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Abstract
A temporal graph is a graph whose edges appear only at certain points in time. In these graphs,
reachability among nodes relies on paths that traverse edges in chronological order (temporal paths).
Unlike standard paths, temporal paths may not be composable, thus the reachability relation is not
transitive and connected components (i.e., sets of pairwise temporally connected nodes) do not form
equivalence classes, a fact with far-reaching consequences.

Recently, Casteigts et al. [FOCS 2021] proposed a natural temporal analog of the seminal
Erdős-Rényi random graph model, based on the same parameters n and p. The proposed model is
obtained by randomly permuting the edges of an Erdős-Rényi random graph and interpreting this
permutation as an ordering of presence times. Casteigts et al. showed that the well-known single
threshold for connectivity in the Erdős-Rényi model fans out into multiple phase transitions for
several distinct notions of reachability in the temporal setting.

The second most basic phenomenon studied by Erdős and Rényi in static (i.e., non-temporal)
random graphs is the emergence of a giant connected component. However, the existence of a similar
phase transition in the temporal model was left open until now. In this paper, we settle this question.
We identify a sharp threshold at p = log n/n, where the size of the largest temporally connected
component increases from o(n) to n − o(n) nodes. This transition occurs significantly later than in
the static setting, where a giant component of size n − o(n) already exists for any p ∈ ω(1/n) (i.e.,
as soon as p is larger than a constant fraction of n). Interestingly, the threshold that we obtain holds
for both open and closed connected components, i.e., components that allow, respectively forbid,
their connecting paths to use external nodes – a distinction arising from the absence of transitivity.

We achieve these results by strengthening the tools from Casteigts et al. and developing new
techniques that provide means to decouple dependencies between past and future events in temporal
Erdős-Rényi graphs, which could be of general interest in future investigations of these objects.
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1 Introduction

Many real-world networks vary with time, as exemplified by the dynamic nature of today’s
social media, telecommunication, transportation, and interaction in general in a complex
network. Indeed, the examination of specific applications illustrates how networks endowed
with temporal information enable more accurate and effective analysis of real-world systems
compared to static networks [33].

This insight has motivated plethora of studies focusing on network modeling approaches
that incorporate the time dimension [24, 25, 27]. A widely used model for these networks
is given by temporal graphs (sometimes also called time-varying graphs, evolving graphs, or
other names). A temporal graph is a pair G = (G, λ), where G = (V, E) is an underlying
(static) graph, and λ is an edge labeling function that assigns to every edge e ∈ E a set of
time labels λ(e) ⊆ N indicating when this edge is present. This definition, although simple,
already captures two important aspects that determine temporal networks. Namely, (a) the
topology of the network defined by the underlying graph G; and (b) the schedule of edge
availabilities represented by the labeling function λ.

Even though this model has gained much traction recently, the available tools for analyzing
temporal graphs are still nowhere near the level of tools that have been developed for
understanding static networks. One of the main challenges is the fundamentally changed
notion of reachability. In temporal graphs, reachability is naturally based on paths that
traverse edges in ascending time, a.k.a. temporal paths. A first difference with standard
paths is that temporal paths are inherently directed, regardless of whether the graph itself
is directed, due to the arrow of time. Even more significantly, temporal reachability is not
transitive, i.e., the fact that node u can reach node v and node v can reach node w does not
imply that u can reach w. The resulting non-composability is a source of complication for
structural studies, as well as a frequent source of computational hardness. In fact, many
problems related to reachability are hard in temporal graphs, even when their classical analogs
are polynomial time solvable – see, for instance, the seminal paper by Kempe, Kleinberg,
and Kumar [27] on k-disjoint temporal paths (and many further examples appearing in
more recent works [1, 8, 13–15, 20, 22]). As observed by Bhadra and Ferreira [6], the fact
that (temporally) connected components do not form equivalence classes and intersect in
non trivial ways implies, among other consequences, that finding one of maximum size is
NP-hard.

Random Models of Temporal Graphs

One of the most important tools in (static) network theory are random network mod-
els [30]. They allow reproducing characteristics of real networks and studying their statistical
properties. The random perspective enables prediction of properties, anomaly detection,
identification of phase transitions, and other conclusions about the nature of typical networks.

The cornerstone of random network theory is the Erdős-Rényi random graph model [3].
It has proven tremendously useful as a source of insight into the structure of networks [32].
An Erdős-Rényi random graph Gn,p is obtained by placing an edge between each distinct
pair of n vertices1 independently with probability p. The study of this model was sparked
by a series of seminal papers published by Erdős and Rényi starting in 1959 [16–19]. Since
then, an important number of articles and books have been devoted to this model. These

1 We use the terms vertex and node interchangeably.
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results laid a solid foundation for the development of other models of more practical interest,
including the configuration model [28,29,31], the small-world model [34], and the preferential
attachment model [4].

The number of models of random temporal networks proposed in the literature is still
limited and no systematic foundations are available [24]. In establishing such foundations, a
natural question is: What is the temporal analog of the Erdős-Rényi random graph model?
The answer to this question is not unique, as the time dimension can be incorporated in
different ways [32]. Some candidates considered in the literature consider a sequence of
independent Erdős-Rényi graphs, some others incorporate some dependencies in such a
sequence (see for example [2, 5, 10–12,23,35]).

Temporal Erdős-Rényi Random Graphs

Recently, another natural and more direct temporal analog of the Erdős-Rényi random
graphs was proposed by Casteigts et al. [9], based on the same parameters n and p. In
this model, which we refer to as the temporal Erdős-Rényi random graph model, a random
temporal graph is obtained from an Erdős-Rényi random graph Gn,p by assigning to each
edge a unique label (presence time) according to a uniformly random permutation of its
edges. The main motivation is to obtain a temporal graph model whose properties (such
as threshold values) can be directly compared to the classical Erdős-Rényi model, thereby
highlighting the qualitative impact of the time dimension. A systematic study of this model
may also set a benchmark for practical models.

