
Interactive Error Correcting Codes: New
Constructions and Impossibility Bounds
Meghal Gupta #Ñ

University of California Berkeley, CA, USA

Rachel Yun Zhang # Ñ

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
An interactive error correcting code (iECC) is an interactive protocol with the guarantee that the
receiver can correctly determine the sender’s message, even in the presence of noise. It was shown
in works by Gupta, Kalai, and Zhang (STOC 2022) and by Efremenko, Kol, Saxena, and Zhang
(FOCS 2022) that there exist iECC’s that are resilient to a larger fraction of errors than is possible
in standard error-correcting codes without interaction. In this work, we improve upon these existing
works in two ways:

First, we improve upon the erasure iECC of Kalai, Gupta, and Zhang, which has communication
complexity quadratic in the message size. In our work, we construct the first iECC resilient to
> 1

2 adversarial erasures that is also positive rate. For any ϵ > 0, our iECC is resilient to 6
11 − ϵ

adversarial erasures and has size Oϵ(k).
Second, we prove a better upper bound on the maximal possible error resilience of any iECC
in the case of bit flip errors. It is known that an iECC can achieve 1

4 + 10−5 error resilience
(Efremenko, Kol, Saxena, and Zhang), while the best known upper bound was 2

7 ≈ 0.2857
(Gupta, Kalai, and Zhang). We improve upon the upper bound, showing that no iECC can be
resilient to more than 13

47 ≈ 0.2766 fraction of errors.
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1 Introduction

Consider the following task: Alice wishes to communicate a message to Bob such that even
if a constant fraction of the communicated bits are adversarially tampered with, Bob is still
guaranteed to be able to determine her message. This task motivated the prolific study
of error correcting codes, starting with the seminal works of [16, 15]. An error correcting
code encodes a message x into a longer codeword ECC(x), such that the Hamming distance
between any two distinct codewords is a constant fraction of the length of the codewords.

An important question in the study of error correcting codes is determining the maximal
possible error resilience. It is known that in the adversarial bit-flip model, any ECC can be
resilient to at most 1

4 corruptions, and in the adversarial erasure error model any ECC can
be resilient to at most 1

2 corruptions.
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This prompts the following natural question: Can we achieve better error resilience if we
use interaction?

In [9], Gupta, Kalai and Zhang introduce the notion of an interactive error correcting
code (iECC), which is an interactive protocol with a fixed length and speaking order, such
that Bob can correctly learn Alice’s input x as long as not too large a fraction of the total
communication is erased. They demonstrate that iECC’s can in fact achieve a higher erasure
resilience than standard error correcting codes. In particular, they design an iECC that is
resilient to adversarial erasure of 3

5 − ϵ of the total communication.
Note that a classical error correcting code is an iECC in which Alice speaks in every

round. Their result essentially shows that Bob talking occasionally instead of Alice actually
improves the error resilience. It is not obvious that this should be the case – since Bob can
only send feedback, while Alice can actually send new information, Bob’s messages a priori
seem a lot less valuable than Alice’s. Nevertheless, they are able to leverage this to improve
the erasure resilience past 1

2 . Later, [7] present an iECC that achieves an error (bit flip)
resilience greater than 1

4 .
In this paper, we present two new results about iECC’s. We mention that this conference

version of the paper is a combination of two separate works on the arXiv: [10] and [11]. We
also note the relevant context that the result of [7], which constructed a binary iECC with
> 1

4 error resilience, was published after the positive rate result in this paper, but before the
impossbility bound in this paper.

1.1 Positive Rate iECC
One weakness of the erasure-resilient iECC presented by [9] is that the size of their protocol
is quadratic in the length of Alice’s original message x. This leaves open the question of
whether there exists an iECC achieving > 1

2 erasure resilience with size linear in the length
of the original message. In this paper, we answer this question in the affirmative.

Specifically, we show a positive rate iECC that achieves an erasure resilience of 6
11 − ϵ

over the binary erasure channel, which is larger than 1
2 .

▶ Theorem 1. For any ϵ > 0, there exists an iECC over the binary erasure channel resilient
to 6

11 − ϵ erasures, such that the communication complexity for inputs of size n is Oϵ(n) and
the time complexity is polyϵ(n).

We remark that our iECC achieves a lower erasure resilience than the quadratic sized
iECC of [9], which is resilient to 3

5 − ϵ erasures. However, we believe that an iECC achieving
both positive rate and 3

5 − ϵ erasure resilience can likely be constructed by combining ideas
from this paper and [9]. Nevertheless, we leave open the existence of such an iECC.
▶ Remark 2. Since the original paper [10] was posted to arXiv, the work of [7] constructed
a positive rate iECC resilient to 1

4 + 10−5 bit flip errors, thereby resolving whether iECC’s
can achieve better error resilience in the case of bit flip errors as well! Since bit flip errors
are stronger than erasures, their iECC is also a positive rate iECC resilient to > 1

2 erasures.
Comparing this work with theirs, theirs works in the case of bit flips errors while ours does
not, but our work achieves the higher erasure resilience.

