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Abstract
For any positive edge density p, a random graph in the Erdős-Rényi Gn,p model is connected with
non-zero probability, since all edges are mutually independent. We consider random graph models
in which edges that do not share endpoints are independent while incident edges may be dependent
and ask: what is the minimum probability ρ(n), such that for any distribution G (in this model) on
graphs with n vertices in which each potential edge has a marginal probability of being present at
least ρ(n), a graph drawn from G is connected with non-zero probability?

As it turns out, the condition “edges that do not share endpoints are independent” needs to be
clarified and the answer to the question above is sensitive to the specification. In fact, we formalize
this intuitive description into a strict hierarchy of five independence conditions, which we show to
have at least three different behaviors for the threshold ρ(n). For each condition, we provide upper
and lower bounds for ρ(n). In the strongest condition, the coloring model (which includes, e.g.,
random geometric graphs), we show that ρ(n) → 2 − ϕ ≈ 0.38 for n → ∞, proving a conjecture by
Badakhshian, Falgas-Ravry, and Sharifzadeh. This separates the coloring models from the weaker
independence conditions we consider, as there we prove that ρ(n) > 0.5 − o(n). In stark contrast to
the coloring model, for our weakest independence condition – pairwise independence of non-adjacent
edges – we show that ρ(n) lies within O(1/n2) of the threshold 1 − 2/n for completely arbitrary
distributions.
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30:2 On Connectivity in Random Graph Models with Limited Dependencies

1 Introduction

The probabilistic method is an important tool in theoretical computer science, graph theory
and combinatorics [3]. With this method, one proves that a random construction has some
desirable property with positive probability, and concludes that some objects with this
property must exist. Early examples of the probabilistic method include simple constructions
of expander graphs [7], or graphs with high girth and large chromatic number [16]. Often, it
is possible to express the property as the intersection of very simple events A1, . . . , Ak. For
example, we can express the property that a set S is a clique as the intersection of the events
“u is adjacent to v” for all pairs u, v ∈ S. In many cases it is clear that each of the Ai has a
large probability to occur, but this is generally not enough to conclude that the intersection
of all Ai has positive probability to occur. Of course, if the probability space were a product
space in which all components are independent of each other, then this would be trivial.

However, for many applications it is too limiting to restrict oneself to product spaces.
The probabilistic method was significantly extended by the realization that it could still
be applied to settings without perfect independence, provided there is some bound on the
amount of dependence in the system. The seminal result was the Lovász Local Lemma
(LLL), which we give here in the slightly stronger version due to Shearer [28]: for events
A1, . . . , Ak that all occur with probability at least p, if each of the Ai depends on at most d

other Aj , where p ≥ 1 − 1/(ed), then there is a positive probability that all of the Ai occur
simultaneously.1 In this context, the dependencies are captured by a dependency graph, a
graph with vertex set {A1, . . . , Ak} such that each vertex is independent from all but its
neighbors. There are many situations in which the dependency graph can be restricted, and
we give some examples in Section 1.1 below.

The LLL allows to re-introduce a product space through the backdoor, because the LLL
condition p ≥ 1 − 1/(ed) allows to couple the process to a product space. This was already
implicit in the inductive proof of the LLL [29], and was made explicit by Liggett, Schonmann
and Spacey [23]. They also generalized this coupling to a countably infinite number of
variables and showed tightness of Shearer’s condition (of the precise version in footnote 1).
For a finite number of variables, coupling the probability space to a product space implies
trivially that the all-one event has positive probability.

Unfortunately, the LLL scales badly in d, i.e., p needs to be very close to one if d is large.
However, in some cases the degree d may grow. In particular, in this paper we will study the
situation that the variables are associated with the edges of a complete graph on n vertices,
and dependencies only run between adjacent edges (edges which share a common endpoint).
This is a common situation, and examples are given in Section 1.1. In this case, the number
of dependencies per edge is 2(n − 2), and thus grows with n. Thus, if every edge is present
with constant probability p < 1, then it is not possible to couple the probability space with a
product space for large n, and it is not true that the complete graph appears with positive
probability [23]. However, in this paper we will show that some weaker global properties can
be guaranteed. Specifically, we will focus on connectivity because this is arguably the most
fundamental global graph property. We will study the question:

Consider a random graph in which every potential edge is inserted with probability
at least p. Assume that non-adjacent edges are independent. For which values of p

can we guarantee that the graph is connected with positive probability?

1 The precise condition is p > 1 − (d−1)(d−1)

dd for d > 1 and p > 1/2 for d = 1. The first expression can be
simplified by the estimate (d−1)(d−1)

dd−1 ≥ e−1, which becomes tight in the limit d → ∞.
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It turns out that the answer depends heavily on what exactly we mean by independence.
Surprisingly, there are at least five different ways to interpret the innocent-looking condition
that non-adjacent edges are independent, which we define next in order of increasing strength.
For an edge e = {u, v}, let Xe be the event that e is present in the random graph.

▶ Definition 1 (Pairwise independence). For every pair of non-adjacent edges e, f , the random
variables Xe and Xf are independent.

▶ Definition 2 (Matching independence). For any set M of pairwise non-adjacent edges (also
called a matching), {Xe | e ∈ M} are mutually independent.

▶ Definition 3 (Edge-subgraph independence). For any edge e = {u, v}, any vertex set W

with u, v /∈ W , and any choice of graph HW on W , we have for the random graph G sampled
from the distribution that

Pr[G[W ] = HW and Xe] = Pr[G[W ] = HW ] · Pr[Xe].

▶ Definition 4 (Subgraph independence). For any two disjoint subsets V, W of vertices, and
any choice of graphs HV and HW on V and W , respectively, we have for the random graph
G sampled from the dsitribution that

Pr[G[V ] = HV and G[W ] = HW ] = Pr[G[V ] = HV ] · Pr[G[W ] = HW ].

▶ Definition 5 (Coloring model). The graph distribution is given by a set of probability spaces
(Ωv, P rv), one for each vertex v ∈ V , and a set of deterministic functions fu,v : Ωu × Ωv →
{0, 1} computing X{u,v}, one for each edge {u, v} ∈

(
V
2
)
. If every probability space (Ωv, P rv)

is finite, we call maxv |Ωv| the number of colors of the coloring model.

We remark that the standard proof of LLL requires edge-subgraph independence. In the
paper [23] that makes the coupling to product spaces explicit, the authors describe subgraph
independence as the required property, but inspecting the proof shows that they only use
the weaker condition of edge-subgraph independence.

Note that some of our models have been previously studied under different names. We
summarize the bounds on the connectivity thresholds obtained before or simultaneously to
this paper in Figure 1, and discuss this related work in more detail in Section 1.1. Our main
results for large n are summarized in Table 1 and Figure 2. We give a refined exposition
of our results for all n in Theorem 7. We do not have matching upper and lower bounds
in all cases, but as can be seen in Figure 2, our bounds imply that there are at least
three different thresholds among the five independence conditions discussed above, and four

Table 1 Lower and upper bounds for the threshold ρ s.t. every constant edge probability > ρ

guarantees connectivity with positive probability for all sufficiently large n, while a constant edge
probability < ρ does not guarantee connectivity with positive probability for infinitely many n.

