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Abstract
We revisit the classic Pandora’s Box (PB) problem under correlated distributions on the box values.
Recent work of [13] obtained constant approximate algorithms for a restricted class of policies for the
problem that visit boxes in a fixed order. In this work, we study the complexity of approximating
the optimal policy which may adaptively choose which box to visit next based on the values seen so
far.

Our main result establishes an approximation-preserving equivalence of PB to the well studied
Uniform Decision Tree (UDT) problem from stochastic optimization and a variant of the Min-Sum
Set Cover (MSSCf ) problem. For distributions of support m, UDT admits a log m approximation,
and while a constant factor approximation in polynomial time is a long-standing open problem,
constant factor approximations are achievable in subexponential time [43]. Our main result implies
that the same properties hold for PB and MSSCf .

We also study the case where the distribution over values is given more succinctly as a mixture
of m product distributions. This problem is again related to a noisy variant of the Optimal Decision
Tree which is significantly more challenging. We give a constant-factor approximation that runs in
time nÕ(m2/ε2) when the mixture components on every box are either identical or separated in TV
distance by ε.
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1 Introduction

Many everyday tasks involve making decisions under uncertainty; for example driving to
work using the fastest route or buying a house at the best price. Although we don’t know
how the future outcomes of our current decisions will turn out, we can often use some prior
information to facilitate the decision making process. For example, having driven on the
possible routes to work before, we know which is usually the busiest one. It is also common
in such cases that we can remove part of the uncertainty by paying some additional cost.
This type of online decision making in the presence of costly information can be modeled
as the so-called Pandora’s Box problem, first formalized by Weitzman in [52]. In this
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26:2 Approximating Pandora’s Box with Correlations

problem, the algorithm is given n alternatives called boxes, each containing a value from a
known distribution. The exact value is not known, but can be revealed at a known opening
cost specific to the box. The goal of the algorithm is to decide which box to open next and
whether to select a value and stop, such that the total opening cost plus the minimum value
revealed is minimized. In the case of independent distributions on the boxes’ values, this
problem has a very elegant and simple optimal solution, as described by Weitzman [52]:
calculate an index for each box1, open the boxes in increasing order of index, and stop when
the expected gain is worse than the value already obtained.

Weitzman’s model makes the crucial assumption that the distributions on the values are
independent across boxes. This, however, is not always the case in practice and as it turns
out, the simple algorithm of the independent case fails to find the optimal solution under
correlated distributions. Generally, the complexity of the Pandora’s Box with correlations
is not yet well understood. In this work we develop the first approximately-optimal
policies for the Pandora’s Box problem with correlated values.

We consider two standard models of correlation where the distribution over values can be
specified explicitly in a succinct manner. In the first, the distribution over values has a small
support of size m. In the second the distribution is a mixture of m product distributions,
each of which can be specified succinctly. We present approximations for both settings.

A primary challenge in approximating Pandora’s Box with correlations is that the
optimal solution can be an adaptive policy that determines which box to open depending on
the instantiations of values in all of the boxes opened previously. It is not clear that such a
policy can even be described succinctly. Furthermore, the choice of which box to open is
complicated by the need to balance two desiderata – finding a low value box quickly versus
learning information about the values in unopened boxes (a.k.a. the state of the world or
realized scenario) quickly. Indeed, the value contained in a box can provide the algorithm
with crucial information about other boxes, and inform the choice of which box to open next;
an aspect that is completely missing in the independent values setting studied by Weitzman.

Contribution 1: Connection to Decision Tree and a general purpose
approximation
Some aspects of the Pandora’s Box problem have been studied separately in other contexts.
For example, in the Optimal Decision Tree problem (DT) [30, 43], the goal is to identify
an unknown hypothesis, out of m possible ones, by performing a sequence of costly tests,
whose outcomes depend on the realized hypothesis. This problem has an informational
structure similar to that in Pandora’s Box. In particular, we can think of every possible
joint instantiation of values in boxes as a possible hypothesis, and every opening of a box
as a test. The difference between the two problems is that while in Optimal Decision
Tree we want to identify the realized hypothesis exactly, in Pandora’s Box it suffices to
terminate the process as soon as we have found a low value box.

Another closely related problem is the Min Sum Set Cover [21], where boxes only have
two kinds of values – acceptable or unacceptable – and the goal is to find an acceptable value
as quickly as possible. A primary difference relative to Pandora’s Box is that unacceptable
boxes provide no further information about the values in unopened boxes.

One of the main contributions of our work is to unearth connections between Pandora’s
Box and the two problems described above. We show that Pandora’s Box is essentially
equivalent to a special case of Optimal Decision Tree (called Uniform Decision Tree

1 This is a special case of Gittins index [25].
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or UDT) where the underlying distribution over hypotheses is uniform – the approximation
ratios of these two problems are related within log-log factors. Surprisingly, in contrast,
the non-uniform DT appears to be harder than non-uniform Pandora’s Box. We relate
these two problems by showing that both are in turn related to a new version of Min
Sum Set Cover, that we call Min Sum Set Cover with Feedback (MSSCf ). These
connections are summarized in Figure 1. We can thus build on the rich history and large
collection of results on these problems to offer efficient algorithms for Pandora’s Box. We
obtain a polynomial time Õ(log m) approximation for Pandora’s Box, where m is the
number of distinct value vectors (a.k.a. scenarios) that may arise; as well as constant factor
approximations in subexponential time.

PB UMSSCfUMSSCf UDTSection 4 Section 5

Log-log factors Constant factors

Figure 1 A summary of our approximation preserving reductions.

It is an important open question whether constant factor approximations exist for
Uniform Decision Tree: the best known lower-bound on the approximation ratio is 4
while it is known that it is not NP-hard to obtain super-constant approximations under
the Exponential Time Hypothesis. The same properties transfer also to Pandora’s Box
and Min Sum Set Cover with Feedback. Pinning down the tight approximation ratio
for any of these problems will directly answer these questions for any other problem in the
equivalence class we establish.

The key technical component in our reductions is to find an appropriate stopping rule for
Pandora’s Box: after opening a few boxes, how should the algorithm determine whether a
small enough value has been found or whether further exploration is necessary? We develop
an iterative algorithm that in each phase finds an appropriate threshold, with the exploration
terminating as soon as a value smaller than the threshold is found, such that there is a
constant probability of stopping in each phase. Within each phase then the exploration
problem can be solved via a reduction to UDT. The challenge is in defining the stopping
thresholds in a manner that allows us to relate the algorithm’s total cost to that of the
optimal policy.