1.2 Upper Bound on Maximal Error Resilience of iECC
The current best known upper (impossibility) bound for the error resilience of an iECC (in the
bit flip setting, rather than erasure setting) was given in [9], who showed that no iECC can
be resilient to more than 2

7 adversarial errors. This upper bound came from the combination
of two natural attacks, one of which is guaranteed to work no matter how the rounds in
which Alice and Bob speak are distributed.
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1. Corrupt none of Bob’s bits. Then, Bob’s messages provide perfect reliable feedback, in
which case works about error-correcting codes with feedback beginning with [2] tell us
that it suffices to corrupt 1

3 of Alice’s bits.
2. Corrupt half of Bob’s bits so that his messages appear random and thus essentially

are useless: then Alice’s communication essentially reduces to the case of a standard
error-correcting code, in which case an adversary can corrupt 1

4 of her bits to confuse
Bob between two possible values of x.

The largest error resilience known so far is achieved by [7], who construct an iECC resilient
to 1

4 + 10−5 bit flip errors. This leaves a large gap between the best known achievable error
resilience and the best known upper bound. What is the largest possible error resilience of
an iECC? Is it possible to achieve error resilience equal to this natural upper bound of 2

7 ?
In this work, we answer the latter question in the negative, providing a new upper bound

of 13
47 ≈ 0.2766, improving upon the previous best upper bound of 2

7 ≈ 0.2857.

▶ Theorem 3. For sufficiently small ϵ > 0, there exists k0 = k0(ϵ) ∈ N such that for any
k > k0, no iECC over the binary bit flip channel where Alice is trying to communicate
x ∈ {0, 1}k is resilient to 13

47 + ϵ fraction of adversarial bit flips.

2 Related Works

In this section, we discuss previous work on interactive error-correcting codes, as well as
prior work on error-correcting codes with feedback.

2.1 Interactive Error-Correcting Codes
The notion of an interactive error-correcting code (iECC) was first introduced in [9], who
demonstrated an iECC resilient to 3

5 fraction of adversarial erasures, surpassing the best
possible erasure resilience of standard ECC’s of 1

2 . They also gave an upper bound of 2
3 on

the erasure resilience of any iECC. In the case of bit flip errors, they proved an upper bound
of 2

7 on the error resilience achievable by any iECC, leaving open the problem of constructing
an iECC resilient to greater than 1

4 adversarial errors.
The followup work of [10] improved upon the erasure iECC of [9], giving a construction of

an iECC with positive rate but resilient to only 6
11 adversarial erasures.

In the bit flip error model, [7] answered [9]’s question in the affirmative, constructing an
iECC with error resilience 1

4 + 10−5. This narrowed the optimal error resilience of any iECC
to the range [ 1

4 + 10−5, 2
7 ].

2.2 Error-Correcting Codes with Feedback
The use of interaction in the noise resilient communication of a message has been studied
previously in the form of error-correcting codes with feedback. In an error-correcting code
with feedback, Alice wishes to communicate a message to Bob in an error-resilient fashion,
provided that after every message she sends she receives some feedback from Bob about what
he has received. She can then use this noiseless feedback to choose the next bit that she sends.
Error-correcting codes with feedback were first introduced in the Ph.D. thesis of Berlekamp [2]
and have been studied in a number of followup works, including [3, 19, 17, 14, 8, 1]. Originally,
this feedback was considered in the noiseless setting, meaning that none of Bob’s messages
are allowed to be corrupted, and error rate is calculated solely as a function of the number
of messages Alice sends. That is, Bob’s feedback is free and always correct, so that Alice can
tailor her next message to specifically the bit of information Bob most needs to hear.

APPROX/RANDOM 2023
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In the bit flip error model, [3, 19, 17, 14] showed that the maximal error resilience of
an error-correcting code with noiseless feedback is 1

3 . [8] show this is achievable even by
protocols that only send logarithmically many bits of feedback over a constant number
of rounds. For explicit constant number of rounds of feedback, [4] initiated the study of
the noise resilience vs. round complexity tradeoff for both erasures and errors. For larger
alphabets, the maximal error resilience was studied in [1].

When the feedback is noisy, i.e. the feedback may be corrupted as well, much less is
known. Several works such as [5, 6] considered ECC’s with noisy feedback over the binary
symmetric channel. [18] considers adversarial corruption, under a model which places separate
corruption budgets on the forward and feedback rounds. They construct a scheme that
is resilient to 1

2 of the forward communication and 1 of the feedback being erased. We
note that their scheme’s forward erasure resilience is equal to that achievable by standard
error-correcting codes.

3 Preliminaries and Definitions

Before we dive into the technical part of our paper, we present important preliminaries on
classical error correcting codes, and define an iECC formally and what it means for one to be
resilient to α-fraction of erasures.

Notation

In this work, we use the following notations.
The function ∆(x, y) represents the Hamming distance between x and y.
The interval [a, b] for a, b ∈ Z≥0 denotes the integers from a to b inclusive. The interval
[n] denotes the integers 1, . . . , n.
The symbol ⊥ in a message represents the erasure symbol that a party might receive in
the erasure model.
When we say Bob k-decodes a message, we mean that he list decodes it to exactly k

possible messages Alice could have sent in the valid message space.
The output of an ECC is 0-indexed. All other strings are 1-indexed.

