
Approximating Submodular k-Partition via
Principal Partition Sequence
Karthekeyan Chandrasekaran # Ñ

University of Illinois, Urbana-Champaign, IL, USA

Weihang Wang #

University of Illinois, Urbana-Champaign, IL, USA

Abstract
In submodular k-partition, the input is a submodular function f : 2V → R≥0 (given by an evaluation
oracle) along with a positive integer k and the goal is to find a partition of the ground set V into k

non-empty parts V1, V2, . . . , Vk in order to minimize
∑k

i=1 f(Vi). Narayanan, Roy, and Patkar [18]
designed an algorithm for submodular k-partition based on the principal partition sequence and
showed that the approximation factor of their algorithm is 2 for the special case of graph cut
functions (which was subsequently rediscovered by Ravi and Sinha [22]). In this work, we study
the approximation factor of their algorithm for three subfamilies of submodular functions – namely
monotone, symmetric, and posimodular and show the following results:
1. The approximation factor of their algorithm for monotone submodular k-partition is 4/3. This

result improves on the 2-factor that was known to be achievable for monotone submodular
k-partition via other algorithms. Moreover, our upper bound of 4/3 matches the recently shown
lower bound under polynomial number of function evaluation queries [23]. Our upper bound of
4/3 is also the first improvement beyond 2 for a certain graph partitioning problem that is a
special case of monotone submodular k-partition.

2. The approximation factor of their algorithm for symmetric submodular k-partition is 2. This
result generalizes their approximation factor analysis beyond graph cut functions.

3. The approximation factor of their algorithm for posimodular submodular k-partition is 2.
We also construct an example to show that the approximation factor of their algorithm for arbitrary
submodular functions is Ω(n/k).

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.3

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2305.01069

Funding Karthekeyan Chandrasekaran: Supported in part by NSF grants CCF 1814613 and 1907937
Weihang Wang: Supported in part by NSF grants CCF 1814613 and 1907937.

Acknowledgements Karthekeyan Chandrasekaran would like to thank Chandra Chekuri for asking
about the approximation factor of the principal partition sequence based approach for symmetric
submodular k-partition.

1 Introduction

A set function f : 2V → R is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for every
A, B ⊆ V . An evaluation oracle for a function f : 2V → R takes a subset A ⊆ V as input
and returns f(A). We consider the submodular k-partition problem defined as follows: The
input consists of a non-negative submodular function f : 2V → R≥0 on a finite ground set V

via an evaluation oracle and an integer k ≥ 2. The goal is to find a partition V1, V2, . . . , Vk of
V into k non-empty parts in order to minimize

∑k
i=1 f(Vi). Namely, the goal is to compute

© Karthekeyan Chandrasekaran and Weihang Wang;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthe@illinois.edu
https://karthik.ise.illinois.edu/
https://orcid.org/0000-0002-3421-7238
mailto:weihang3@illinois.edu
https://orcid.org/0000-0002-0628-5532
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.3
https://arxiv.org/abs/2305.01069
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Approximating Submodular k-Partition via Principal Partition Sequence

min

∑
i∈[k]

f(Vi) : V1, V2, . . . , Vk is a partition of V, Vi ̸= ∅ ∀i ∈ [k]

 .

Throughout, we will assume that the input submodular function is non-negative and denote
the size of the ground set V by n. If k = 2, then the problem reduces to the classic submodular
minimization problem. We emphasize that our focus is on submodular k-partitioning when
k is part of input (see [4] for a discussion of the problem for fixed constant k). Submodular
k-partition formulates several interesting partitioning problems and we will discuss some of
the special cases below. For arbitrary submodular functions, the problem is NP-hard [10],
does not admit a (2 − ϵ)-approximation assuming polynomial number of function evaluation
queries [23], does not admit a n1/(log log n)c-approximation for every constant c assuming
the Exponential Time Hypothesis [6], and the best approximation factor that is known is
O(k) [19, 26].

In this work, we will be interested in the submodular k-partition problem for subfamilies
of submodular functions – namely monotone, symmetric, and posimodular submodular
functions. A set function f : 2V → R is
1. monotone if f(B) ≥ f(A) for every A ⊆ B ⊆ V ,
2. symmetric if f(A) = f(V − A) for every A ⊆ V , and
3. posimodular if f(A) + f(B) ≥ f(A − B) + f(B − A) for every A, B ⊆ V .
If the input submodular function is monotone/symmetric/posimodular, then we call the
associated submodular k-partition problem as monotone/symmetric/posimodular submodular
k-partition. We note that monotone submodular functions and symmetric submodular
functions are also posimodular1. Hence, posimodular submodular k-partition problem
generalizes both monotone submodular k-partition and symmetric submodular k-partition
problems. We now discuss the approximation status of symmetric/monotone/posimodular
submodular k-partition and some of their well-known special cases (see Table 1 for a
summary of approximation factors of symmetric/monotone/posimodular submodular k-
partition achieved by different approaches).

Monotone submodular k-partition. Special cases of monotone submodular k-partition
problem include matroid k-partition and coverage k-partition – the submodular functions
of interest here are matroid rank functions and coverage functions respectively. Matroid
k-partition captures several interesting problems: e.g., (1) partition the columns of a given
matrix into k non-empty parts to minimize the sum of the dimension of the subspace spanned
by the parts and (2) partition the edges of a given graph into k non-empty parts to maximize
the sum of the number of connected components formed by the parts. Coverage k-partition
also captures several interesting problems: e.g., (3) partition the vertices of a given graph
into k non-empty parts V1, V2, . . . , Vk in order to minimize

∑k
i=1 f(Vi), where f(P) is the

number of edges incident to the vertex subset P ⊆ V . To gain a better understanding of
the difficulty in solving/approximating monotone submodular k-partition, we encourage the
reader to briefly think about the concrete special case of matrix column partitioning problem
(i.e., problem (1) described above which is seemingly a linear algebra problem) before reading
further.

1 In fact, monotone functions are posimodular since f(A) ≥ f(A − B) and f(B) ≥ f(B − A) for every
A, B ⊆ V . Symmetric submodular functions are posimodular: for every A, B ⊆ V , we have that
f(A) + f(B) = f(V − A) + f(B) ≥ f((V − A) ∪ B) + f((V − A) ∩ B) = f(V − (A − B)) + f(B − A) =
f(A − B) + f(B − A).