As already remarked, the time dimension leads to a number of distinctions between static
and temporal graphs. Many of them come from the conceptual difference between the notions
of path and temporal paths. The reachability of a temporal graph is not symmetric (even in
the undirected case) and not transitive, which is in stark contrast with static graphs. Indeed,
the results of [9] revealed that even the notion of connectivity translates to a rich spectrum of
phase transitions in the temporal setting. Namely, at p = log n/n, any fixed pair of vertices
can asymptotically almost surely (a.a.s.) reach each other; at 2 log n/n, at least one vertex
(and in fact, any fixed vertex) can a.a.s. reach all the others; and at 3 log n/n, all the vertices
can a.a.s. reach all others, i.e., the graph is temporally connected.

Connected Components in Temporal Erdős-Rényi Random Graphs

Perhaps the most investigated aspects of Erdős-Rényi random graphs is the emergence of a
“giant” connected component [7, 21], which culminates in connectivity itself. The analogous
question in a temporal setting is therefore natural. Interestingly, the lack of transitivity makes
the very definition of temporal components ambiguous. If the vertices of the component
need temporal paths traveling outside the component in order to reach each other, then the
component is open; otherwise, it is closed [6].

Analyzing the emergence of (both types of) temporally connected components in the above
model presents technical challenges that cannot be overcome by the only tools developed
in [9]. These technical challenges and the importance of understanding connected components
in temporal Erdős-Rényi random graphs motivated the present work.

1.1 Contributions
In this paper, we analyze the evolution of the largest connected component in a temporal
Erdős-Rényi random graph with parameters n and p, as p increases (with n → ∞). Our
main result is that, in contrast to static graphs, the phase transition occurs at p = log n/n.
At this point, the size of the largest component jumps from o(n) to n − o(n).

APPROX/RANDOM 2023
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▶ Main Theorem (informal). There exists a function ε(n) ∈ o(log n/n) such that the size of
a largest temporally connected component in a temporal Erdős-Rényi random graph is

(i) o(n) a.a.s., if p < log n
n − ε(n); and

(ii) n − o(n) a.a.s., if p > log n
n + ε(n).

Notably, the same threshold holds for both open and closed connected components,
although showing the latter requires more effort. We achieve these results by developing new
techniques and combining them with strengthened versions of the tools from [9]. Informally,
the new tools enable us to effectively contain the dependencies that exist between different
time slices. Thus they facilitate building graph structures witnessing a desired property in
multiple independent phases.

1.2 Significance of the Results & Techniques
Results. Our main result reveals a qualitative difference between the evolution of connected
components in static random graphs and temporal random graphs. The emergence of a giant
component in (static) Erdős–Rényi graphs follows a well-known pattern of events [19]. Below
a critical probability p0 = 1/n, almost all the components are trees, and no component is
larger than O(log n). Then, at p0, a single “giant” component of size Θ(n2/3) arises. Then,
at p = c/n > 1/n, this component contains a constant fraction 1 − x/c of all vertices (with
0 < x < 1 being defined through xe−x = ce−c). As soon as p ∈ ω(1/n), the component
contains all but o(n) vertices. The case of directed static graphs is similar. Namely, for
p = c/n < 1/n, a.a.s. all strongly connected components have size less than 3c−2 log n,
and when p = c/n > 1/n, the graph contains a strongly connected component of size
approximately (1 − x/c)2

n (with x as above) [21, 26], which implies that this component
contains all but o(n) vertices when p ∈ ω(1/n).

In the temporal setting, we show that the phase transition occurs at p = log n/n. Namely,
all components are of size o(n) before that threshold and there is one component of size
n − o(n) afterwards. The fact that this transition occurs later in the temporal setting is not
surprising, as the thresholds for connectivity is already known to be significantly smaller in
the static setting than in the temporal setting; namely, connectivity occurs at p = log n/n in
the static case (for both directed and undirected graphs) versus p = 3 log n/n for temporal
connectivity [9]. However, while these thresholds for connectivity are within a multiplicative
constant of each other, our results show that in the case of connected components the static
and the temporal threshold are of distinct asymptotic orders.

Techniques. In the temporal Erdős-Rényi model, the unicity of presence times for the edges
causes delicate dependencies between past and future events. To contain these dependencies,
we introduce a multiphase analysis that consists of splitting the time interval into several
phases where these dependencies are decoupled. We believe that many further temporal
graph properties will require such a multiphase analysis and could benefit from the tools
developed here. In constrast, the techniques from [9] are well suited for analyzing single-phase
processes, where temporal paths do not interact across different time intervals (e.g. through
composition).

In particular, our switch from a fixed base graph G = Kn to an arbitrary graph of
high minimum degree provides the possibility to “encapsulate” all dependencies on events
occurring in some fixed “short” phase into the choice of base graph, effectively eliminating
the need to deal with these dependencies individually. As an unsurprising but quite useful
technical extension, we study also the behaviour of sets of journeys starting from any of a
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set of source vertices. Furthermore, Lemma 5.2 is of independent interest for “bootstrapping”
various such multiphase analysis attempts; it essentially proves that in the very early regime,
there is only a small number of poorly connected vertices, and that these can be removed
without compromising the connectivity of the remaining temporal graph.

Although our techniques handle specific dependencies of temporal Erdős-Rényi graphs,
they remain general enough to be adaptable to models with less dependencies, such as models
where several appearances of an edge is possible and these appearances follow an exponential
distribution (Poisson process). The reasons for this are exactly the same as in [9]. Note,
however, that weaker tools could suffice for such models, as past and future appearances of
an edge are independent.

1.3 Organization
In Section 2, we provide all necessary definitions, and introduce the random temporal graph
models used in the paper. In Section 3, we present the algorithm for constructing a foremost
forest. We also state a core technical theorem (Theorem 3.3) concerned with reachability
between two sets of nodes in a temporal graphs. The full proof of that theorem is deferred to
the full version due to space restrictions, as are several other proofs and intermediate results.
Using this theorem, we then prove in Section 4 that at p = log n/n the size of the largest
open connected component jumps from o(n) to n − o(n). This also serves as a stepping
stone towards Section 5, where we extend our technique to also apply to closed connected
components. The proof is slightly more involved than for open components, as it requires
further subdivisions of the phases. However, we show that both variants undergo essentially
the same phase transition.