Independence condition Lower bound Upper bound
Coloring model (2 colors) 1/4 1/4
Coloring model (general) 0.381966 . . . 0.381966 . . .

Subgraph independence 1/2 [14, Thm. 16] 1/2 [14, Thm. 16]
Edge-subgraph independence 1/2 3/4
Matching independence 1/2 1
Pairwise independence 1 1

APPROX/RANDOM 2023



30:4 On Connectivity in Random Graph Models with Limited Dependencies

different thresholds if we also include the coloring models with only 2 colors. Notably, our
proofs give different intervals for the thresholds of all six independence conditions, although
this does not imply that the thresholds are all different.

0 11
2

1
4

3
4

coloring
subgraph ind.

ρ

Figure 1 An illustration of the upper and lower bounds on the thresholds known from related
work. The bounds for subgraph independence can be found in [14, Thm. 16]. The bounds on the
coloring model have been obtained simultaneously and independently to ours [4, Thm. 1.7].
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2
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4
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4

coloring, (2 colors)
coloring
subgraph ind.
edge-subgraph ind.
matching ind.
pairwise ind.

ρ

Figure 2 An illustration of the upper and lower bounds mentioned in Table 1 and Theorem 7.
As can be seen, there must be at least four thresholds ρ among the six independence conditions.

Moreover, let us write Gpw(n, p) for the class of all random graph distributions on n vertices,
with marginal edge probabilities at least p and with the property “pairwise independence”.
We write Gpw :=

⋃
n∈N Gpw(n, 0) for the same class without restrictions on the number of

vertices and the marginal probabilities. Likewise, we write Gmat, Gesub, Gsub and Gcol for the
random graph distributions satisfying matching independence, edge-subgraph independence,
subgraph independence and the coloring models respectively. We show that those five models
form a strict hierarchy in Appendix A.

▶ Theorem 6. Gcol ⊊ Gsub ⊊ Gesub ⊊ Gmat ⊊ Gpw.

1.1 Related Work and Examples
There are numerous applications in graph theory, theoretical computer science, and com-
binatorics in which dependency graphs are bounded or otherwise restricted. For example,
if we want to find a vertex coloring in a hypergraph without monochromatic hyperedges,
and we color the vertices independently, then any two disjoint hyperedges are independent.
Therefore, often times LLL type arguments apply to coloring (hyper)graphs of bounded
maximum degree. For instance, the seminal results by Johansson [20] and Molloy [24] stating
that every graph of maxmimum degree ∆ has (list) chromatic number O( ∆

log ∆ ) were proved
using this method. Similarly, if we want to find a satisfying assignment to a SAT-formula
in conjunctive normal form, and assign the variables independently, then any two clauses
are independently satisfied if they do not share a common literal, see for instance [18] for
more detail and background. These are classical applications of LLL and fall into the class
of coloring models.
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Another important source of applications comes from percolation theory, which was also
the main motivation for [23]. There, an important technique to study locally generated
geometric graphs is rescaling: the geometric space is covered by boxes that may partially
overlap, and boxes are called good under some conditions that depend only on the subgraph
induced by the box. It is shown recursively that the probability for a box to be good increases
with the box size. The goodness of two boxes is independent if they don’t overlap, and
typically every box only overlaps with constantly many other boxes.

So far, we gave general examples of bounded dependence. We now turn to examples
where the random variables are naturally tied to the edge set of a complete graph. An
important class of examples come from random graph models that are more complex than
Erdős-Rényi graphs, in particular models that capture graph properties of real-world networks
like clustering, communities, or heavy-tailed degree distributions. Many such models are
generated by drawing some information for each vertex, and connecting two vertices based
on this information. There is a large number of such random graph models: in Chung-Lu
or Norros-Reittu random graphs, the vertices draw weights which determine their expected
degrees [12, 27]; in Random Geometric Graphs (RGG) or Hyperbolic Random Graphs (HRG)
the vertices draw some location in a geometric space [22, 26]; in scale-free percolation (SFP)
the vertices lie on a grid and also draw random weights [15]; in Geometric Inhomogeneous
Random Graphs (GIRG), they draw both a position and a weight [9]. In the Stochastic
Block Model (SBM) they draw the community to which they should belong [21]. Many more
applications of similar flavour that cannot all be listed here can be found in the literature.
All these models fall in the class of coloring models.2

The class of coloring models is the most important one.3 Models that do not fall into this
class can arise when the graphs drawn from the distribution must fulfill some global property.
For example, consider the following distribution for an odd number of vertices n ≥ 5. Every
vertex chooses a color from red and blue independently and uniformly at random. The
resulting graph consists only of a clique on the color chosen an even number of times. We
show later (in the proof of Lemma 38) that this distribution is matching independent, but
not edge-subgraph independent (and thus also not a coloring model). As a second example,
consider the Erdős-Rényi model Gn,1/2 with the additional side constraint that the total
number of edges |E| is divisible by three.4 One can show quite easily that this distribution
is not even pairwise independent. On the other hand, if we instead use the side constraint
that |E| is divisible by two, the distribution is actually a coloring model, indicating that
independence conditions are surprisingly fickle. A proof of both of these facts can be found
in the full version of this paper.

Two of our independence conditions have been previously considered under different
names. Firstly, subgraph independent distributions have been studied under the name of
1-independent random graphs. More generally, a k-independent graph distribution is a
distribution where any two sets of edges E, F are independent if the minimum distance

2 The formulation of many models involves a coin flip for each edge, where the probability of inclusion is a
function of the information of the two endpoints. In this formulation, the event Xe is not a deterministic
function of the information. But one can simply define the coin flip as part of the random experiments
of one of the endpoints.

3 But note that it is not the model that arises naturally for the LLL. This raises the question whether
stronger LLL-type results can be obtained for the coloring model.

4 More formally, we consider the conditional probability distribution obtained by conditioning the Gn,1/2
distribution on the event that |E| ≡3 0.

APPROX/RANDOM 2023
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between any vertex incident to an edge in E and any vertex incident to an edge in F is
at least k. These k-independent graph distributions have been studied extensively in the
context of percolation theory, for example on the infinite integer grid [5]. In [14], Day,
Falgas-Ravry, and Hancock consider 1-independent random finite graphs. Among other
results, they pin down the precise value of the connectivity threshold for 1-independent (i.e.,
subgraph independent) random graphs, as mentioned above in Table 1 and Figure 1.

