
An Embarrassingly Parallel Optimal-Space
Cardinality Estimation Algorithm
Emin Karayel #

Department of Computer Science, Technische Universität München, Germany

Abstract
In 2020 Błasiok (ACM Trans. Algorithms 16(2) 3:1-3:28) constructed an optimal space streaming
algorithm for the cardinality estimation problem with the space complexity of O(ε−2 ln(δ−1) + ln n)
where ε, δ and n denote the relative accuracy, failure probability and universe size, respectively.
However, his solution requires the stream to be processed sequentially. On the other hand, there
are algorithms that admit a merge operation; they can be used in a distributed setting, allowing
parallel processing of sections of the stream, and are highly relevant for large-scale distributed
applications. The best-known such algorithm, unfortunately, has a space complexity exceeding
Ω(ln(δ−1)(ε−2 ln ln n + ln n)). This work presents a new algorithm that improves on the solution
by Błasiok, preserving its space complexity, but with the benefit that it admits such a merge
operation, thus providing an optimal solution for the problem for both sequential and parallel
applications. Orthogonally, the new algorithm also improves algorithmically on Błasiok’s solution
(even in the sequential setting) by reducing its implementation complexity and requiring fewer
distinct pseudo-random objects.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Theory of
computation → Pseudorandomness and derandomization; Theory of computation → Distributed
algorithms; Theory of computation → Sketching and sampling

Keywords and phrases Distinct Elements, Distributed Algorithms, Randomized Algorithms, Ex-
pander Graphs, Derandomization, Sketching

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.35

Category RANDOM

Related Version Full Version: https://arxiv.org/abs/2307.00985 [26]

Supplementary Material
Software: https://isa-afp.org/entries/Distributed_Distinct_Elements.html [25]
Software: https://isa-afp.org/entries/Expander_Graphs.html [27]

Acknowledgements Thanks to the anonymous reviewers for their careful review and helpful comments
and to Tobias Nipkow for many helpful discussions.

1 Introduction

In 1985 Flajolet and Martin [14] introduced a space-efficient streaming algorithm for the
estimation of the count of distinct elements in a stream a1, ..., am whose elements are from a
finite universe U . Their algorithm does not modify the stream, observes each stream element
exactly once and its internal state requires space logarithmic in n = |U |. However, their
solution relies on the model assumption that a given hash function can be treated like a
random function selected uniformly from the family of all functions with a fixed domain and
range. Despite the ad-hoc assumption, their work spurred a large number of publications1,
improving the space efficiency and runtime of the algorithm. In 1999 Alon et al. [4] identified

1 Pettie and Wang [33, Table 1] summarized a comprehensive list.

© Emin Karayel;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 35; pp. 35:1–35:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:me@eminkarayel.de
https://orcid.org/0000-0003-3290-5034
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.35
https://arxiv.org/abs/2307.00985
https://isa-afp.org/entries/Distributed_Distinct_Elements.html
https://isa-afp.org/entries/Expander_Graphs.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

a solution that avoids the ad-hoc model assumption. They use 2-independent families of
hash functions, which can be seeded by a logarithmic number of random bits in |U | while
retaining a restricted set of randomness properties. Their refined solution was the first
rigorous Monte-Carlo algorithm for the problem. Building on their work, Bar-Yossef et al. in
2002 [6], then Kane et al. in 2010 [24] and lastly, Błasiok in 2020 [9]2 developed successively
better algorithms achieving a space complexity of O(ε−2 ln(δ−1) + lnn), which is known to
be optimal [23, Theorem 4.4].

Table 1 Important cardinality estimation algorithms.

