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Abstract
Bipartite maximum matching and its variants are well-studied problems under various models of
computation with the vast majority of approaches centering around various methods to find and
eliminate augmenting paths. Beginning with the seminal papers of Demange, Gale and Sotomayor
[DGS86] and Bertsekas [Ber81], bipartite maximum matching problems have also been studied in
the context of auction algorithms. These algorithms model the maximum matching problem as
an auction where one side of the bipartite graph consists of bidders and the other side consists of
items; as such, these algorithms offer a very different approach to solving this problem that do
not use classical methods. Dobzinski, Nisan and Oren [DNO14] demonstrated the utility of such
algorithms in distributed, interactive settings by providing a simple and elegant O(log n/ε2) round
maximum cardinality bipartite matching (MCM) algorithm that has small round and communication
complexity and gives a (1 − ε)-approximation for any (not necessarily constant) ε > 0. They leave
as an open problem whether an auction algorithm, with similar guarantees, can be found for the
maximum weighted bipartite matching (MWM) problem. Very recently, Assadi, Liu, and Tarjan
[ALT21] extended the utility of auction algorithms for MCM into the semi-streaming and massively
parallel computation (MPC) models, by cleverly using maximal matching as a subroutine, to give a
new auction algorithm that uses O(1/ε2) rounds and achieves the state-of-the-art bipartite MCM
results in the streaming and MPC settings.

In this paper, we give new auction algorithms for maximum weighted bipartite matching (MWM)
and maximum cardinality bipartite b-matching (MCbM). Our algorithms run in O

(
log n/ε8) and

O
(
log n/ε2) rounds, respectively, in the distributed setting. We show that our MWM algorithm can

be implemented in the distributed, interactive setting using O(log2 n) and O(log n) bit messages,
respectively, directly answering the open question posed by Demange, Gale and Sotomayor [DNO14].
Furthermore, we implement our algorithms in a variety of other models including the the semi-
streaming model, the shared-memory work-depth model, and the massively parallel computation
model. Our semi-streaming MWM algorithm uses O(1/ε8) passes in O(n log n · log(1/ε)) space
and our MCbM algorithm runs in O(1/ε2) passes using O

((∑
i∈L

bi + |R|
)

log(1/ε)
)

space (where
parameters bi represent the degree constraints on the b-matching and L and R represent the left
and right side of the bipartite graph, respectively). Both of these algorithms improves exponentially
the dependence on ε in the space complexity in the semi-streaming model against the best-known
algorithms for these problems, in addition to improvements in round complexity for MCbM. Finally,
our algorithms eliminate the large polylogarithmic dependence on n in depth and number of rounds
in the work-depth and massively parallel computation models, respectively, improving on previous
results which have large polylogarithmic dependence on n (and exponential dependence on ε in the
MPC model).
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1 Introduction

One of the most basic problems in combinatorial optimization is that of bipartite matching.
This central problem has been studied extensively in many fields including operations research,
economics, and computer science and is the cornerstone of many algorithm design courses
and books. There is an abundance of existing classical and recent theoretical work on
this topic [25, 12, 13, 19, 20, 27, 29, 30, 6, 11, 31]. Bipartite maximum matching and its
variants are commonly taught in undergraduate algorithms courses and are so prominent
to be featured regularly in competitive programming contests. In both of these settings,
the main algorithmic solutions for maximum cardinality matching (MCM) and its closely
related problems of maximum weight matching (MWM) are the Hungarian method using
augmenting paths and reductions to maximum flow. Although foundational, such approaches
are sometimes difficult to generalize to obtain efficient solutions in other scalable models of
computation, e.g. distributed, streaming, and parallel models.

Although somewhat less popularly known, the elegant and extremely simple auction-
based maximum cardinality and maximum weighted matching algorithms of Demange, Gale,
and Sotomayor [10] and Bertsekas [8] solve the maximum cardinality/weighted matching
problems in bipartite graphs. Their MCM auction algorithms denote vertices on one side
of the bipartite input as bidders and the other side as items. Bidders are maintained in a
queue and while the queue is not empty, the first bidder from the queue bids on an item with
minimum price (breaking ties arbitrarily) from its neighbors. This bidder becomes the new
owner of the item. Each time an item is reassigned to a new bidder, its price increases by
some (not necessarily constant) ε > 0. If the assigned item still has price less than 1, the
bidder is added again to the end of the queue. Setting ε = 1

n+1 results in an algorithm that
gives an exact maximum cardinality matching in O(mn) time, where m and n refer to the
number of edges and vertices respectively. Such an algorithm intuitively takes advantage
of the fact that bidders prefer items in low demand (smaller price); naturally, such items
should also be matched in a maximum cardinality matching.

One of the bottlenecks in the original auction algorithm is the need to maintain bidders in
a queue from which they are selected, one at a time, to bid on items. Such a bottleneck is a key
roadblock to the scalability of such algorithms. More recently, Dobzinski, Nisan, and Oren [11]
extended this algorithm to the approximation setting for any (not necessarily constant) ε > 0.
They give a simple and elegant randomized (1− ε)-approximation algorithm for bipartite
MCM in O

(
log n

ε2

)
rounds of communication for any ε > 0. Furthermore, they illustrate an

additional advantage for this algorithm beyond its simplicity. They show that in a distributed,
interactive, blackboard setting, their auction MCM multi-round interactive algorithm uses
less communication bits than traditional algorithms for this problem. This interactive setting
is modeled via simultaneous communication protocols where agents simultaneously send a
single message in each round to a central coordinator and some state is computed by the
central coordinator after each round of communication. The goal in this model is to limit
the total number of bits sent in all of the agents’ messages throughout the duration of the
algorithm. They leave as an open question whether an interactive, approximation auction
algorithm that uses approximately the same number of rounds and bits of communication
can be found for the maximum weighted bipartite matching problem.

https://arxiv.org/abs/2307.08979
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Such an approach led to the recent simple and elegant paper of Assadi, Liu, and Tarjan [6]
that adapted their algorithm to the semi-streaming setting and removed the log n factor in
the semi-streaming setting from the number of passes to give an algorithm that finds an
(1− ε)-approximate maximum cardinality matching in O

(
1/ε2) passes, where in each pass a

maximal matching is found. Furthermore, they showed implementations of their algorithm in
the massively parallel computation (MPC) model, achieving the best-known bounds in both
of these settings. In this paper, we extend their algorithm to other variants of the problem on
bipartite graphs, including maximum weight matching and maximum cardinality b-matching
and achieve novel improvements in a variety of scalable models. The maximum cardinality
b-matching problem (MCbM) is a well-studied generalization of MCM. In MCbM, each
vertex is given an integer budget bv where each vertex can be matched to at most bv of their
neighbors; a matching of maximum cardinality contains the maximum possible number of
edges in the matching. The b-matching problem generalizes a number of real-life allocation
problems such as server to client request serving, medical school residency matching, ad
allocation, and many others. Although the problem is similar to MCM, often obtaining
efficient algorithms for this problem requires non-trivial additional insights. As indicated in
Ghaffari et al [16] b-matching problems can be considerably harder than matching.

Summary of Results. In this paper, we specifically give the following results. Our auction
algorithms and their analyses are described in detail in Section 3 and Section 4.

▶ Theorem 1 (Maximum Weight Bipartite Matching). There exists an auction algorithm
for maximum weight bipartite matching (MWM) that gives a (1− ε)-approximation for any
ε > 0 and runs in O

(
log n·log(1/ε)

ε8

)
rounds of communication (with high probability) and with

O
(
log2 n

)
bits per message. This algorithm can be implemented in the multi-round, semi-

streaming model using O (n · log n · log(1/ε)) space and O
(

log(1/ε)
ε7

)
passes. This algorithm

can be implemented in the work-depth model in O
(

m·log(1/ε)
ε6

)
work and O

(
log n·log(1/ε)

ε8

)
depth. Finally, our algorithm can be implemented in the MPC model using O(log(1/ε)/ε7)
rounds, O(n) space per machine, and O

(
m log(1/ε) log n

ε

)
total space.

The best-known algorithms in the semi-streaming model for the maximum weight bipartite
matching problem are the (1/ε)O(1/ε2) pass, O (n poly(log(n)) poly(1/ε)) space algorithm
of Gamlath et al. [15] and the O

(
log(1/ε)

ε2

)
pass, O

(
n log n

ε2

)
space algorithm of Ahn and

Guha [1]. To the best of our knowledge, our result is the first to achieve sub-polynomial
dependence on 1/ε in the space for the MWM problem in the semi-streaming model. Thus,
we improve the space bound exponentially compared to the previously best-known algorithms
in the streaming model. The best-known algorithms in the distributed and work-depth
models required poly(log n) in the number of rounds and depth, respectively [21]; in the
MPC setting, the best previously known algorithms have exponential dependence on ε [15].
We eliminate such dependencies in our paper and our algorithm is also simpler. A summary
of previous results and our results can be found in Table 1.