K. Chandrasekaran and W. Wang 3:3

Monotone submodular k-partition is NP-hard [23]. Moreover, it admits a simple (and fast)
(2 − 1/k)-approximation algorithm that will be denoted henceforth as the cheapest singleton
partitioning algorithm: return the partition V1 := {v1}, V2 := {v2}, . . . , Vk−1 := {vk−1}, Vk :=
V − {v1, . . . , vk−1}), where the n elements of the ground set are ordered as v1, . . . , vn such
that f({v1}) ≤ f({v2}) ≤ . . . ≤ f({vn}). Santiago [23] showed that this is a 2-approximation.
His analysis can be extended to show that it is in fact a (2 − 1/k)-approximation2 and this is
the best possible approximation factor for this algorithm3. Alternatively, the greedy splitting
algorithm presented in [26] achieves a (2 − 2/k)-approximation. On the inapproximability
front, Santiago [23] showed that there does not exist an algorithm that makes polynomial
number of function evaluation queries to obtain a (4/3 − ϵ)-approximation for every constant
ϵ > 0.

Symmetric submodular k-partition. Well-known special cases of symmetric submodular
k-partition problem are graph k-cut and hypergraph k-partition – the submodular functions
of interest here are the cut functions of an explicitly given graph and hypergraph respectively.
Graph k-cut is NP-complete [10] and does not have a polynomial-time (2−ϵ)-approximation for
every constant ϵ > 0 under the Small Set Expansion Hypothesis [12]. There are several known
approaches to achieve a 2-approximation for graph k-cut – (i) greedy splitting approach [24],
(ii) Gomory-Hu tree based approach [25], (iii) extreme sets based approach [13], (iv) principal
partition sequence based approach [2, 18, 22], and (v) covering-LP based approach [7, 15, 21].
Greedy splitting, Gomory-Hu tree, and extreme sets based approaches lead to a (2 − 2/k)-
approximation while the principal partition sequence and the covering-LP based approaches
lead to a (2 − 2/n)-approximation for graph k-cut. The principal partition sequence and the
covering-LP based approaches for graph k-cut have also been shown to be related to each
other [7]. The principal partition sequence based approach is the main algorithm of interest
to our work and we will discuss it in detail in Section 2.

For the more general problem of symmetric submodular k-partition, two of the approaches
discussed in the previous paragraph for graph k-cut have been generalized to obtain 2-
approximations – the greedy splitting approach [26] and the Gomory-Hu tree approach
lead to a (2 − 2/k)-approximation. Analyzing the approximation factor of the principal
partition sequence based approach for symmetric submodular k-partition was one of the
driving motivations of our work. On the inapproximability front, Santiago [23] showed that
there does not exist an algorithm that makes polynomial number of function evaluation
queries to obtain a (2 − ϵ)-approximation for every constant ϵ > 0.

2 The cheapest singleton partitioning algorithm returns a solution whose cost is f(V −
Vk) +

∑k−1
i=1 f({vi}) ≤ f(V) +

∑k−1
i=1 f({vi}) ≤ f(V) + (1 − 1/k)

∑k

i=1 f({vi}) ≤
(2 − 1/k) max{f(V),

∑k

i=1 f({vi})} while the cost of an optimum k-partition is at least
max{f(V),

∑k

i=1 f({vi})}. The lower bound on the cost of the optimum k-partition V ∗
1 , . . . , V ∗

k

is because
∑k

i=1 f(V ∗
i) ≥ f(V) by non-negativity and submodularity and moreover, if the optimum

partition is indexed such that min{j ∈ [n] : vj ∈ V ∗
i } ≤ min{j ∈ [n] : vj ∈ V ∗

i+1} for all i ∈ [k − 1], then
f(V ∗

i) ≥ f({vi}) by monotonicity and hence,
∑k

i=1 f(V ∗
i) ≥

∑k

i=1 f({vi}).
3 The best possible approximation factor for the cheapest singleton partitioning algorithm is 2−1/k as seen

from this example: Let f be the rank function of a partition matroid on a k-partition {S1, . . . , Sk} of the
ground set S where |Si| ≥ 2 for all i ∈ [k]. Then, the algorithm may return {{s1}, {s2}, . . . , {sk−1}, S −
{s1, . . . , sk−1}}, where si ∈ Si for all i ∈ [k − 1] and this k-partition has objective value 2k − 1, whereas
the partition {S1, . . . , Sk} has objective value k.

APPROX/RANDOM 2023

3:4 Approximating Submodular k-Partition via Principal Partition Sequence

Posimodular submodular k-partition. The only natural family of posimodular submodular
functions that we are familiar with are symmetric submodular functions and monotone
submodular functions as well as their positive linear combinations. As mentioned before,
posimodular submodular k-partition is a unified generalization of symmetric submodular
k-partition and monotone submodular k-partition. To the best of authors’ knowledge, posi-
modular submodular k-partition has not been studied in the literature before and there are
no specialized algorithms or approximation factor analysis of existing algorithms for posi-
modular submodular k-partition. A slight modification to the analysis of the greedy splitting
algorithm presented in [26] shows that their algorithm achieves a (3 − 2/k)-approximation
for posimodular submodular k-partition – we refrain from presenting this analysis in the
interests of brevity. On the inapproximability front, since symmetric submodular functions
are also posimodular submodular, the lower bound for symmetric submodular k-partition
also holds for posimodular submodular k-partition, i.e., there does not exist an algorithm for
posimodular submodular k-partition that makes polynomial number of function evaluation
queries to obtain a (2 − ϵ)-approximation for every constant ϵ > 0.

1.1 Our Results
In this work, we investigate Narayanan, Roy, and Patkar’s [18] principal partition sequence
based algorithm for submodular k-partition. They showed that their algorithm achieves a 2-
approximation for graph k-cut (which was subsequently rediscovered by Ravi and Sinha [22]).
We show the following results:
1. Their algorithm achieves a 4/3-approximation for monotone submodular k-partition. This

result improves on the 2-factor that is known to be achievable via two different algorithms:
the cheapest singleton partitioning algorithm and the greedy splitting algorithm. Moreover,
our upper bound of 4/3 matches the lower bound shown by Santiago [23]. We will discuss
the significance of our upper bound result shortly.

2. Their algorithm achieves a 2-approximation for symmetric submodular k-partition. This
factor matches the 2-factor that is known to be achievable via two other algorithms: the
greedy splitting algorithm and the Gomory-Hu tree based algorithm, and also matches
the lower bound [12,23]. Our contribution here is generalizing the analysis of [18,22] to
beyond graph cut functions.

3. Their algorithm achieves a 2-approximation for posimodular submodular k-partition. This
result improves on the 3-factor that is known to be achievable via the greedy splitting
algorithm and matches the lower bound of 2 shown by Santiago [23].