3.1 Interactive Error Correcting Codes
We formally define our notion of an interactive error correcting code (iECC). The two types
of corruptions we will be interested in are erasures and bit flips. We first start by defining a
non-adaptive interactive protocol.

▶ Definition 4 (Non-Adaptive Interactive Protocol). A non-adaptive interactive protocol
π = {πn}n∈N is an interactive protocol between Alice and Bob, where in each round a single
party sends a single bit to the other party. The order of speaking, as well as the number of
rounds in the protocol, is fixed beforehand. The number of rounds is denoted |π|.

▶ Definition 5 (Interactive Error Correcting Code). An interactive error correcting code (iECC)
is a non-adaptive interactive protocol π = {πn}n∈N, with the following syntax:

At the beginning of the protocol, Alice receives as private input some x ∈ {0, 1}n.
At the end of the protocol, Bob outputs some x̂ ∈ {0, 1}n.

We say that π is α-resilient to adversarial bit flips (resp. erasures) if there exists n0 ∈ N
such that for all n > n0 and x ∈ {0, 1}n, and for all online adversarial attacks consisting of
flipping (resp. erasing) at most α · |π| of the total communication, Bob outputs x at the end
of the protocol with probability 1.
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3.2 Classical Error Correcting Codes

▶ Definition 6 (Error Correcting Code). An error correcting code (ECC) is a family of maps
ECC = {ECCn : {0, 1}n → {0, 1}m(n)}n∈N. An ECC has relative distance α > 0 if for all
n ∈ N and any x ̸= y ∈ {0, 1}n,

∆ (ECCn(x), ECCn(y)) ≥ αm(n).

Binary error correcting codes with relative distance ≈ 1
2 are well known to exist with

linear blowup in communication complexity.

▶ Theorem 7 ([13]). For all ϵ > 0, there exists an explicit linear error correcting code
ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with relative distance 1

2 − ϵ and with m = m(n) =
Oϵ(n). Furthermore, all codewords other than ECCϵ,n(0n) are relative distance 1

2 − ϵ from
0m and 1m as well.

A relative distance of 1
2 is in fact optimal in the sense that as the number of codewords

N approaches ∞, the maximal possible relative distance between N codewords approaches
1
2 . We remark, however, that for small values of N , the distance can be much larger: for
N = 2, the relative distance between codewords can be as large as 1, e.g. the codewords
0M and 1M , and for N = 4, the relative distance can be as large as 2

3 , e.g. the codewords
(000)M , (110)M , (101)M , (011)M . Our constructions leverage this fact that codes with higher
relative distance exist for a small constant number of codewords.

We will also need the following important lemma about the number of shared bits between
any three codewords in an error correcting code scheme that has distance 1

2 .

▶ Lemma 8. For any error correcting code ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with
relative distance 1

2 − ϵ, and any large enough n ∈ N, any three codewords in ECCϵ,n overlap
on at most

( 1
4 + 3

2 ϵ
)

· m locations.

Lemma 8 means that assuming that < 3
4 of a codeword is erased, the resulting message

is list-decodable to a set of size ≤ 2, at least in theory. The following theorem says such a
code exists with list-decoding being polynomial time, while also satisfying a couple other
properties necessary in the protocol construction in Section 4.2.

▶ Theorem 9 ([12]). For all ϵ > 0, any explicit (given with its encoding matrix) linear code
ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with relative distance ( 1

2 − ϵ), can be efficiently
decoded and list-decoded. That is, there exists a polyϵ(n)-time decoding algorithm DECϵ =
{DECϵ,n : {0, 1}m → P({0, 1}n)}n∈N, such that for any n ∈ N, x ∈ {0, 1}n, and corruption
σ consisting of fewer than ( 1

2 − ϵ) · m erasures,

x = DECϵ,n(σ ◦ ECCϵ,n(x)).

Moreover, for any corruption σ consisting of fewer than ( 3
4 − 3

2 ϵ) · m erasures,

|DECϵ,n(σ ◦ ECCϵ,n(x))| ≤ 2, x ∈ DECϵ,n(σ ◦ ECCϵ,n(x)).

Our following theorem gives an ECC such that any two codewords differ on most segments
of length α.

APPROX/RANDOM 2023
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▶ Theorem 10. For all n ∈ N, ϵ > 0, there exists α = Θϵ(log n) such that, there exists
an explicit linear code ECCϵ = {ECCϵ,n : {0, 1}n → {0, 1}m}n∈N with m = m(n) = Oϵ(n),
satisfying the following property: For all n ∈ N, ϵ > 0, it holds that α|m and for any
x ̸= x′ ∈ {0, 1}n and j ∈ {0 . . . m

α − 1},

ECCϵ,n(x)[jα : (j + 1)α − 1] = ECCϵ,n(x′)[jα : (j + 1)α − 1]

for at most ϵm
α values of j.