▶ Theorem 2 (Maximum Cardinality Bipartite b-Matching). There exists an auction algorithm
for maximum cardinality bipartite b-matching (MCbM) that gives a (1− ε)-approximation
for any ε > 0 and runs in O

(
log n

ε2

)
rounds of communication. This algorithm can be

implemented in the multi-round, semi-streaming model using O
((∑

i∈L bi + |R|
)

log(1/ε)
)

space and O
( 1

ε2

)
passes. Our algorithm can be implemented in the shared-memory work-depth

model in O
(

log3 n
ε2

)
depth and O

(
m log n

ε2

)
total work.

APPROX/RANDOM 2023
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The best-known algorithms for maximum cardinality bipartite b-matching in the semi-

streaming model is the O
(

log n
ε3

)
pass, Õ

(∑
i∈L∪R

bi

ε3

)
space algorithm of Ahn and Guha [1].

In the general, non-bipartite setting (a harder setting than what we consider), a very recent
(1− ε)-approximation algorithm of Ghaffari, Grunau, and Mitrović [16] runs in exp

(
2O(1/ε))

passes and Õ
(∑

i∈L∪R bi + poly(1/ε)
)

space. Here, we also improve the space exponentially
in 1/ε and, in addition, improve the number of passes by an O(log n) factor. More details
comparing our results to other related works are given in Section 1.1. Due to the space
constraints, most proofs in the following sections are deferred to the full version of our paper.
Our results as well as comparisons with previous work are given in Table 1.

Table 1 We assume the ratio between the largest weight edge and smallest weight edge in the
graph is poly(n). Results for general graphs are labeled with (general); results that are specifically
for bipartite graphs do not have a label. Upper bounds are given in terms of O(·) and lower bounds
are given in terms of Ω(·). “Space p.m.” stands for space per machine. The complexity measures for
the “blackboard distributed” setting is the total communication (over all rounds and players) in bits.

Model Previous Results Our Results

Blackboard
Distributed

MWM Ω(n log n) (trivial) [11] O
(

n log3(n)·log(1/ε)
ε9

)
Theorem 11

MCbM Ω(nb log n) trivial O
(

nb log2 n
ε2

)
Theorem 28

Streaming
MWM

O
( log(1/ε)

ε2

)
pass

O
(

n log n
ε2

)
space [1]

O
( log(1/ε)

ε7

)
pass

O (n · log n · log(1/ε)) space Theorem 13

MCbM

O(log n/ε3) pass

Õ

(∑
i∈L∪R

bi

ε3

)
space [2]

O
(

1
ε2

)
pass

O
((∑

i∈L
bi + |R|

)
log(1/ε)

)
space Theorem 30

MPC MWM

Oε(log log n) rounds
Oε(n poly(log n))

space p.m.
[15]

(general)
O
( log(1/ε)·log log n

ε7

)
rounds

O(n) space p.m. Theorem 17

Parallel
MWM

O (m · poly (1/ε, log n))
work

O (poly (1/ε, log n))
depth

[21]
(general)

O
(

m log(1/ε)
ε6

)
work

O
( log n·log(1/ε)

ε8

)
depth Theorem 15

MCbM N/A N/A

O
(

m log n
ε2

)
work

O
(

log3 n
ε2

)
depth Theorem 31

Concurrent, Independent Work. In concurrent, independent work, Zheng and Hen-
zinger [34] study the maximum weighted matching problem in the sequential and dynamic
settings using auction-based algorithms. Their simple and elegant algorithm makes use of
a sorted list of items (by utility) for each bidder and then matches the bidders one by one
individually (in round-robin order) to their highest utility item. They also extend their
algorithm to give dynamic results. Due to the sequential nature of their matching procedure,
they do not provide any results in scalable models such as the streaming, MPC, parallel, or
distributed models.

1.1 Other Related Works
There has been no shortage of work done on bipartite matching. In addition to the works we
discussed in the introduction, there has been a number of other relevant works in this general
area of research. Here we discuss the additional works not discussed in Section 1. These
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include a plethora of results for (1−ε)-approximate maximum cardinality matching as well as
some additional results for MWM and b-matching. Most of these works use various methods
to find augmenting paths with only a few works focusing on auction-based techniques. We
hope that our paper further demonstrates the utility of auction-based approaches in this
setting and will lead to additional works in this area in the future. Although our work focuses
on the bipartite matching problem, we also provide the best-known bounds for the matching
problem on general graphs here, although this is a harder problem than our setting. We
separate these results into the bipartite matching results, the general matching results, and
lower bounds.

General Matching. A number of works have considered MCM in the streaming setting,
providing state-of-the-art bounds in this setting. Fischer et al. [14] gave a deterministic
(1− ε)-approximate MWM algorithm in general graphs in the semi-streaming model that
uses poly(1/ε) passes, improving exponentially on the number of passes of Lotker et al. [28].
Very recently, Assadi et al. [4] provided a semi-streaming algorithm in optimal O(n) space
and O (log n log(1/ε)/ε) passes. They also provide a MWM algorithm that also runs in O(n)
space but requires Ω̃(n/ε) passes. Please refer to these papers and references therein for older
results in this area. Ahn and Guha [2] also considered the general weighted non-bipartite
maximum matching problem in the semi-streaming model and utilize linear programming
approaches for computing a (2/3− ε)-approximation and (1− ε)-approximation that uses
O(log(1/ε)/ε2) passes, O

(
n ·
(

log(1/ε)
ε2 + log n/ε

ε

))
space, and O

(
log n

ε4

)
passes, O

(
n log n

ε4

)
space, respectively.

Bipartite Matching. Ahn and Guha [2] also extended their results to the bipartite MWM
and b-Matching settings with small changes. Specifically, in the MWM setting, they give
a O(log(1/ε)/ε2) pass, O(n · ((log(1/ε))/ε2 + (log n/ε)/ε)) space algorithm. For maximum

cardinality b-matching, they give a O(log n/ε3) pass and Õ

(∑
i∈L∪R

bi

ε3

)
space algorithm.

For exact bipartite MWM in the semi-streaming model, Liu et al. [26] gave the first streaming
algorithm to break the n-pass barrier in the exact setting; it uses Õ(n) space and Õ(

√
m)

passes using interior point methods, SDD system solvers, and various other techniques to
output the optimal matching with high probability. Work on bipartite MWM prior to [26]
either required Ω(n log n) passes[22] or only found approximate solutions [1, 2, 23].

Lower Bounds. Several papers have looked at matching problems from the lower bound
side. Konrad et al. [24] considered the communication complexity of graph problems in
a blackboard model of computation (for which the simultaneous message passing model
of Dobzinski et al. [11] is a special variant). Specifically, they show that any non-trivial
graph problem on n vertices require Ω(n) bits [24] in communication complexity. In a
similar model called the demand query model, Nisan [32] showed that any deterministic
algorithm that runs in no(1) rounds where in each round at most n1.99 demand queries are
made, cannot find a MCM within a no(1) factor of the optimum. This is in contrast to
randomized algorithms which can make such an approximation using only O(log n) rounds.
For streaming matching algorithms, Assadi [3] provided a conditional lower bound ruling out
the possibilities of small constant factor approximations for two-pass streaming algorithms
that solve the MCM problem. Such a lower bound also necessarily extends to MWM and
MCbM. Goel et al. [17] provided a n1+Ω(1/ log log n) lower bound for the one-round message
complexity of bipartite (2/3 + ε)-approximate MCM (this also naturally extends to a space

APPROX/RANDOM 2023
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lower bound). For older papers on these lower bounds, please refer to references cited within
each of the aforementioned cited papers. Finally, Assadi et al. [5] showed that any streaming
algorithm that approximates MCM requires either nΩ(1) space or Ω(log(1/ε)) passes.

Unweighted to Weighted Matching Transformations. Current transformations for trans-
forming unweighted to weighted matchings all either:

lose a factor of 2 in the approximation factor [18, 33], or
increase the running time of the algorithm by an exponential factor in terms of 1/ε,
specifically, a factor of ε−O(1/ε) [7].