See Table 1 for a comparison. Graph k-cut is the well-studied special case of symmetric
submodular k-partition/posimodular submodular k-partition, so we include that as the last
column in the table for comparison. Approximation factors in the row corresponding to
principal partition sequence are the main results of this work. In the last row of the table,
we include the known lower bounds on the approximation factor for comparison. The lower
bound for graph cut function is assuming the Small Set Expansion Hypothesis [12] while
the rest of the lower bounds are assuming polynomial number of function evaluation queries.
Dashes in the table indicate that either the approach does not extend or there has been no
analysis of the approximation factor of the approach for the subfamily.

We complement our upper bounds on the approximation factor of their algorithm with
matching lower bound constructions for each subfamily of submodular functions. Our
results show that the principal partition sequence based algorithm achieves the best possible
approximation factor for broad subfamilies of submodular functions, thus illustrating the
power and applicability of this algorithm. On the other hand, we show that the approximation

K. Chandrasekaran and W. Wang 3:5

factor of their algorithm for arbitrary submodular functions is Ω(n/k) via a lower bound
construction. This construction shows that their principal partition sequence based algorithm
cannot directly improve the approximation factor for submodular k-partition beyond the
current best O(k).

We briefly discuss the significance of our 4/3-approximation result for monotone submod-
ular k-partition. Firstly, prior to our results, there were no known families of submodular
functions for which the submodular k-partition problem could be approximated to a factor
better than 2. Our result for monotone submodular functions breaks this 2-factor barrier
for a broad family of submodular functions. Secondly, our result for monotone submodular
k-partition leads to a new approximation result even for a graph partitioning problem that
we describe now. For a graph G = (V, E) with edge weights w : E → R+, consider functions
d, f : 2V → R+ defined by d(S) := w(δ(S)) and f(S) := w(E[S]) + w(δ(S)) for every S ⊆ V ,
where δ(S) denotes the set of edges with exactly one end-vertex in S, E[S] denotes the set of
edges with both end-vertices in S, and w(F) :=

∑
e∈F w(e) for every F ⊆ E. The function

d is the cut function of the graph and is symmetric submodular. The function f is the
coverage function of the graph and is monotone submodular. Submodular k-partition for
the function d is known as graph k-cut and it is known that graph k-cut does not admit a
(2− ϵ)-approximation under the Small Set Expansion Hypothesis [12]. In contrast, our results
show that coverage k-partition in graphs – i.e., submodular k-partition for the function f –
admits a 4/3-approximation. We note that coverage k-partition in graphs is NP-hard [23]
and its approximability is an intriguing open question.

Table 1 Approximation factors of symmetric/monotone/posimodular submodular k-partition
using different approaches. Result in the first row marked with an asterisk follows by slight
modifications to the known analysis of the approximation factor for symmetric submodular functions
given in [26].

Monotone Symmetric Posimodular Graph
Submodular Submodular Submodular Cut Function

Function Function Function
Greedy splitting 2 − 2/k [26] 2 − 2/k [26] 3 − 2/k [26]* 2 − 2/k [24]

Extreme Sets — — — 2 − 2/k [13]
Gomory-Hu tree — 2 − 2/k [Folklore] — 2 − 2/k [25]

Covering-LP — — — 2 − 2/k [7, 15]
Cheapest Singleton 2 − 1/k [23] — — —

Partitioning
Principal Partition 4/3 − 4/(9n + 3) 2 − 2/n 2 − 2/(n + 1) 2 − 2/n [18, 22]

Sequence (this work) (this work) (this work)
Lower Bound 4/3 − ϵ [23] 2 − ϵ [23] 2 − ϵ [23] 2 − ϵ [12]

Organization. We discuss the principal partition sequence based algorithm in Section 2. We
analyze the approximation factor of the algorithm with matching lower bound constructions
for monotone submodular k-partition in 3. Due to space limitations, we refer the reader
to the full version of the work [5] for the analysis of the approximation factor of the
constructionsalgorithm with matching lower bound constructions for symmetric submodular
k-partition and posimodular submodular k-partition. We exhibit an instance of submodular
k-partition where the algorithm achieves an approximation factor of Ω(n/k) in Section 4 and
conclude with certain open questions in Section 5.

APPROX/RANDOM 2023

3:6 Approximating Submodular k-Partition via Principal Partition Sequence

1.2 Related work

The principal partition sequence based algorithm for submodular k-partition was introduced
by Narayanan, Roy, and Patkar [18]. We will formally define the principal partition sequence
of a submodular function and describe their algorithm in Section 2. They analyzed the
approximation factor of their algorithm for two variants of k-partitioning problems in
hypergraphs. These two variants are not special cases of symmetric/monotone/posimodular
submodular k-partition and are not of direct interest to our work. However, we describe
these variants to highlight the versatility of the principal partition sequence based approach
and also to shed light on the results of Narayanan, Roy, and Patkar’s work which do not
seem to be well-known in the literature. Given a hypergraph H = (V, E), a hyperedge cost
function c : E → R+, and an integer k, the goal is to find a partition P := {V1, V2, . . . , Vk}
of V into k non-empty parts that minimizes an objective of interest:

1. If the objective is the sum of cost of hyperedges that intersect at least two parts of P,
then the problem is known as hypergraph k-cut.

2. If the objective is the sum of cost of hyperedges relative to the partition P, where the
cost of a hyperedge e relative to P is c(e)(ℓ − 1) with ℓ being the number of parts of P
intersected by e, then the problem is known as normalized coverage k-partition4.

Narayanan, Roy, and Patkar [18] showed that their principal partition sequence based
algorithm achieves a r(1 − 1/n)-approximation for hypergraph k-cut, where r is the size of
the largest hyperedge and n is the number of vertices in the input hypergraph, and achieves
a (2 − 2/n)-approximation for normalized coverage k-partition. A consequence (of both of
their results) is that the principal partition sequence based algorithm achieves a (2 − 2/n)-
approximation for graph k-cut. Their principal partition sequence based algorithm for graph
k-cut is equivalent to the Lagrangean relaxation approach suggested by Barahona [2]. The
approximation factor of the principal partition sequence based algorithm for graph k-cut
being at most 2 was rediscovered by Ravi and Sinha [22] and for hypergraph k-cut being at
most r was rediscovered by Baïou and Barahona [1].

We mention that a slight modification to the analysis of the greedy splitting algorithm
presented in [26] shows that the greedy splitting algorithm achieves a (2−2/k)-approximation
for normalized coverage k-partition and hypergraph k-partition. We note that hypergraph
k-partition is a special case of symmetric submodular k-partition and is different from hyper-
graph k-cut (for definition of hypergraph k-partition, see discussion of symmetric submodular
k-partition at the beginning of the introduction). On the inapproximability front, it is known
that hypergraph k-cut does not admit an approximation factor of n1/(log log n)c , where c is a
constant, assuming the Exponential Time Hypothesis [6]. The best inapproximability result
for the more general submodular k-partition problem (mentioned in the introduction) follows
from this inapproximability for hypergraph k-cut.