▶ Lemma 11. Let ECC′
ϵ = {ECC′

n,ϵ : {0, 1}n → {0, 1}m(n)} be a explicit linear code satisfying
the properties of Theorem 10 with α = αn = Θϵ(log n). For all linear ECCϵ = {ECCn,ϵ :
{0, 1}α × {0, 1}β → {0, 1}p(n)} with relative distance 1

2 − ϵ and for all β, the code defined by

C(x) = ECCϵ(ECC′
ϵ(x)[0, α − 1], 0β)|| . . . ||ECCϵ(ECC′

ϵ(x)[m − α, m − 1], 0β)

is a linear code with relative distance 1
2 − 3

2 ϵ. In particular, assuming that less than 3
4 − 9

4 ϵ

of C(x) is erased, there is an efficient algorithm to obtain a set of size 2 containing x.

4 A New Positive Rate iECC Resilient to 6/11 Erasures

In this section, we discuss our positive rate iECC that is resilient to 6/11 adversarial erasures.

4.1 Overview of Ideas
We begin with an overview of the ideas that go into our positive rate iECC. We first briefly
review the iECC of [9] then describe how to modify it to have a linear communication
complexity.

The overarching goal of the original protocol, as well as ours, is to perform the following
three steps.

1. Bob learns that Alice’s value of x is one of two possible values. (This idea is known as
list decoding, which achieves better noise resilience than unique decoding.)

2. Bob conveys to Alice an index i on which the two possible inputs differ.
3. Alice sends the value of her input at index i.

Summary of the Protocol of [9]

The original protocol consists of many (say ≈ n
ϵ ) chunks, where in each chunk Alice sends a

message followed by Bob’s reply. The protocol is designed so that each such chunk will make
progress towards Bob’s unambiguously learning Alice’s input, as long as the adversary did
not invest more than 3

5 − ϵ erasures in that chunk. At a high level, in the first chunk with
< 3

5 − ϵ erasures, Bob narrows down Alice’s input to at most two options. In every future
chunk with < 3

5 − ϵ erasures, either Alice gets closer to learning the index i on which the
two options differ, or Bob fully determines x by ruling out one of the two values of x, e.g. by
learning the value of x[i] or by uniquely decoding Alice’s message. Alice keeps track of a
counter cnt initially set to 0 indicating her guess for i. The main purpose of Bob’s messages
is to increment Alice’s counter to i.

At the beginning of the protocol, Alice sends ECC(x, cnt) to Bob in every chunk. At the
first point, there are < 3

5 − ϵ erasures in a chunk, Bob will be able to list decode Alice’s
message to at most two options, say (x0, cnt0 = 0) and (x1, cnt1 = 0). This must happen
because the relative message lengths of Alice and Bob will be such that the adversary cannot
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corrupt too much of Alice’s message even if they corrupt none of Bob’s message. Since we
are in the setting of erasures, one of the two decodings must be Alice’s true state, and in
particular, must contain Alice’s true input.

At this point, Bob begins signaling to Alice to increment cnt. His goal is to tell Alice
to increment cnt until cnt = i. He does this by only sending one of two codewords1 every
message that have relative distance 1 apart. This way, if Bob’s message is not entirely
erased, Alice learns what Bob tried to send. The key is that every time < 3

5 − ϵ of a chunk
is corrupted, we can guarantee both that Bob will decode Alice’s message to two possible
messages, and Alice uniquely decodes Bob’s message,2 so that Alice and Bob make progress
towards Alice learning i. Once Alice has discovered i, Bob signals for Alice to send the bit
x[i] for the rest of the protocol,3 which allows him to distinguish whether Alice has x0 or x1.

Modifications to Achieve Positive Rate

The communication complexity of the above protocol is O(n2). This comes from two parts:
(1) O(n) chunks are necessary for Bob to communicate the index i ∈ [n] to Alice via
incrementation, and (2) Alice sends her length n input in every chunk. We show how to
lessen both requirements, thus making the final protocol linear in length.

First, for Bob to communicate i ∈ [n] to Alice, instead of incrementing cnt by 1 until it
equals i. More specifically, we describe a process where Bob writes i out in binary, and then
sends Alice each bit of this binary representation in sequence. This only requires O(log n)
rounds of interaction, as opposed to the O(n) rounds required by [9]. Designing a protocol
to communicate a binary string rather than a unary string requires significant changes to
the procedure used in [9].

Second, we show that instead of sending x every message, it suffices for Alice to encode a
shorter string that is different than the corresponding short string for any other x′ in most
chunks. More precisely, consider an error correcting code ECC with the following property:
set some α and for any x ̸= x′,

ECC(x)[jα, (j + 1)α − 1] ̸= ECC(x′)[jα, (j + 1)α − 1]

for all but an ϵ fraction of values j. Then, Alice rotates through the sections, sending
ECC(x)[jα, (j + 1)α − 1] in the

(
j mod |ECC(x)|

α

)
’th chunk. Then, if Bob has narrowed

down Alice’s input to x0 and x1, he can simply ignore the ϵ fraction of chunks in which
ECC(x0)[jα, (j + 1)α − 1] = ECC(x1)[jα, (j + 1)α − 1]. In the remainder of chunks, the
segment ECC(x)[jα, (j + 1)α − 1] is sufficient for Bob to distinguish between x0 and x1. If
we were to let α ≈ log n,4 then our chunks are now only length O(log n).