Thus, we cannot use such default transformations from unweighted matchings to weighted
matchings in our setting since all of the complexity measures in this paper have only
polynomial dependence on ε and all guarantee (1− ε)-approximate matchings. However, we
do make use of weighted to weighted matching transformations provided our original weighted
matching algorithms have only polylogarithmic dependence on the maximum ratio between
edge weights in the graph. Such transformations from weighted to weighted matchings do
not increase the approximation factor and also allows us to eliminate the polylogarithmic
dependence on the maximum ratio of edge weights.

2 Preliminaries

This paper presents algorithms for bipartite matching under various settings. The input
consists of a bipartite graph G = (L ∪ R, E). We denote the set of neighbors of any
i ∈ L, j ∈ R by N(i), N(j), respectively. We present (1− ε)-approximation algorithms where
ε ∈ (0, 1) is our approximation parameter. All notations used in all of our algorithms in this
paper are given in Table 2. The specified weight of an edge (i, j) will become the valuation
of the bidder i for item j. Due to space constraints, we defer most of our proofs to the full
version of our paper.

2.1 Scalable Model Definitions

In addition, we consider a number of scalable models in our paper including the blackboard
distributed model, the semi-streaming model, the massively parallel computation
(MPC) model, and the parallel shared-memory work-depth model.

Blackboard distributed model. We use the blackboard distributed model as defined in [11].
There are n players, one for each vertex of the left side of our bipartite graph (we assume
wlog that the left side of the graph contains more vertices). The players engage in a fixed
communication protocol using messages sent to a central coordinator. In other words,
players write on a common “blackboard.” Each players can receive a (not necessarily
identical) message in each round from the coordinator. Players communicate using rounds of
communication where in each round the player sends a message (of some number of bits) to
the central coordinator. In every round, players choose to send messages depending solely on
the contents of the blackboard and their private information. Termination of the algorithm
and the final matching are determined by the central coordinator and the contents of the
blackboard. The measure of complexity is the number of rounds of the algorithm and the
message size sent by each player in each round. One can also measure the total number of
bits send by all messages by multiplying the two.
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Table 2 Table of Notations.

Symbol Meaning

ε approximation parameter
L, R bidders, items, resp. WLOG |L| ≤ |R|

i, j, i′, j′ i ∈ L, j ∈ R, i′ ∈ L′, j′ ∈ R′, i′ (resp. j′) indicates copy of i (resp. j)
pj current price of item j

Di demand set of bidder i

(i, ai) bidder i ∈ L and currently matched item ai

oi the item matched to bidder i in OPT
ui the utility of bidder i which is calculated by 1 − pai

vi(j) the valuation of bidder i for item j, i.e. the weight of edge (i, j)
Ci, Cj copies of bidder i ∈ L, copies of item j ∈ R, resp.
L′, R′ L′ =

⋃
i∈L

Ci, R′ =
⋃

j∈R
Cj

E′, G′ E′ = {(i(k), j(l)) | (i, j) ∈ E, k ∈ [bi], l ∈ [bj ]}, G′ = (L′ ∪ R′, E′)
ci′ price cutoff for bidder i′

N ratio of the maximum weighted edge over the minimum weighted edge
vi the valuation function for bidder i

Gd induced subgraph consisting of (∪i∈LDi) ∪ L

M̂d a non-duplicate maximal matching in G′
d

M ′
d, Md produced matching in G′, corresponding matching in G, resp.

Mmax matching with largest cardinality produced

Semi-streaming model. In this paper, we use the semi-streaming model with arbitrary
ordered edge insertions. Edges are arbitrarily (potentially adversarially) ordered in the stream.
For this paper, we only consider insertion-only streams. The space usage for semi-streaming
algorithms is bounded by Õ(n). The relevant complexity measures in this model are the
number of passes of the algorithm and the space used.

Massively parallel computation (MPC) model. The massively parallel computation (MPC)
model is a distributed model where different machines communicate with each other via a
communication network. There are M machines, each with S space, and these machines
communicate with each using Q rounds of communication. The initial graph is given in terms
of edges and edges are partitioned arbitrarily across the machines. The relevant complexity
measures are the total space usage (M · S), space per machine S, and number of rounds of
communication Q.

Parallel shared-memory work-depth model. The parallal shared-memory work-depth model
is a parallel model where different processors can process instructures in parallel and read and
write from the same shared-memory. The relevant complexity measures for an algorithm in
this model are the work which is the total amount of computation performed by the algorithm
and the depth which is the longest chain of sequential dependencies in the algorithm.

3 An Auction Algorithm for (1 − ε)-Approximate Maximum Weighted
Bipartite Matching

We present the following auction algorithm for maximum (weighted) bipartite matching
(MWM) that is a generalization of the simple and elegant algorithm of Assadi et al. [6] to
the weighted setting. Our generalization requires several novel proof techniques and recovers

APPROX/RANDOM 2023
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the round guarantee of Assadi et al. [6] in the maximum cardinality matching setting when
the weights of all edges are 1. Furthermore, we answer an open question posed by Dobzinski
et al. [11] for developing a (1− ε)-approximation auction algorithm for maximum weighted
bipartite matching for which no prior algorithms are known. Throughout this section, we
denote the maximum ratio between two edge weights in the graph by R. Our algorithm can
also be easily extended into algorithms in various scalable models:

a semi-streaming algorithm which uses O (n · log n · log(1/ε)) space (the number of vertices
in the bipartite graph) and which requires O(log(1/ε)/ε7) rounds,
a shared-memory parallel algorithm using O

(
n log n

ε9

)
work and O

( 1
ε8

)
depth, and

an MPC algorithm using O(log(1/ε)/ε7) rounds, O(n) space per machine, and O
(

n log n
ε

)
total space.

In contrast, the best-known semi-streaming MWM algorithm of Ahn and Guha [1] requires
Õ(log(1/ε)/ε2) passes and Õ

(
n log n

ε2

)
space. Our paper shows a Õ(1/ε5) round algorithm

that instead uses O(n log(1/ε)) space. Since ε = Ω(1/n) (or otherwise we obtain an exact
maximum weight matching), our algorithm works in the semi-streaming model for all possible
values of ε whereas Ahn and Guha [1] no longer works in semi-streaming when ε is small
enough.

Our algorithm follows the general framework given in [6]. However, both our algorithm
and our analysis require additional techniques. The main hurdle we must overcome is the
fact that the weights may be much larger than the number of bidders and items. In that
case, if we use the MCM algorithm trivially in this setting, the number of rounds can be
very large, proportional to wmax

ε2 where wmax is the maximum weight of the edge. We avoid
this problem in our algorithm, instead obtaining only poly log n and ε dependence in the
number of rounds. Our main result in this section is the following (recall from Section 1).

▶ Theorem 1 (Maximum Weight Bipartite Matching). There exists an auction algorithm
for maximum weight bipartite matching (MWM) that gives a (1− ε)-approximation for any
ε > 0 and runs in O

(
log n·log(1/ε)

ε8

)
rounds of communication (with high probability) and with

O
(
log2 n

)
bits per message. This algorithm can be implemented in the multi-round, semi-

streaming model using O (n · log n · log(1/ε)) space and O
(

log(1/ε)
ε7

)
passes. This algorithm

can be implemented in the work-depth model in O
(

m·log(1/ε)
ε6

)
work and O

(
log n·log(1/ε)

ε8

)
depth. Finally, our algorithm can be implemented in the MPC model using O(log(1/ε)/ε7)
rounds, O(n) space per machine, and O

(
m log(1/ε) log n

ε

)
total space.

Before we give our algorithm, we give some notation used in this section.

Notation. The input bipartite graphs is represented by G = (L ∪R, E) where L is the set
of bidders and R is the set of items. Let N(v) denote the neighbors of node v ∈ L ∪R. We
use the notation i ∈ L to denote bidders and j ∈ R to denote items. For a bidder i ∈ L,
the valuation of i for items in R is defined as the function vi : R→ Z≥0 where the function
outputs a non-negative integer. If vi(j) > 0, for any j ∈ R, then j ∈ N(i). Each bidder can
match to at most one item. We denote the bidder item pair by (i, ai) where ai is the matched
item and ai = ⊥ if i is not matched to any item. For any agent i where ai ̸= ⊥, the utility
of a bidder i given its matched item ai is ui ≜ vi(ai)− pai

where pai
is the current price of

item ai. For an agent i where ai = ⊥, the utility of agent i is 0. We denote an optimum
matching by OPT. We use the notation i ∈ OPT to denote a bidder who is matched in
OPT and oi to denote the item matched to bidder i in OPT.
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Input Specifications. In this section, we assume all weights are poly(n) where n = |L|+ |R|.
We additionally assume the following characteristics about our inputs because we can perform
a simple pre-processing of our graph to satisfy these specifications. Provided an input graph
G = (L ∪ R, E) with weights vi(j) for every edge (i, j) ∈ E, we find the maximum weight
among all the weights of the edges, wmax = max(i,j)∈E (vi(j)). We rescale the weights of
all the edges by 1

wmax
and remove all edges with rescaled weight < ε⌈logε m⌉+1. This upper

bound of ε⌈logε m⌉+1 is crucial in our analysis.
In other words, we create a new graph G′ = (L∪R, E′) with the same set of bidders L and

items R. We associate the new weight functions v′
i with each bidder i ∈ L where (i, j) ∈ E′ if

vi(j) ≥ wmax · ε⌈logε m⌉+1 and v′
i(j) = vi(j)/wmax for each (i, j) ∈ E′. Provided that finding

the maximum weight edge can be done in O(1) rounds in the blackboard distributed and
MPC models, O(1) passes in the streaming model, and O(n + m) work and O(1) depth in the
parallel model, we assume the input to our algorithms is G′ (instead of the original graph G).
In other words, we assume all inputs G = (V, E) to our algorithm have scaled edge weights
and vi(j) for i ∈ L, j ∈ R are functions that return the scaled edge weights in the rest of this
section.