Contribution 2: Approximation for the mixture of distributions model
Having established the general purpose reductions between Pandora’s Box and DT, we
turn to the mixture of product distributions model of correlation. This special case of
Pandora’s Box interpolates between Weitzman’s independent values setting and the fully
general correlated values setting. In this setting, we use the term “scenario” to denote the
different product distributions in the mixture. The information gathering component of the
problem is now about determining which product distribution in the mixture the box values
are realized from. Once the algorithm has determined the realized scenario (a.k.a. product
distribution), the remaining problem amounts to implementing Weitzman’s strategy for that
scenario.

We observe that this model of correlation for Pandora’s Box is related to the noisy
version of DT, where the results of some tests for a given realized hypothesis are not
deterministic. One challenge for DT in this setting is that any individual test may give us
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very little information distinguishing different scenarios, and one needs to combine information
across sequences of many tests in order to isolate scenarios. This challenge is inherited by
Pandora’s Box.

Previous work on noisy DT obtained algorithms whose approximations and runtimes
depend on the amount of noise. In contrast, we consider settings where the level of noise is
arbitrary, but where the mixtures satisfy a separability assumption. In particular, we assume
that for any given box, if we consider the marginal distributions of the value in the box
under different scenarios, these distributions are either identical or sufficiently different (e.g.,
at least ε in TV distance) across different scenarios. Under this assumption, we design a
constant-factor approximation for Pandora’s Box that runs in nÕ(m2/ε2) (Theorem 18),
where n is the number of boxes. The formal result and the algorithm is presented in Section 6.

1.1 Related work
The Pandora’s Box problem was first introduced by Weitzman in the Economics literat-
ure [52]. Since then, there has been a long line of research studying Pandora’s Box and
its many variants ; non-obligatory inspection [19, 8, 7, 22], with order constraints [37, 9],
with correlation [13, 24], with combinatorial costs [6], competitive information design [18],
delegated version [5], and finally in an online setting [20]. Multiple works also study the
generalized setting where more information can be obtained for a price [12, 32, 15, 14] and
in settings with more complex combinatorial constraints [50, 26, 33, 1, 35, 36, 31].

Chawla et al. [13] were the first to study Pandora’s Box with correlated values, but they
designed approximations relative to a simpler benchmark, namely the optimal performance
achievable using a so-called Partially Adaptive strategy that cannot adapt the order in which
it opens boxes to the values revealed. In general, optimal strategies can decide both the
ordering of the boxes and the stopping time based on the values revealed. [13] designed an
algorithm with performance no more than a constant factor worse than the optimal Partially
Adaptive strategy.

In Min Sum Set Cover the line of work was initiated by [21], and continued with
improvements and generalizations to more complex constraints by [3, 46, 4, 51].

Optimal decision tree is an old problem studied in a variety of settings ([49, 48, 30, 29]),
while its most notable application is in active learning settings. It was proven to be NP-Hard
by Hyafil and Rivest [38]. Since then the problem of finding the best approximation algorithm
was an active one [23, 45, 42, 17, 10, 11, 30, 34, 16, 2], where finally a greedy log m for the
general case was given by [30]. This approximation ratio is proven to be the best possible [10].
For the case of Uniform decision tree less is known, until recently the best algorithm was the
same as the optimal decision tree, and the lower bound was 4 [10]. The recent work of Li et
al. [43] showed that there is an algorithm strictly better than log m for the uniform decision
tree.

The noisy version of optimal decision tree was first studied in [29]2, which gave an algorithm
with runtime that depends exponentially on the number of noisy outcomes. Subsequently,
Jia et al. in [40] gave an (min(r, h) + log m)-approximation algorithm, where r (resp. h) is
the maximum number of different test results per test (resp. scenario) using a reduction to
Adaptive Submodular Ranking problem [41]. In the case of large number of noisy outcome
they obtain a log m approximation exploiting the connection to Stochastic Set Cover [44, 39].

2 This result is based on a result from [27] which turned out to be wrong [47]. The correct results are
presented in [28]
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2 Preliminaries

In this paper we study the connections between three different sequential decision making
problems – Optimal Decision Tree, Pandora’s Box, and Min Sum Set Cover. We
describe these problems formally below.

Optimal Decision Tree

In the Optimal Decision Tree problem (denoted DT) we are given a set S of m scenarios
s ∈ S, each occurring with (known) probability ps; and n tests T = {Ti}i∈[n], each with cost
1. Nature picks a scenario s ∈ S from the distribution p but this scenario is unknown to the
algorithm. The goal of the algorithm is to determine which scenario is realized by running a
subset of the tests T . When test Ti is run and the realized scenario is s, the test returns a
result Ti(s) ∈ R.

Output. The output of the algorithm is a decision tree where at each node there is a test
that is performed, and the branches are the outcomes of the test. In each of the leaves there
is an individual scenario that is the only one consistent with the results of the test in the
unique path from the root to this leaf. Observe that there is a single leaf corresponding to
each scenario s. We can represent the tree as an adaptive policy defined as follows:

▶ Definition 1 (Adaptive Policy π). An adaptive policy π : ∪X⊆T RX → T is a function that
given a set of tests done so far and their results, returns the next test to be performed.

Objective. For a given decision tree or policy π, let costs(π) denote the total cost of all
of the tests on the unique path in the tree from the root to the leaf labeled with scenario
s. The objective of the algorithm is to find a policy π that minimizes the average cost∑

s∈S pscosts(π).
We use the term Uniform Decision Tree (UDT) to denote the special case of the problem
where ps = 1/m for all scenarios s.

Pandora’s Box

In the Pandora’s Box problem we are given n boxes, each with cost ci ≥ 0 and value vi.
The values {vi}i∈[n] are distributed according to known distribution D. We assume that D
is an arbitrary correlated distribution over vectors {vi}i∈[n] ∈ Rn. We call vectors of values
scenarios and use s = {vi}i∈[n] to denote a possible realization of the scenario. As in DT,
nature picks a scenario from the distribution D and this realization is a priori unknown to
the algorithm. The goal of the algorithm is to pick a box of small value. The algorithm can
observe the values realized in the boxes by opening any box i at its respective costs ci.

Output. The output of the algorithm is an adaptive policy π for opening boxes and a
stopping condition. The policy π takes as input a subset of the boxes and their associated
values, and either returns the index of a box i ∈ [n] to be opened next or stops and selects the
minimum value seen so far. That is, π : ∪X⊆[n]RX → [n] ∪ {⊥} where ⊥ denotes stopping.