4 We introduce this nomenclature because the problem is equivalent to finding a partition V1, V2, . . . , Vk

of the ground set V in order to minimize
∑k

i=1 f(Vi) − f(V), where f : 2V → R+ is an explicitly given
coverage function (every coverage function can be uniquely represented using a hypergraph [3]). We
consider the subtraction of f(V) as normalizing the objective since it is a trivial lower bound on the
sum of the function values of the parts:

∑k

i=1 f(Vi) ≥ f(V) holds for every k-partition V1, V2, . . . , Vk

since f is a coverage function.

K. Chandrasekaran and W. Wang 3:7

2 Principal partition sequence based algorithm

In this section, we recall the principal partition sequence based algorithm for submodular
k-partition designed by Narayanan, Roy, and Patkar [18]. We begin with some notation.
Throughout this work, a partition of a set S is defined to be a collection of nonempty pairwise
disjoint subsets of S whose union is S, and a k-partition of a set S is defined to be a partition
of S with exactly k parts. For two distinct partitions P and Q of a set S, if every part of Q
is completely contained in some part of P then we say that Q refines P (equivalently, P is
a coarsening of Q). For two distinct partitions P and Q of a set S, we will say that Q is
obtained from P by refining only one part of P if there exists a part P ∈ P such that P /∈ Q
and every part Q ∈ Q satisfies either Q ⊊ P or Q ∈ P (i.e., either Q is a proper subset of
the part P or Q is a part of the partition P); we will denote such a part P ∈ P as the part
refined by Q.

Let f : 2V → R be a set function on ground set V . For a collection P of subsets of
V , we write f(P) :=

∑
P ∈P f(P). We will say that a partition P = {P1, . . . , Pk} is an

optimal k-partition if f(P) ≤ f(Q) for every k-partition Q of V . We define the function
gf,P : R≥0 → R for a partition P of the ground set V and the function gf : R≥0 → R as
follows:

gf,P(b) := f(P) − b|P| and
gf (b) := min{gf,P(b) : P is a partition of V }.

We drop the subscript f and instead write gP and g respectively, if the function f is clear
from context. By definition, the function gf is piece-wise linear. It can be shown that gf

has at most |V | − 1 breakpoints. The next theorem shows that if the function f : 2V → R is
submodular, then there exists a sequence of partitions achieving the gf function values at
the breakpoints that have a nice structure; moreover, the breakpoints and such a sequence
of partitions can be computed in polynomial time given access to the evaluation oracle of
the submodular function f . We emphasize that the theorem holds for arbitrary submodular
functions (which may not be non-negative valued).

▶ Theorem 1 ([16,18]). Let f : 2V → R be a submodular function on a ground set V . Then,
there exists a sequence P1, P2, . . . , Pr of partitions of V and values b1, b2, . . . , br−1 such that
1. P1 = {V } and Pr = {{v} : v ∈ V },
2. For each j ∈ [r − 1], the partition Pj+1 is obtained from Pj by refining only one part of

Pj,
3. b1 < b2 < . . . < br−1,
4. g(bj) = gPj (bj) = gPj+1(bj) for each j ∈ [r − 1] and
5. g(b) = gP1(b) for all b ∈ (−∞, b1],

g(b) = gPj+1(b) for all b ∈ [bj , bj+1] for each j ∈ [r − 2], and
g(b) = gPr

(b) for all b ∈ [br−1, ∞).
Moreover, such a sequence P1, P2, . . . , Pr of partitions of V and values b1, b2, . . . , br−1 can
be computed in polynomial time given access to the evaluation oracle of the submodular
function f .

For a submodular function f : 2V → R, we will denote a sequence of partitions
P1, P2, . . . , Pr and the sequence of values b1, b2, . . . , br−1 satisfying the conditions given
in Theorem 1 as a principal partition sequence and the critical value sequence of f , respec-
tively. We note that this definition differs from those in [16,18] owing to the reversed indexing
order and the imposition of condition 2 – we note that the proofs given in those papers also

APPROX/RANDOM 2023

3:8 Approximating Submodular k-Partition via Principal Partition Sequence

show that condition 2 holds (also see [22]). The principal partition sequence of submodular
functions is known in the literature as principal lattice of partitions of submodular functions
since there exists a lattice structure associated with the sequence of partitions. We choose to
call it as principal partition sequence in this work since the sequence suffices for our purpose.
For more on principal lattice of partitions of submodular functions and their computation,
we refer the reader to [2, 8, 9, 11,14,16–18,20].

We now discuss the principal partition sequence based algorithm for submodular k-
partition that was proposed by Narayanan, Roy, and Patkar [18]. This algorithm computes a
principal partition sequence satisfying all conditions in Theorem 1. If the sequence contains a
partition that has exactly k parts, then the algorithm returns this k-partition. Otherwise, the
algorithm returns a k-partition obtained by refining the partition in the sequence that has
the largest number of parts that is less than k. The refinement is based on the partition in
the sequence that has the fewest number of parts that is more than k. The formal description
of the refinement is given in Algorithm 1. Since the sequence P1, P2, . . . , Pr satisfying the
conditions of Theorem 1 can be computed in polynomial time, Algorithm 1 can indeed be
implemented to run in polynomial time. By design, the algorithm returns a k-partition. The
remainder of this work will focus on analyzing the approximation factor of the algorithm.

Algorithm 1 Principal partition sequence based algorithm for submodular k-partition.

Input: A submodular function f : 2V → R given by evaluation oracles and an integer
k ≥ 2.
Output: A k-partition P of V .
Use Theorem 1 to compute a principal partition sequence P1, P2, . . . , Pr of the submodular
function f satisfying all conditions stated in that theorem.
if |Pj | = k for some j ∈ [r] then

Return P := Pj .
end if
Let i ∈ {2, 3, . . . , r} so that |Pi−1| < k < |Pi|.
Let S ∈ Pi−1 be the part refined by Pi and P ′ be the parts of Pi contained in S.
Let P ′ = {B1, . . . , B|P′|} such that f(B1) ≤ f(B2) ≤ . . . ≤ f(B|P′|).
Return P := (Pi−1\{S}) ∪

{
B1, B2, . . . , Bk−|Pi−1|

}
∪
{⋃|P′|

j=k−|Pi−1|+1 Bj

}
.