3.1 Detailed Algorithm
We now present our auction algorithm for maximum weighted bipartite matching in Al-
gorithm 1. The algorithm works as follows. Recall that we also assume the input to our
algorithm is the scaled graph. This means that the maximum weight of the scaled edges is
1 and there exists at least one edge with weight 1; hence, the maximum weight matching
will have value at least 1. We also initialize the tuples that keep track of matched items.
Initially, no items are assigned to bidders (Algorithm 1) and the prices of all items are set to
0 (Algorithm 1).

We perform ⌈ log2(N)
ε4 ⌉ phases of bidding (Algorithm 1). In each phase, we form the demand

set Di of each unmatched bidder i. The demand set is defined to be the set of items with non-
zero utility which have approximately the maximum utility value for bidder i (Algorithm 1).
This procedure is different from both MCM and MCbM (where no slack is needed in creating
the demand set) but we see in the analysis that we require this slack in the maximum utility
value to ensure that enough progress is made in each round. Then, we create the induced
subgraph consisting of all unmatched bidders and their demand sets (Algorithm 1). We find
an arbitrary maximal matching in this created subgraph (Algorithm 1) by first finding the
maximal matching in order of decreasing buckets (from highest – bucket with the largest
weights – to lowest). This means that we call our maximal matching algorithm O(log(N))
times first on the induced subgraph consisting of the highest bucket, removing the matches,
and then on the induced subgraph of the remaining edges plus the next highest bucket, and
so on. We use the folklore distributed maximal matching algorithm where in each round, a
bidder uniformly-at-random picks a neighbor to match; this algorithm is also used in [11] for
the maximal matching step. This simple algorithm terminates in O(log n) rounds with high
probability using O(log n) communication complexity. Such randomization is necessary to
obtain O(log n) rounds using O(log n) communication complexity.

We rematch items according to the new matching (Algorithm 1). We then increase the
price of each rematched item. The price increase depends on the weight of the matched edge
to the item; higher weight matched edges have larger increases in price than smaller weight
edges. Specifically, the price is increased by ε · vi(ai) where vi(ai) is the weight of the newly
matched edge between i and ai (Algorithm 1). The intuition behind this price increase is
that we want to increase the price proportional to the weight gained from the matching since

APPROX/RANDOM 2023
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Algorithm 1 Auction Algorithm for Maximum Weighted Bipartite Matching.
Input: A scaled graph G = (L∪R, E), parameter 0 < ε < 1, and the scaling factor wmax.
Output: An (1− 6ε)-approximate maximum weight bipartite matching.

1: For each bidder i ∈ L, set (i, ai) to ai = ⊥.
2: For each item j ∈ R, set pj = 0.
3: for d = 1, . . . , ⌈ log2(N)

ε4 ⌉ do
4: for each unmatched bidder i ∈ L do
5: Let Ui ≜ maxj∈N(i),vi(j)−pj>0 (vi(j)− pj).
6: Let Di ≜ {j ∈ R | pj < vi(j), vi(j)− pj ≥ Ui − ε · vi(j)}.
7: Create the subgraph Gd as the subgraph consisting of

(⋃
i∈L Di

)
∪ L and all edges.

8: Find any arbitrary maximal matching Md of Gd in order of highest bucket to lowest.
9: for (i, j) ∈Md do

10: match j to i by setting ai = j and ai′ = ⊥ for the previous owner i′ of j.
11: Increase the price of j to pj ← pj + ε · vi(j).
12: Let M ′ be the matched edges in this current iteration.
13: Return the matching M = arg maxM ′

(
wmax ·

∑
i∈L vi(ai)

)
as the approximate maximum

weight matching and (i, ai) ∈M as the matched edges.

the price increase takes away from the overall utility of our matching. If not much weight
is gained from the matching, then the price should not increase by much; otherwise, if a
large amount of weight is gained from the matching, then we can afford to increase the price
by a larger amount. We see later on in our analysis that this allows us to bucket the items
according to their matched edge weight into ⌈log(1/ε) m⌉ buckets. Such bucketing is useful in
ensuring that we have sufficiently many happy bidders with a sufficiently large total matched
weight. Finally, we return all matched items and bidders as our approximate matching and
the sum of the weights of the matched items as the approximate weight. Obtaining the
maximum weight of the matching in the original, unscaled graph is easy. We multiply the
edge weights by wmax and the sum of these weights is the total weight of our approximate
matching (Algorithm 1).

3.2 Analysis
In this section, we prove the approximation factor and round complexity of our algorithm.
We use the same definition of happy that is defined in [6].

▶ Definition 3 (ε-Happy [6]). A bidder i is ε-happy if ui ≥ vi(j)− pj − ε for every j ∈ R.

▶ Definition 4 (Unhappy). A bidder i is unhappy at the end of round d if they are unmatched
and their demand set is non-empty.

Note that a happy bidder may never be unhappy and vice versa. For this definition, we
assume that the demand set of a bidder can be computed at any point in time (not only
when the Algorithm computers it).

Approach. The main challenge we face in our MWM analysis is that it is no longer sufficient
to just show at least (1 − ε)-fraction of bidders in OPT are happy in order to obtain the
desired approximation. Consider this simple example. Suppose a given instance has an
optimum solution OPT with six matched bidders where one bidder is matched to an item
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via a weight-1 edge. It also has five additional bidders matched to items via weight- 1√
n

edges.
Suppose we set ε = 1/6 to be a constant. Then, requiring 5/6-fraction of the bidders in OPT
to be happy is not sufficient to get a 5/6-factor approximation. Suppose the five bidders
matched with edges of weight 1√

n
are the happy bidders. This is sufficient to satisfy the

condition that 5/6-fraction of the bidders in OPT are happy. However, the total combined
weight of the matching in this case is 5√

n
while the weight of the optimum matching is(

1 + 5√
n

)
. The returned matching is then a 5√

n
-approximate MWM and for large n, this is

much less than the desired 5/6-factor approximation.
Instead, we require a specific fraction of the total weight of the optimum solution, WOPT,

to be matched in our returned matching. We ensure this new requirement by considering
two types of unhappy bidders. Type 1 unhappy bidders are bidders who are unhappy in
round k − 1 and remain unmatched in round k. Type 2 unhappy bidders are bidders who
are unhappy in round k − 1 and become matched in round k. We show that there exists a
round where the following two conditions are satisfied:

1. We bucket the bidders in OPT according to the weight of their matched edge in OPT
such that bidders matched with similar weight edges are in the same bucket; there exists
a round where at most (ε2)-fraction of the bidders in each bucket are Type 1 unhappy.

2. We charge the weight a Type 2 unhappy bidder obtains in round k to the bidder in round
k − 1; there exists a round k − 1 where a total of at most ε ·WOPT weight is charged to
Type 2 unhappy bidders.

Simultaneously satisfying both of the above conditions is enough to obtain our desired
approximation. The rest of this section is devoted to showing our precise analysis using the
above approach.

Detailed Analysis. Recall that we defined the utility of agent i to be the value of the item
matched to her minus its price ui = vi(ai) − pai . In this section, we use the definition of
ε-happy from Definition 3.

A similar observation to the observation made in [6] about the happiness of matched
bidders can also be made in our case; however, since we are dealing with edge weights, we
need to be careful to increment our prices in terms of the newly matched edge weight. In
other words, two different bidders could be ε1-happy and ε2-happy after incrementing the
price of their respective items by ε1 and ε2 where ε1 ̸= ε2; the incremented prices ε1 and
ε2 depend on the matched edge weights of the items assigned to the bidders. We prove the
correct happiness guarantees given by our algorithm below.