Coloring models have been studied under two different names. First off, they have
been studied as vertex-based measures in the context of percolation in [14]. Second off, a
deterministic perspective on coloring models lies at the core of the well-studied density Turán
problem for multipartite graphs [6, 8, 13, 17, 25]: instead of a random graph distribution, the
density Turán problem for multipartite graphs considers |V (G)|-partite blow-ups G∗ of a
graph G, and the minimum density needed between parts of G∗ to guarantee the existence of
a graph H as a transversal, i.e., as a subgraph of G∗ that picks precisely one vertex per part
of G∗. This problem has also been considered for the more general case where we are not
considering the occurrence of a single graph H as a transversal, but of any graph from some
collection H. Furthermore, one can consider the weighted case, where the vertices in each
part of G∗ each get a positive weight such that all the weights per part add up to 1. The
density between two parts is then also computed in a weighted fashion. Now, considering G

as the complete graph Kn, and H as the family of spanning trees on n vertices, one can see
that the weighted density Turán problem for multipartite graphs is equivalent to the problem
of determining the minimum edge probability needed to guarantee connectivity with non-zero
probability in coloring models (except that the weighted density Turán setting only allows
for modeling finitely many colors, which turns out to be without loss of generality, as we
discuss in the following subsection). In [4], which appeared simultaneously and independently
from this paper, Badakhshian, Falgas-Ravry, and Sharifzadeh consider exactly this question;
they prove the same lower bound as us [4, Thm. 1.7], and propose our upper bound as a
conjecture [4, Conj. 1.9].

Last but not least, let us mention that in a conceptually similar (but concretely rather
different) direction, Alon and Nussboim [2] studied thresholds for the connectivity of random
graph models in which only edge-sets of size at most k for a fixed parameter k are required
to be independent, but dependencies between edge-sets may occur from size k + 1 and up.

1.2 Detailed Results
In this section we give the main theorem with more detailed results. We denote by

ρpw(n) := inf{p ∈ [0, 1] | ∀D ∈ Gpw(n, p), Pr[Gn ∼ D is connected] > 0}

the smallest (infimum) marginal edge probability that guarantees a positive probability
for Gn being connected. The quantities ρmat(n), ρesub(n), ρsub(n), and ρcol(n) are defined
similarly. Furthermore, let Gcol,k denote the coloring models with at most k colors, and let
ρcol,k(n) be the corresponding threshold.

▶ Theorem 7. We have the following bounds on ρ:

Pairwise independence: For all n ∈ N,

1 − 2/n − Θ(1/n2) ≤ ρpw(n) ≤ 1 − 2/n.

Matching independence: For all n ∈ N,
1
2(1 − tan2 π

2n
) ≤ ρmat(n) ≤ 1 − 2/n.
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Moreover, for any k ∈ N,

1
2 ≤ ρmat(8k).

Edge-subgraph independence: For all n ∈ N,

1
2(1 − tan2 π

2n
) ≤ ρesub(n) ≤ 3/4.

Subgraph independence: [14, Thm 16] For all n ≥ 2,

ρsub(n) = 1
2(1 − tan2 π

2n
).

Coloring model: For all n ≥ 3, we have 1/4 ≤ ρcol(n) ≤ 1/2. Moreover, let ϕ = 1
2 (1 +

√
5)

be the golden ratio. Then

lim
n→∞

ρcol(n) = 2 − ϕ ≈ 0.381966.

Coloring model, two colors: For all n ≥ 3, ρcol,2(n) = 1/4.

To the best of our knowledge, this question had not been considered so far for the pairwise
independence, matching independence, or edge-subgraph independence models. For the
subgraph independence model, the threshold was known precisely [14], but we include it in
our theorem for completeness of the hierarchy of our models. Our results for the coloring
model confirm a conjecture of Badakhshian, Falgas-Ravry, and Sharifzadeh [4].

We remark that, while Gcol(n, p) includes models with infinitely many outcomes of the
random experiment at each vertex, it has been shown5 (in [8] for n = 3 and in [25, Lemma
2.1] for all n) that ρcol,k(n) ≥ ρcol(n) for k = n − 1, which combined with the trivial
ρcol,k(n) ≤ ρcol(n) for any k gives ρcol,n−1(n) = ρcol(n). The proofs of ρcol,n−1(n) ≥ ρcol(n)
take a model which has probability 0 of being connected and modify it to use at most n − 1
many colors while preserving the fact that it is never connected and increasing or keeping the
same its marginal edge probabilities. However, the probability distribution over all graphs
on n vertices that the modified model gives is usually different from the original one. Here, we
prove the even stronger statement that Gcol(n, p) = Gcol,k(n, p) for some k = k(n), showing
that finitely many colors suffice to model any probability distribution over all graphs that
can be represented as a coloring model. The proof of Lemma 8 can be found in Appendix C.

▶ Lemma 8. Consider a coloring model on n vertices along with its corresponding probability
distribution D over the graphs on n vertices. Then there is a coloring model on n vertices
with at most 2(n

2) + 1 colors per vertex which results in the same distribution D.

1.3 Open Questions
There are many interesting questions that remain open. Most obviously, for large n there
are gaps between the upper and lower bounds for matching independence and edge-subgraph
independence. For the coloring model we do have matching upper and lower bounds for

5 In fact, these results are stated only for finitely many colors as they are in the density Turán setting,
but the proofs go through in our more general set-up as well.

APPROX/RANDOM 2023
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an unbounded number of colors and for k = 2, but not for other constant values of k.
Moreover, for fixed n it is unclear how much richer the coloring model gets by adding more
colors. As mentioned above, we know that Gcol(n, p) = Gcol,k(n, p) with k = 2(n

2) + 1 and
ρcol(n) = ρcol,n−1(n). But what is still an open question is the behavior of the functions
kG

min(n) = min{k | Gcol(n, p) = Gcol,k(n, p)} and kρ
min(n) = min{k | ρcol(n, p) = ρcol,k(n, p)},

that is, how many colors are enough to be able to express all coloring models on n vertices,
respectively to capture the behaviour of the connectivity threshold of the coloring models
on n vertices?

Finally, in this paper we focus on connectivity because that is arguably the most funda-
mental global property of a graph. We only see this as a starting point and we would find it
interesting to explore analogous questions for other global properties. A natural extension
might be to study the size of the largest connected component that can be achieved with
non-zero probability, but the same questions arise for any other global graph properties such
as Hamiltonicity, the chromatic number, and many more.

1.4 Proof Techniques

We prove the strict hierarchical structure of our considered independence conditions (The-
orem 6) by giving concrete examples of distributions that fulfill the weaker independence
condition, but not the stronger one. All of these examples are simple to describe and quite
illustrative.

The lower bounds on the thresholds ρ are shown by concrete series of graph distributions
on disconnected graphs. Here, the lower bound on ρpw (pairwise ind.) uses the same
distribution as the distribution used to show Gpw ≠ Gmat. The lower bounds on ρmat, ρesub,
and ρsub all use the same construction, since we were not able to make use of the additional
freedom available in the edge-subgraph or even the matching independence condition (except
for the case when n is divisible by 8 in the matching independence model). This lower bound
on ρsub has been previously proven in [14, Thm. 16]. While we do not restate the proof
here, note that this bound uses a distribution that can be seen conceptually as a version of a
coloring model with complex probabilities. The proof that the distribution fulfills subgraph
independence follows from the fact that the coloring models are subgraph independent, and
from the fundamental theorem of algebra. The lower bounds on ρcol and ρcol,2 once again
are simple constructions.