Combining the two modifications, we see that Θ(n) communication from Alice is necessary
for Bob to narrow down Alice’s input to two options, and then after that, Bob can convey
i to Alice in O(log n) chunks each of size O(log n). This results in an iECC with total
communication O(n + log2 n) = O(n).

1 In our protocol, Bob will send one of four codewords each message. This contributes to the lower erasure
resilience of 6

11 − ϵ.
2 It is also possible that instead Bob uniquely decodes Alice’s message, but then he will have uniquely

learned x.
3 The reader familiar with the iECC of [9] may recall that in the case that the two Alices Bob sees have

different values of cnt, Bob may instruct Alice to send a different bit for the rest of the protocol, but we
do not address this for now.

4 α = Θ(log n) is necessary since Alice also sends her current guess of i each message, which has length
log n.

APPROX/RANDOM 2023
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We remark that our protocol has erasure resilience 6
11 − ϵ. The limiting factor is in the

construction of a protocol in which Bob builds i bit by bit: our protocol requires Bob sending
4 codewords with distance 2

3 , rather than 2 codewords with distance 1
2 to achieve 3

5 − ϵ

erasure resilience. However, combining our second observation with the protocol from [9]
would be enough to give an iECC with 3

5 − ϵ erasure resilience with communication O(n log n).

4.2 Positive Rate iECC Protocol (Informal)
Let ECC′ : {0, 1}n → {0, 1}m be an error correcting code satisfying the statement of
Theorem 10 with α = Θ(log n), and let ECC : {0, 1}α × {0, 1}≤log n → {0, 1}p be an error
correcting code with distance 1

2 that is also relative distance 1
2 from 0p, 1p.

Our iECC consists of Oϵ

(
m
α

)
chunks, each consisting of Alice sending a p-bit message

followed by Bob sending a 3p
8 -bit message. Bob’s messages are always one of four words

0̄, 1̄, 2̄, 3̄ ∈ {0, 1}3p/8 with relative distance 2
3 . We outline our protocol below. In what follows,

we assume that all messages Bob receives are consistent with the same two values of x,
otherwise Bob can rule out one of the values of x and determine Alice’s true input.

1. Alice initially holds a string ind ∈ {0, 1}≤log n initially set to the empty string ind = ∅.
Alice begins the protocol by sending ECC(ECC′(x)[jα, (j + 1)α − 1], ind) to Bob in every
chunk.

2. Bob begins the protocol sending 0̄ every message. Every m
α chunks, he attempts to

list-decode Alice’s previous m
α messages to find consistent values of x. Note that by

Lemma 11, if there are at most 3
4 − 3

2 ϵ erasures in Alice’s message in those m
α chunks,

then Bob is guaranteed to find at most two possible values of x.
3. When Bob has found two consistent values of x, say x̂0 and x̂1, he determines an index

i ∈ [n] = {0, 1}log n such that x̂0[i] ̸= x̂1[i]. His goal is now to communicate i to Alice, bit
by bit. He does this by sending either 0̄, 1̄, or 2̄ every chunk.
To communicate the next’th bit of i, Bob adds i[next] + 1 to mes modulo 3, where
mes was the last message he sent, to get his new message mes′, and begins sending
mes′ every chunk. (When Alice receives a message from Bob that is different from
the last message she received, she can calculate the difference in the two messages to
determine the bit.) He does this until he list-decodes Alice’s message to two possibilities
ECC(ECC′(x̂0)[jα, (j + 1)α − 1, ind0) and ECC(ECC′(x̂1)[jα, (j + 1)α − 1], ind1) such that
ECC′(x̂0)[jα, (j + 1)α − 1] ̸= ECC′(x̂1)[jα, (j + 1)α − 1], where at least one of ind0, ind1
has length next. If both have length next, he proceeds to communicate the (next + 1)’th
bit of i in the same way. If only one of the two Alice’s has |indb| = next, Bob switches to
sending 3̄ for the rest of the protocol, signaling to Alice to send him the parity of |ind| so
that he can distinguish between whether Alice has (x̂0, ind0) or (x̂1, ind1).

4. Whenever Alice unambiguously sees a change in Bob’s message from a 0̄ to a 1̄ or 2̄ (or
cyclic), she calculates b = mes′ − mes − 1 mod 3 and appends b to ind. If she ever receives
a 3̄, she switches to sending (|ind| mod 2)p for the rest of the protocol. Otherwise, at
some point she has |ind| = log n, so she can convert ind into an index i ∈ [n] and send
(x[i])p for the rest of the protocol. Note that Bob can distinguish between x̂0 and x̂1
using the value of x at the index i.