▶ Observation 5. At the end of every round, matched bidder i with matched edge (i, ai)
where ai is priced at pai

are (2ε · vi(ai))-happy. At the end of every round, unmatched bidders
with empty demand sets Di are ε-happy.

For the weighted case, we need to consider what we call weight buckets. We define these
weight buckets with respect to the optimum matching OPT. Recall our notation where
i ∈ OPT is a bidder who is matched in OPT and oi is the matched item of the bidder in
OPT. Bidder i is in the b-th weight bucket if εb−1 ≤ vi(oi) < εb−2.

▶ Observation 6. All bidders i ∈ OPT in bucket b satisfy εb−1 ≤ vi(oi) < εb−2.

We now show that if a certain number of bidders in OPT are happy in our matching,
then we obtain a matching with sufficiently large enough weight. However, our guarantee
is somewhat more intricate than the guarantee provided in [6]. We show that in ⌈ log2(N)

ε4 ⌉

APPROX/RANDOM 2023
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rounds, there exists one round d where a set of sufficient conditions are satisfied to obtain our
approximation guarantee. To do this, we introduce two types of unhappy bidders. Specifically,
Type 1 and Type 2 unhappy bidders.

Each unhappy bidder results in some loss of total matched weight. However, at the end
of round k− 1 it is difficult to determine the exact amount of weight lost to unhappy bidders.
Thus, in our analysis, we determine the amount of weight lost to unhappy bidders at the
end of round k − 1 in round k. The way that we determine the weight lost in round k − 1
is by retroactively categorizing an unhappy bidder in round k − 1 as a Type 1 or Type 2
unhappy bidder depending on what happens in round k. Thus, for our analysis, we categorize
the bidders into categories of unhappy bidders for the previous round.

A Type 1 unhappy bidder in round k − 1 is a bidder i that remains unmatched at the
end of round k. In other words, a Type 1 unhappy bidder was unhappy in round k − 1 and
either remains unhappy in round k or becomes happy because it does not have any demand
items anymore (and remains unmatched). A Type 2 unhappy bidder i in round k − 1 is a
bidder who was unhappy in round k− 1 but is matched to an item in round k. Thus, a Type
2 unhappy bidder i in round k− 1 becomes happy in round k because a new item is matched
to i. Both types of bidders are crucial to our analysis given in the proof of Lemma 7 since
they contribute differently to the potential amount of value that could be matched by our
algorithm.

In the following lemma, let OPT be the optimum matching in graph G and WOPT =∑
i∈OPT vi(oi). Let Bb be the set of bidders i ∈ OPT in weight bucket b. If a Type 2

unhappy bidder i gets matched to ai in round k, we say the weight vi(ai) is charged to
bidder i in round k−1. We denote this charged weight as ci(ai) when performing calculations
for round k − 1.

▶ Lemma 7. Provided G = (L ∪ R, E) and an optimum weighted matching OPT with
weight WOPT =

∑
i∈OPT vi(oi), if in some round d of Algorithm 1 of Algorithm 1 both of the

following are satisfied,

1. at most ε2 · |Bb| of the bidders in each bucket b are Type 1 unhappy and

2. at most ε ·WOPT weight is charged to Type 2 unhappy bidders,
then the matching in G has weight at least (1− 6ε) ·WOPT.

Proof. In such an iteration r, let Happy denote the set of all happy bidders. For any bidder
i ∈ Happy ∩OPT, by Definition 3 and Observation 5, ui ≥ vi(oi)− poi

− 2ε · vi(ai) where
oi is the item matched to i in OPT and ai is the item matched to i from our matching.

Before we go to the core of our analysis, we first make the observation that we can, in
general, disregard prices of the items in our analysis. Let M be our matching. The sum of
the utility of every matched bidder in our matching can be upper and lower bounded by the
following expression:

∑
i∈M

(vi(ai)− pai) ≥
∑

i∈OPT∩Happy
ui ≥

∑
i∈OPT∩Happy

(vi(oi)− poi − 2ε · vi(ai)) .

As in the maximum cardinality matching case, all items with non-zero price are matched
to a bidder. We can then simplify the above expression to give
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∑
i∈M

vi(ai) −
∑
j∈R

pj ≥
∑

i∈OPT∩Happy

vi(oi) −
∑

i∈OPT∩Happy

poi −
∑

i∈OPT∩Happy

2ε · vi(ai) (1)

∑
i∈M\(OPT∩Happy)

vi(ai) +
∑

i∈OPT∩Happy

(1 + 2ε)vi(ai) −
∑

j ̸∈{oi|i∈OPT∩Happy}

pj ≥
∑

i∈OPT∩Happy

vi(oi)

(2)∑
i∈M

(1 + 2ε)vi(ai) −
∑

j ̸∈{oi|i∈OPT∩Happy}

pj ≥
∑

i∈OPT∩Happy

vi(oi). (3)

Equation (1) follows from the fact that all non-zero priced items are matched. Equation (2)
follows from separating OPT ∩Happy from the left hand side and moving the summation
of the 2ε · vi(ai) values over OPT ∩Happy from the right hand side to the left hand side.
Finally, Equation (3) follows because

∑
i∈M (1 + 2ε)vi(ai) upper bounds the left hand side

expression for
∑

i∈M\(OPT∩Happy) vi(ai) +
∑

i∈OPT∩Happy(1 + 2ε)vi(ai).
Let Unhappy1 denote the set of Type 1 unhappy bidders and Unhappy2 denote the set

of Type 2 unhappy bidders. We let ci(ai) be the weight charged to bidder i in Unhappy2 in
the next round. Recall that each bidder in Unhappy2 is matched in the next round.

For each bucket, b, we can show the following using our assumption that at most ε2 · |Bb|
of the bidders in bucket b are Type 1 unhappy,

∑
i∈Bb∩Happy

vi(oi) ≥
∑

i∈Bb\Unhappy2

vi(oi)− ε2 · εb−2 · |Bb| (4)

≥
∑

i∈Bb\Unhappy2

vi(oi)− ε · εb−1 · |Bb| (5)

≥
∑

i∈Bb\Unhappy2

vi(oi)−
∑
i∈Bb

ε · vi(oi). (6)

Equation (4) shows that one can lower bound the sum of the optimum values of all happy
bidders in bucket b by the sum of the optimum values of all bidders who are not Type-2
unhappy minus some factor. First,

∑
i∈Bb\UNHAP P Y2

vi(oi) is the sum of the optimum values
of all bidders in bucket b except for the Type-2 unhappy bidders. Now, we need to subtract
the maximum sum of values given to the Type-1 unhappy bidders. We know that bucket b

has at most ε2 · |Bb| Type-1 unhappy bidders. Each of these bidders could be assigned an
optimum item with value at most εb−2 (by Observation 6). Thus, the maximum value lost to
Type-1 unhappy bidders is ε2 · εb−2 · |Bb|, leading to Equation (4). Thus, the maximum value
of weight lost to all Type 1 unhappy bidders in bucket b is ε2 · εb−2 · |Bb|. Then, Equation (6)
follows because vi(oi) ≥ εb−1 for all i ∈ Bb. This means that

∑
i∈Bb

vi(oi) ≥ εb−1 · |Bb|.
Summing Equation (6) over all buckets b we obtain

∑
i∈OPT∩Happy

vi(oi) ≥
∑

i∈OPT\Unhappy2

vi(oi)−
∑

i∈OPT
ε · vi(oi). (7)

We now substitute our expression obtained in Equation (7) into Equation (3),

∑
i∈M

(1 + 2ε)vi(ai)−
∑

j ̸∈{oi|i∈OPT∩Happy}

pj ≥
∑

i∈OPT\Unhappy2

vi(oi)−
∑

i∈OPT
ε · vi(oi). (8)
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The last thing that we need to show is a bound on the weight lost due to bidders in
OPT ∩ Unhappy2. We now consider our second assumption which states that at most
ε ·WOPT weight is charged to Type 2 unhappy bidders. Since all bidders i ∈ Unhappy2
become happy in the next round, we can bound the weights charged to the Type 2 unhappy
bidders using Observation 5 by∑

i∈OPT∩Unhappy2

ci(ai) ≥
∑

i∈OPT∩Unhappy2

(vi(oi)− poi − 2ε · ci(ai)) . (9)

Note first that
∑

j ̸∈{oi|i∈OPT∩Happy} pj ≥
∑

i∈OPT∩Unhappy2
poi

since OPT \
(OPT ∩Happy) includes OPT∩Unhappy2 so we can remove the prices from these bounds
in Equation (10). We add Equation (9) to Equation (8) and use our assumptions to obtain