2 Preliminaries

In this paper, [k] denotes the set of integers {1, . . . , k}, and [a, b] denotes either the discrete
interval from a to b, or the continuous interval from a to b, the distinction being clear from
the context. All graphs are simple, i.e., without loops or multiple edges. For a graph G, we
denote by V (G) and E(G) its vertex set and edge set respectively. We denote by δ(G) and
∆(G) the minimum and the maximum vertex degree of G respectively. As usual, Kn denotes
the complete n-vertex graph.

2.1 Temporal Graphs
A temporal graph is a pair (G, λ), where G = (V, E) is a static graph and λ is a function
that assigns to every edge e ∈ E a finite set of numbers, interpreted as presence times. The
graph G is called the underlying graph of the temporal graph and the elements of λ(e) are
called the time labels of e. We will denote temporal graphs by calligraphic letters, e.g., by G.
Instead of (G, λ) we will sometimes use the notation (V, E, λ) to denote the same temporal
graph. In most cases, time labels will be elements of the real unit interval [0, 1]. Furthermore,
in this paper, we restrict our consideration only to simple temporal graphs2, i.e., temporal
graphs in which every edge e ∈ E is only present at a single point in time, i.e., |λ(e)| = 1. We
sometimes write V (G) and E(G) for the node and edge set of a temporal graph G respectively.

2 We remark that all our results can be directly transferred to another, closely related model of non-simple
temporal graphs; see Section 6.1.2 in [9].

APPROX/RANDOM 2023
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A temporal graph H = (VH, EH, λH) is a temporal subgraph of a temporal graph G =
(VG , EG , λG), if VH ⊆ VG , EH ⊆ EG and λH(e) = λG(e) for all e ∈ EH. For a vertex set
S ⊆ V (G), we denote by G[S] a temporal subgraph of G induced by S. We use G[a,b] to
denote the temporal subgraph of G with the same node set VG , the edge set E′ := {e ∈ EG :
λG(e) ∈ [a, b]}, and the time labeling function λG |E′ which is the restriction of λG to E′.

A temporal (u, v)-path in G = (V, E, λ) between two nodes u, v ∈ V is a sequence
u = u0, u1, . . . , uℓ = v such that ei = {ui−1, ui} ∈ E for each i ∈ [ℓ], and time labels are
increasing, i.e., λ(e1) < . . . < λ(eℓ). We call λ(eℓ) the arrival time of the path. A temporal
(u, v)-path is called foremost (u, v)-path if it has the earliest arrival time among all temporal
(u, v)-paths. If there exists a temporal (u, v)-path, we say that u can reach v (every vertex
reaches itself). A set S ⊆ V is said to reach v if at least one of its elements reaches v. In that
case, a foremost (S, v)-path in G is a temporal (u, v)-path with earliest arrival time among
all u ∈ S.

A vertex u ∈ V is called temporal source in G = (V, E, λ) if there exists a temporal
(u, v)-path for each v ∈ V . Similarly, a vertex v ∈ V is called temporal sink in G if there
exists a temporal (u, v)-path for each u ∈ V .

A temporal graph G = (V, E, λ) is temporally connected if all nodes are temporal sources.
We note that this also implies that all nodes are temporal sinks. An open temporally connected
component or simply connected component in G is an inclusion-wise maximal set Z ⊆ V of
nodes such that for every ordered pair of vertices u, v ∈ Z, there exists a temporal (u, v)-path
in G. We stress that such a temporal (u, v)-path can contain nodes from V \ Z. If for every
ordered pair u, v ∈ Z, there exists a temporal (u, v)-path in G[Z], then Z is called closed
connected component.

2.2 Random Temporal Graph Models
The model of temporal Erdős-Rényi random graphs was introduced in [9]3 as a natural
temporal generalization of the classical Erdős–Rényi model Gn,p of random graphs. An
n-vertex temporal Erdős-Rényi random graph with the parameter p ∈ [0, 1] is obtained by
first drawing a static random Erdős–Rényi Gn,p and then defining a temporal order on its
edges by ordering them according to a uniformly random permutation. An equivalent and
technically more convenient way of defining the temporal order on the edges is to draw, for
every edge e, independently and uniformly at random a time label λ(e) from the unit interval
[0, 1]. Since the event that two edges get the same time label happens with probability 0, all
edge orderings induced by such random time labels are equiprobable. Therefore, as long as
the absolute values of time labels are irrelevant (which is the case for the questions studied
in [9] and in the present paper), the two models are indeed equivalent. This latter model is
denoted as Fn,p. A possible way of generating objects from Fn,p is to first draw a temporal
graph G = (G, λ) from Fn,1 (thus the underlying graph G is complete), and to then consider
G′ = (G′, λ′) = (G, λ)|[0,p], i.e., the temporal graph obtained from G by removing edges with
time labels greater than p. Observe that G′ ∼ Gn,p and each time label λ(e) is uniformly
distributed on [0, p]. Hence, G′ is distributed according to Fn,p up to multiplying all labels
by a factor of 1

p , which we can ignore as it neither changes the relative order of time labels
nor the absolute values of time labels are of any importance to us. For similar reasons, for
any 0 ≤ a ≤ b ≤ 1, up to rescaling time labels, the temporal subgraph G|[a,b] is distributed
according to Fn,q, where q = b − a.

3 In [9], this model was called Random Simple Temporal Graphs (RSTGs)
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In order to overcome some technical challenges caused by interdependence of different
temporal subgraphs, we define and study a natural generalization of Fn,p that we describe
next. For an n-vertex graph G and a real value p ∈ [0, 1], we denote by Fp(G) the following
random temporal graph model. A random temporal graph G = (V, E, λ) ∼ Fp(G) is obtained
by (1) independently and uniformly sampling a time label λ′(e) ∈ [0, 1] for every e ∈ E(G),
and (2) setting V = V (G), E := {e ∈ E(G) : λ(e) ≤ p} and λ(e) = λ′(e) for every e ∈ E. We
call G the base graph of Fp(G). We observe that the Fn,p model is obtained when choosing
the base graph to be the complete n-vertex graph Kn.