APPROX/RANDOM 2023



26:6 Approximating Pandora’s Box with Correlations

Objective. For a given policy π, let π(s) denote the set of boxes opened by the policy prior
to stopping when the realized scenario is s. The objective of the algorithm is to minimize the
expected cost of the boxes opened plus the minimum value discovered, where the expectation
is taken over all possible realizations of the values in each box.3 Formally the objective is
given by

Es∼D

 min
i∈π(s)

vis +
∑

i∈π(s)

ci

,

For simplicity of presentation, from now on we assume that ci = 1 for all boxes, but we
show in the Appendix of the full version how to adapt our results to handle non-unit costs,
without any loss in the approximation factors.

We use UPB to denote the special case of the problem where the distribution D is uniform
over m scenarios.

Min Sum Set Cover with Feedback
In Min Sum Set Cover, we are given n elements and a collection of m sets S over them,
and a distribution D over the sets. The output of the algorithm is an ordering π over the
elements. The cost of the ordering for a particular set s ∈ S is the index of the first element
in the ordering that belongs to the set s, that is, costs(π) = min{i : π(i) ∈ s}. The goal of
the algorithm is to minimize the expected cost Es∼D[costs(π)].

We define a variant of the Min Sum Set Cover problem, called Min Sum Set Cover
with Feedback (MSSCf ). As in the original problem, we are given a set of n elements, a
collection of m sets S and a distribution D over the sets. Nature instantiates a set s ∈ S
from the distribution D; the realization is unknown to the algorithm. Furthermore, in this
variant, each element provides feedback to the algorithm when the algorithm “visits” this
element; this feedback takes on the value fi(s) ∈ R for element i ∈ [n] if the realized set is
s ∈ S.

Output. The algorithm once again produces an ordering π over the elements. Observe
that the feedback allows the algorithm to adapt its ordering to previously observed values.
Accordingly, π is an adaptive policy that maps a subset of the elements and their associated
feedback, to the index of another element i ∈ [n]. That is, π : ∪X⊆[n]RX → [n].

Objective. As before, the cost of the ordering for a particular set s ∈ S is the index of the
first element in the ordering that belongs to the set s, that is, costs(π) = min{i : π(i) ∈ s}.
The goal of the algorithm is to minimize the expected cost Es∼D[costs(π)].

Commonalities and notation
As the reader has observed, we capture the commonalities between the different problems
through the use of similar notation. Scenarios in DT correspond to value vectors in PB and
to sets in MSSCf ; all are denoted by s, lie in the set S, and are drawn by nature from a
known joint distribution D. Tests in DT correspond to boxes in PB and elements in MSSCf ;

3 In the original version of the problem studied by Weitzman [52] the values are independent across boxes,
and the goal is to maximize the value collected minus the costs paid, in contrast to the minimization
version we study here.
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we index each by i ∈ [n]. The algorithm for each problem produces an adaptive ordering
π over these tests/boxes/elements. Test outcomes Ti(s) in DT correspond to box values
vi(s) in PB and feedback fi(s) in MSSCf . We will use the terminology and notation across
different problems interchangeably in the rest of the paper.

2.1 Modeling Correlation
In this work we study two general ways of modeling the correlation between the values in the
boxes. Explicit Distributions. In this case, D is a distribution over m scenarios where
the j’th scenario is realized with probability pj , for j ∈ [m]. Every scenario corresponds
to a fixed and known vector of values contained in each box. Specifically, box i has value
vij ∈ R+ ∪ {∞} for scenario j.

Mixture of Distributions. We also consider a more general setting, where D is a
mixture of m product distributions. Specifically, each scenario j is a product distribution;
instead of giving a deterministic value for every box i, the result is drawn from distribution
Dij . This setting is a generalization of the explicit distributions setting described before.

3 Roadmap of the Reductions and Implications

In Figure 2, we give an overview of all the main technical reductions shown in Sections 4
and 5. An arrow A→ B means that we gave an approximation preserving reduction from
problem A to problem B. Therefore an algorithm for B that achieves approximation ratio
α gives also an algorithm for A with approximation ratio O(α) (or O(α log α) in the case
of black dashed lines). For the exact guarantees we refer to the formal statement of the
respective theorem. The gray lines denote less important claims or trivial reductions (e.g. in
the case of A being a subproblem of B).

PB

UMSSCfMSSCf

UDT

DT

Claim 7

Claim 16
Claim 16

Thm 8

Thm 17

Thm 8

Main Theorem (log factors)

Main Theorem (const. factors)

Minor Claim

Subproblem

Figure 2 Summary of all our reductions. Bold black lines denote our main theorems, gray dashed
are minor claims, and dotted lines are trivial reductions.

3.1 Approximating Pandora’s Box
Given our reductions and using the best known results for Uniform Decision Tree
from [43] we immediately obtain efficient approximation algorithms for Pandora’s Box.
We repeat the results of [43] below.

APPROX/RANDOM 2023
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▶ Theorem 2 (Theorems 3.1 and 3.2 from [43]).
There is a O(log m/ log OPT)-approximation algorithm for UDT that runs in polynomial
time, where OPT is the cost of the optimal solution of the UDT instance.
There is a 9+ε

α -approximation algorithm for UDT that runs in time nÕ(mα) for any
α ∈ (0, 1).

Using the results of Theorem 2 combined with Theorem 8 and Claim 16 we get the
following corollary.

▶ Corollary 3. From the best-known results for UDT, we have that
There is a Õ(log m)-approximation algorithm for PB that runs in polynomial time4.
There is a Õ(1/α)-approximation algorithm for PB that runs in time nÕ(mα) for any
α ∈ (0, 1).

An immediate implication of the above corollary is that it is not NP-hard to obtain a
superconstant approximation for PB, formally stated below.

▶ Corollary 4. It is not NP-hard to achieve any superconstant approximation for PB assuming
the Exponential Time Hypothesis.

Observe that the logarithmic approximation achieved in Corollary 3 loses a log log m

factor (hence the Õ) as it relies on the more complex reduction of Theorem 8. If we
choose to use the more direct naive reduction (given in the full version of our paper) to
the Optimal Decision Tree where the tests have non-unit costs (which also admits a
O(log m)-approximation [34, 41]), we get the following corollary.

▶ Corollary 5. There exists an efficient algorithm that is O(log m)-approximate for Pan-
dora’s Box and with or without unit-cost boxes.

3.2 Constant approximation for Partially Adaptive PB

Moving on, we show how our reduction can be used to obtain and improve the results of [13].
Recall that in [13] the authors presented a constant factor approximation algorithm against
a Partially Adaptive benchmark where the order of opening boxes must be fixed up front.

In such a case, the reduction of Section 4 can be used to reduce PB to the standard Min
Sum Set Cover (i.e. without feedback), which admits a 4-approximation [21].

▶ Corollary 6. There exists a polynomial time algorithm for PB that is O(1)-competitive
against the partially adaptive benchmark.