∑
i∈M

(1 + 2ε)vi(ai) +
∑

i∈OPT∩Unhappy2

ci(ai) ≥
∑

i∈OPT

(1 − ε) · vi(oi) −
∑

i∈OPT∩Unhappy2

2ε · ci(ai) (10)

∑
i∈M

(1 + 2ε)vi(ai) ≥
∑

i∈OPT

(1 − ε) · vi(oi) −
∑

i∈OPT∩Unhappy2

(1 + 2ε) · ci(ai) (11)

≥

( ∑
i∈OPT

(1 − ε) · vi(oi)

)
− (1 + 2ε) · ε · WOPT (12)

∑
i∈M

vi(ai) ≥ (1 − 4ε)
(1 + 2ε) ·

∑
i∈OPT

vi(oi) (13)∑
i∈M

vi(ai) ≥ (1 − 6ε)WOPT. (14)

Equation (10) follows from summing
∑

i∈OPT(1− ε) · vi(oi) =
∑

i∈OPT\Unhappy2
vi(oi) +∑

i∈OPT∩Unhappy2
vi(oi)−

∑
i∈OPT ε · vi(oi) =

∑
i∈OPT(1− ε) · vi(oi). Equation (11) follows

from moving
∑

i∈OPT∩Unhappy2
ci(ai) to the right hand side. Equation (12) follows from

substituting our assumption that
∑

i∈OPT∩Unhappy2
ci(ai) ≤ ε ·WOPT. Equation (13) follows

from simple manipulations and since WOPT =
∑

i∈OPT vi(oi). Finally, Equation (14) follows
because (1−4ε)

(1+2ε) ≥ (1 − 6ε) for all ε > 0 and gives the desired approximation given in the
lemma statement. ◀

We show that the conditions of Lemma 7 are satisfied for at least one round if the
algorithm is run for at least ⌈ log2(N)

ε4 ⌉ rounds. We prove this using potential functions similar
to the potential functions used for MCM. We first bound the maximum value of these
potential functions.

▶ Lemma 8. Define the potential function Φitems ≜
∑

j∈R pj. Then the upper bound for
this potential is Φitems ≤WOPT.

Proof. We show that the potential function Φitems is always upper bounded by WOPT via
a simple proof by contradiction. Suppose that Φitems > WOPT, then, we show that the
matching obtained by our algorithm has weight greater than WOPT, a contradiction. For a
bidder/item pair, (i, ai), the weight of edge (i, ai) is at least pai

− 2ε · vi(ai). Let p′
ai

be the
price of ai before the last reassignment of ai to i. Furthermore, since i picked ai, it must mean
that vi(ai) > p′

ai
since ai would not be included in Di otherwise. This means that the sum of

the weights of all the matched edges is at least
∑

(i,ai) vi(ai) >
∑

(i,ai) p′
ai
≥ Φitems > WOPT

by our assumption that Φitems > WOPT. Thus, we obtain that we get a matching with
greater weight than the optimum weight matching, a contradiction. ◀
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▶ Lemma 9. There exists a phase d ≤ log2(N)
ε4 wherein both of the following statements are

satisfied:
1. At most ε2 · |Bb| bidders in bucket b are Type 1 unhappy for all buckets b;
2. The set of all Type 2 unhappy bidders results in a loss of less than ε ·WOPT weight (in

charged weight) where WOPT is the optimum weight attainable by the matching.

Recall that we assign each bidder to a weight bucket using the weight assigned to the
bidder in OPT.

Using the above lemmas, we can prove our main theorem that our algorithm gives a
(1− 7ε)-approximate maximum weight bipartite matching in O

(
log3(N)·log(n)

ε4

)
distributed

rounds using O(log n) communication complexity.

▶ Theorem 10. Algorithm 1 returns a (1 − 7ε)-approximate maximum weight bipartite
matching M in O

(
log3(N)·log n

ε4

)
rounds whp using O(log n) bits of communication per message

in the broadcast model.

Reducing the Round Complexity. We can use the following transformation from Gupta-
Peng [18] to reduce the round complexity at an increase in the communication complexity.
For completeness, we give the theorem for the transformation the full version of our paper.

▶ Theorem 11. There exists a (1−ε)-approximate distributed algorithm for maximum weight
bipartite matching that runs in either:

O
(

log n · log(1/ε)
ε7

)
rounds of communication using O

(
log2 n

ε

)
bits of communication, or

O
(

log n · log(1/ε)
ε8

)
rounds of communication using O

(
log2 n

)
bits of communication

where we assume the maximum ratio between weights of edges in the input graph is poly(n).
In the blackboard model, this requires a total of O

(
n log3 n log(1/ε)

ε8

)
bits of communication.

3.3 Semi-Streaming Implementation
The implementation of this algorithm in the semi-streaming model is very similar to the
implementation of the MCM algorithm of Assadi et al. [6].

▶ Lemma 12. Given a weighted graph G = (V, E) as input in an arbitrary edge-insertion
stream where all weights are at most poly(n), there exists a semi-streaming algorithm which
uses O

(
log2(N)

ε4

)
passes and O (n · log n · log(1/ε)) space that computes a (1−ε)-approximate

maximum weight bipartite matching for any ε > 0.

Reducing the Number of Passes. We use the transformation of [18] as stated the full
version of our paper to eliminate our dependence on n within our number of rounds. The
transformation is as follows. For each instance of (1 + ε)-MWM, we maintain the prices in
our algorithm for each of the nodes involved in each of the copies of our algorithm. When an
edge arrives in the stream, we first partition it into the relevant level of the appropriate copy
of the structure.

▶ Theorem 13. There exists a (1− ε)-approximate streaming algorithm for maximum weight
bipartite matching that uses O

(
log(1/ε)

ε7

)
passes in O (n · log n · log(1/ε)) space.
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3.4 Shared-Memory Parallel Implementation
The implementation of this algorithm in the shared-memory work-depth model follows
almost directly from our auction algorithm. We show the following lemma when directly
implementing our auction algorithm.

▶ Lemma 14. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a shared-memory parallel algorithm which uses O

(
m log2 n

ε4

)
work and

O
(

log4 n
ε4

)
depth that computes a (1− ε)-approximate maximum weight bipartite matching

for any ε > 0.

Using the transformations, we can reduce the number of rounds for our shared-memory
parallel algorithms.

▶ Theorem 15. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a shared-memory parallel algorithm which uses O

(
m log(1/ε)

ε6

)
work

and O
(

log(n)·log(1/ε)
ε8

)
depth that computes a (1− ε)-approximate maximum weight bipartite

matching for any ε > 0.

3.5 MPC Implementation
We implement our auction algorithm in the MPC model below.

▶ Lemma 16. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a MPC algorithm using O

(
log2(N)·log log n

ε4

)
rounds, O(n) space per

machine, and O (n log(1/ε) + m) total space that computes a (1− ε)-approximate maximum
weight bipartite matching for any ε > 0.

As before, we can improve the complexity of our MPC algorithm using the transformations
the full version of our paper.

▶ Theorem 17. Given a weighted graph G = (V, E) as input where all weights are at most
poly(n), there exists a MPC algorithm using O

(
log(1/ε)·log log n

ε7

)
rounds, O(n) space per

machine, and O
(

m log(1/ε) log n
ε

)
total space that computes a (1− ε)-approximate maximum

weight bipartite matching for any ε > 0.

4 A (1 − ε)-approximation Auction Algorithm for b-Matching

We show in this section that we also obtain an auction-based algorithm for MCbM by
extending the auction-based algorithm of [6]. This algorithm also leads to better streaming
algorithms for this problem. We use the techniques introduced in the auction-based MCM
algorithm of Assadi, Liu, and Tarjan [6] as well as new techniques developed in this section
to obtain a (1− ε)-approximation algorithm for bipartite maximum cardinality b-matching.
The maximum cardinality b-matching problem is defined in Definition 18.

▶ Definition 18 (Maximum Cardinality Bipartite b-Matching (MCbM)). Given an undirected,
unweighted, bipartite graph G = (L ∪ R, E) and a set of values {bv ≤ |R| | v ∈ L ∪ R}, a
maximum cardinality b-matching (MCbM) finds a matching of maximum cardinality
between vertices in L and R where each vertex v ∈ L ∪ R is matched to at most bv other
vertices.
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The key difference between our algorithm for b-matching and the MCM algorithm of [6]
is that we have to account for when more than one item is assigned to each bidder in L; in
fact, up to bi items in R can be assigned to any bidder i ∈ L. This one to many relationship
calls for a different algorithm and analysis. The crux of our algorithm in this section is to
create bi copies of each bidder i and bj copies of each item j. Then, copies of items maintain
their own prices and copies of bidders can each choose at most one item. We define some
notation to describe these copies. Let Ci be the set of copies of bidder i and Cj be the set of
copies of item j. Then, we denote each copy of i by i(k) ∈ Ci for k ∈ [bi] and each copy of j

by j(k) ∈ Cj for k ∈ [bj ]. As before, we denote a bidder and their currently matched item by(
i(k), ai(k)

)
.