To construct examples that exhibit tight lower bound on the approximation factor of
Algorithm 1, we will need the following proposition that identifies a special case under which
the principal partition is unique and consists only of two partitions – namely, the partition
into singletons and the partition that consists of only one part. We refer the reader to the
full version of this work for the proof [5].

▶ Proposition 2. Let f : 2V → R≥0 be a non-negative submodular function. Suppose that
for every partition P ≠ Q, {V } where Q := {{v} : v ∈ V }, the function f satisfies

f(P) − f(V)
|P| − 1 >

f(Q) − f(V)
|V | − 1 .

Then, the principal partition sequence of f is {V }, Q.

K. Chandrasekaran and W. Wang 3:9

3 Approximation factor analysis

In this section, we analyze the approximation factor of Algorithm 1 for various subfamilies
of submodular functions. We state and prove certain lemmas that will be useful for all
submodular functions (Lemmas 3 and 4). We analyze the approximation factor of Algorithm
1 for monotone submodular functions in Section 3.1. We refer the reader to the full version
of this work [5] for the analysis of the approximation factor of Algorithm 1 for symmetric
submodular functions and for posimodular submodular functions.

Our first lemma identifies a special case in which Algorithm 1 returns an optimum
k-partition. This special case was also identified by Narayanan, Roy, and Patkar. We
note that the following lemma holds for arbitrary submodular functions (which may not be
non-negative).

▶ Lemma 3 ([18]). Let k ≥ 2 be an integer, f : 2V → R be a submodular function on a
ground set V , and P1, P2, . . . , Pr be a principal partition sequence of the submodular function
f satisfying the conditions of Theorem 1. If there exists j ∈ [r] such that |Pj | = k, then Pj

is an optimal k-partition.

Proof. Let P∗ be a k-partition of V that minimizes f(P∗) and let bj be the value where
g(bj) = gPj

(bj). Then,

f(P∗) − bj · k = gP∗(bj) ≥ g(bj) = gPj (bj) = f(Pj) − bj |Pj | = f(Pj) − bj · k,

and hence, f(P∗) ≥ f(Pj). Therefore, Pj is indeed an optimal k-partition. ◀

In order to address the case where there is no j ∈ [r] such that |Pj | = k, we need the
following lemma that shows two lower bounds on the optimum value. The first lower bound
in the lemma holds for arbitrary submodular functions (which may not be non-negative)
while the second lower bound holds for non-negative submodular functions.

▶ Lemma 4. Let k ≥ 2 be an integer, f : 2V → R be a submodular function on a ground set
V , P∗ be a k-partition of V that minimizes f(P∗), and P1, P2, . . . , Pr be a principal partition
sequence of the submodular function f satisfying the conditions of Theorem 1. Suppose
|Pj | ≠ k for all j ∈ [r]. Let Pi−1, Pi be the partitions such that |Pi−1| < k < |Pi|. Then,

(i) f(P∗) ≥ |Pi|−k
|Pi|−|Pi−1| f(Pi−1) + k−|Pi−1|

|Pi|−|Pi−1| f(Pi) and
(ii) f(P∗) ≥ f(Pi−1) if f is non-negative.

Proof. We prove the two lower bounds below.
(i) Let bi−1 be the value such that gPi−1(bi−1) = gPi

(bi−1). Then, we have

f(Pi−1) − bi−1|Pi−1| = f(Pi) − bi−1|Pi| =⇒ bi−1 = f(Pi) − f(Pi−1)
|Pi| − |Pi−1|

. (1)

By condition 4 of Theorem 1, we also have

f(P∗) − bi−1 · k = gP∗(bi−1) ≥ g(bi−1) = gPi(bi−1) = f(Pi) − bi−1|Pi|
=⇒ f(P∗) ≥ f(Pi) + bi−1(k − |Pi|). (2)

Combining (1) and (2), we get

f(P∗) ≥ f(Pi) + f(Pi) − f(Pi−1)
|Pi| − |Pi−1|

(k − |Pi|)

= |Pi| − k

|Pi| − |Pi−1|
f(Pi−1) + k − |Pi−1|

|Pi| − |Pi−1|
f(Pi).

APPROX/RANDOM 2023

3:10 Approximating Submodular k-Partition via Principal Partition Sequence

(ii) Let P ∗
1 , . . . , P ∗

k be the parts of P∗ (in arbitrary order). Let k′ := |Pi−1|. We know that
k′ < k. Consider the k′-partition Q obtained as Q1 := P ∗

1 , Q2 := P ∗
2 , . . . , Qk′−1 :=

P ∗
k′−1, Qk′ := ∪k

j=k′P ∗
j . Then,

f(P∗) =
k∑

i=1
f(P ∗

i) ≥

k′−1∑
i=1

f(P ∗
i)

+ f(∪k
j=k′P ∗

j) =
k′∑

i=1
f(Qi) = f(Q).

The inequality above is due to submodularity and non-negativity. The partition Q is a
k′-partition. By Lemma 3, the partition Pi−1 is an optimal k′-partition. Hence,

f(Q) ≥ f(Pi−1).

The above two inequalities together imply that f(P∗) ≥ f(Pi−1). ◀

3.1 Monotone submodular functions

In this section, we bound the approximation factor of Algorithm 1 for monotone submodular
k-partitioning. The following is the main theorem of this section.

▶ Theorem 5. The approximation factor of Algorithm 1 for non-negative monotone submod-
ular k-partitioning is 4

3 − 4
9n+3 , where n is the size of the ground set.

The asymptotic approximation factor of 4/3 achieved by Algorithm 1 is the best possible
for non-negative monotone submodular k-partition: for every constant ϵ > 0, there does
not exist an algorithm that achieves a (4/3 − ϵ)-approximation using polynomial number of
function evaluation queries [23]. We will also exhibit examples to show the tightness of the
approximation factor for Algorithm 1 after proving the theorem. The proof of Theorem 5
follows from Lemma 3 and Lemma 6 shown below.

▶ Lemma 6. Let k ≥ 2 be an integer, f : 2V → R≥0 be a non-negative monotone submodular
function on a ground set V of size n, P∗ be a k-partition of V that minimizes f(P∗), and
P1, P2, . . . , Pr be a principal partition sequence of the submodular function f satisfying the
conditions of Theorem 1. Suppose |Pj | ≠ k for all j ∈ [r]. Then, the partition P returned by
Algorithm 1 satisfies

f(P) ≤
(

4
3 − 4

9n + 3

)
f(P∗).

Proof. Let Pi−1, Pi be the partitions such that |Pi−1| < k < |Pi|. Let S and P ′ =
{B1, B2, . . . , B|P′|} be as in Algorithm 1.