For the upper bounds on the thresholds ρ we use very different proof techniques depending
on the independence condition. The upper bound for pairwise and matching independence
does not make use of these independence conditions, and just combines a linearity of
expectation argument with the maximum number of edges in a disconnected graph. As
mentioned above, edge-subgraph independence is the first independence condition which
allows us to apply Lovász Local Lemma to achieve a constant bound on ρ. For the coloring
models, we give concrete strategies on how to pick a color for each vertex such that the
graph is connected. For the two color case, this strategy is rather simple, while the strategy
for the general case is based on adjusting a random coloring, which fulfills useful properties
with high probability for large n. The proof of this bound (Theorem 21) is by far the most
technically involved proof in this paper.
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2 Preliminaries

We make use of the following version of the Lovász Local Lemma.

▶ Lemma 9 ([28]). Let A1, . . . Ak be a sequence of events, such that each event occurs with
probability at least p and is independent of all the other events, except at most d of them.
Then, if

p >

{
1 − (d−1)d−1

dd for d ≥ 2,
1/2 for d = 1,

there is a non-zero probability that all of the events occur.

The following lemma is a direct consequence of Markov’s inequality.

▶ Lemma 10. Let X be a random variable such that Pr[X ≤ u] = 1. Then for ℓ < u,

Pr[X ≥ ℓ] ≥ E[X] − ℓ

u − ℓ
.

Proof. Note that the random variable u − X is non-negative and has expectation u − E[X].
We can thus apply Markov’s inequality.

Pr[X ≥ ℓ] = Pr[u − X ≤ u − ℓ] = 1 − Pr[u − X > u − ℓ] ≥ 1 − u − E[X]
u − ℓ

= E[X] − ℓ

u − ℓ
. ◀

3 Bounds on ρ

In this section we prove Theorem 7, showing lower and upper bounds on ρ for our various
models of independence. By the definition of ρ as in Section 1.2, any lower bound on ρX for
some independence condition X also holds for ρY for some weaker independence condition Y ,
i.e., one such that GX ⊆ GY. Conversely, any upper bound on ρY also holds for ρX .

3.1 Pairwise Independence
▶ Lemma 11. For even n ≥ 4, we have ρpw(n) ≥ 1 − 2

n − Θ( 1
n2 ).

Proof. Consider the distribution CM(n, q) as defined in Definition 40 with q = 1 − Θ
(

1
n2

)
chosen such that CM(n, q) is pairwise independent, which can be done by Claim 41. The
marginal edge probability p in CM(n, q) is then p = 1 − 2

n − Θ
(

1
n2

)
. Note that the

probability of G ∼ CM(n, q) being connected is 0, since in the clique regime there is always
an isolated vertex, and in the matching regime G only consists of a perfect matching. Thus,
the threshold ρpw for non-zero probability of connectivity in the pairwise independence model
is at least p = 1 − 2

n − Θ
(

1
n2

)
. ◀

▶ Lemma 12. For any n, we have ρpw(n) ≤ 1 − 2
n .

Proof. If the minimum marginal edge probability p in any graph distribution (not even
necessarily pairwise independent) is larger than 1− 2

n , the expected number of edges E[
∑

e Xe]
is larger than (1 − 2

n )
(

n
2
)

=
(

n−1
2

)
. Since any disconnected graph contains at most

(
n−1

2
)

edges, the graph must be connected with non-zero probability. ◀

APPROX/RANDOM 2023
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3.2 Matching Independence
We have no general bounds specifically holding for matching independence. Matching
independence is a condition that is surprisingly difficult to exploit. We thus state the
following corollary, following directly from Lemma 12 and Lemma 17.

▶ Corollary 13. For any n ≥ 2, we have 1
2 (1 − tan2 π

2n ) ≤ ρmat(n) ≤ 1 − 2
n .

The lower bound in Corollary 13 can be improved slightly when n is divisible by 8, which
in particular shows that ρmat(n) ̸= ρsub(n) for infinitely many n, illustrating again the
different behavior of the connectivity thresholds for different independence conditions. The
proof of this statement can be found in the full version.

▶ Lemma 14. For any n ∈ N that is divisible by 8, we have ρmat(n) ≥ 1
2 .

3.3 Edge-Subgraph Independence
We have no lower bound specifically for edge-subgraph independence. We inherit this bound
from the stricter subgraph independence, i.e., Lemma 17.

▶ Corollary 15. For any n ≥ 2, we have ρesub(n) ≥ 1
2 (1 − tan2 π

2n ).

▶ Lemma 16. For any n, we have ρesub(n) ≤ 3
4 .

Proof. We show that any edge-subgraph independent distribution with minimum marginal
edge probability p > 3

4 is connected with non-zero probability. To achieve this, we use the
Lovász Local Lemma, as stated in Lemma 9.

We pick the edges of any Hamiltonian path e1, . . . , en−1 of Kn and consider their corre-
sponding events Xe1 , . . . , Xen−1 . Since we have edge-subgraph independence, each of these
events depends on only at most d = 2 of the other events (the ones corresponding to the
neighboring edges). Furthermore, the probability of each of these events is at least p > 3

4 . By
Lemma 9, since p > 3

4 = 1 − 11

22 , with non-zero probability all of the events Xe1 , . . . , Xen−1

happen, all edges of the Hamiltonian path are present, and thus the graph is connected. ◀

3.4 Subgraph Independence
The exact behavior of ρsub has been determined in [14, Thm. 16]. For a proof, we point the
reader to [14]. We also include a proof of the lower bound part of this statement in the full
version of this paper.

▶ Lemma 17 ([14, Thm. 16]). For any n ≥ 2, we have ρsub(n) = 1
2 (1 − tan2 π

2n ).

3.5 Coloring Models
We first consider coloring models with only 2 colors, since we can find matching lower and
upper bounds for that case. Other restrictions of the coloring model could also be interesting
to investigate, such as other bounded numbers of colors, or the case where every vertex must
pick uniformly among its colors. We show that the threshold probability is exactly 1/4 in
this case. The proof can be found in Appendix B.

▶ Lemma 18. For all n ≥ 3, we have ρcol,2(n) = 1/4.

We now consider the full generality of coloring models, with an unbounded or even
infinite (although by Lemma 8 this can w.l.o.g. be excluded) number of outcomes of the
local experiment at each vertex.
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▶ Lemma 19. For all n ≥ 3, we have ρcol(n) ≥ (n − 2) 3n−4−
√

5n2−16n+12
2(n−1)2 .

Note that for n = 3, this bound is equal to 1/4 (which matches the previous subsection, since
our construction only uses 2 colors in this case), and for n → ∞, it tends to 2 − ϕ ≈ 0.381966.
We remark that Lemma 19 was obtained simultaneously and independently in [4, Thm 1.7]
with the exact same construction.

Proof. We show that for each number of vertices n ≥ 3, there exists a coloring model
with marginal edge probability p(n) = (n − 2) 3n−4−

√
5n2−16n+12

2(n−1)2 which is connected with
probability 0.

We define the distribution CS(n) for any n ≥ 3. A fixed vertex v picks as its local
experiment one other vertex v′ ∈ [n] \ {v} uniformly at random. All other vertices pick
the color red with probability q (to be determined later), and blue with probability 1 − q.
Then, v connects to all vertices in V \ {v, v′} that are colored blue. Between the vertices in
V \ {v}, an edge is present if both endpoints are colored red. The resulting graph is clearly
not connected: every red vertex is only connected to other red vertices, and in the case that
all vertices in V \ {v} are blue, only n − 2 edges exist.