In MCbM, we require that the set of all items chosen by different copies of the same
bidder to include at most one copy of each item. In other words, we require if j(k) ∈

⋃
i′∈Ci

ai′ ,
then no other j(l) ∈

⋃
i′∈Ci

ai′ for any j(k), j(l) ∈ Cj and k ≠ l. This almost reduces to the
problem of finding a maximum cardinality matching in a

∑
i∈L bi +

∑
j∈R bj sized bipartite

graph but not quite. Specifically, the main challenge we must handle is when multiple copies
of the same bidder want to be matched to copies of the same item. In this case, we cannot
match any of these bidder copies to copies of the same item and thus must somehow handle
the case when there exist items of lower price but we cannot match them.

In addition to handling the above hard case, as before, the crux of our proof relies on a
variant of the ε-happy definition and the definitions of appropriate potential functions.

Recall from the MCM algorithm of [6] that an ε-happy bidder has utility that is at least
the utility gained from matching to any other item (up to an additive ε). Such a definition
is insufficient in our setting since it may be the case that matching to a copy of an item that
is already matched to a different copy of the same bidder results in lower cost. However,
such a match is not helpful since any number of matches between copies of the same bidder
and copies of the same item contributes a value of one to the cardinality of the eventual
matching.

Our algorithm solves all of the above challenges and provides a (1 − ε)-approximate
MCbM in asymptotically the same number of rounds as the MCM algorithm of [6]. We
describe our auction based algorithm for MCbM next and the precise pseudocode is given
in Algorithm 2. Our algorithm uses the parameters defined in Table 2. We show the following
results using our algorithm. We discuss semi-streaming implementations of our algorithm
in Section 4.3. Let L be the half with fewer numbers of nodes.

▶ Theorem 2 (Maximum Cardinality Bipartite b-Matching). There exists an auction algorithm
for maximum cardinality bipartite b-matching (MCbM) that gives a (1− ε)-approximation
for any ε > 0 and runs in O

(
log n

ε2

)
rounds of communication. This algorithm can be

implemented in the multi-round, semi-streaming model using O
((∑

i∈L bi + |R|
)

log(1/ε)
)

space and O
( 1

ε2

)
passes. Our algorithm can be implemented in the shared-memory work-depth

model in O
(

log3 n
ε2

)
depth and O

(
m log n

ε2

)
total work.

4.1 Algorithm Description
The algorithm works as follows. We assign to each bidder, i, bi unmatched slots and the
goal is to fill all slots (or as many as possible). For each bidder i ∈ L and each item j ∈ R,
we create bi and bj copies, respectively, and assign these copies to new sets L′ and R′,
respectively (Algorithm 2). This step of the algorithm changes slightly in our streaming
implementation. For each bidder and item with an edge between them (i, j) ∈ E, we create
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Algorithm 2 Auction Algorithm for Bipartite b-Matching.
Input: Graph G = (L ∪R, E) and parameter 0 < ε < 1.
Output: An (1− ε)-approximate maximum cardinality bipartite b-matching.

1: Create L′, R′, E′ and graph G′. (Defined in Table 2.)
2: For each i′ ∈ L′, set (i′,⊥) where ai′ = ⊥, ci′ ← 0.
3: For each j′ ∈ R′, set pj′ = 0.
4: Set Mmax ← ∅.
5: for d = 1, . . . , ⌈ 2

ε2 ⌉ do
6: For each unmatched bidder i′ ∈ L′, find Di′ ← FindDemandSet(G′, i′, ci′) [Al-

gorithm 3].
7: Create G′

d.
8: Find any arbitrary non-duplicate maximal matching M̂d of Gd.
9: for (i′, j′) ∈ M̂d do

10: Set ai′ = j′ and aiprev
= ⊥ for the previous owner iprev of j′.

11: Increase pj′ ← pj′ + ε.
12: For each i′ ∈ L′ with Di′ ̸= ∅ and ai′ = ⊥, increase ci′ ← ci′ + ε.
13: Using M ′

d compute Md where for each (i′, j′) ∈M ′
d, add (i, j) to Md if (i, j) ̸∈Md.

14: If |Md| > |Mmax|, Mmax ←Md.
15: Return Mmax.

Algorithm 3 FindDemandSet(G′ = (L′ ∪ R′, E′), i′, ci′ ).

1: Let N ′(i′) = {j′ ∈ R′ | j(l) ̸= ai(k)∀i(k) ∈ Ci,∀j(l) ∈ Cj ∧ pj′ ≥ ci′∀j′ ∈ Cj}.
2: Di′ ← arg minj′∈N ′(i′),pj′ <1 (pj′).
3: Return Di′ .

a biclique between Ci and Cj ; the edges of all created bicliques is the set of edges E′. The
graph G′ = (L′ ∪R′, E′) is created as the graph consisting of nodes in L′ ∪R′ and edges in
E′. As before, we initialize each bidder’s assigned item to ⊥ (Algorithm 2). Then, we set
the price for each copy in R′ to 0 (Algorithm 2).

In our MCbM algorithm, we additionally set a price cutoff for each bidder ci′ initialized
to 0 (Algorithm 2). Such a cutoff helps us to prevent bidding on lower price items previously
not bid on because they were matched to another copy of the same bidder. More details
on how the cutoff prevents bidders from bidding against themselves can be found in the
proof of Lemma 25. We maintain the maximum cardinality matching we have seen in Mmax
(Algorithm 2). We perform ⌈ 2

ε2 ⌉ rounds of assigning items to bidders (Algorithm 2). For
each round, we first find the demand set for each unmatched bidder i′ ∈ L′ using Algorithm 3
(Algorithm 2). The demand set is defined with respect to the cutoff price ci′ and the set of
items assigned to other copies of bidder i. The demand set considers all items j′ ∈ R′ that
are neighbors of i′ where no copy of j, j(k) ∈ Cj , is assigned to any copies of i and pj′ ≥ ci′

(Algorithm 3, Algorithm 3). From this set of neighbors, the returned demand set is the set
of item copies with the minimum price in N ′(i′) (Algorithm 3).

Using the induced subgraph of
(⋃

i′∈L′ Di′
)
∪L′ (Algorithm 2), we greedily find a maximal

matching while avoiding assigning copies of the same item to copies of the same bidder
(Algorithm 2). We call such a maximal matching that does not assign more than one copy of
the same item to copies of the same bidder to be a non-duplicate maximal matching. This
greedy matching prioritizes the unmatched items by first matching the unmatched items
and then matching the matched items. We can perform a greedy matching by matching an
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edge if the item is unmatched and no copies of the bidder it will match to is matched to
another copy of the item. For each newly matched item (Algorithm 2), we rematch the item
to the newly matched bidder (Algorithm 2). We increase the price of the newly matched
item (Algorithm 2). For each remaining unmatched bidder, we increase the cutoff price by ε

(Algorithm 2).
We compute the corresponding matching in the original graph using M ′

d (Algorithm 2) by
including one edge (i, j) in the matching if and only if there exists at least one bidder copy
i′ ∈ Ci matched to at least one copy of the item j′ ∈ Cj . Finally, we return the maximum
cardinality Mmax matching from all iterations as our (1−ε)-approximate maximum cardinality
b-matching (Algorithm 2).

4.2 Analysis
In this section, we analyze the approximation error of our algorithm and prove that it provides
a (1− ε)-approximate maximum cardinality b-matching.

Approach. We first provide an intuitive explanation of the approach we take to perform
our analysis and then we give our precise analysis. Here, we describe both the challenges
in performing the analysis and explain our choice of certain methods in the algorithm to
facilitate our analysis. We especially highlight the parts of our algorithm and analysis that
differ from the original MCM algorithm of [6]. First, in order to show the approximation
factor of our algorithm, we require that the utility obtained by a large number of matched
bidders from our algorithm is greater than the corresponding utility from switching to the
optimum items in the optimum matching. For b-matching, any combination of matched
items and bidder copies satisfy this criteria. Furthermore, matching multiple item copies
of the same item to bidder copies of the same bidder does not increase the utility of the
bidder. Thus, we look at matchings where at most one copy of each bidder is matched to at
most one copy of each item. Recall our definition of ε-happy given in Definition 3 and we let
Happy be the set of bidders satisfying that definition.