Year, Author Space Complexity Merge

1981, Flajolet and Martin O(ε−2 lnn) for constant δ a) Yes
1999, Alon et al. O(ln lnn) for δ = 2(ε+ 1)−1 Yes
2002, Bar-Yossef et al.b) O(ln(δ−1)(ε−2 ln lnn+ poly(ln(ε−1), ln lnn) lnn)) c) Yes
2010, Kane et al. O(ln(δ−1)(ε−2 + lnn)) No
2020, Błasiok O(ln(δ−1)ε−2 + lnn) No
This work O(ln(δ−1)ε−2 + lnn) Yes

a) Random oracle model.
b) Algorithm 2 from the publication.
c) The notation poly(a, b) stands for a term polynomial in a and b.

These algorithms return an approximation Y of the number of distinct elements |A| (for
A := {a1, . . . , am}) with relative error ε and success probability 1− δ, i.e.:

P(|Y − |A|| ≤ ε |A|) ≥ 1− δ

where the probability is only over the internal random coin flips of the algorithm but holds
for all inputs.

Unmentioned in the source material is the fact that it is possible to run the older
algorithms by Alon et al. and Bar-Yossef et al. in a parallel mode of operation. This is
due to the fact that the algorithms make the random coin flips only in a first initialization
step, proceeding deterministically afterwards and that the processing step for the stream
elements is commutative. For example, if two runs for sequences a and b of the algorithm
had been started with the same coin flips, then it is possible to introduce a new operation
that merges the final states of the two runs and computes the state that the algorithm would
have reached if it had processed the concatenation of the sequences a and b sequentially.

This enables processing a large stream using multiple processes in parallel. The processes
have to communicate at the beginning and at the end to compute an estimate. The
communication at the beginning is to share random bits, and the communication at the
end is to merge the states. Because there is no need for communication in between, the
speed-up is optimal with respect to the number of processes, such algorithms are also called
embarrassingly parallel [15, Part 1]. This mode of operation has been called the distributed
streams model by Gibbons and Tirthaputra [17]. Besides the distributed streams model, such
a merge operation allows even more varied use cases, for example, during query processing
in a Map-Reduce pipeline [11]. Figure 1 illustrates two possible modes of operation (among
many) enabled by a merge function.

2 An earlier version of Błasiok’s work was presented in the ACM-SIAM Symposium on Discrete Algorithms
in 2018. [8]

E. Karayel 35:3

Sequential Streaming Model

Process

a1 a2 a3 ... am

merge merge merge estimate

...

random seed

Distributed Streams Model

Process 1

Process 2

Process 3

a1,1 a1,2 a1,3 ... a1,m1

merge merge merge

a2,1 a2,2 a2,3 ... a2,m2

merge merge merge merge merge estimate
random seed

a3,1 a3,2 a3,3 ... a3,m3

merge merge merge

Figure 1 Example use cases for cardinality estimation algorithms that support merge.

However, an extension with such a merge operation is not possible for the improved
algorithms by Kane et al. and Błasiok. This is because part of their correctness proof relies
inherently on the assumption of sequential execution, in particular, that the sequence of
states is monotonically increasing, which is only valid in the sequential case. This work
introduces a new distributed cardinality estimation algorithm which supports a merge
operation with the same per-process space usage as the optimal sequential algorithm by
Błasiok: O(ε−2 ln(δ−1) + lnn). Thus the algorithm in this work has the best possible space
complexity in both the sequential and distributed streaming model.3 (Table 1 provides a
summary of the algorithms mentioned here.)

The main idea was to modify the algorithm by Błasiok into a history-independent
algorithm. This means that the algorithm will, given the same coin-flips, reach the same state
independent of the order in which the stream elements arrive, or more precisely, independent
of the execution tree as long as its nodes contain the same set of elements. This also
means that the success event, i.e., whether an estimate computed from the state has the
required accuracy, only depends on the set of distinct stream elements encountered (during
the execution tree) and the initial random coin flips. As a consequence and in contrast to
previous work, the correctness proof does not rely on bounds on the probability of certain
events over the entire course of the algorithm, but can be established independent of past
events.