In what follows we sometimes implicitly assume that n = |V | is sufficiently large without
restating this assumption. We note that some of our estimates hold only for rather large
values of n. We did not attempt to reduce these bounds, but instead focused on achieving
best possible readability.

At this point we refer the interested reader to Appendix A of the full version, where, as a
warm-up, we give a simple upper bound on p which guarantees that G ∼ Fp(G) is temporally
connected a.a.s.

3 The Foremost Forest Algorithm

The main aim of this section is to present an algorithm for constructing a foremost forest
and to prove a property of this algorithm.

Foremost forests play a crucial role in the development of our main technical tool: for a
fixed set of vertices S and a given number k, the estimation of the minimum value of p such
that the vertices in S can reach k vertices in G = (V, E, λ) ∼ Fp(G) a.a.s.

We obtain such an estimation by examining the evolution of a foremost forest for S in G
via analysis of the execution of the formost forest algorithm on random temporal graphs.
To elaborate on this approach, let us consider v ∈ V \ S. We would like to estimate the
probability that S reaches v in G. For this, we follow an approach similar to the one used
in [9]. Let G′ ∼ F1(G) and observe that the probability that S can reach v in G is equal
to the probability that the temporal subgraph G′

[0,p] contains a temporal (u, v)-path P for
some node u ∈ S. This again is equivalent to the arrival time of P in G′ being at most p.
Therefore, the estimation of the parameter p for which some node from S can reach v can be
reduced to the estimation of the minimum arrival time of a foremost temporal path from
S to v in G′ ∼ F1(G). A foremost forest for S in G is a minimal temporal subgraph that
preserves foremost reachabilities from S to all other vertices reachable from S in G. We
proceed with the necessary formal definitions.

▶ Definition 3.1. Let G = (V, E, λ) be a temporal graph and let S ⊆ V be a set of vertices.
The graph GF = (VF , EF , λF ) is an increasing temporal forest for S, if
(a) GF is a temporal subgraph of G,
(b) the graph F = (VF , EF ) is a forest (i.e. acyclic graph) with |S| components,
(c) for each s ∈ S there is a connected component Ts of F such that s reaches all vertices

of Ts in GF .
We are now ready to define (partial) foremost forests.

▶ Definition 3.2. Let G = (V, E, λ) be a temporal graph, let S ⊆ V be a set of vertices and
let GF = (VF , EF , λF ) be an increasing temporal forest for S.
1. Then GF is a partial foremost forest for S, if, for all v ∈ VF \ S, the unique temporal

(S, v)-path in GF is a foremost (S, v)-path in G.
2. A partial foremost forest for S is a foremost forest for S if VF contains all vertices

reachable from S in G, i.e., VF = {v ∈ V : ∃(u, v)-temporal path in G for some u ∈ S}.
3. A (partial) foremost forest for {v} is a (partial) foremost tree for v.

APPROX/RANDOM 2023
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The Algorithm

Next, we present an algorithm that, given a temporal graph G = (V, E, λ) and a set of
nodes S ⊆ V constructs a foremost forest GF for S. This algorithm is a straightforward
generalization of the foremost tree algorithm from [9], where the input set S is assumed to
be singleton.

The idea of the algorithm similar to Prim’s algorithm for minimum spanning trees in
static graphs: Starting from GF = (VF , EF , λF ) = (S, ∅, ∅), which is trivially a partial
foremost forest for S, the algorithm iteratively adds one node and one edge to VF and
EF , λF , respectively, until GF becomes a foremost forest for S. The main difference to Prim’s
algorithm is that, in every iteration, the next edge to be added is chosen as the edge of
minimum time label among all edges that extend the current increasing temporal forest. For
brevity, we introduce the following notation. We write GF ∪ e for adding the edge e = {u, v}
to GF , i.e., the result is the temporal graph (VF ∪ {u, v}, EF ∪ {e}, λF ∪ {(e, λ(e))}). The
set of edges that extend the current partial forest can then be defined as

ext(GF ) := {e = {u, v} ∈ E : u ∈ VF , v ∈ V \ VF , and GF ∪ e is an increasing temporal
forest for S}.

We are now ready to state the algorithm.

Algorithm 1 Foremost Forest.

Input : Simple temporal graph G = (V, E, λ); set of nodes S ⊆ V .
Output : Foremost forest for S.

1 k = |S| − 1, Gk
F = (S, ∅, ∅)

2 while ext(Gk
F ) ̸= ∅ do

3 k := k + 1
4 ek := arg min{λ(e) | e ∈ ext(Gk−1

F )}
5 Gk

F := Gk−1
F ∪ ek

6 return Gk
F

In Appendix B of the full version we prove that Algorithm 1 in fact builds a foremost
forest.Furthermore, one of our main technical results is the following theorem which, for two
given sets of nodes S and T , quantifies the probability that a foremost forest grown from set
S reaches T .

▶ Theorem 3.3 (Foremost Forest Target Set Reachability). Let
G be a graph of minimum degree δ(G) ≥ n − (log n)a for some a ∈ N,
let S and T be two sets of nodes in G of cardinalities s ∈ [(log n)13, n/2] and t, respectively,
let z = z(n) be a function with ε ≤ z(n) ≤ 1 − ε for some constant ε ∈ (0, 1), and
let G ∼ Fp(G) with p ≥ z log n−log s

n + 3 log log n
n .

Then the foremost forest algorithm from S on G reaches T with probability at least 1 −
5
2 n− log log n − e− t

2n (nz−s).