In the above outline, one has to be careful around |ind| = log n − 1. In particular, if one
Alice has |ind| = log n − 1 and the other has |ind| = log n, the second will be sending x[i] for
the rest of the protocol and it is thus incorrect for Bob to send 3̄ to signal the first Alice to
send the parity of the length of ind. Instead, once Bob has list-decoded Alice’s message such
that |ind0| = |ind1| = log n − 1, Bob commits to sending the next message ∈ {0̄, 1̄, 2̄} that
conveys to Alice the final bit of i for the rest of the protocol.
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▶ Theorem 12. The above iECC is resilient to a 6
11 − O(ϵ) fraction of erasures. For an input

of size n, the total communication is Oϵ(n). Alice and Bob run in polyϵ(n) time.

The formal version of this protocol is excluded from this conference version of the paper.
The full protocol can be found in [10].

5 Impossibility Bound on Maximal Noise Resilience of iECC

In this section, we present our main upper bound, that for any non-adaptive iECC, there is
some attack consisting of at most 13

47 corruptions such that Bob cannot guess Alice’s input x

correctly with probability better than 1
2 .

▶ Theorem 13. main For sufficiently small ϵ > 0, then for all k > 100ϵ−4, no iECC for
x ∈ {0, 1}k is resilient to more than 13

47 + 2ϵ fraction of errors with probability greater than 1
2 .

The rest of this section will be devoted to the proof of this theorem. Throughout this
section, Alice’s input will always be denoted x ∈ {0, 1}k. The length of the iECC will be
denoted by n.

At a high level, our proof will proceed as follows. We will split any candidate protocol
into two sections, the first consisting of the first 21

47 n rounds of the protocol, and the second
consisting of the remaining 26

47 n rounds of the protocol. In the first section, we denote the
number of bits that Alice sends by A1, and the number that Bob sends by B1. Likewise, in
the second section, we denote the number of bits that Alice and Bob send by A2 and B2
respectively. We will present three attacks in Sections 5.1, 5.2, and 5.3 such that depending
on the values of A1, B1, A2, B2, at least one attack is guaranteed to succeed while using at
most 13

47 corruptions.
Throughout this section, a transcript is the sequence of bits that is received by either

of the parties. Note that since the adversary may corrupt messages, the transcript may
be different than what was sent by Alice and Bob. We say that an attack succeeds with α

corruption if there exist two inputs x1, x2 ∈ {0, 1}k along with respective strategies corrupting
at most αn bits such that Bob’s view of the transcript in both cases is identical. Then, Bob
cannot guess Alice’s true value of x ∈ {x1, x2} with probability better than 1

2 .

5.1 Attack 1

In the first attack, the adversary behaves the same on both sections of the protocol. She
corrupts Alice’s bits while leaving Bob’s untouched, such that there exist two inputs for
which at most of 1

3 of Alice’s communication is corrupted. We remark that this attack has
been known since [2].

▶ Lemma 14. For any protocol consisting of A bits from Alice and B bits from Bob, and for
any three possible inputs x1, x2, x3, there exists two of the three inputs y1, y2 ∈ {x1, x2, x3}
and a transcript T ∈ {0, 1}A+B such that the adversary can corrupt at most 1

3 A + 1 bits so
that the protocol transcript is T in both the case Alice has y1 or y2.

The proof is omitted in this conference version.
The attack is stated below.

APPROX/RANDOM 2023
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Attack 1

Let x1, x2, x3 ∈ {0, 1}k be three of Alice’s possible inputs. By Lemma 14, there exist
y1, y2 ∈ {x1, x2, x3} and transcript T ∈ {0, 1}n such that the adversary can corrupt at most
1
3 (A1 + A2) + 1 bits to obtain transcript T in both the case Alice has y1 and if she has y2.
The adversary simply corrupts the protocol so that the resulting transcript is T .

▶ Lemma 15. Attack 1 succeeds with corrupting 1
3 A1 + 1

3 A2 + 1 bits.

Proof. This follows immediately from Lemma 14: regardless of whether Alice has y1 or y2,
the adversary is able to have Bob receive the same transcript, using 1

3 (A1 + A2) + 1 bits of
corruption. ◀

5.2 Attack 2
In our second attack, the adversary behaves differently in the two sections of the protocol.
In the first section, the adversary essentially causes Bob’s feedback to look random, so that
Alice can do no better than to send a distance 1

2 error-correcting code. This allows the
adversary to corrupt 1

4 of Alice’s bits during this first section so that Bob cannot distinguish
between three inputs. Then, in the second section, we use Lemma 14 from the previous
section to show that the adversary has a strategy corrupting only 1

3 A2 bits to confuse Bob
between two of the remaining three inputs.

To argue that the adversary can perform her attack in the first section, we need the
following lemma.

▶ Lemma 16. For any 0 < ϵ < 0.1, suppose Alice has K possible inputs where K > (4/ϵ)1/3.
Then for any protocol consisting of A bits from Alice and B bits from Bob where A + B ≥
3 log(1/ϵ)

ϵ3 , there exist three inputs x1, x2, x3 and a transcript T such that regardless of which of
x1, x2, x3 Alice has as input, the adversary can corrupt at most

( 1
4 + 3ϵ

2
)

· A +
( 1

2 + ϵ
)

· B + 1
bits so that the protocol transcript is T .