For every edge e not incident to v we have Pr[Xe] = q2, and for every edge e′ incident to
v we have Pr[Xe′ ] = (1 − q) n−2

n−1 . We pick q maximizing the minimum of these probabilities.
Since q2 is increasing in q for q ≥ 0, and (1 − q)n−2

n−1 is decreasing in q, the minimum is
maximized when q2 = (1 − q) n−2

n−1 . We can thus solve

q2 + n − 2
n − 1q − n − 2

n − 1 = 0

to get

q = 2 − n ±
√

5n2 − 16n + 12
2(n − 1) .

Only one of these solutions fulfills q > 0, namely the one with “+”. Since the marginal
edge probability p(n) is equal to (1 − q) n−2

n−1 , we get the claimed bound. ◀

Let us now consider upper bounds for ρcol(n). We first state the weaker constant bound
holding for all n. The proof can be found in the full version of this paper. Note that the proof
of Theorem 1.7 in [4], which came out independently and simultaneously, uses essentially the
same techniques as the ones we employ in the proof of the lemma below, except that they
optimize the calculations to get a bound of 1

2 − 1
4n−6 .

▶ Lemma 20. For every n, we have ρcol(n) ≤ 1
2 .

Next, we present the stronger upper bound holding for large enough n. This bound tends
to 2 − ϕ for n → ∞ and thus matches the lower bound for large enough n, as conjectured
in [4].

▶ Theorem 21. For any ε > 0, there exists an n0(ε), such that for any coloring model
distribution on graphs on n ≥ n0(ε) vertices with minimum marginal edge probability at least
p′ = 2 − ϕ + ε, the graph is connected with non-zero probability.

To prove this theorem, we will need the following notation and setup. We write p for 2−ϕ.

▶ Observation 22. For p = 2 − ϕ, we have the nice identities 1
p − 2 = 1 − p and (1 − p)2 = p.
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To begin, we color each vertex independently with a random color according to its own
distribution.6 For this fixed coloring, we write N(v, c) for the set of neighbors of v, if v is
recolored to the color c.

▶ Lemma 23. In a random coloring, with high probability it holds that Ec[|N(v, c)|] >

(p + ε/2)n for all v simultaneously.

The proof of this lemma uses standard concentration bounds and can be found in the full
version.

Thus, from now on, we condition on the high probability event of Lemma 23. This
allows us to argue that we can recolor any vertex such that it has a large neighborhood.
Furthermore, using Lemma 10, we can also argue that for every vertex, relatively large
neighborhoods must exist with a somewhat large probability. This allows us to use union
bounds to show that large neighborhoods must exist at the same time as some fixed edges.

Our general strategy for showing the graph is connected with positive probability will be
to mostly rely on the random coloring of all vertices that we start with, but recolor some
vertices as necessary, using some large neighborhoods to connect vertices to.

Since we will recolor some vertices, the true neighborhoods in the final graph may be
different (possibly also smaller) than in the random coloring for which we get these bounds.
We use the error term C := C ′(ε) log2 n for an upper bound on the number of vertices that
we recolor and aim to connect to (we may recolor more vertices, but we do not argue that
we connect to these vertices, thus recoloring them does not matter). If we can guarantee a
desired intersection of neighborhoods (or of a neighborhood with a fixed set) to contain at
least C + 1 vertices in the random coloring, we know that in the actual coloring at the end
the intersection is non-empty.

Let (r, cr) be a vertex-color pair which maximizes |N(r, cr)|. We recolor r to cr. If
every vertex outside of N(r, cr) can be recolored to some color such that it has an edge to a
vertex in N(r, cr), the graph can be connected. Otherwise, we pick a vertex-color pair (b, cb)
which maximizes |N(b, cb)| among all vertex-color pairs for which b ̸∈ N(r, cr) ∪ {r}, and
|N(r, cr) ∩ N(b, cb)| ≤ C. We recolor b to cb.

In the following, we use the shorthands

R := N(r, cr), B := N(b, cb), α := |R|/n, and β := |B|/n.

The vertices r and b, along with their respective neighborhoods R and B, will be central to
our argument, and we will find various ways to connect all other vertices to those sets.

The next lemma is fairly straightforward and its proof can be found in the full version.

▶ Lemma 24. p < α < 1 − p, and p < β ≤ α.

Note that if we have R ∩ B ≠ ∅, we can easily connect the graph: if we recolor each
vertex v ̸∈ R ∪ B ∪ {r, b} to some color c such that |N(v, c)| > pn, N(v, c) must intersect
R ∪ B. This follows from |R ∪ B| = |R| + |B| − |R ∩ B| ≥ αn + βn − C ≥ 2pn − C, and
(2pn − C) + pn > n. We thus assume in the following that R ∩ B = ∅.

▶ Lemma 25. β ≤ min(1 − α, 1/2).

Proof. This follows directly from R ∩ B = ∅ and thus α + β ≤ 1. ◀

6 We assume that we have a finite number of colors, which we can do by Lemma 8.
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To connect the graph in the remaining cases, we need to introduce some more definitions.
Intuitively, we say that any vertex v is obligate red, if it cannot robustly be connected to the
blue set B. More formally, we say that a vertex v ̸∈ B ∪ {b} is obligate red, if there exists no
color c, such that |N(v, c) ∩ B| > C. Similarly, we say that a vertex v ̸∈ R ∪ {r} is obligate
blue, if there exists no color c such that |N(v, c) ∩ R| > C. Let OR be the set of obligate red
vertices, and OB the set of obligate blue vertices.

Note that no vertex can be both obligate blue and obligate red. When a vertex is neither
obligate blue nor obligate red, we say it is non-obligate.

We start with giving some guarantees on the sizes of neighborhoods of obligate blue and
obligate red vertices.

▶ Lemma 26. Let u ∈ OB, v ∈ OR. Then, over the distribution of the color of u (v), the
following hold for the neighborhood of u (v).
1. Pr[|N(u, c)| ≥ p+pβ−β

p n + εn/2] ≥ 1 − p.
2. Pr[|N(v, c)| ≥ p+pα−α

p n + εn/2] ≥ 1 − p.
3. Pr[|N(u, c)| ≥ (1 − p)(1 − β)n + εn/2] ≥ 1 − √

p.
4. Pr[|N(v, c)| ≥ (1 − p)(1 − α)n + εn/2] ≥ 1 − √

p.

Proof (sketch). We can upper bound the size of a neighborhood of any vertex by αn.
Furthermore, we can upper bound the size of a neighborhood of any obligate blue vertex u

by βn. The lemma follows from applying Lemma 10 and simplifying. The full calculations
are found in the full version. ◀

The next two corollaries follow from Lemma 26 and some calculations that can be found
in the full version.

▶ Corollary 27. Let S be a vertex set of size |S| ≤ C. Let u ∈ OB. Then,

Prc[N(u, c) ∩ (B \ S) ̸= ∅] ≥ 1 − p.