The same result applies even in the case of non-uniform opening costs. This is because
a 4-approximate algorithm for Min Sum Set Cover is known even when elements have
arbitrary costs [46]. The case of non-uniform opening costs has also been considered for
Pandora’s Box by [13] but only provide an algorithm to handle polynomially bounded
opening costs.

4 If additionally the possible number of outcomes is a constant K, this gives a O(log m) approximation
without losing an extra logarithmic factor, since OPT ≥ logK m, as observed by [43].
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4 Connecting Pandora’s Box and MSSCf

In this section we establish the connection between Pandora’s Box and Min Sum Set
Cover with Feedback. We show that the two problems are equivalent up to logarithmic
factors in approximation ratio.

One direction of this equivalence is easy to see in fact: Min Sum Set Cover with
Feedback is a special case of Pandora’s Box. Note that in both problems we examine
boxes/elements in an adaptive order. In PB we stop when we find a sufficiently small value;
in MSSCf we stop when we find an element that belongs to the instantiated scenario. To
establish a formal connection, given an instance of MSSCf , we can define the “value” of each
element i in scenario s as being 0 if the element belongs to the set s and as being L + fi(s)
for some sufficiently large value L where fi(s) is the feedback of element i for set s. This
places the instance within the framework of PB and a PB algorithm can be used to solve it.
We formally describe this reduction in Section A of the Appendix.

▷ Claim 7. If there exists an α(n, m)-approximation algorithm for PB then there exists a
α(n, m)-approximation for MSSCf .

The more interesting direction is a reduction from PB to MSSCf . In fact we show
that a general instance of PB can be reduced to the simpler uniform version of Min Sum
Set Cover with Feedback. We devote the rest of this section to proving the following
theorem.

▶ Theorem 8 (Pandora’s Box to MSSCf ). If there exists an a(n, m) approximation
algorithm for UMSSCf then there exists a O(α(n + m, m2) log α(n + m, m2))-approximation
for PB.

Guessing a stopping rule and an intermediate problem
The feedback structure in PB and MSSCf is quite similar, and the main component in
which the two problems differ is the stopping condition. In MSSCf , an algorithm can stop
examining elements as soon as it finds one that “covers” the realized set. In PB, when the
algorithm observes a value in a box, it is not immediately apparent whether the value is
small enough to stop or whether the algorithm should probe further, especially if the scenario
is not fully identified. The key to relating the two problems is to “guess” an appropriate
stopping condition for PB, namely an appropriate threshold T such that as soon as the
algorithm observes a value smaller than this threshold, it stops. We say that the realized
scenario is “covered”.

To formalize this approach, we introduce an intermediate problem called Pandora’s
Box with costly outside option T (also called threshold), denoted by PB≤T . In this version
the objective is to minimize the cost of finding a value ≤ T , while we have the extra option
to quit searching by opening an outside option box of cost T . We say that a scenario is
covered in a given run of the algorithm if it does not choose the outside option box T .

We show that Pandora’s Box can be reduced to PB≤T with a logarithmic loss in
approximation factor, and then PB≤T can be reduced to Min Sum Set Cover with
Feedback with a constant factor loss. The following two results capture the details of these
reductions.

▷ Claim 9. If there exists an α(n, m) approximation algorithm for UMSSCf then there
exists an 3α(n + m, m2)-approximation for UPB≤T .

APPROX/RANDOM 2023



26:10 Approximating Pandora’s Box with Correlations

▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

The relationship between PB≤T and Min Sum Set Cover with Feedback is relatively
straightforward and requires explicitly relating the structure of feedback in the two problems.
We describe the details in Section A of the Appendix.

Putting it all together. The proof of Theorem 8 follows by combining Claim 9 with
Lemmas 11 and 10 presented in the following sections. Proofs of Claims 7, 9 deferred to
Section A of the Appendix. The rest of this section is devoted to proving Lemmas 11 and 10.

4.1 Reducing Pandora’s Box to PB≤T

Recall that a solution to Pandora’s Box involves two components ; (1) the order in which
to open boxes and (2) a stopping rule. The goal of the reduction to PB≤T is to simplify
the stopping rule of the problem, by making values either 0 or ∞, therefore allowing us to
focus on the order in which boxes are opened, rather than which value to stop at. We start
by presenting our main tool, a reduction to Min Sum Set Cover with Feedback in
Section 4.1.1 and then improve upon that to reduce from the uniform version of MSSCf

(Section 4.1.2).

4.1.1 Main Tool
The high level idea in this reduction is that we repeatedly run the algorithm for PB≤T with
increasingly larger value of T with the goal of covering some mass of scenarios at every step.
The thresholds for every run have to be cleverly chosen to guarantee that enough mass is
covered at every run. The distributions on the boxes remain the same, and this reduction
does not increase the number of boxes, therefore avoiding the issues faced by the naive
reduction given in the full version of the paper. Formally, we show the following lemma.

▶ Main Lemma 11. Given a polynomial-time α(n, m)-approximation algorithm for PB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

Algorithm 1 Reduction from PB to PB≤T .

Input: Oracle A(T ) for PB≤T , set of all scenarios S.
1 i← 0 // Number of current Phase
2 while S ≠ ∅ do
3 Use A to find smallest Ti via Binary Search s.t.

Pr [accepting the outside option Ti] ≤ 0.2
4 Call the oracle A(Ti) on set S to obtain policy πi

5 S ← S\ {scenarios with total cost ≤ Ti}
6 end
7 for i← 0 to ∞ do
8 Run policy πi until it terminates and selects a box, or accumulates probing cost

Ti.
9 end

We will now analyze the policy produced by this algorithm.
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Proof of Main Lemma 11. We start with some notation. Given an instance I of PB, we
repeatedly run PB≤T in phases. Phase i consists of running PB≤T with threshold Ti on a
sub instance of the original problem where we are left with a smaller set of scenarios, with
their probabilities reweighted to sum to 1. Call this set of scenarios Si for phase i and the
corresponding instance Ii. After every phase i, we remove the probability mass that was
covered5, and run PB≤T on this new instance with a new threshold Ti+1. In each phase, the
boxes, costs and values remain the same, but the stopping condition changes: thresholds Ti

increase in every subsequent phase. The thresholds are chosen such that at the end of each
phase, 0.8 of the remaining probability mass is covered. The reduction process is formally
shown in Algorithm 1.

Accounting for the cost of the policy. We first note that the total cost of the policy in
phase i conditioned on reaching that phase is at most 2Ti: if the policy terminates in that
phase, it selects a box with value at most Ti. Furthermore, the policy incurs probing cost at
most Ti in the phase. We can therefore bound the total cost of the policy as ≤ 2

∑∞
i=0(0.2)iTi.