Błasiok uses a pseudo-random construction based on hash families, expander walks, an
extractor based on Parvaresh-Vardy codes [21] and a new sub-sampling strategy [9][Lem. 39].
I was able to build a simpler stack that only relies on hash families and a new two-stage
expander graph construction, for which I believe there may be further applications. To
summarize – the solution presented in this work has two key improvements:

3 That the complexity is also optimal for the distributed setting is established in Section 7.

APPROX/RANDOM 2023

35:4 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

Supports the sequential and distributed streaming model with optimal space.
Requires fewer pseudo-random constructs, i.e., only hash families and expander walks.

The next section introduces notation. After that, I present new results on expander walks
(Section 3) needed in the new pseudo-random construction and a self-contained presentation
of the new algorithm and its correctness proof (Sections 5 and 6). Concluding with a
discussion of its optimality in the distributed setting (Section 7) and a discussion of open
research questions (Section 8). It is worthwhile noting that an extended version of this
work [26] is available, which includes more background and more detailed proofs.

The results obtained in this work have also been formally verified [25] using the proof
assistant Isabelle [31]. Isabelle has been used to verify many [1] advanced results from
mathematics (e.g. the prime number theorem [12]) and computer science (e.g. the Cook-
Levin theorem [5]). For readers mainly interested in the actual results, the formalization
can be ignored as the theorems all contain traditional mathematical proofs. Nevertheless,
Table 3 references the corresponding formalized fact for every theorem in this work.

2 Notation and Preliminaries

General constants are indicated as C1, C2, · · · etc. Their values are fixed throughout this
work and are summarized in Table 2. For n ∈ N, let us define [n] := {0, 1, . . . , n− 1}. The
notation [P] for a predicate P denotes the Iverson bracket, i.e., its value is 1 if the predicate
is true and 0 otherwise. The notation ldx (resp. ln x) stands for the logarithm to base 2
(resp. e) of x ∈ R>0. The notations ⌊x⌋ and ⌈x⌉ represent the floor and ceiling functions:
R→ Z. For a probability space Ω, the notation Pω∼Ω(F (ω)) is the probability of the event:
{ω|F (ω)}. And Eω∼Ω(f(ω)) is the expectation of f if ω is sampled from the distribution Ω,
i.e., Eω∼Ω(f(ω)) :=

∫
Ω f(ω) dω. Similarly, V f = E(f − E f)2. For a finite non-empty set S,

U(S) is the uniform probability space over S, i.e., P({x}) = |S|−1 for all x ∈ S. (Usually,
we will abbreviate U(S) with S when it is obvious from the context.) All probability spaces
mentioned in this work will be discrete, i.e., measurability will be trivial.

All graphs in this work are finite and are allowed to contain parallel edges and self-loops.
For an ordering of the vertices of such a graph, it is possible to associate an adjacency matrix
A = (aij), where aij is the count of the edges between the i-th to the j-th vertex. We
will say it is undirected d-regular if the adjacency matrix is symmetric and all its row (or
equivalently) column sums are d. Such an undirected d-regular graph is called a λ-expander
if the second largest absolute eigenvalue of its adjacency matrix is at most dλ.

Given an expander graph G, we denote by Walk(G, l), the set of walks of length l. For a
walk w ∈Walk(G, l) we write wi for the i-th vertex and wi,i+1 for the edge between the i-th
and (i+ 1)-th vertex. Because of the presence of parallel edges, two distinct walks may have
the same vertex sequence. As a probability space U(Walk(G, l)) corresponds to choosing a
random starting vertex and performing an (l − 1)-step random walk.