The formal proof of Theorem 3.3 is one of the technically more involved portions of this
work. It is divided into a number of lemmas and has to be deferred to Appendix C of the
full version due to lack of space; for improved accessibility, a high level overview of the proof
structure is depicted in Figure 1. We proceed with a short proof sketch.
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Lemma B.1
Correctness of foremost forest algorithm

Lemma A.1 and Corollary A.2
Two-hop bound on temporal connectivity

Proposition C.3 and Corollary C.4
Bounds on expected waiting time XS

k between the moments of
exposing two consecutive edges of the foremost forest

Lemma C.2
Approximation of XS

k through its truncated version

Proposition C.8 and Corollary C.9
Estimate of the number of exposed edges of the foremost forest

Lemma C.6
Concentration of the number of exposed edges of
the foremost forest

Theorem C.5
Azuma inequality

Lemma C.1
Bound on∑ 2 log (min{k,n−k})+log log n

k(n−k)

Lemma C.7
Bound on

∑ 1
i(n−i)+1

Lemma C.10
Growth of foremost forest

Lemma C.11
Distribution of added vertex

Theorem 3.3
Foremost forest target set reachability

Figure 1 Overview of the proof of Theorem 3.3.

Proof Sketch. The theorem is deduced from Lemma C.10 and Lemma C.11 that can be
found in Appendix C of the full version. Lemma C.10 essentially constitutes a generalization
of the foremost tree growth analysis from [9], which estimates the number of vertices that a
given vertex (referred to as a source) reaches by specific time in Fn,p. Besides the difference
that in Lemma C.10 we need to consider a fixed set of source vertices, the main technical
challenge here is that we have to consider the Fp(G) model rather than the basic Fn,p model,
resulting in fewer edges per node. While Lemma C.10 merely gives a statement over the
number of nodes that are reached from a given source set, Lemma C.11 gives the second
crucial ingredient for proving Theorem 3.3. It states that every new vertex reached by
the foremost forest grown from S (i.e., every new vertex added to the foremost forest) is
distributed almost uniformly on the vertices that are not reached yet and this allows us to
estimate the probability that the forest reaches the target set T . ◀

4 Sharp Threshold for Giant Open Connected Component

In this section, we report on our first main result.

▶ Theorem 4.1 (Main Result for Open Components). The function log n
n is a sharp threshold for

Giant Open Connected Component. More specifically, there exists a function ε(n) ∈ o
(

log n
n

)
,

such that the size of a largest open temporally connected component in G ∈ Fn,p is
(i) o(n) a.a.s., if p < log n

n − ε(n); and
(ii) n − o(n) a.a.s., if p > log n

n + ε(n).

We prove the lower bound on the threshold (i.e. Theorem 4.1 (i)) in Section 4.1. The
proof of this bound is a straightforward consequence of a result on foremost tree growth
in Fp(Kn) from [9]. The upper bound (i.e. Theorem 4.1 (ii)) on the threshold is proved
in Section 4.2 and is significantly more involved. In particular, it relies on Theorem 3.3 to
measure foremost forest growth in Fp(G), where G is chosen to contain all edges that did
not occur within some particular time window.
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4.1 Lower Bound on the Threshold
We state the lower bound in form of the following theorem which says that a.a.s. there is no
linear size component before time log n/n. This theorem can be derived rather easily from
results of Casteigts et al. [9]; we refer to Appendix D of the full version for the details.

▶ Theorem 4.2 (Lower Bound in Theorem 4.1). Let G ∼ Fp(Kn) with p < log n
n − 3(log n)0.8

n .
Then, for any constant c ∈ (0, 1), the graph G does not contain a temporally connected
component of size at least c · n with probability at least 1 − 2n−

√
log n.

4.2 Upper Bound on Threshold
Next, we present the first, weaker version of our main result, stating that an open temporally
connected components containing almost all vertices appears already around time log n/n.

▶ Theorem 4.3 (Upper Bound in Theorem 4.1). Let G ∼ Fp(Kn) with p ≥ (1 + ε(n)) · log n
n .

Then, the graph G contains a temporally connected component of size n − o(n) a.a.s.

We begin by giving a sketch of the proof idea.

Proof Sketch. The strategy is as follows, see also Figure 2. We split the time interval [0, p]
into three intervals I1, I2, and I3 of equal duration p/3, and reveal the edges of the graph in
two phases.

In Phase 1, we reveal the edges whose time labels are in one of the intervals I1 and I3.
Using a result from [9] (Lemma D.2), we can conclude that there are n − o(n) nodes (call
them X), each of which a.a.s. reaches at least 3

√
n log n vertices during I1, and there are

at least n − o(n) nodes (call them Y ) that a.a.s. is reached by at least 3
√

n log n vertices
during I3.

In Phase 2, we reveal the edges appearing during the middle interval I2. We show that
for every ordered pair of nodes x, y in the set Z := X ∩ Y (which is our intended connected
component), the set of vertices that x can reach during I1, can reach during I2 at least one
vertex in the set of vertices that reach y during I3; thus implying that x can reach y during
[0, p]. For this purpose we can employ Theorem 3.3 with S being the set that x can reach
during I1 and T being the set of vertices that can reach y during I3. Note that the analysis
of this phase is what requires us to develop the generalization Fp(G) of the model Fn,p. In
fact, the static base graph G used in the application of Theorem 3.3 is the graph obtained
from Kn by removing the edges that appeared during either I1 or I3. Finally a union bound
over all pairs of nodes x and y yields the result. ◀

The remainder of this section is dedicated to proving Theorem 4.3. Throughout, we
denote ε(n) := 1

log log n .
Let p = (1 + ε(n)) · log n

n and G ∼ Fp(Kn). We will prove Theorem 4.3 only for this value
of p as it will then clearly follow for any larger value. Our strategy is to split the interval [0, p]
into three sub-intervals [p0, p1], [p1, p2], [p2, p3], where pi := i

3 (1 + ε(n)) log n
n for i ∈ [0, 3].

We now first deduce the following corollary about the connectivity of the subgraphs G[pi,pi+1]
for i ∈ [0, 2] of G from Lemma D.2.

▶ Corollary 4.4. For i ∈ [0, 2], the number of vertices reached by (resp. reaching) a fixed
vertex in G[pi,pi+1] lies within [n1/3 log n, n1/3+ε(n)] with probability at least 1 − 10

log n .