▶ Corollary 28. Let S be a vertex set of size |S| ≤ C. Let v ∈ OR. Then,

Prc[N(v, c) ∩ (R \ S) ̸= ∅] ≥ 1 − p.

We will now prove Theorem 21 by case distinction on the number of obligate red and
obligate blue vertices.

▶ Lemma 29. If there are either no obligate red or no obligate blue vertices, the graph can
be connected.

Proof. If there are no obligate red vertices, we recolor every vertex v ̸∈ B ∪ {b} to a color c

such that N(v, c) intersects B. Every vertex is thus connected to b either directly or through
a vertex in B, proving that the graph is connected. Symmetrically, if there are no obligate
blue vertices, all vertices can be connected to r or R. ◀

▶ Lemma 30. If |OR| > C or |OB| > C, the graph can be connected.

The full proof of this lemma can be found in the full version.

Proof (sketch). Suppose without loss of generality that |OB| > |OR| (the other case is
symmetric). Let OB′ ⊂ OB \ {b} be a subset of C obligate blue vertices. We recolor all
vertices in OB′ as well as all non-obligate vertices such that they connect into B \ OB′.
Crucially, each vertex in OB′ has a color that allows it to connect to B \ OB′ as well as a
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OR

OB

OB′

B

Figure 3 How to connect the graph when |OB| > C.

r b

R B

OR OB

v

f(v)

Figure 4 How to connect the graph given an injective mapping f from OR to OB \ {b}.

constant proportion of the remaining vertices in OR. Since C is logarithmic in n, we are
able to cover all vertices in OR in this way, and thus connect the graph. An illustration of
this can be seen in Figure 3. ◀

We thus assume in the following that the numbers of obligate red and obligate blue
vertices are more than 0 and at most C.

▶ Lemma 31. If there is an injective mapping from OR to OB \{b}, or an injective mapping
from OB to OR \ {r}, the graph can be connected.

Proof. We first assume an injective mapping f from OR to OB \ {b} exists. The opposite
case works symmetrically. In this case we aim to connect every vertex to b, by connecting
each obligate red vertex v to the vertex f(v). These obligate blue vertices, as well as the
non-obligate vertices outside B \ {b} are then connected to some vertex in B \ OB. Since
these vertices are connected to b, the whole graph is connected. This is shown in Figure 4.
Note that we recolor the vertices in OB and outside B, but not those in B \ OB.

We let v ∈ OR and f(v) ∈ OB pick a color independently at random from their respective
distributions. We have that Pr[vf(v) ∈ E(G)] ≥ p′ = p + ε. Furthermore, by Corollary 27,
Pr[N(f(v), c) ∩ (B \ OB) ̸= ∅] ≥ (1 − p). Thus, letting Yv,f(v) be the indicator random
variable that is 1 if and only if vf(v) ∈ E(G) and N(f(v), c) ∩ (B \ OB) ̸= ∅, we have

Pr[Yv,f(v) = 1] ≥ p′ + (1 − p) − 1 ≥ ε.

Thus, we can pick colors for each pair of vertices (v, f(v)), for v ∈ OR, such that v connects
to f(v) and f(v) connects to B \ OB. ◀

We can enhance the previous lemma by considering non-obligate vertices which also have
a large probability (at least 1 − p) to robustly connect to either of the two sets R and B (as
obligate vertices are guaranteed to, by Corollary 27 and Corollary 28, respectively):
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OR OB

r′ b′

(a) Case 1: At least one edge is oriented towards OR.
OR OB

(b) Case 2: All edges are oriented towards OB.

Figure 5 Connecting the graph in Lemma 35.

▶ Lemma 32. If there exists a non-obligate vertex v ̸∈ {r, b} such that for S = R or S = B,
it holds that Prc[|N(v, c) ∩ S| > C] ≥ 1 − p, then the graph can be connected.

Proof. If the conditions of Lemma 30 or Lemma 31 are fulfilled, we can connect the
graph. Otherwise, |OR| = |OB| ≤ C and r ∈ OR and b ∈ OB. Assume there is a
vertex v such that Prc[|N(v, c) ∩ B| > C] ≥ 1 − p (the case S = R works symmetrically).
We can make a bijective mapping from OR to (OB ∪ {v}) \ {b}. Since we have that
Prc[N(v, c) ∩ (B \ (OB ∪ {v} \ {b})) ̸= ∅] ≥ 1 − p, the proof of Lemma 31 also works for
this mapping. ◀

Furthermore, if there exists a vertex that can be used to join the red and blue sets, we
can also connect the graph:

▶ Lemma 33. If there exists a vertex v ̸∈ {r, b} and a color c, such that N(v, c) ∩ R ̸= ∅
and N(v, c) ∩ B ̸= ∅, we can connect the graph.

Proof. We give the vertex v the color c. Every vertex w ̸∈ R ∪ B ∪ {r, b, v} is recolored to
some color cw such that |N(w, cw)| > pn. Since p > 1 − α − β, w is then connected to some
vertex in R or B. After doing this for all w, the graph is connected. ◀

Finally, we will consider the cases which were not covered by the previous lemmas. For
this, we need the following lower bounds regarding non-obligate vertices, the proofs of which
can be found in the full version.

▶ Lemma 34. For any non-obligate vertex v ̸∈ {r, b}, we define

pr
v := max

c:|N(v,c)∩B|≤C
|N(v, c)|, and pb

v := max
c:|N(v,c)∩R|≤C

|N(v, c)|.

Assuming there exists no vertex fulfilling the conditions of either Lemma 32 or Lemma 33,
we have pr

v > βp−β+p
p n, and pb

v > αp−α+p
p n.

Finally, we cover the only remaining case, whose proof can be found in Appendix B.
The idea of the proof is sketched in Figure 5. We consider the potential edges b′r′ between
b′ ∈ OB and r′ ∈ OR. For each such edge we determine the vertex with a higher probability
of picking a color such that the other vertex can be connected to it. We then orient the edge
from this vertex to the other. If at least one edge is oriented from OB to OR, we can use
this fact to connect every vertex to B ∪ OB. Otherwise, we connect every vertex to R ∪ OR.
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▶ Lemma 35. If |OB| = |OR|, and there exists no vertex as in Lemma 32 or Lemma 33, we
can connect the graph.

Proof of Theorem 21. Lemmas 29–33 and 35 cover all possible cases. Thus, we can always
connect the graph, proving the theorem. ◀
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A A Strict Hierarchy

This section is dedicated to proving Theorem 6:

▶ Theorem 6. Gcol ⊊ Gsub ⊊ Gesub ⊊ Gmat ⊊ Gpw.

We will prove each strict inclusion as its own lemma, from left to right. The first among
these lemmas shows that each coloring model is subgraph independent but some subgraph
independent distributions are not coloring models.

▶ Lemma 36. Gcol ⊊ Gsub, i.e., every coloring model is subgraph independent, but there are
some subgraph independent distributions that are not coloring models.

Proof. We first prove Gcol ⊆ Gsub. Consider some graph distribution D ∈ Gcol and consider
any two disjoint subsets of vertices V, W . The resulting graph within V depends only on
elementary experiments on V , and the resulting graph within W depends only on elementary
experiments on W . Since the elementary experiments are mutually independent, we have
independence of the resulting graphs within V and W . Thus, D ∈ Gsub.