Firstly, since ∪|P′|
j=k−|Pi−1|+1Bj ⊆ S and f is monotone, we have that

f
(

∪|P′|
j=k−|Pi−1|+1Bj

)
≤ f(S).

Secondly, by our choice of B1, B2, . . . , Bk−|Pi−1|, we know that

k−|Pi−1|∑
j=1

f(Bj) ≤ k − |Pi−1|
|P ′|

f(P ′).

K. Chandrasekaran and W. Wang 3:11

Hence,

f(P) = f(Pi−1) − f(S) +
k−|Pi−1|∑

j=1
f(Bj) + f

 |P′|⋃
j=k−|Pi−1|+1

Bj


≤ f(Pi−1) +

k−|Pi−1|∑
j=1

f(Bj)

≤ f(Pi−1) + k − |Pi−1|
|P ′|

f(P ′)

= f(Pi−1) + k − |Pi−1|
|Pi| − |Pi−1| + 1(f(Pi) + f(S) − f(Pi−1)),

where the last equality follows from the fact that f(Pi−1) − f(S) + f(P ′) = f(Pi) and
|P ′| = |Pi| − |Pi−1| + 1. Rearranging, we have that

f(P) ≤ f(Pi−1)
|Pi| − |Pi−1| + 1(|Pi| − k + 1) + f(Pi)

|Pi| − |Pi−1| + 1(k − |Pi−1|)

+ f(S)
|Pi| − |Pi−1| + 1(k − |Pi−1|)

=
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(Pi−1)

|Pi| − |Pi−1|
(|Pi| − k + 1) + f(Pi) + f(S)

|Pi| − |Pi−1|
(k − |Pi−1|)

)
≤
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(P∗) + f(Pi−1)

|Pi| − |Pi−1|
+ f(S)

|Pi| − |Pi−1|
(k − |Pi−1|)

)
≤
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(P∗) + f(Pi−1)

|Pi| − |Pi−1|
(1 + k − |Pi−1|)

)
. (3)

where the second inequality above is by by Lemma 4(i) and the third inequality above is
because f(S) ≤ f(Pi−1). Inequality (3) implies that

f(P) ≤
(

|Pi| − |Pi−1|
|Pi| − |Pi−1| + 1

)(
f(P∗) + f(Pi−1) + f(Pi−1)

|Pi| − |Pi−1|
(1 + k − |Pi|)

)
≤
(

1 − 1
|Pi| − |Pi−1| + 1

)
(f(P∗) + f(Pi−1)) (since k < |Pi|)

≤ 2f(P∗),

where the last inequality is because f(Pi−1) ≤ f(P∗) by Lemma 4(ii). The above analysis
shows that the approximation factor is at most 2. We tighten the analysis now. As a
consequence of the above inequality, we may assume that f(P∗) ̸= 0 because if f(P∗) = 0,
then the returned k-partition P also satisfies f(P) = 0 and thus, is optimal. Let c :=
f(Pi−1)/f(P∗). By Lemma 4(ii), we have that f(Pi−1) ≤ f(P∗) and hence, c ∈ [0, 1]. For
convenience, we define A := k − |Pi−1| and B := |Pi| − k and note that A, B ≥ 1. Using this
notation, we may rewrite inequality (3) as

f(P) ≤
(

A + B

A + B + 1

)(
f(P∗) + 1 + A

A + B
f(Pi−1)

)
=
(

A + B

A + B + 1

)(
1 + 1 + A

A + B
· c

)
f(P∗). (4)

By Lemma 4(i), we have

f(P∗) ≥
(

B

A + B

)
f(Pi−1) +

(
A

A + B

)
f(Pi) =

(
B

A + B

)
cf(P∗) +

(
A

A + B

)
f(Pi).

APPROX/RANDOM 2023

3:12 Approximating Submodular k-Partition via Principal Partition Sequence

Rearranging, we have

f(Pi) ≤
(

1 − B

A + B
· c

)(
A + B

A

)
f(P∗) =

(
A + B

A
− B

A
· c

)
f(P∗).

Since P is obtained by coarsening Pi, we have f(P) ≤ f(Pi) by submodularity and non-
negativity of f . This implies

f(P) ≤
(

A + B

A
− B

A
· c

)
f(P∗). (5)

Combining inequalities (4) and (5), we have

f(P)
f(P∗) ≤ max

c∈[0,1]
min

{(
A + B

A + B + 1

)(
1 + 1 + A

A + B
· c

)
,

A + B

A
− B

A
· c

}
. (6)

Thus, in order to upper bound the approximation factor, it suffices to upper bound the right
hand side of inequality (6). Since

(
A+B

A+B+1

)(
1 + 1+A

A+B · c
)

and A+B
A − B

A · c are both linear
in c, with the former increasing and the latter decreasing as a function of c, the value

max
c∈R

min
{(

A + B

A + B + 1

)(
1 + 1 + A

A + B
· c

)
,

A + B

A
− B

A
· c

}

is achieved when the two terms are equal. Setting
(

A+B
A+B+1

)(
1 + 1+A

A+B · c∗
)

= A+B
A − B

A · c∗

and solving for c∗, we get

c∗ =
A+B

A − A+B
A+B+1

1+A
A+B+1 + B

A

=
B
A + 1

A+B+1
1+A

A+B+1 + B
A

.

Plugging c = c∗ into A+B
A − B

A · c yields

f(P)
f(P∗) ≤ max

c∈[0,1]
min

{
A + B

A + B + 1

(
1 + 1 + A

A + B
· c

)
,

A + B

A
− B

A
· c

}
≤ A + B

A
− B

A
· c∗ = 1 + B

A
(1 − c∗) = 1 + B

A

(
1 −

B
A + 1

A+B+1
1+A

A+B+1 + B
A

)

= 1 + AB

A + A2 + AB + B2 + B

≤ 1 + AB

3AB + A + B
(since A2 + B2 ≥ 2AB)

= 4
3 − 1

3 · A + B

3AB/2 + 3AB/2 + A + B

≤ 4
3 − 1

3 · A + B

3AB/2 + 3(A2 + B2)/4 + A + B
(since AB ≤ A2 + B2

2)

= 4
3 − 1

3 · 1
3(A + B)/4 + 1

≤ 4
3 − 4

9n + 3 .