We will now relate the thresholds Ti to the cost of the optimal PB policy for I. To this end,
we define corresponding thresholds for the optimal policy that we call p-thresholds. Let π∗

I
denote the optimal PB policy for I and let cs denote the cost incurred by π∗

I when scenario
i is realized. A p-threshold is the minimum possible threshold T such that at most p mass of
the scenarios has cost more than T in PB, formally defined below.

▶ Definition 12 (p-Threshold). Let I be an instance of PB and cs be the cost of scenario
s ∈ S in π∗

I , we define the p-threshold as

tp = min{T : Pr [cs > T ] ≤ p}.

The following two lemmas relate the cost of the optimal policy to the p-thresholds, and
the p-thresholds to the thresholds Ti our algorithm finds. The proofs of both lemmas are
deferred to Section A.1 of the Appendix. We first formally define a sub-instance of the given
Pandora’s Box instance.

▶ Definition 13 (Sub-instance). Let I be an instance of {PB≤T , PB} with set of scenarios
SI each with probability pI

s . For any q ∈ [0, 1] we call I ′ a q-sub instance of I if SI′ ⊆ SI
and

∑
s∈SI′ pI

s = q.

▶ Lemma 14 (Optimal Lower Bound). Let I be the instance of PB. For any q < 1, any
α > 1, and β ≥ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ≥

∞∑
i=0

1
βα
· (q)i

tqi/βα.

▶ Lemma 15. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ;
and any q < 1 and β ≥ 2, suppose that the threshold T satisfies

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q
of the scenarios pick the outside option box T .

5 Recall, a scenario is covered if it does not choose the outside option box.

APPROX/RANDOM 2023



26:12 Approximating Pandora’s Box with Correlations

Calculating the thresholds. For every phase i we choose a threshold Ti such that Ti =
min{T : Pr [cs > T ] ≤ 0.2} i.e. at most 0.2 of the probability mass of the scenarios are not
covered. In order to select this threshold, we do binary search starting from T = 1, running
every time the α-approximation algorithm for PB≤T with outside option box T and checking
how many scenarios select it. We denote by Inti = [t(0.2)i , t(0.2)i/(10α)] the relevant interval
of costs at every run of the algorithm, then by Lemma 15 for β = 10, we know that for
remaining total probability mass (0.2)i, any threshold which satisfies

Ti ≥ t(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

cs
ps

(0.2)i

also satisfies the desired covering property, i.e. at least 0.8 mass of the current scenarios is
covered. Therefore the threshold Ti found by our binary search satisfies the following

Ti = t(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

cs
ps

(0.2)i
. (1)

Bounding the final cost. To bound the final cost, we recall that at the end of every phase
we cover 0.8 of the remaining scenarios. Furthermore, we observe that each threshold Ti is
charged in the above Equation (1) to optimal costs of scenarios corresponding to intervals of
the form Inti = [t(0.2)i , t(0.2)i/(10α)]. Note that these intervals are overlapping. We therefore
get

cost(πI) ≤ 2
∞∑

i=0

(0.2)iTi

= 2
∞∑

i=0

(0.2)it(0.2)i−1/10a + 10α
∑
s∈S

cs∈Inti

csps

 From equation (1)

≤ 4 · 10απ∗
I + 20α

∞∑
i=0

∑
s∈S

cs∈Inti

csps Using Lemma 14 for β = 10, q = 0.2

≤ 40α log α · π∗
I .

Where the last inequality follows since each scenario with cost cs can belong to at most log α

intervals, therefore we get the theorem. ◀

Notice the generality of this reduction; the distributions on the values are preserved, and
we did not make any more assumptions on the scenarios or values throughout the proof.
Therefore we can apply this tool regardless of the type of correlation or the way it is given
to us, e.g. we could be given a parametric distribution, or an explicitly given distribution, as
we see in the next section.

4.1.2 An Even Stronger Tool
Moving one step further, we show that if we instead of PB≤T we had an α-approximation
algorithm for UPB≤T we can obtain the same guarantees as the ones described in Lemma 11.
Observe that we cannot directly use Algorithm 1 since the oracle now requires that all
scenarios have the same probability, while this might not be the case in the initial PB
instance. The theorem stated formally follows.
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▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

We are going to highlight the differences with the proof of Main Lemma 11, and show
how to change Algorithm 1 to work with the new oracle, that requires the scenarios to have
uniform probability. The function Expand shown in Algorithm 2 is used to transform the
instance of scenarios to a uniform one where every scenario has the same probability by
creating multiple copies of the more likely scenarios. The function is formally described in
Algorithm 3 in Section A.2 of the Appendix, alongside the proof of Main Lemma 10.

Algorithm 2 Reduction from PB to UPB≤T .

Input: Oracle A(T ) for UPB≤T , set of all scenarios S, c = 1/10, δ = 0.1.
1 i← 0 // Number of current Phase
2 while S ≠ ∅ do
3 Let L =

{
s ∈ S : ps ≤ c · 1

|S|

}
// Remove low probability scenarios

4 S ′ = S \ L
5 UI = Expand(S ′)
6 In instance UI use A to find smallest Ti via Binary Search s.t.

Pr [accepting Ti] ≤ δ

7 Call the oracle A(Ti)
8 S ←

(
S ′ \ {s ∈ S ′ : cs ≤ Ti}

)
∪ L

9 end

5 Connecting MSSCf and Optimal Decision Tree

In this section we establish the connection between Min Sum Set Cover with Feedback
and Optimal Decision Tree. We show that the uniform versions of these problems are
equivalent up to constant factors in approximation ratio. The proofs of this section are
deferred to the full version of the paper in ArXiv.

▷ Claim 16. If there exists an α(n, m)-approximation algorithm for DT (UDT) then there
exists a (1 + α(n, m))-approximation algorithm for MSSCf (resp. UMSSCf ).

▶ Theorem 17 (Uniform Decision Tree to UMSSCf ). Given an α(m, n)-approximation
algorithm for UMSSCf then there exists an O(α(n + m, m))-approximation algorithm for
UDT.

The formal proofs of these statements can be found in the full version, here we sketch
the main ideas.