The fact that Gcol ̸= Gsub is well-known from prior work [1, 10, 14, 19]. ◀

▶ Lemma 37. Gsub ⊊ Gesub, i.e., every subgraph independent distribution is edge-subgraph
independent, but there are some edge-subgraph independent distributions that are not subgraph
independent.

Proof. Clearly Gsub ⊆ Gesub as subgraph independence implies edge-subgraph independence
by definition, since a single edge is also a subgraph.
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To prove Gsub ̸= Gesub, we consider the following graph distribution CC(n) on n ≥ 6
vertices: with probability 1/2, the distribution returns a graph drawn from the Erdős-Rényi
distribution Gn,1/2. Otherwise, the distribution picks a uniformly random decomposition of
the vertex set [n] into two sets A and B, and returns the graph consisting of the union of
cliques on A and B. We first show that CC(n) is edge-subgraph independent. In both the
Erdős-Rényi regime as well as the two-cliques regime, for any edge e we have Pr[Xe] = 1/2.
This holds even when we condition on the outcome within any subgraph disjoint from e,
thus CC(n) is edge-subgraph independent. On the other hand, we show that CC(n) is not
subgraph independent. To this end, we decompose the vertex set [n] into the sets P = {u, v, w}
and Q = [n] \ P . We consider the two events P := “There are exactly two edges within P”
and Q := “Q is a clique”. Clearly, we have

Pr[Q] = 1
2 · 2−(n−4) + 1

2 · 2−(n−3
2 ) > 2−(n−3

2 ).

On the other hand, P implies that we are in the Erdős-Rényi regime, and thus

Pr[Q|P] = 2−(n−3
2 ).

We conclude that Pr[Q] > Pr[Q|P] and thus P and Q are not independent, showing that
CC(n) is not subgraph independent. ◀

The graph distribution CC(n) that we built in the proof above is a convex combination
of its two regimes, as defined in the full version of this paper.

▶ Lemma 38. Gesub ⊊ Gmat, i.e., every edge-subgraph independent distribution is matching
independent, but there are some matching independent distributions that are not edge-subgraph
independent.

Proof. To prove Gesub ⊆ Gmat, consider some edge-subgraph independent distribution. To
prove that it is also matching independent, let M = {e1, . . . , ek} be some matching. We
show for all i ≤ k that Pr[Xei

|Xe1 , . . . , Xei−1 ] = Pr[Xei
]. This implies

Pr[Xe1 and Xe2 and . . . and Xek
] =

k∏
i=1

Pr[Xei
],

and thus implies matching independence. Let V ′ be the set of endpoints of the edges
e1, . . . , ei−1. Furthermore, let G(V ′) be the set of all possible graphs on V ′. Then, by the
law of total probability, we have

Pr[Xei
|Xe1 , . . . , Xei−1 ] =

∑
G∈G(V ′)

Pr[Xei
|G]Pr[G|Xe1 , . . . , Xei−1 ].

Due to edge-subgraph independence, Pr[Xei |G] = Pr[Xei ], and we thus have

Pr[Xei |Xe1 , . . . , Xei−1 ] = Pr[Xei ]
∑

G∈G(V ′)

Pr[G|Xe1 , . . . , Xei−1 ] = Pr[Xei ],

proving the desired claim.
For the second part of the statement, Gesub ̸= Gmat, we consider the following graph

distribution SC(n) on n vertices for odd n ≥ 5: every vertex independently and uniformly
picks from the two colors red and blue. Since n is odd, one color was picked by an even
number of vertices. The vertices with that color form a clique, and no other edges are present.
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We first show that SC(n) is matching independent: every edge individually occurs with
probability 1/4, since first both endpoints need to have the same color, and second this color
must be the color picked by an even number of vertices. We prove that a matching of k

edges occurs with probability (1/4)k. For the matching to occur, all 2k vertices must pick
the same color, which happens with probability (1/2)2k−1. Second, that color must end up
to be the color picked by an even number of vertices, which has probability 1/2. Altogether,
we have probability (1/2)2k−1+1 = (1/4)k.

Finally, we show that SC(n) is not edge-subgraph independent. Let W be a set of
n − 2 vertices, and e be the edge between the remaining 2 vertices. If W is a clique, e

cannot be present. Since both W being a clique and e being present have non-zero marginal
probabilities, edge-subgraph independence cannot hold. ◀

▶ Lemma 39. Gmat ⊊ Gpw, i.e., every matching independent distribution is pairwise in-
dependent, but there are some pairwise independent distributions that are not matching
independent.

To prove this final strict inclusion lemma, we define the following distribution. This
distribution will also be useful later to prove a lower bound on ρpw.

▶ Definition 40. CM(n, q) for n even is the following distribution over the graphs on n

vertices: to sample G ∼ CM(n, q), with probability q we sample from the clique regime, and
otherwise from the matching regime. In the clique regime, we pick a vertex x ∈ [n] uniformly
at random and add all edges e with x /∈ e to G. In the matching regime, we pick a perfect
matching on [n] uniformly at random and add its edges to G.

▷ Claim 41. There exists 0 ≤ q(n) ≤ 1 with

q(n) = 1 − Θ
( 1

n2

)
such that CM(n, q(n)) for n even is pairwise independent but not matching independent,
and the probability of each edge is

p(n) = 1 − 2
n

− Θ
( 1

n2

)
.

The proof of this claim is straightforward and just requires some calculations. It can be
found in the full version.

Proof of Lemma 39. Clearly Gmat ⊆ Gpw as matching independence implies pairwise inde-
pendence by definition, since two vertex-disjoint edges e, f are a matching.

To see that Gmat ̸= Gpw, recall that by Claim 41, there exists some q(n) such that
CM(n, q) is pairwise independent but not matching independent. ◀

Proof of Theorem 6. Theorem 6 now follows directly from Lemmas 36–39. ◀

B Omitted Proofs from Section 3.5

Proof of Lemma 18. We first prove ρcol,2(n) ≥ 1/4 by defining the following coloring model
which is always disconnected. Decompose the vertex set into three non-empty sets A, B, C.
Every vertex chooses a color uniformly among the colors red and blue. Two vertices in the
same set are connected if they are both red. A vertex a ∈ A is connected to b ∈ B, if a is
red and b is blue. The same goes for b ∈ B and c ∈ C, as well as c ∈ C and a ∈ A. Clearly,
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the marginal edge probability of every edge is 1/4. We now show that every connected
component of a graph sampled from this distribution is a subset of the union of at most two
of the sets A, B, C. To see this, we pick some edge {a, b} for a ∈ A and b ∈ B to be present,
and try to grow its connected component. Since the edge {a, b} is present, a must be red
and b blue. Now, a can only be connected to other red vertices in A, and to blue vertices in
B. Similarly, b can only be connected to other red vertices in A. No red vertex in A or blue
vertex in B can be connected to a vertex in C, thus the connected component containing
the edge {a, b} is contained in A ∪ B. Symmetrically this holds for any pair of sets, and we
conclude that the graph must be disconnected, proving the lower bound.