For b-matching, each bidder i is matched to a set of at most bi items. Let (i, Oi) ∈ OPT
denote the set of items Oi ⊆ R matched to bidder i in OPT. Recall [6] that the proof
requires ui ≥ 1 − poi

− ε for every bidder i ∈ Happy ∩ OPT to show that
∑

i∈L ui ≥∑
i∈Happy∩OPT 1 − poi − ε. Using our bidder copies, Ci, the crux of our analysis proof is

to show that for every (i, Oi) ∈ OPT, we can assign the items in Oi to the set of happy
bidder copies in Ci such that each happy bidder copy receives a unique item, denoted by ri′ ,
and ci′ ≤ pmin,ri′ where pmin,ri′ is the price of the minimum priced copy of ri′ . Using this
assignment, we are able to show once again that

∑
i′∈L′ ui′ ≥

∑
i′∈Happy∩OPT 1− pmin,ri′ − ε.

This requires a precise definition of Happy ∩ OPT. Let Si ⊆ Ci be the set of all happy
bidders in Ci. Recall that the optimum solution gives a matching between a bidder i ∈ L

and potentially multiple items in R; we turn this matching into an optimum matching in G′.
If |Si| ≤ |Oi|, then all happy copies in Si are in OPT; otherwise, we pick an arbitrary set of
|Oi| happy bidder copies in Si to be in OPT. Then, the summation is determined based on
this set of happy bidder copies in Happy ∩OPT.

Once we have shown this, the only other remaining part of the proof is to show that in
the ⌈ 2

ε2 ⌉ rounds that we run the algorithm the potential increases by ε for every unhappy
bidder in OPT for each round that the bidder is unhappy. As in the case for MCM, the
price of an item increases whenever it becomes re-matched. Hence, Πitems increases by ε

each time a bidder who was happy becomes unhappy. To ensure that Πbidders increases by ε
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for each bidder who was unhappy and remains unhappy, we set a cutoff price that increases
by ε for each round where a bidder remains unhappy. Thus, this cutoff guarantees that
Πbidders increases by ε each time.

Detailed Analysis. Now we show our detailed analysis that formalizes our approach described
above. We first show that our algorithm maintains both Invariant 20 and Invariant 21. We
also show our algorithm obeys the following invariant.

▶ Invariant 19. The set of matched items of all copies of any bidder i ∈ L contains at most
one copy of each item. In other words,

∣∣⋃
i′∈Ci

ai′ ∩ Cj

∣∣ ≤ 1 for all j ∈ R.

We restate two invariants used in [6] below. We prove that our Algorithm 2 also maintains
these two invariants.

▶ Invariant 20 (Non-Zero Price Matched [6]). Any item j with positive price pj > 0 is
matched.

▶ Invariant 21 (Maximum Utility [6]). The total utility of all bidders is at most the cardinality
of the matching minus the total price of the items.

▶ Lemma 22. Algorithm 2 maintains Invariant 19, Invariant 20, and Invariant 21.

We follow the style of analysis outlined in [6] by defining appropriate definitions of
ε-happy and appropriate potential functions Πitems and Πbidders. In the case of b-matching,
we modify the definition of ε-happy in this setting to be the following.

▶ Definition 23 ((ε, c)-Happy). A bidder i′ ∈ L′ is (ε, c)-happy (at the end of a round) if
ui′ ≥ 1− pj′ − ε for all neighbors in the set N ′(i′) where N ′(i′) is as defined in Algorithm 3
of Algorithm 3 (i.e. contains all neighboring items j′ where pj′ ≥ ci′ and no copy of the
neighbor is matched to another copy of i′).

At the end of each round, it is easy to show that all matched i′ and i′ whose demand sets
Di′ are empty are (ε, ci′)-happy.

▶ Lemma 24. At the end of any round, if bidder i′ is matched or if their demand set is
empty, Di′ = ∅, then i′ is (ε, ci′)-happy.

In addition to the new definition of happy, we require another crucial observation before
we prove our approximation guarantee. Specifically, we show that for any set of bidder copies
Ci and any set of |Ci| items I ⊆ R, Lemma 24 is sufficient to imply there exists at least one
assignment of items in I to happy bidders in Si such that each item is assigned to at most
one bidder and each happy bidder is assigned at least one item where the minimum price of
the item is at least the cutoff price of the bidder.

▶ Lemma 25. For a set of bidder copies Ci and any set I ⊆ R of |Ci| items where (i, j) ∈ E

for all items j ∈ I, there exists at least one assignment of items in I to bidders in Ci, where
we denote the item assigned to copy i′ by ri′ , that satisfy the following conditions:

1. The assignment is a one-to-one mapping between bidders in Ci and items in I.
2. Any item j matched to i′ is assigned to i′.
3. Let r∗

i′ be the lowest cost copy of item ri′ , r∗
i′ = arg minj′∈Cr

i′
(pj′); then pr∗

i′
≥ ci′ for all

i′ ∈ Ci.
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We now perform the approximation analysis. Suppose as in the case of MCM, we have at
least (1− ε)|OPT| happy bidders in OPT (i.e. |Happy ∩OPT| ≥ (1− ε)|OPT|), then we
show that we can obtain a (1− ε)-approximate MCbM. Let OPT be an optimum MCbM
matching and |OPT| be the cardinality of this matching.

▶ Lemma 26. Assuming |Happy ∩ OPT| ≥ (1 − ε)|OPT|, then we obtain a (1 − 2ε)-
approximate MCbM.

The potential argument proof is almost identical to that for MCM provided our use of
ci′ . Specifically, as in the case for MCM, we use the same potential functions and using
these potential functions, we show that our algorithm terminates in O

( 1
ε2

)
rounds. The

key difference between our proof and the proof of MCM explained in [6] is our definition of
Πbidders which is precisely defined in the proof of Lemma 27 below.

▶ Lemma 27. In ⌈ 2
ε2 ⌉ rounds, there exists at least one round where |OPT ∩ Happy| ≥

(1− ε)|OPT|.

Using the above lemmas, we can prove the round complexity of Theorem 2 to be O
( 1

ε2

)
by Lemma 26 and Lemma 27.

▶ Theorem 28. There exists an auction algorithm for maximum cardinality bipartite b-
matching (MCbM) that gives a (1− ε)-approximation for any ε > 0 and runs in O

(
log n

ε2

)
rounds of communication using O(b log n) bits per message in the blackboard distributed model.
In total, the number of bits used by the algorithm is O

(
nb log2 n

ε2

)
.

4.3 Semi-Streaming Implementation
We now show an implementation of our algorithm to the semi-streaming setting and show
the following lemma which proves the semi-streaming portion of our result in Theorem 2.
We are guaranteed ε ≥ 1

2n2 ; otherwise, an exact matching is found. In order to show the
space bounds, we use an additional lemma below that upper and lower bounds the prices of
any copies of the same item in R′.

▶ Lemma 29. For any j ∈ R, let jmin be the minimum priced copy in Cj and jmax be the
maximum priced copy in Cj. Then, pjmax − pjmin ≤ ε.

Using the above, we prove our desired bounds on the number of passes and the space
used.

▶ Theorem 30. There exists a semi-streaming algorithm for maximum cardinality bipartite
b-matching that uses O

( 1
ε2

)
rounds and Õ

((∑
i∈L bi + |R|

)
log(1/ε)

)
space where L is the

side with the smaller number of nodes in the input graph.

We note that the space bound is necessary in order to report the solution. (There exists a
given input where reporting the solution requires Õ

((∑
i∈L bi + |R|

)
log(1/ε)

)
space.) Thus,

our algorithm is tight with respect to this notion.

4.4 Shared-Memory Parallel Implementation
We now show an implementation of our algorithm to the shared-memory parallel setting.
The main challenge for this setting is obtaining an algorithm for obtaining non-duplicate
maximal matchings. To obtain non-duplicate maximal matchings, we just need to modify
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the maximal matching algorithm of [9] to obtain a maximal matching with the non-duplicate
characteristic. Namely, the modification we make is to consider all copies of a node to be
neighbors of each other. Since there can be at most n copies of a node, this increases the
degree of each node by at most n. Hence, the same analysis as the original algorithm still
holds in this new setting.

▶ Theorem 31. There exists a shared-memory parallel algorithm for maximum cardinality
bipartite b-matching that uses O

(
log3 n

ε2

)
depth and O

(
m log n

ε2

)
total work where L is the

side with the smaller number of nodes in the input graph.
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