One direction of this equivalence is again easy to see. The main difference between
Optimal Decision Tree and MSSCf is that the former requires scenarios to be exactly
identified whereas in the latter it suffices to simply find an element that covers the scenario.
In particular, in MSSCf an algorithm could cover a scenario without identifying it by, for
example, covering it with an element that covers multiple scenarios. To reduce MSSCf to
DT we simply introduce extra feedback into all of the elements of the MSSCf instance
such that the elements isolate any scenarios they cover. (That is, if the algorithm picks an
element that covers some subset of scenarios, this element provides feedback about which of
the covered scenarios materialized.) This allows us to relate the cost of isolation and the
cost of covering to within the cost of a single additional test, implying Claim 16.
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Proof Sketch of Theorem 17. The other direction is more complicated, as we want to
ensure that covering implies isolation. Given an instance of UDT, we create a special element
for each scenario which is the unique element covering the scenario and also isolates the
scenario from all other scenarios. The intention is that an algorithm for MSSCf on this
new instance only chooses the special isolating element in a scenario after it has identified
the scenario. If that happens, then the algorithm’s policy is a feasible solution to the UDT
instance and incurs no extra cost. The problem is that an algorithm for MSSCf over the
modified instance may use the special covering element before isolating a scenario. We argue
that this choice can be “postponed” in the policy to a point at which isolation is nearly
achieved without incurring too much extra cost. This involves careful analysis of the policy’s
decision tree and we present details in the appendix.

Why our reduction does not work for DT. Our analysis above heavily uses the fact
that the probabilities of all scenarios in the UDT instance are equal. This is because
the “postponement” of elements charges increased costs of some scenarios to costs of other
scenarios. In fact, our reduction above fails in the case of non-uniform distributions over
scenarios – it can generate an MSSCf instance with optimal cost much smaller than that of
the original DT instance.

To see this, consider an example with m scenarios where scenarios 1 through m − 1
happen with probability ε/(m− 1) and scenario m happens with probability 1− ε. There are
m− 1 tests of cost 1 each. Test i for i ∈ [m− 1] isolates scenario i from all others. Observe
that the optimal cost of this DT instance is at least (1− ε)(m− 1) as all m− 1 tests need to
be run to isolate scenario m. Our construction of the MSSCf instance adds another isolating
test for scenario m. A solution to this instance can use this new test at the beginning to
identify scenario m and then run other tests with the remaining ε probability. As a result,
it incurs cost at most (1− ε) + ε(m− 1), which is a factor of 1/ε cheaper than that of the
original DT instance.

6 Mixture of Product Distributions

In this section we switch gears and consider the case where we are given a mixture of m

product distributions. Observe that using the tool described in Section 4.1.1, we can reduce
this problem to PB≤T . This now is equivalent to the noisy version of DT [28, 40] where for
a specific scenario, the result of each test is not deterministic and can get different values
with different probabilities.

Comparison with previous work. previous work on noisy decision tree, considers limited
noise models or the runtime and approximation ratio depends on the type of noise. For
example in the main result of [40], the noise outcomes are binary with equal probability. The
authors mention that it is possible to extend the following ways:

to probabilities within [δ, 1− δ], incurring an extra 1/δ factor in the approximation
to non-binary noise outcomes, incurring an extra at most m factor in the approximation

Additionally, their algorithm works by expanding the scenarios for every possible noise
outcome (e.g. to 2m for binary noise). In our work the number of noisy outcomes does not
affect the number of scenarios whatsoever.

In our work, we obtain a constant approximation factor, that does not depend in
any way on the type of the noise. Additionally, the outcomes of the noisy tests can be
arbitrary, and do not affect either the approximation factor or the runtime. We only require
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a separability condition to hold ; the distributions either differ enough or are exactly the
same. Formally, we require that for any two scenarios s1, s2 ∈ S and for every box i, the
distributions Dis1 and Dis2 satisfy |Dis1 −Dis2 | ∈ R≥ε ∪ {0}, where |A − B| is the total
variation distance of distributions A and B.

6.1 A DP Algorithm for noisy PB≤T

We move on to designing a dynamic programming algorithm to solve the PB≤T problem, in
the case of a mixtures of product distributions. The guarantees of our dynamic programming
algorithm are given in the following theorem.

▶ Theorem 18. For any β > 0, let πDP and π∗ be the policies produced by Algorithm DP(β)
described by Equation (2) and the optimal policy respectively and UB = m2

ε2 log m2T
cminβ . Then

it holds that

c(πDP) ≤ (1 + β)c(π∗).

and the DP runs in time nUB, where n is the number of boxes and cmin is the minimum cost
box.

Using the reduction described in Section 4.1.1 and the previous theorem we can get a
constant-approximation algorithm for the initial PB problem given a mixture of product
distributions. Observe that in the reduction, for every instance of PB≤T it runs, the chosen
threshold T satisfies that T ≤ (β + 1)c(π∗

T )/0.2 where π∗
T is the optimal policy for the

threshold T . The inequality holds since the algorithm for the threshold T is a (β + 1)
approximation and it covers 80% of the scenarios left (i.e. pays 0.2T for the rest). This is
formalized in the following corollary.

▶ Corollary 19. Given an instance of PB on m scenarios, and the DP algorithm described
in Equation (2), then using Algorithm 1 we obtain an O(1)-approximation algorithm for PB
that runs in nÕ(m2/ε2).

Observe that the naive DP, that keeps track of all the boxes and possible outcomes, has
space exponential in the number of boxes, which can be very large. In our DP, we exploit
the separability property of the distributions by distinguishing the boxes in two different
types based on a given set of scenarios. Informally, the informative boxes help us distinguish
between two scenarios, by giving us enough TV distance, while the non-informative always
have zero TV distance. The formal definition follows.

▶ Definition 20 (Informative and non-informative boxes). Let S ⊆ S be a set of scenarios.
Then we call a box k informative if there exist si, sj ∈ S such that

|Dksi
−Dksj

| ≥ ε.

We denote the set of all informative boxes by IB(S). Similarly, the boxes for which the above
does not hold are called non-informative and the set of these boxes is denoted by NIB(S).

Recursive calls of the DP. Our dynamic program chooses at every step one of the following
options:
1. open an informative box: this step contributes towards eliminating improbable scenarios.

From the definition of informative boxes, every time such a box is opened, it gives TV
distance at least ε between at least two scenarios, making one of them more probable
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than the other. We show (Lemma 21) that it takes a finite amount of these boxes to
decide, with high probability, which scenario is the one realized (i.e. eliminating all but
one scenarios).

2. open a non-informative box: this is a greedy step; the best non-informative box to open
next is the one that maximizes the probability of finding a value smaller than T . Given
a set S of scenarios that are not yet eliminated, there is a unique next non-informative
box which is best. We denote by NIB∗(S) the function that returns this next best
non-informative box. Observe that the non-informative boxes do not affect the greedy
ordering of which is the next best, since they do not affect which scenarios are eliminated.