The last inequality above is because A + B = |Pi| − |Pi−1| ≤ n − 1. ◀

K. Chandrasekaran and W. Wang 3:13

▶ Remark 7. The approximation factor of Algorithm 1 for non-negative monotone submodular
functions is at least 4/3 − 4/(9n + 3). We show this for n = 3 using the following example:
Let V = {a, b, c}, k = 2, and f : 2V → R≥0 be defined by

f(∅) = 0, f({a}) = 1, f({b}) = f({c}) = 1 + ϵ,

f({a, b}) = f({a, c}) = 3
2 + ϵ, f({b, c}) = f(V) = 2 + 2ϵ.

Submodularity and monotonicity of f can be verified by considering all possible subsets.
Moreover, the principal partition sequence of this instance is {V }, {{a}, {b}, {c}}. Thus,
Algorithm 1 returns the 2-partition {{a}, {b, c}}, whose objective value is 3+2ϵ. An optimum
2-partition is {{c}, {a, b}}, whose objective value is 5/2 + ϵ. Thus, the approximation factor
is 3+2ϵ

5/2+ϵ → 6
5 as ϵ → 0. We note that for n = 3, the approximation factor guaranteed by

Theorem 5 is 4
3 − 4

9n+3 = 6
5 .

We conclude the section by showing that there exist monotone submodular functions
for which the approximation factor of Algorithm 1 is at least 4/3 asymptotically (i.e., as
n → ∞).
▶ Lemma 8. For every odd positive integer n ≥ 5, there exists a function k = k(n) (i.e., k

is a function of n) and an instance of non-negative monotone submodular k-partition over
an n-element ground set such that the approximation factor of Algorithm 1 on that instance
is arbitrarily close to 4/3 − 4/(3n + 3).
Proof. Let n ≥ 5 be an arbitrary odd number, k = n+1

2 , and let V = {v1, . . . , vn} be the
ground set. Moreover, let U := {v1, . . . , v n−1

2
} and D := {v n+1

2
, . . . , vn} so that V = U ⊎ D.

Let g : 2U → R≥0 be a function over the ground set U defined by

g(S) =
{

1
2 + 1

2 · |S| if ∅ ≠ S ⊆ U,

0 if S = ∅.

and f : 2V → R≥0 be defined by

f(S) := min
{

g(S ∩ U) + (1 + ϵ)|S ∩ D|, n + 1
2

}
∀ S ⊆ V,

where ϵ > 0 is infinitesimally small. The function f satisfies f(∅) = 0, f(V) = n+1
2 ,

f(U) = n+1
4 , f(D) = n+1

2 , f({v}) = 1 for each v ∈ U , and f({v}) = 1 + ϵ for each u ∈ D.
We will use Q to denote the partition of V into n singleton sets. The following claims show
properties about the function f . We refer the reader to the full version of this work for the
proof [5].
▷ Claim 9. The function f is submodular and monotone.
▷ Claim 10. For every partition P ≠ Q, {V }, the function f satisfies

f(P) − f(V)
|P| − 1 >

f(Q) − f(V)
n − 1 .

By Proposition 2, Algorithm 1 returns the partition {{v1}, . . . , {v n−1
2

}, D} (because
{v1}, . . . , {v n−1

2
} are the k − 1 singleton sets that minimize the f values), whose objective is

n−1
2 + n+1

2 = n. The partition {{v1, . . . , v n+1
2

}, {v n+3
2

}, . . . , {vn}} has objective n+1
4 + (1 +

ϵ) + (1 + ϵ) n−1
2 = 3n+3

4 + (n+1)ϵ
2 . The approximation factor is at least

n
3n+3

4 + (n+1)ϵ
2

→ 4
3 − 4

3n + 3 (as ϵ → 0).

This completes the proof of Lemma 8. ◀

APPROX/RANDOM 2023

3:14 Approximating Submodular k-Partition via Principal Partition Sequence

4 Lower bound for arbitrary submodular functions

In this section, we present an instance of submodular k-partition where Algorithm 1 achieves
an approximation factor of Ω(n/k). We emphasize that the submodular function in our
instance is not symmetric/monotone/posimodular.

Let V = {v0, v1, . . . , vn−1} be the ground set. We define a digraph D = (V, E(D)) and a
hypergraph H = (V, E(H)) on the same vertex set V as follows (see Fig.1):

E(D) = {v0vi : i ∈ [n − 1]} and
E(H) = {{v1, v2, . . . , vn−1}}.

Figure 1 Example in Section 4. The arcs belong to the digraph D and the hyperedge {v1, . . . , vn−1}
belongs to the hypergraph H.

For every subset S ⊆ V , we will use din
D (S) to denote the number of arcs in D whose

tails are in S̄ and heads are in S. We will use dH(S) to denote the number of hyperedges in
H that have at least one vertex in S and one vertex in S̄. Next, we define a set function
f : 2V → R≥0 by

f(S) := a · din
D (S) + dH(S) ∀S ⊆ V,

where a ≫ 1 is a large constant. We note that f is submodular because it is a positive linear
combination of two submodular functions (and it is not monotone/symmetric/posimodular).

▷ Claim 11. The principal partition sequence of f is {V }, {{vi} : i ∈ {0, 1, . . . , n − 1}}.

Proof. For convenience, we will use Q to denote the partition of V into singletons. By
Proposition 2 and the fact that f(V) = 0, it suffices to prove that for every partition P of V

such that P is not Q or {V }, we have that

f(P)
|P| − 1 >

f(Q)
n − 1 . (7)

Let P0 ∈ P be the part that contains v0. Then, we have that f(P0) ≥ 1 if P0 ̸= {v0} and
f(P0) = 0 otherwise. For each part P ∈ P that does not contain v0, we have that f(P) ≥ 1+a

if |P | = 1 and f(P) ≥ 2+a if |P | ≥ 2. Since P ̸= Q, we have that either P0 ̸= {v0} or at least
one of the parts P ∈ P\{P0} has size |P | ≥ 2. Thus, f(P) =

∑
P ∈P f(P) ≥ (1+a)(|P|−1)+1.

Moreover, we have f(Q) = (1 + a)(n − 1) and hence

f(P)
|P| − 1 ≥ (1 + a)(|P| − 1) + 1

|P| − 1 = 1 + a + 1
|P| − 1 > 1 + a = (1 + a)(n − 1)

n − 1 = f(Q)
n − 1 .

This proves inequality (7). ◁

K. Chandrasekaran and W. Wang 3:15

▷ Claim 12. The approximation factor of Algorithm 1 on input (f, k) is Ω(n/k).

Proof. We note that f({v0}) = 0 and f({vi}) = 1 + a for all i ∈ [n − 1]. By Claim 11,
on input (f, k), Algorithm 1 returns a partition P consisting of the k − 1 singleton parts
that minimizes f among all singleton sets and the complement of the union of these k − 1
singleton parts. Therefore, the returned partition P contains {v0} as a part and thus

f(P) =
∑

P ∈P:P ̸={v0}

f(P) ≥ f(V − {v0}) = a(n − 1).