The proof is omitted in this conference version.
We now state our second attack.

Attack 2

Let inputs x1, x2, x3 ∈ {0, 1}k and transcript T1 ∈ {0, 1}21n/47 be such that they satisfy
Lemma 16 for the first section of the protocol. Then, for the first section of the protocol, the
adversary corrupts the transcript to look like T1, using at most

(
1
4 + 3ϵ

2

)
A1 +

(
1
2 + ϵ

)
B1 + 1

bits of corruption in the cases where Alice had x1, x2, x3.

For the second section of the protocol, the adversary corrupts the communication to the
transcript T2 ∈ {0, 1}26n/47 as found in Lemma 14 such that there exist two of x1, x2, x3,
denoted y1, y2, for which the adversary can corrupt at most 1

3 A2 + 1 of the communication
so that the transcript of received bits is T2 if Alice has y1 or y2.

▶ Lemma 17. Suppose that k ≥ 141 log(1/ϵ)
21ϵ3 · Attack 2 succeeds with corrupting

( 1
4 + 3ϵ

2
)

· A1 +( 1
2 + ϵ

)
· B1 + 1

3 A2 + 2 bits.

Proof. Regardless of whether Alice has y1 or y2, the transcript from Bob’s perspective when
the adversary employs this attack looks like T1 followed by T2 (restricted to Bob’s viewpoint).
Since A1 + B1 ≥ max{ 21

26 A2, k − A2} (where A1 + A2 ≥ k holds since Alice needs to send k
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bits to communicate x, even noiselessly), it follows that A1 +B1 ≥ 21
47 k ≥ 3 log(1/ϵ)/ϵ3, so the

condition of Lemma 16 is satisfied. Then, by Lemma 16, the number of corruptions used in
the first section of the protocol when Alice has y1 or y2 is at most

( 1
4 + 3ϵ

2
)

·A1 +
( 1

2 + ϵ
)

·B1,
and by Lemma 14, the number of corrupted bits in the second section whether Alice has y1
or y2 is at most 1

3 A2 + 1. ◀

5.3 Attack 3
In our third attack, we employ the following strategy. At a high level, we choose two inputs x1
and x2. In the first section of the protocol, Bob’s view is as if Alice had x1, while Bob’s bits
are corrupted so that Alice thinks that he has been receiving and responding correctly. In the
second section of the protocol, Bob’s bits are flipped randomly, and Alice’s communication is
corrupted to look like she has x2.

The first lemma we will need is to show that for the first section of the protocol, there are
many inputs for which the uncorrupted transcripts have pairwise small Hamming distance.

▶ Lemma 18. Let ϵ > 0 and suppose Alice has K possible inputs. Then for any protocol
consisting of A bits from Alice and B bits from Bob, there exists a set Γ of size K ′

ϵ(K) = Kϵ− 1
ϵ

inputs such that for any two x1, x2 ∈ Γ, the relative distance of the (uncorrupted) transcripts
in the case where Alice has x1 or x2 is ≤

( 1
2 + ϵ

)
· (A + B).

The proof is omitted in this conference version.

▶ Lemma 19. Let ϵ > 0, and suppose Alice has K ′ >
√

2/ϵ possible inputs. For any protocol
consisting of A bits from Alice and B bits from Bob such that A + B > 3 log(1/ϵ)

ϵ3 , there exist
two inputs x1, x2 such that for any advice α that Bob receives at the beginning of the protocol
(after both Alice and Bob have fixed their strategies), there exist two transcripts T1, T2 such
that the Bob’s view of the two transcripts is the same, and that in the case of Alice having
x1, the adversary needs only corrupt

( 1
2 + 2ϵ

)
A +

( 1
2 + ϵ

)
B bits to get transcript T1, and

in the case of Alice having x2, the adversary needs only corrupt
( 1

2 + ϵ
)

B bits so that the
transcript is T2.

The proof is omitted in this conference version.

Attack 3

Denote by T1(y) the uncorrupted transcript corresponding to Alice having input y in the
first section of the protocol. By Lemma 18, there exists a set M of 2ϵk − 1

ϵ
inputs such

that for every y1, y2 ∈ M , it holds that ∆(T1(y1), T1(y2)) ≤
(

1
2 + ϵ

)
· n. Next, consider the

second section of the protocol, conditioned on Alice having seen T1(x) (restricted to her
view) in the first section of the protocol. By Lemma 19 there exist x1, x2 ∈ M such that
no matter what advice α Bob receives at the beginning of this second section, there exist
transcripts T2,1(α) and T2,2(α) such that Bob’s view of the two transcripts are the same,
and these T2,1(α), T2,2(α) satisfy the properties listed in Lemma 19.

In the first section of the protocol, the adversary corrupts the communication so that Bob
always receives T1(x1) (restricted to the bits that Bob sees), and so that Alice receives T (x)
(restricted to the bits that she sees), where x denotes Alice’s input.

In the second section of the protocol, the adversary corrupts the communication so that the
transcript is T2,1(α = T1(x1)) in the case of Alice having x1, and T2,2(α = T1(x1)) otherwise.