For space reasons, the proof of Corollary 4.4 is found in Appendix E of the full version.
Using Markov’s inequality we can obtain that, a.a.s., almost all nodes can reach (resp.

be reached by) the above number of nodes.
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Figure 2 General strategy for upper bounding the value of p in the case of open components.
Here, Gi denotes the restriction of the temporal graph to subinterval Ii. Wavy lines denote temporal
paths. We show that any node x ∈ Z can reach any other node y ∈ Z by reaching a node u in G1,
then a node v in G2, and finally y in G3.

▶ Lemma 4.5. Let i ∈ {0, 1, 2}. The number of vertices that can reach (resp. be reached
by) at least n1/3 log n and at most n1/3+ε(n) vertices in G[pi,pi+1] is at least n − n

log log n with
probability at least 1 − 10 log log n

log n .

Proof. Let X̄ denote the number of nodes in G[pi,pi+1] that can reach (resp. be reached by)
less than n1/3 log n or more than n1/3+ε(n) vertices in G[pi,pi+1]. Then E[X̄] ≤ 10n/ log n

by Corollary 4.4. Using Markov’s inequality P
[
X̄ ≥ n

log log n

]
≤ 10 log log n

log n . ◀

We now denote by X the set of nodes that can reach at least n1/3 log n and at most n1/3+ε(n)

vertices in G[0,p1] and by Y the set of nodes that are reached by at least n1/3 log n and at
most n1/3+ε(n) vertices in G[p2,p3]. Furthermore, we denote by Z = X ∩ Y their intersection.
According to Lemma 4.5, it holds that |Z| ≥ n− 2n

log log n with probability at least 1− 20 log log n
log n .

The hardest part of our proof is to now show that, for a fixed ordered pair x, y ∈ Z, the
probability that there is a temporal path from x to y is so large that we can take a union
bound over all ordered pairs. To this end, let A(x) be the set of nodes that x can reach in
G[0,p1] and let B(y) be the set of nodes that can reach y in G[p2,p3]. Furthermore, for x ∈ X,
let

A′(x) := {v ∈ V : ∃a ∈ A(x) s.t. a reaches v in G[p1,p2]}

be the set of nodes that x can reach in G[0,p2]. Notice that x reaches y if and only if A′(x)
intersects B(y).

Let G′′ = (V, E′′) with E′′ = {e ∈
(

V
2
)

| λ(e) ∈ [0, p1] ∪ [p2, p3]} be the graph containing
all edges appearing in G[0,p1] or G[p2,p3], and let G′ = (V, E′) with E′ =

(
V
2
)

\ E′′ contain
all other edges. Then we observe that the distribution of the set A′(x) conditioned on the
information about the edges appearing in G[0,p1] and G[p2,p3] is identical to the node set
of a foremost forest grown from S := A(x) in H ∼ Fp′(G′), where p′ = 1

3 (1 + ε(n)) log n
n .

Furthermore, G′′ is distributed as an Erdős-Rényi graph G′′ ∼ Gn,p with p := 2
3 (1+ε(n)) log n

n .
From a standard result regarding the maximum degree in Gn,p we can thus conclude the
following fact.
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▶ Observation 4.6. It holds that ∆(G′′) ≤ 4 log n a.a.s. and, thus, δ(G′) ≥ n − (log n)2

a.a.s.

Proof. Recall that G′′ is distributed according to Gn,p with p := 2
3 (1+ε(n)) log n

n . Following [7,
Corollary 3.13], with m = 1 and ω(n) = log n, we have that a.a.s.

∆(G′′) ≤ pn +
√

2pn log n + log n

√
pn

log n
≤ log n +

√
2(log n)2 + log n ≤ 4 log n.

The observation about the minimum degree now follows immediately for sufficiently large
n. ◀

Thus, in order to lower bound the probability that A′(x) intersects B(y), we can use the
following corollary of Theorem 3.3.

▶ Corollary 4.7. Let
G be a graph of minimum degree δ(G) ≥ n − (log n)a for some a ∈ N,
let S and T be two sets of nodes in G, each of cardinality at least n1/3 log n, and
let G ∼ Fp(G) with p ≥ 1

3 (1 + ε(n)) log n
n .

Then, the foremost forest algorithm from S on G reaches T with probability at least 1 −
3n− log log n.

Proof. Set s := |S|, t := |T |. Without loss of generality, we may assume s ≤ n1/3+ε(n). Note
that for large enough n it holds that

p ≥ 1
3

(
1 + 1

log log n

) log n

n

≥
1
3 log n + 4 log log n

n

=
2
3 log n + 2 log log n − 1

3 log n − log log n

n
+ 3 log log n

n

≥ z log n − log s

n
+ 3 log log n

n
,

for z = 2
3 + 2 log log n

log n . From Theorem 3.3 it then follows that the foremost forest algorithm
from S reaches T with probability at least

1 − 5
2n− log log n − e− t

2n (nz−s) ≥ 1 − 5
2n− log log n − e− n1/3 log n

2n (n2/3(log n)2−n1/3+ε(n)))

≥ 1 − 5
2n− log log n − e− (log n)3

4 ≥ 1 − 3n− log log n,

completing the proof. ◀

Using the above stated corollary, we can finally prove our first main result.