The second inequality follows from submodularity of the function f . Consider the k-partition
{{v1}, {v2}, . . . , {vk−1}, V − {v1, . . . , vk−1}}, which has objective (1 + a)(k − 1) + 1. This
implies that the optimum k-partition P∗ satisfies f(P∗) ≤ (1 + a)(k − 1) + 1. Thus, the
approximation factor of the solution returned by Algorithm 1 is

f(P)
f(P∗) ≥ a(n − 1)

(1 + a)(k − 1) + 1 → n − 1
k − 1 as a → ∞. ◁

5 Conclusion

The principal partition sequence of submodular functions was shown to exist by
Narayanan [16]. The principal partition sequence of submodular functions is known in
the literature as principal lattice of partitions of submodular functions since there exists a
lattice structure associated with the sequence of partitions [2, 8, 9, 11, 14, 17, 20]. We chose to
call it as principal partition sequence in this work since the sequence suffices for our purpose.
Narayanan, Roy, and Patkar [18] used the principal partition sequence to design an algorithm
for submodular k-partition. They analyzed the approximation factor of their algorithm for
certain subfamilies of submodular functions that arise from hypergraphs. In this work, we
investigated the approximation factor of their algorithm for three broad subfamilies of sub-
modular functions – namely monotone, symmetric, and posimodular submodular functions.
Our results show that the principal partition sequence based algorithm achieves the best
possible asymptotic approximation factor for all these three subfamilies. A novelty of our
contributions is the improvement in the approximability of monotone submodular k-partition
from 2 to 4/3, thus matching the inapproximability threshold. It would be interesting to
pin down the approximability of special cases of monotone submodular k-partition – e.g.,
matroid k-partition and coverage k-partition which are interesting by themselves since they
capture several interesting partitioning problems.

References
1 M. Baïou and F. Barahona. Packing Hypertrees and the k-cut problem in Hypergraphs. In

International Conference on Learning and Intelligent Optimization, LION, pages 521–534,
2023.

2 F. Barahona. On the k-cut problem. Operations Research Letters, 26(3):99–105, 2000.
3 D. Chakrabarty and Z. Huang. Testing coverage functions. In Automata, Languages, and

Programming, ICALP, pages 170–181, 2012.
4 K. Chandrasekaran and C. Chekuri. Hypergraph k-cut for fixed k in deterministic polynomial

time. Mathematics of Operations Research, 2022. Prelim. version in FOCS 2020: pages
810–821.

5 K. Chandrasekaran and W. Wang. Approximating submodular k-partition via principal
partition sequence. arXiv, 2023. arXiv:2305.01069.

APPROX/RANDOM 2023

https://arxiv.org/abs/2305.01069

3:16 Approximating Submodular k-Partition via Principal Partition Sequence

6 C. Chekuri and S. Li. On the hardness of approximating the k-way hypergraph cut problem.
Theory Comput., 16:1–8, 2020.

7 C. Chekuri, K. Quanrud, and C. Xu. LP Relaxation and Tree Packing for Minimum k-Cut.
SIAM Journal on Discrete Mathematics, 34(2):1334–1353, 2020.

8 W. Cunningham. Optimal attack and reinforcement of a network. J. ACM, 32(3):549–561,
July 1985.

9 M. P. Desai, H. Narayanan, and S. B. Patkar. The realization of finite state machines by
decomposition and the principal lattice of partitions of a submodular function. Discrete Appl.
Math., 131:299–310, 2003.

10 O. Goldschmidt and D. Hochbaum. A Polynomial Algorithm for the k-cut Problem for Fixed
k. Mathematics of Operations Research, 19(1):24–37, February 1994.

11 V. Kolmogorov. A Faster Algorithm for Computing the Principal Sequence of Partitions of a
Graph. Algorithmica, pages 394–412, 2010.

12 P. Manurangsi. Inapproximability of Maximum Biclique Problems, Minimum k-Cut and
Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis. Algorithms, 11(1):10,
2018.

13 H. Nagamochi and Y. Kamidoi. Minimum cost subpartitions in graphs. Information Processing
Letters, 102(2):79–84, 2007.

14 K. Nagano, Y. Kawahara, and S. Iwata. Minimum average cost clustering. In Advances in
Neural Information Processing Systems, volume 23 of NIPS, 2010.

15 J. Naor and Y. Rabani. Tree packing and approximating k-cuts. In Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 26–27, 2001.

16 H. Narayanan. The principal lattice of partitions of a submodular function. Linear Algebra
and its Applications, 144:179–216, 1991.

17 H. Narayanan. Submodular functions and electrical networks (2nd edition), 1997. URL:
https://www.ee.iitb.ac.in/~hn/book/SubmodularFunction_2ed.pdf.

18 H. Narayanan, S. Roy, and S. Patkar. Approximation algorithms for min-k-overlap problems
using the principal lattice of partitions approach. Journal of Algorithms, 21(2):306–330, 1996.

19 K. Okumoto, T. Fukunaga, and H. Nagamochi. Divide-and-conquer algorithms for partitioning
hypergraphs and submodular systems. Algorithmica, 62(3):787–806, 2012.

20 S. B. Patkar and H. Narayanan. Improving graph partitions using submodular functions.
Discrete Appl. Math., 131:535–553, 2003.

21 K. Quanrud. Fast and Deterministic Approximations for k-Cut. In Proceedings of Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX,
pages 23:1–23:20, 2019.

22 R. Ravi and A. Sinha. Approximating k-cuts using network strength as a lagrangean relaxation.
European Journal of Operational Research, 186(1):77–90, 2008.

23 R. Santiago. New approximations and hardness results for submodular partitioning problems.
In Proceedings of International Workshop on Combinatorial Algorithms, IWOCA, pages 516–
530, 2021.

24 H. Saran and V. Vazirani. Finding k Cuts within Twice the Optimal. SIAM Journal on
Computing, 24(1):101–108, 1995.

25 V. Vazirani. Approximation algorithms. Springer, Berlin, Germany, 2003.
26 L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating

multiway partition problems. Mathematical Programming, 102(1):167–183, 2005.

https://www.ee.iitb.ac.in/~hn/book/SubmodularFunction_2ed.pdf

	1 Introduction
	1.1 Our Results
	1.2 Related work

	2 Principal partition sequence based algorithm
	3 Approximation factor analysis
	3.1 Monotone submodular functions

	4 Lower bound for arbitrary submodular functions
	5 Conclusion