3 Chernoff-type estimates for Expander Walks

The following theorem has been shown implicitly by Impagliazzo and Kabanets [22, Th. 10]:

▶ Theorem 1 (Impagliazzo and Kabanets). Let G = (V,E) be a λ-expander graph and f a
boolean function on its vertices, i.e.: f : V → {0, 1} s.t. µ = Ev∼U(V) f(v), 6λ ≤ µ and
2λ < ε < 1 then:

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ (µ+ ε)l

)
≤ exp(−lD(µ+ ε||µ+ 2λ))

E. Karayel 35:5

Especially, the restriction µ ≥ 6λ in the above result causes technical issues since usually one
only has an upper bound for µ. The result follows in Impagliazzo and Kabanets work as a
corollary from the application of their main theorem [22][Thm. 1] to the hitting property
established by Alon et al. [3, Th. 4.2] in 1995. It is easy to improve Theorem 1 by using an
improved hitting property:

▶ Theorem 2 (Hitting Property for Expander Walks). Let G = (V,E) be a λ-expander graph
and W ⊆ V , I ⊆ [l] and let µ := |W |

|V | then:

Pw∼Walk(G,l)
(∧

i∈I wi ∈W
)
≤ (µ(1− λ) + λ)|I| ≤ (µ+ λ)|I|

The above theorem for the case where I = [l] is shown by Vadhan [37, Theorem 4.17].
The extended, full version [26] of this manuscript describes how to extend Vadhan’s proof to
the case where I ⊂ [l]. With the previous result, it is possible to obtain a new, improved
version of Theorem 1:

▶ Theorem 3 (Improved version of Theorem 1). Let G = (V,E) be a λ-expander graph and f a
boolean function on its vertices, i.e.: f : V → {0, 1} s.t. µ = Ev∼U(V) f(v) and µ+λ ≤ γ ≤ 1
then:

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ γl

)
≤ exp (−lD (γ||µ+ λ))

Proof. This follows from Theorem 2 and the generalized Chernoff bound [22][Thm. 1]. ◀

Impagliazzo and Kabanets approximate the divergence D(γ||µ+ λ) by 2(γ − (µ+ λ))2. In
this work, we are interested in the case where µ+λ→ 0, where such an approximation is too
weak, so we cannot follow that approach. (Note that D(γ||µ+ λ) can be arbitrarily large,
while (γ − (µ+ λ))2 is at most 1.) Instead, we derive a bound of the following form:

▶ Lemma 4. Let G = (V,E) be a λ-expander graph and f a boolean function on its vertices,
i.e.: f : V → {0, 1} s.t. µ = Ev∼U(V) f(v) and µ+ λ ≤ γ < 1 then:

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ γl

)
≤ exp

(
−l(γ ln((µ+ λ)−1)− 2e−1)

)
Proof. The result follows from Theorem 3 and the inequality: D(γ||p) ≥ γ ln(p−1)− 1 for
0 < γ < 1 and 0 < p < 1. ◀

An application for the above inequality, where the classic Chernoff-bound by Gillman [18]
would not be useful, is establishing a failure probability for the repetition of an algorithm that
already has a small failure probability. For example, if an algorithm has a failure probability
of δ∗, then it is possible to repeat it O

(
ln(δ−1)

ln((δ∗)−1)

)
-times to achieve a failure probability of δ.

(This is done in Section 6.) Another consequence of this is a deviation bound for unbounded
functions with a sub-gaussian tail bound:

▶ Lemma 5 (Deviation Bound). Let G = (V,E) be a λ-expander graph and f : V → R≥0 s.t.
Pv∼U(V)(f(v) ≥ x) ≤ exp(−x(ln x)3) for x ≥ 20 and λ ≤ exp(−l(ln l)3) then

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ C1l

)
≤ exp(−l)

where C1 := e2 + e3 + (e− 1) ≤ 30.

APPROX/RANDOM 2023

35:6 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

Note that the class includes sub-gaussian random variables but is even larger. The
complete proof is in Appendix A. The proof essentially works by approximating the function
f using the Iverson bracket: f(x) ≤ Σk[ek ≤ f(x) ≤ ek+1]ek+1 and establishing bounds on
the frequency of each bracket. For large k this is established using the Markov inequality,
and for small k the previous lemma is used. The result is a stronger version of a lemma
established by Błasiok [9][Lem. 36], and the proof in this work is heavily inspired by his.