APPROX/RANDOM 2023
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▶ Lemma 20. Suppose that k > 141 log(1/ϵ)
26ϵ3 . Attack 3 succeeds with corrupting

max
{(

1
2 + 2ϵ

)
· A2 +

(
1
2 + ϵ

)
· B2 ,

(
1
2 + ϵ

)
· A1 +

(
1
2 + ϵ

)
· B1 +

(
1
2 + ϵ

)
· B2

}
bits.

Proof. Regardless of whether Alice has x1 or x2, Bob receives the same transcript (restricted
to his view). Since A2 + B2 ≥ max{ 26

21 A1, k − A1} (where A1 + A2 ≥ k holds since
Alice needs to send k bits to communicate x, even noiselessly), it follows that A2 + B2 ≥
26
47 k > 3 log(1/ϵ)

ϵ3 , so the condition of Lemma 19 is satisfied. If Alice has x1, the amount of
corruption in the first section is 0, while in the second section the adversary corrupted at
most

( 1
2 + 2ϵ

)
A2 +

( 1
2 + ϵ

)
· B2 bits. If Alice has x2, the amount of corruption in the first

section is ∆(T1(x1), T1(x2)) ≤
( 1

2 + ϵ
)

· (A1 + B1), and in the second section the adversary
corrupts at most

( 1
2 + ϵ

)
· B2 bits. ◀

5.4 Proof of Theorem 13
In this section, we prove our main result, restated below.

▶ Theorem 21. For sufficiently small ϵ > 0, there exists k0 = k0(ϵ) ∈ N such that for
any k > k0, no iECC over the binary bit flip channel where Alice is trying to communicate
x ∈ {0, 1}k is resilient to 13

47 + ϵ fraction of adversarial bit flips.

We begin with the following lemma.

▶ Lemma 22. For any nonnegative a1, b1, a2, b2 ∈ R where a1+b1 = 21
47 and a1+b1+a2+b2 =

1, define

δ1 = 1
3a1 + 1

3a2,

δ2 = 1
4a1 + 1

2b1 + 1
3a2,

δ3 = max
{

1
2a2 + 1

2b2,
1
2a1 + 1

2b1 + 1
2b2

}
.

It holds that

min{δ1, δ2, δ3} ≤ 13
47 .

Proof. Using that b1 = 21
47 − a1 and b2 = 26

47 − a2, we can substitute:

δ1 = 1
3a1 + 1

3a2,

δ2 = 21
94 − 1

4a1 + 1
3a2,

δ3 = max
{

13
37 ,

1
2 − 1

2a2

}
.

Then,

min{δ1, δ2, δ3} ≤ 13
47 ⇐⇒ min{δ1, δ2, δ′

3} ≤ 13
47 ,

where δ′
3 = 1

2 − 1
2 a2. But note that

9
35δ1 + 12

35δ2 + 2
5δ′

3 = 13
47

where the weights 9
35 , 12

35 , 2
5 sum to 1, so at least one of δ1, δ2, δ′

3 must be at most 13
47 . ◀
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Proof of Theorem 13. Recall that the length of the iECC is n := A1 + B1 + A2 + B2 ≥
A1 + A2 ≥ k > ϵ−3 (since Alice needs to send at least k bits to communicate x, even in the
noiseless setting). Our goal is to show that regardless of the values of A1, B1, A2, B2, at least
one of Attacks 1, 2, and 3 will require at most

( 13
47 + 2ϵ

)
· n corruptions.

By Lemma 15, Attack 1 succeeds using
1
3A1 + 1

3A2 + 1 ≤ (δ1 + 2ϵ) n

bits of corruption, where δ1 := ( 1
3 A1 + 1

3 A2)/n.
By Lemma 17, Attack 2 succeeds using(

1
4 + 3ϵ

2

)
· A1 +

(
1
2 + ϵ

)
· B1 + 1

3A2 + 2 ≤ 1
4A1 + 1

2B1 + 1
3A2 + 2ϵn = (δ2 + 2ϵ)n

bits of corruption, where we define δ2 = ( 1
4 A1 + 1

2 B1 + 1
3 A2)/n.

By Lemma 20, Attack 3 succeeds using

max
{(

1
2 + 2ϵ

)
· A2 +

(
1
2 + ϵ

)
· B2 ,

(
1
2 + ϵ

)
· A1 +

(
1
2 + ϵ

)
· B1 +

(
1
2 + ϵ

)
· B2

}
≤ max

{
1
2A2 + 1

2B2 + 2ϵn,
1
2A1 + 1

2B1 + 1
2B2 + 2ϵn

}
= (δ3 + 2ϵ)n

bits of corruption, where we define δ3 = max
{ 1

2 A2 + 1
2 B2, 1

2 A1 + 1
2 B1 + 1

2 B2
}

/n.
By Lemma 22, we have that min{δ1, δ2, δ3} ≤ 13

47 , so at least one of the three attacks
succeeds with

( 13
47 + 2ϵ

)
· n corruption, regardless of the relative ratios of A1, B1, A2, B2. ◀
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