State space of the DP. the DP keeps track of the following three quantities:
1. a list M which consists of sets of informative boxes opened and numbers of non-

informative ones opened in between the sets of informative ones. Specifically, M has the
following form: M = S1|x1|S2|x2| . . . |SL|xL

6 where Si is a set of informative boxes, and
xi ∈ N is the number of non-informative boxes opened exactly after the boxes in set Si.
We also denote by IB(M) the informative boxes in the list M .
In order to update M at every recursive call, we either append a new informative box bi

opened (denoted by M |bi) or, when a non-informative box is opened, we add 1 at the
end, denoted by M + 1.

2. a list E of m2 tuples of integers (zij , tij), one for each pair of distinct scenarios (si, sj)
with i, j ∈ [m]. The number zij keeps track of the number of informative boxes between
si and sj that the value discovered had higher probability for scenario si, and the number
tij is the total number of informative for scenarios si and sj opened. Every time an
informative box is opened, we increase the tij variables for the scenarios the box was
informative and add 1 to the zij if the value discovered had higher probability in si.
When a non-informative box is opened, the list remains the same.We denote this update
by E++.

3. a list S of the scenarios not yet eliminated. Every time an informative test is performed,
and the list E updated, if for some scenario si there exists another scenario sj such that
tij > 1/ε2 log(1/δ) and |zij − E[zij |si]| ≤ ε/2 then sj is removed from S, otherwise si is
removed7. This update is denoted by S++.

Base cases. if a value below T is found, the algorithm stops. The other base case is when
|S| = 1, which means that the scenario realized is identified, we either take the outside option
T or search the boxes for a value below T , whichever is cheapest. If the scenario is identified
correctly, the DP finds the expected optimal for this scenario. We later show that we make a
mistake only with low probability, thus increasing the cost only by a constant factor. We
denote by Nat(·, ·, ·) the “nature’s” move, where the value in the box we chose is realized,
and Sol(·, ·, ·) is the minimum value obtained by opening boxes. The recursive formula is
shown below.

Sol(M, E, S) =


min(T, cNIB∗(S) + Nat(M+1, E, S)) if |S| = 1
min

(
T, min

i∈IB(M)
(ci+ Nat(M |i, E, S))

, cNIB∗(S) + Nat(M+1, E, S)
)

else

6 If bi for i ∈ [n] are boxes, the list M looks like this: b3b6b13|5|b42b1|6|b2
7 This is the process of elimination in the proof of Lemma 21
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Nat(M, E, S) =
{

0 if vlast box opened ≤ T

Sol(M, E++, S++) else
(2)

The final solution is DP(β) = Sol(∅, E0,S), where E0 is a list of tuples of the form (0, 0),
and in order to update S we set δ = βcmin/(m2T ).

▶ Lemma 21. Let s1, s2 ∈ S be any two scenarios. Then after opening log(1/δ)
ε2 informative

boxes, we can eliminate one scenario with probability at least 1− δ.
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A Proofs from Section 4

▷ Claim 7. If there exists an α(n, m)-approximation algorithm for PB then there exists a
α(n, m)-approximation for MSSCf .

Proof of Claim 7. Let I be an instance of MSSCf . We create an instance I ′ of PB the
following way: for every set sj of I that gives feedback fij when element ei is selected,
we create a scenario sj with the same probability and whose value for box i, is either 0 if
ei ∈ sj or ∞fij

otherwise, where ∞fij
denotes an extremely large value which is different for

different values of the feedback fij . Observe that any solution to the PB instance gives a
solution to the MSSCf at the same cost and vice versa. ◁
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▷ Claim 9. If there exists an α(n, m) approximation algorithm for UMSSCf then there
exists an 3α(n + m, m2)-approximation for UPB≤T .

Before formally proving this claim, recall the correspondence of scenarios and boxes of
PB-type problems, to elements and sets of MSSC-type problems. The idea for the reduction
is to create T copies of sets for each scenario in the initial PB≤T instance and one element
per box, where if the price a box gives for a scenario i is < T then the corresponding element
belongs to all T copies of the set i. The final step is to “simulate” the outside option T , for
which we we create T elements where the k’th one belongs only to the k’th copy of each set.

Proof of Claim 9. Given an instance I of UPB≤T with outside cost box bT , we construct the
instance I ′ of UMSSCf as follows.

Construction of the instance. For every scenario si in the initial instance, we create T

sets denoted by sik where k ∈ [T ]. Each of these sets has equal probability pik = 1/(mT ).
We additionally create one element eB per box B, which belongs to every set sik for all k iff
vBi < T in the initial instance, otherwise gives feedback vBi. In order to simulate box bT

without introducing an element with non-unit cost, we use a sequence of T outside option
elements eT

k where eT
k ∈ sik for all i ∈ [m] i.e. element eT

ik belongs to “copy k” of every set 8.

Construction of the policy. We construct policy πI by ignoring any outside option elements
that πI′ selects until πI′ has chosen at least T/2 such elements, at which point πI takes the
outside option box bT . To show feasibility we need that for every scenario either bT is chosen
or some box with vij ≤ T . If bT is not chosen, then less than T/2 isolating elements were
chosen, therefore in instance of UMSSCf some sub-sets will have to be covered by another
element eB, corresponding to a box. This corresponding box however gives a value ≤ T in
the initial UPB≤T instance.

Approximation ratio. Let si be any scenario in I. We distinguish between the following
cases, depending on whether there are outside option tests on si’s branch.
1. No outside option tests on si’s branch: scenario si contributes equally in both policies,

since absence of isolating elements implies that all copies of scenario si will be on the
same branch (paying the same cost) in both πI′ and πI

2. Some outside option tests on i’s branch: for this case, from Lemma 22 we have that
c(πI(si)) ≤ 3c(πI′(si)).

Putting it all together we get

c(πI) ≤ 3c(πI′) ≤ 2α(n + m, m2)c(π∗
I′) ≤ 3α(n + m, m2)c(π∗

I),

where the second inequality follows since we are given an α approximation and the last
inequality since if we are given an optimal policy for UPB≤T , the exact same policy is also
feasible for any I ′ instance of UDT, which has cost at least c(π∗

I′). We also used that T ≤ m,
since otherwise the initial policy would never take the outside option. ◁

▶ Lemma 22. Let I be an instance of UPB≤T , and I ′ the instance of UMSSCf constructed
by the reduction of Claim 9. For a scenario si, if there is at least one outside option test run
in πI , then c(πI(si)) ≤ 3c(πI′(si)).

