0)
i ≤ d(xi, Fi−1) ≤ d(xi, c∗

k) + d(c∗
k, Fi−1) ≤ γ

(j)
i + 3 · 2ℓr.

This implies both d(xi, Fi−1) ≤ γ
(j)
i + 3 · 2ℓr and γ

(j)
i ≥ (λ − 2)2ℓr. Additionally, we have

d(xi, c∗
k) ≤ 2ℓr, and by triangle inequality, we have that γ

(j)
i ≤ d(xi, W

(j)
i ) + 2ℓr.

Altogether, we get

d(xi, W
(j)
i )

d(xi, Fi−1) − d(xi, c∗
k)

d̂
(0)
i

≥ γ
(j)
i − 2ℓr

γ
(j)
i + 3 · 2ℓ+1r

− 2ℓr

(λ + 1)2ℓr
≥ λ − 4

λ + 1 ,

as desired. Thus, the total cost of points in LDℓ
k is bounded as follows:

∑
i∈LDℓ

k

E[cost(i)] =
j∗

k−1∑
j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

E[cost(i)] = E
j∗

k−1∑
j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

2δ
(0)
i

≤ 2λ + 1
λ − 4 · E

j∗
k−1∑
j=0

∑
i∈LDℓ

k

t
(j)
ℓ

<i≤t
(j+1)
ℓ

(δ(j)
i − δ

(j∗
k)

i )

≤ 8λ + 1
λ − 4f (j∗

k).

We now sum across all concentric rings across all K optimal clusters, to obtain that

∑
i∈LD

E[cost(i)] =
K∑

k=1

L∑
ℓ=0

∑
i∈LDℓ

k

E[cost(i)] ≤ 8L

(
λ + 1
λ − 4

)
·

∑
k∈[K]

f (j∗
k),

and the claim follows from choosing λ = 5. ◀

B.3 Lower Bound
▶ Theorem 31. For any monotone norm ∥ · ∥, there exists a uniform-cost OFL problem with
norm ∥ · ∥ such that any online algorithm only achieves Ω

(
log σ

log log σ

)
competitive ratio, where

σ = ∥1≤n∥
maxi ∥ei∥ . Notice that for symmetric norms, σ = ρ.
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Proof. We may assume maxi ∥ei∥ = 1 (otherwise we rescale costs), so ∥1≤n∥ = σ. Let k be
the largest integer such that kk ≤ σ, so we have k = Θ

(
log σ

log log σ

)
. Assume k ≥ 2.

Now, let G = (V, E) be a complete N -ary tree with height k, where N is sufficiently large
(intuitively, think of N as infinite). For j = 0, . . . k − 1, each downwards edge from a node at
depth level j will have length k−j . We also define the facility opening cost to be k.

Let 0 ≤ m0 ≤ m1 ≤ · · · ≤ mk be defined such that mj is the least positive integer with
∥1≤mj

∥ ≥ kj . Notice that this implies ∥1≤mj
∥ ≤ ∥1≤mj−1∥ + ∥emj

∥ < kj + 1.
Our adversary will supply the demand locations as follows. First, they will choose a

random path v0v1 . . . vk from the root v0 to a leaf vk. Then, for j = 0, . . . , k, the adversary
supply vj as a demand repeated mj − mj−1 times (m0 times for j = 0).

In the offline setting, one may simply place a single facility at vk and assign all demands
to it. This gives

OPT = k + ∥d∗∥ ≤ k +
k−1∑
j=0

k−j∥1≤mj
∥ ≤ k +

k−1∑
j=0

k−j(kj + 1) = O(k).

In the online setting, we will show that no algorithm can achieve an expected cost of less
than Ω(k2).

Notice that any online algorithm, upon receiving a demand at vj , should only consider
the options of allocating the demand or constructing a facility at vj . Constructing a facility
anywhere else is strictly disadvantageous, as there is a negligible probability (by choice of
N) that the chosen location is in the subtree rooted at vj+1. Thus, after the algorithm
is complete, it will have constructed a set of facilities F ⊆ {v0, . . . , vk}, and each demand
will be allocated to the most recently constructed facility above it. Let d be the vector of
allocation distances.

If there is some j ≥ 2 such that vj , vj−1 ̸∈ F , then notice that every demand at vj will
have allocation distance at least k−j+2. Thus, we have

∥d∥ ≥ k−j+2∥1≤mj
− 1≤mj−1∥ ≥ k−j+2(∥1≤mj

∥ − ∥1≤mj−1∥) ≥ k2 − k − k−j+2 = Ω(k2)

However, if no such j exists, then |F | ≥ k/2, so construction costs are at least k2/2 =
Ω(k2). ◀

▶ Corollary 32. In the case of a symmetric norm ∥ · ∥, our lower bound becomes Ω
(

log ρ
log log ρ

)
as ρ = σ = ∥1≤n∥

∥e1∥ .
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