Proof of Theorem 4.3. Let p = (1 + ε(n)) · log n
n and G ∼ Fp(Kn). As above, let X be the

nodes that can reach between n1/3 log n and n1/3+ε(n) vertices in G[0,p1] and let Y be the
nodes that are reached by between n1/3 log n and n1/3+ε(n) vertices in G[p2,p3]. Furthermore,
let Z = X ∩ Y be their intersection and recall that |Z| ≥ n − 2n

log log n with probability at least
1 − 20 log log n

log n according to Lemma 4.5. Now, conditioned on the information about the edges
appearing in G[0,p1] and G[p2,p3], let G′ = (V, E′) be the static graph with the same node set
as G and the edge set E′ = {e ∈

(
V
2
)

: λ(e) /∈ [p0, p1] ∪ [p2, p3]}, where λ is the time label
function of G. Note that according to Observation 4.6 the minimum degree in G′ a.a.s. is at
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0 ε1 = o
( log n

n

)
p1 + ε1 p − (p1 + ε1) p − ε1 p = log n

n + ε

I1 I5
Phase 1.1

I2 I4
Phase 1.2

I3
Phase 2

Figure 3 Illustration of the three different phases in our proof for the case of closed components.
Here, the length p1 of I2 and I4 and the length p2 of I3 are each roughly 1

3
log n

n
. In Phase 1.1, we

reveal edges in I1 and I5 and identify our target closed connected component, a set of n′ nodes V ′

each of which can reach (be reached by) poly-logarithmically many vertices within V ′ during I1

(I5) via temporal paths in V ′. For Phase 1.2 (consisting of intervals I2 and I4) we show that every
vertex in v ∈ V ′ reaches (is reached by) polynomially many vertices in V ′ during I1 ∪ I2 (I4 ∪ I5).
We then show that during Phase 2 (consisting of I3), for each ordered pair of vertices u, w ∈ V ′, the
set of vertices reached by u during I1 ∪ I2 can reach the set of vertices that reach w during I4 ∪ I5,
implying that u can reach w during [0, p].

least n−(log n)2. Now, let x, y ∈ Z be a fixed ordered pair of vertices. Applying Corollary 4.7
to H ∼ F p

3
(G′) with S = A(x), a = 2, and T = B(y), we can conclude that A′(x) ∩ B(y) ̸= ∅

with probability at least 1 − 3n− log log n, and, thus, x reaches y with at least that probability.
Hence, after a union bound over all ordered pairs, we get that all nodes in Z reach each
other with probability at least 1 − 3n− log log n+2. Therefore, G has a temporally connected
component of size at least n − 2n

log log n = n − o(n) a.a.s. ◀

5 Sharp Threshold for Giant Closed Connected Component

In this section we report on the result that log n
n is also a sharp threshold for the existence of

a giant closed connected component. We first sketch the general proof idea; the formal proof
given subsequently is based upon a lemma proven in Appendix F of the full version.

▶ Theorem 5.1 (Main Result for Closed Components). The function log n
n is a sharp threshold

for Giant Closed Connected Component. More precisely, there exists a function ε(n) ∈
o
(

log n
n

)
, such that the size of a largest closed temporally connected component in G ∼ Fn,p is

(i) o(n) a.a.s., if p < log n
n − ε(n); and

(ii) n − o(n) a.a.s., if p > log n
n + ε(n).

Proof Sketch. The lower bound of Theorem 5.1 is obviously a trivial consequence of the
lower bound in Theorem 4.1. Thus, it remains to prove the upper bound. We start from our
strategy of splitting the time into three intervals. We do not need to make any changes to our
approach in the middle one (Phase 2), which previously required the most effort. However,
we now need to do additional work in the first and last interval (Phase 1), which is the main
technical contribution of this part. Recall that in the proof of Theorem 4.3, we only required
that n − o(n) vertices can all reach (resp. be reached by) at least n1/3 log n vertices within
each of the three intervals from Figure 2. Now, we will need to prove that there exists a
set V ′ of n − o(n) vertices, such that every vertex in this set can reach (resp. be reached
by) at least n1/3 log n vertices via temporal paths that use only vertices in V ′. Once this is
achieved, we can use the same approach as in the case of open components for Phase 2.

In order to obtain the set of vertices V ′ mentioned above, we have to insert an additional
Phase 1.1, which looks only at a short time interval I1 at the very beginning (and symmetrically
I5 at the very end). The purpose of this new phase is to “bootstrap” the closed component
by identifying a set V ′ of n′ = n−o(n) vertices, which each reach at least poly-logarithmically
many vertices by paths that are contained in V ′. Lemma 5.2 formalizes this result.
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A technical difficulty in Phase 1.1 is the need to control possible cascading effects, where
removing low-degree vertices from the graph can cause further vertices to become low-degree
vertices, etc. We overcome this difficulty by partitioning the vertices into sectors V1, . . . , VC

and removing vertices from each sector Vi solely on the base of whether they have too few
neighbors in the next sector Vi+1. This ensures that the sets of vertices removed from each
sector are determined independently of each other. On this base, we are then able to prove
that no cascading effects occur a.a.s. Subsequently, we show that after these removals, every
remaining vertex can reach a poly-logarithmic number of others by considering clocked paths,
which essentially march in lockstep, traversing the sectors in circular order (see Figure 4).

Subsequently, in Phase 1.2, we reveal edges that appear during I2 or I4. We use the
foremost forest technique developed earlier to show that, conditioned on the edges revealed in
Phase 1.1, for every vertex v in V ′ the poly-logarithmic set of vertices reached by v during I1
reaches polynomially many (by which we mean np for some fixed p < 1) vertices during I2.
(Similarly, the set of vertices that reach v during I5 is reached by polynomially many vertices
during I4.) ◀

Vi

Vi+1

Vi+2

Vi+3

v

Figure 4 Example of a temporal tree formed by clocked paths starting at a vertex v ∈ Vi. By
restricting the edges used between sectors Vi+j and Vi+j+1 to an appropriate time interval Ij−i, we
ensure that the time labels of all these paths are monotonically clockwise increasing.

▶ Lemma 5.2. Let C ≥ 3, 1
2 < γ < α < 1, and let G ∼ Fn,p, where p = 2C2 (log n)α

n . Then
a.a.s. G contains a set V ′ of n − o(n) vertices, such that, denoting G′ := G[V ′], every vertex
in V ′ reaches at least (log n)(C−3)γ vertices in G′

[0,p/2] and is reached by at least the same
number of vertices in G′

[p/2,p].

In the rest of this section we prove Theorem 5.1 using the above lemma, whose proof is
found in Appendix F of the full version.