8 Observe that there are exactly T possible options for k for any set. Choosing all these elements costs T
and covers all sets thus simulating bT .
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Proof. For the branch of scenario si, denote by M the box elements chosen before there
were T/2 outside option elements, and by N the number of outside option elements in πI′ .
Note that the smallest cost is achieved if all the outside option elements are chosen first9.
The copies of scenario si can be split into two groups; those that were isolated before T/2
outside option elements were chosen, and those that were isolated after. We distinguish
between the following cases, based on the value of N .

1. N ≥ T/2: in this case each of the copies of si that are isolated after pays at least M +T/2
for the initial box elements and the initial sequence of outside option elements. For the
copies isolated before, we lower bound the cost by choosing all outside option elements
first.
The cost of all the copies in πI′ then is at least

Ki∑
j=1

T/2∑
k=1

cpℓ

T
k +

Ki∑
j=1

T∑
k=T/2+1

cpℓ

T
(T/2 + M) = cpi

T
2 ( T

2 + 1)
2T

+ cpi

T
2 (T/2 + M)

T

≥ cpi(3T/8 + M/2)

≥ 3
8pi(T + M)

Since N ≥ T/2, policy πI will take the outside option box for si, immediately after
choosing the M initial boxes corresponding to the box elements. So, the total contribution
si has on the expected cost of πI is at most pi(M + T ) in this case. Hence, we have that
si’s contribution in πI is at most 8

3 ≤ 3 times si’s contribution in πI′ .

2. N < T/2: policy πI will only select the M boxes (corresponding to box elements) and
this was sufficient for finding a value less than T . The total contribution of si on c(πI) is
exactly piM . On the other hand, since N < T/2 we know that at least half of the copies
will pay M for all of the box elements. The cost of all the copies is at least

Ki∑
j=1

T∑
k=N

cpℓ

T
M = cpi

T −N

T
M ≥ cpiM/2,

therefore, the contribution si has on c(πI′) is at least cpiM/2. Hence, we have c(πI) ≤
3c(πI′). ◀

A.1 Proofs from subsection 4.1.1
▶ Lemma 15. Given an instance I of PB; an α-approximation algorithm AT to PB≤T ;
and any q < 1 and β ≥ 2, suppose that the threshold T satisfies

T ≥ tq/(βα) + βα
∑

cs∈[tq,tq/(βα)]
s∈S

cs
ps

q
.

Then if AT is run on a q-sub instance of I with threshold T , at most a total mass of (2/β)q
of the scenarios pick the outside option box T .

9 Since the outside option tests cause some copies to be isolated and so can reduce their cost.
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Proof. Consider a policy πIq which runs π∗
I on the instance Iq; and for scenarios with cost

cs ≥ tq/(βα) aborts after spending this cost and chooses the outside option T . The cost of
this policy is:

c(π∗
Iq

) ≤ c(πIq
) =

T + tq/(βα)

βα
+

∑
cs∈[tq,tq/(10α)]

s∈S

cs
ps

q
, (3)

By our assumption on T , this cost is at most 2T/βα. On the other hand since AT is an
α-approximation to the optimal we have that the cost of the algorithm’s solution is at most

αc(π∗
Iq

) ≤ 2T

β

Since the expected cost of AT is at most 2T/β, then using Markov’s inequality, we get that
Pr [cs ≥ T ] ≤ (2T/β)/T = 2/β. Therefore, AT covers at least 1− 2/β mass every time. ◀

▶ Lemma 14 (Optimal Lower Bound). Let I be the instance of PB. For any q < 1, any
α > 1, and β ≥ 2, for the optimal policy π∗

I for PB it that

cost(π∗
I) ≥

∞∑
i=0

1
βα
· (q)i

tqi/βα.

Proof. In every interval of the form Ii = [tqi , tqi/(βα)] the optimal policy for PB covers at
least 1/(βα) of the probability mass that remains. Since the values belong in the interval Ii

in phase i, it follows that the minimum possible value that the optimal policy might pay is
tqi , i.e. the lower end of the interval. Summing up for all intervals, we get the lemma. ◀

A.2 Proofs from subsection 4.1.2
Algorithm 3 Expand: rescales and returns an instance of UPB.

Input: Set of scenarios S
1 Scale all probabilities by c such that c

∑
s∈S ps = 1

2 Let pmin = mins∈S ps

3 S ′ = for each s ∈ S create ps/pmin copies
4 Each copy has probability 1/|S ′|
5 return S ′

▶ Main Lemma 10. Given a polynomial-time α(n, m)-approximation algorithm for UPB≤T ,
there exists a polynomial-time O(α(n, m) log α(n, m))-approximation for PB.

Proof. The proof in this case follows the steps of the proof of Theorem 11, and we are only
highlighting the changes. The process of the reduction is the same as Algorithm 1 with
the only difference that we add two extra steps; (1) we initially remove all low probability
scenarios (line 3 - remove at most c fraction) and (2) we add them back after running UPB≤T

(line 8). The reduction process is formally shown in Algorithm 2.

Calculating the thresholds. For every phase i we choose a threshold Ti such that
Ti = min{T : Pr [cs > T ] ≤ δ} i.e. at most δ of the probability mass of the scen-
arios are not covered, again using binary search as in Algorithm 1. We denote by
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Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)] the relevant interval of costs at every run of the al-
gorithm, then by Lemma 15, we know that for remaining total probability mass (1−c)(δ +c)i,
any threshold which satisfies

Ti ≥ t(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

cs
ps

(1− c)(δ + c)i

also satisfies the desired covering property, i.e. at least (1− 2/β)(1− c)(δ + c) mass of the
current scenarios is covered. Therefore the threshold Ti found by our binary search satisfies

Ti = t(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

cs
ps

(1− c)(δ + c)i
. (4)

Following the proof of Theorem 11, Constructing the final policy and Accounting
for the values remain exactly the same as neither of them uses the fact that the scenarios
are uniform.

Bounding the final cost. Using the guarantee that at the end of every phase we cover
(δ + c) of the scenarios, observe that the algorithm for PB≤T is run in an interval of the
form Inti = [t(1−c)(δ+c)i , t(1−c)(δ+c)i/(βα)]. Note also that these intervals are overlapping.
Bounding the cost of the final policy πI for all intervals we get

πI ≤
∞∑

i=0
(1− c)(δ + c)iTi

=
∞∑

i=0

(1− c)(δ + c)it(1−c)(δ+c)i−1/βα + βα
∑
s∈S

cs∈Inti

csps

 From equation (4)

≤ 2 · βαπ∗
I + βα

∞∑
i=0

∑
s∈S

cs∈Inti

csps Using Lemma 14

≤ 2βα log α · π∗
I ,

where the inequalities follow similarly to the proof of Theorem 11. Choosing c = δ = 0.1 and
β = 20 we get the theorem. ◀
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