4 Explicit Pseudo-random Constructions

4.1 Strongly explicit expander graphs
For the application in this work, it is necessary to use strongly explicit expander graphs. For
such a graph, it is possible to sample a random walk without having to represent the graph
in memory. Moreover, sampling a random walk from a d-regular graph G with n-vertices
is possible using a random sample from [ndl−1], i.e., we can map such a number to a walk
algorithmically, such that the resulting distribution corresponds to the distribution from
Walk(G, l) – this allows the previously mentioned two-stage construction.

A possible construction for strongly explicit expander graphs for every vertex count n and
spectral bound λ is described by Murtagh et al. [29][Thm. 20, Apx. B]. Note that the degree
d in their construction only grows polynomially with λ−1, hence ln(d(λ)) ∈ O(ln(λ−1)). We
will use the notation E([n], λ, l) for the sample space of random walks of length l in the
described graph over the vertex set [n]. The same construction can also be used on arbitrary
finite vertex sets S, if it is straightforward to map [|S|] to S algorithmically. Thus we use
the notation E(S, λ, l) for such S. Importantly |E(S, λ, l)| = |S| d(λ)l−1. Thus a walk in such
a graph requires O(ld |S|+ l ld(λ−1)) bits to represent.

4.2 Hash Families
Let us introduce the notation: Hk([n], [2c]) for the k-independent hash-family [39] from [n]
to [2c]. Note that ld (|Hk([n], [2c])|) ∈ O(k(c+ lnn)).

For our application, we will need a second family with a geometric distribution (as opposed
to uniform) on the range, in particular such that P(f(a) ≥ k) = 2−k. A straightforward
method to achieve that is to compose the functions of the hash family Hk([2d], [2d]) with the
function that computes the number of trailing zeros of the binary representation of its input
[2d]→ [d]. We denote such a hash family with Gk([2d]) where the range is [d+1]. Such a hash
family is also one for a domain [n] ⊆ [2d], and hence we can extend the notation: Gk([n]).
Note that: Pf∼Gk([n])(f(a) ≥ k) = 2−k for all k ≤ ⌈ldn⌉ and also ld (|Gk([n])|) ∈ O(k lnn).

5 The Algorithm

Because of all the distinct possible execution models, it is best to present the algorithm as a
purely functional data structure with four operations:

init : ()→ seed single : [n]→ seed→ sketch
merge : sketch→ sketch→ sketch estimate : sketch→ R

The init step should be called only once globally – it is the only random operation – its
result forms the seed and must be the same during the entire course of the algorithm. The
operation single returns a sketch for a singleton set corresponding to its first argument. The
operation merge computes a sketch representing the union of its input sketches and the
operation estimate returns an estimate for the number of distinct elements for a given sketch.

E. Karayel 35:7

The algorithm will be introduced in two successive steps. The first step is a solution that
works for (lnn)−1 ≤ δ < 1. The sketch requires only O(ln(δ−1)ε−2 + ln lnn), but the initial
coin flips require O(lnn+ ln(ε−1)2 + ln(δ−1)3) bits. For δ ≥ (lnn)−1 this is already optimal.
In the second step (Section 6) a black-box vectorization of the previous algorithm will be
needed to achieve the optimal O(ln(δ−1)ε−2 + lnn) space usage for all 0 < δ < 1.