Proof of Theorem 5.1. Let γ = 0.7, α = 0.9, C = 30, and let n′(n) ∈ n − o(n) be
the size of the vertex set guaranteed by Lemma 5.2. Set ε1 := C2 (log n)α

n ∈ o
(

log n
n

)
,

ε2 := 4 log log n′

log n′ ∈ o(1), and ε3 := 1
3 log log n ∈ o(1). Set also p1 :=

( 1
3 + ε2

) log n′

n′ and
p2 :=

( 1
3 + ε3

) log n′

n′ . Finally, define p := 2ε1 + 2p1 + p2, which is equal to log n
n + ε for some

ε ∈ o
(

log n
n

)
.

Let G ∼ Fn,p. We split [0, p] into a total of five intervals Ii, i ∈ [5]. The first and the
last interval are short and each has length ε1, i.e., I1 = [0, ε1] and I5 = [p − ε1, p]. The three
middle intervals are long and have lengths p1, p2, and p1, respectively, i.e., I2 = [ε1, ε1 + p1],
I3 = [ε1 +p1, ε1 +p1 +p2], I4 = [p− (ε1 +p1), p−ε1]. We will reveal the edges of the graph in
three phases (Phase 1.1, Phase, 1.2, and Phase 2), as was graphically summarized in Figure 3
in the introduction, and in each phase we condition on the edges revealed in the previous
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phases. In Phase 1.1 we reveal edges in the intervals I1 and I5 and apply Lemma 5.2 to
identify a large set of nodes V ′, each of which can reach poly-logarithmically many vertices
in V ′ during the first interval and can be reached by poly-logarithmically many vertices in V ′

during the last interval via temporal paths that use only nodes from V ′. In the subsequent
phases we restrict our attention to the subgraph induced by V ′, which is the target giant
closed connected component. In Phase 1.2, we reveal edges appearing in the intervals I2 and
I4. Because in Phase 1.1 a.a.s. we revealed poly-logarithmic number of edges for every vertex,
we can use Lemma C.10 to argue that for every vertex v ∈ V ′ the poly-logarithmic set of
vertices reached by v during I1 can reach polynomially many vertices during I2. Similarly,
during I4 polynomially many vertices can reach the poly-logarithmic set of vertices that
reach v during I5. The main outcome of this phase is that every vertex in v ∈ V ′ reaches
polynomially many vertices in V ′ during I1 ∪ I2 and is reached by at least as many vertices in
I4 ∪ I5. Finally, in Phase 2, because in the previous phases a.a.s. at most poly-logarithmically
many edges were revealed for every vertex, we can apply Corollary 4.7 to prove that for each
ordered pair of vertices u, w ∈ V ′ the set of vertices reached by u during I1 ∪ I2 can reach
during I3 the set of vertices that reach w during I4 ∪ I5, implying that u can reach w during
[0, p]. We now proceed with the formal details.

Phase 1.1. Let G1 be the temporal subgraph of G formed by the edges with time labels in
the intervals I1 ∪ I5. Note that, up to shifting the time labels in the interval I5 by p − 2ε1,
G1 is distributed according to Fn,2ε1 . Thus, by Lemma 5.2, a.a.s. there is a set V ′ ⊆ V (G)
containing n′ vertices such that, denoting G′ := G[V ′], every vertex v ∈ V ′ reaches a set
R1(v) of at least (log n)(C−3)γ vertices in G′

I1
and is reached by a set R′

1(v) of at least
(log n)(C−3)γ vertices in G′

I5
.

Phase 1.2. Let G1 be the underlying graph of G1. Since G1 is distributed as an Erdős-Rényi
graph Gn, 2ε1 , similarly to Observation 4.6, we have that ∆(G1) < 4 log n a.a.s. Hence, in the
graph G′

2 =
(

V ′,
(

V ′

2
)

\ E(G1)
)

the minimum degree is at least n′ − 4 log n ≥ n′ − (log n′)2.
Observe that, up to shifting time labels, G′

I2
∼ Fp1(G′

2) when conditioning on the knowledge
about all edges seen in I1 ∪ I5. Therefore, since |R1(v)| ≥ (log n′)13 for every vertex v ∈ V ′,
by applying Lemma C.10 to G′

I2
and R1(v) (with parameter z = 1/3 + log log n′

log n′ ), we conclude

that the vertices in R1(v) reach in G′
I2

at least r := (n′)
1
3 + log log n′

log n′ = (n′)1/3 log n′ vertices with
probability at least 1 − 2(n′)− log log n′ . By the union bound, we have that with probability
at least 1 − 2(n′)1−log log n′ ∈ 1 − o(1), every vertex v ∈ V ′ can reach in G′

I1∪I2
a set R2(v) of

at least r vertices. Symmetrically, with probability at least 1 − 2(n′)1−log log n′ ∈ 1 − o(1),
every vertex v ∈ V ′ is reached in G′

I4∪I5
by a set R′

2(v) of at least r vertices.

Phase 2. Let G′
3 be the static graph defined by the vertex set V ′ and all edges appearing

in G′
I1∪I2

and G′
I4∪I5

. As in Phase 1.2, we can argue that the maximum degree of G′
3 is at

most 4 log n′ a.a.s., and therefore the minimum degree of the graph G′
4 =

(
V ′,

(
V ′

2
)

\ E(G′
3)

)
is at least n′ − (log n′)2. Hence, up to shifting time labels, G′

I3
is distributed according

to Fp2(G′
4) when conditioned on the knowledge of all edges revealed in I1 ∪ I2 ∪ I4 ∪ I5.

Thus, by Corollary 4.7, a given set of at least (n′)1/3 log n′ vertices in G′
I3

can reach another
given set of at least as many vertices with probability at least 1 − 3(n′)− log log n′ . Applying
this to all ordered pairs of sets (R2(v), R′

2(w)), v, w ∈ V ′ and using the union bound, we
conclude that the probability that all these pairs of sets reach each other in G′

I3
is at least

1 − 3(n′)2−log log n′ ∈ 1 − o(1).
Putting all together, we conclude that a.a.s. in G′ = G[V ′] any vertex reaches every other

vertex. Thus, V ′ is, as desired, a giant closed connected component. ◀
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