Next, we prove ρcol,2(n) ≤ 1/4 by showing that if every marginal edge probability is
strictly larger than 1/4, we can always find a coloring that connects the graph. We say
that a vertex v covers vertex w, if for both colors at vertex w, there exists a color at v,
such that the edge {v, w} is present under this coloring. We now remove vertices one by
one, by repeatedly removing a vertex which covers some remaining vertex, until no more
such vertices exist. If the graph on the remaining vertices V ′ can be connected using some
coloring, we can add back the removed vertices in reverse order, and connect them to the
vertex they cover, thus connecting the whole graph. We thus only have to show that the
graph on V ′ can be connected. Since in this graph no vertex covers any other, each edge is
only present under exactly one of the four possible color combinations of its endpoints.

We pick a vertex v′ ∈ V ′ which maximizes max(Pr[v is red], P r[v is blue]) among all
v ∈ V ′. We give this vertex v′ the color which is more likely, let p be the probability of this
color. One can see that for any other vertex w ∈ V ′ \ {v′}, there must be a color such that
the edge {v′, w} is present. Otherwise, the color combination making {v′, w} present would
have probability of at most p · (1 − p), which is at most 1/4. Thus, we can connect V ′ by
simply coloring each vertex with the correct color to connect to v′. This concludes the proof
of the upper bound, and thus the whole lemma. ◀

Proof of Lemma 35. We consider the potential edges between OR and OB. Each such edge
r′b′ can be oriented in some direction, by considering the following two probabilities:

pr′→b′ := Prcr′ [∃cb′ such that r′b′ ∈ E(G) in coloring c(r′) = cr′ , c(b′) = cb′ ]
pb′→r′ := Prcb′ [∃cr′ such that r′b′ ∈ E(G) in coloring c(r′) = cr′ , c(b′) = cb′ ]

Note that pr′→b′ · pb′→r′ ≥ Pr[r′b′ ∈ E(G)] ≥ p′, and thus max(pr′→b′ , pb′→r′) ≥
√

p′. We
now direct the potential edge r′b′ from r′ to b′ if pr′→b′ > pb′→r′ , and from b′ to r′ otherwise.
We pick an arbitrary perfect matching M among the potential edges between OR and OB,
using |OR| = |OB|.

Case 1: There exists an arc (b′, r′) ∈ M directed towards r′ ∈ OR. In this case we will
connect the graph as shown in Figure 5a. Every obligate red vertex is connected to its
matching obligate blue vertex. The vertex b′ must have a large neighborhood size that can
be guaranteed with probability ≥ 1 − √

p, so that it can simultaneously be connected to r′.
Every obligate blue and every non-obligate vertex connects to this neighborhood.

By Lemma 26, part 3, we have

Pr[|N(b′, c)| ≥ (1 − p)(1 − β)n + εn/2] ≥ 1 − √
p.

Thus, with positive probability over the choice of color for b′, the size of the neighborhood of
b′ is at least (1 − p)(1 − β)n + εn/2 and there is a choice of color for r′ such that r′b′ is an
edge, since 1 − √

p +
√

p′ > 0.
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Similarly, for all other obligate blue vertices u, by Lemma 26, part 1, we have

Pr[|N(u, c)| ≥ p + pβ − β

p
n + εn/2] ≥ 1 − p,

so with positive probability there is an edge between u and its matching vertex in OR and
u’s neighborhood has size at least p+pβ−β

p n + εn/2.
We need to prove that these guaranteed sizes of neighborhoods intersect outside of

OB∪OR. Let S := (1−p)(1−β)n+εn/2 and T := p+pβ−β
p n+εn/2. Since both neighborhoods

can intersect R in at most C vertices, we need to prove that (S − 3C) + (T − 3C) > n − |R|,
i.e.,

S + T + αn − n − 6C
!
> 0. (1)

Additionally, to guarantee that each non-obligate vertex u outside the neighborhood of b′

can connect to that neighborhood, we need to guarantee that u has a neighborhood which
intersects that of b′ outside OB∪OR. Thus, we check that (S −3C)+(pb

u −3C) > n−|R|, i.e.,

S + pb
u + αn − n − 6C

!
> 0. (2)

Since our lower bound on pb
u is smaller than T (as α ≥ β), (2) implies (1), so it suffices

to show (2). The proof of (2) can be found in the full version.

Case 2: All edges in M are oriented towards OB. In this case we will connect the graph
as shown in Figure 5b. We give each obligate red vertex a large neighborhood such that
we can still guarantee to be able to connect the obligate blue vertices to their matching
partner. Then, we give each non-obligate vertex which is not yet connected directly to any of
the obligate vertices a large neighborhood not intersecting B (as guaranteed by Lemma 34).
These neighborhoods must intersect all neighborhoods of the obligate red vertices due to
their sizes, thus the graph is connected.

Let Y := (1 − p)(1 − α)n + εn/2. For any obligate red vertex v, by Lemma 26, part
4, we have Pr[|N(v, cv)| ≥ Y ] ≥ 1 − √

p, so with probability 1 − √
p +

√
p′ > 0 there is a

color for v’s obligate blue partner vertex so that they are connected by an edge and also
|N(v, cv)| ≥ Y .

We now check that every non-obligate vertex u has a neighborhood which intersects with
every neighborhood of size at least Y of the obligate red vertices. Recall that by Lemma 34,
every u has a neighborhood not robustly intersecting B of size pr

u. Note that we need to
show that these neighborhoods intersect outside of OR ∪ OB since these vertices may change
their colors. To this end, it suffices to show that (pr

u − 3C) + (Y − 3C) > n − |B|, i.e.,

pr
u + Y + βn − n − 6C

!
> 0,

which is easy to verify as can be seen in the full version. ◀

C Finitely Many Colors Suffice for the Coloring Model

Proof of Lemma 8. Let D be a random graph distribution given as a coloring model. We
will reduce the number of colors for each vertex one by one, preserving the probability
distribution D. By a slight abuse of notation, here we refer to any outcome of the experiment
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at some vertex as its color, even if there are infinitely many of them. Suppose we’re considering
vertex v and for each graph H on n vertices and color c of v, let pH,c be the probability that
H is sampled from D conditioned on vertex v having color c, and let pH be the unconditional
probability of H being sampled from D. Now for each color c of v, consider the vector p⃗∗,c in
2(n

2)-dimensional space that consists of all the pH,c for all possible graphs H on n vertices in
some canonical order. Consider also the vector p⃗∗ of the same dimension with the pH for all
possible graphs H on n vertices as entries in the same canonical order. By the law of total
probability, p⃗∗ is contained in the convex hull of all the p⃗∗,c vectors (of which there may be
infinitely many). It follows by Carathéodory’s theorem [11] that p⃗∗ is a convex combination
of some 2(n

2) + 1 many vectors among {p⃗∗,c | c is a color of vertex v}. Thus we can pick the
corresponding 2(n

2) + 1 colors for v, use the coefficients given by that convex combination as
probabilities for these colors in the experiment at vertex v, and we end up with the same
distribution D. We repeat this process for each vertex, completing the proof. ◀
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