For this entire section let us fix a universe size n > 0, a relative accuracy 0 < ε < 1, a
failure probability (lnn)−1 ≤ δ < 1 and define:

l :=
⌈
C6 ln(2δ−1)

⌉
b := 2⌈ld(C4ε

−2)⌉

k := ⌈C2 ln b+ C3⌉ λ := min
(

1
16 , exp(−l(ln l)3)

)
Ψ := G2([n])×H2([n], [C7b

2])×Hk([C7b
2], [b]) Ω := E(Ψ, λ, l)

The implementation of the operations is presented in Algorithm 1. Note that these are

Algorithm 1 Algorithm for δ > (ln n)−1.

function init() : Ω
return randomU(Ω)

function compress((B, q) : S) : S
while

∑
i∈[l],j∈[b] ⌊ld(B[i, j] + 2)⌋ > C5bl

q ← q + 1
B[i, j]← max(B[i, j]− 1,−1) for i ∈ [l], j ∈ [b]

return (B, q)

function single(x : U, ω : Ω) : S
B[i, j]← −1
for i ∈ [l]

B[i, h(g(x))] = f(x) where (f, g, h) = ωi
return compress(B, 0)

function merge((Ba, qa) : S, (Bb, qb) : S) : S
q ← max(qa, qb)
B[i, j]← max(Ba[i, j] + qa − q,Bb[i, j] + qb − q) for i ∈ [l], j ∈ [b]
return compress(B, q)

function estimate((B, q) : S) : R
for i ∈ [l]

s← max(0,max{B[i, j] + q | |j ∈ [b]} − ld b+ 9)
p← |{j ∈ [b]|B[i, j] + q ≥ s}|
Yi ← 2s ln(1− pb−1)(ln(1− b−1))−1

return median(Y0, . . . , Yl−1)

functional programs and pass the state as arguments and results; there is no global (mutable)
state. The sketch consists of two parts (B, q). The first part is a two-dimensional table of
sizes b and l. The second part is a single natural number, the cut-off level. The function
compress is an internal operation and is not part of the public API. It increases the cut-off
level and decreases the table values if the space usage is too high.

APPROX/RANDOM 2023

35:8 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

5.1 History-Independence

As mentioned in the introduction, this algorithm is history-independent, meaning that given
the initial coin flips, it will reach the same state no matter in which permutation or frequency
the stream elements are encountered. More precisely, the final state only depends on the
set of encountered distinct elements over the execution tree and the initial coin flips, but
not the shape of the tree. Informally, this is easy to see because the chosen cut-off level is
the smallest possible with respect to the size of the values in the bins, and that property is
maintained because the values in the bins are monotonically increasing with respect to the
set of elements in the execution tree. Nevertheless, let us prove the property more rigorously.
Let ω ∈ Ω be the initial coin flips. Then there is a function τ(ω,A) fulfilling the equations:

single(ω, x) = τ(ω, {x}) (1)
merge(τ(ω,A), τ(ω,B)) = τ(ω,A ∪B) (2)

The function τ is defined as follows:

τ0((f, g, h), A) := j → max{f(a) | a ∈ A ∧ h(g(a)) = j} ∪ {−1}
τ1(ψ,A, q) := j → max{τ0(ψ,A)− q,−1}
τ2(ω,A, q) := (i, j)→ τ1(ωi, A, q)[j]

q(ω,A) := min
{
q ≥ 0

∣∣∣∑i∈[l],j∈[b] ⌊ld(τ2(ω,A, q)[i, j] + 2)⌋ ≤ C5bl
}

τ3(ω,A, q) := (τ2(ω,A, q), q)
τ(ω,A) := τ3(ω,A, q(ω,A))

The function τ0 describes the values in the bins if there were no compression, i.e., when
q = 0. The function τ1 describes the same for the given cut-off level q. Both are with respect
to the selected hash functions ψ = (f, g, h). The function τ2 represents the state of all tables
based on a seed for the expander. The next function τ3 represents the entire state, which
consists of the tables and the cut-off level. The function q represents the actual cut-off level
that the algorithm would choose based on the values in the bins. Finally, the full state is
described by the function τ for a given seed ω and set of elements A.

▶ Lemma 6. Equations 1 and 2 hold for all ω ∈ Ω and ∅ ≠ A ⊂ [n].

Proof. Let us also introduce the algorithms merge1 and single1. These are the algorithms
merge and single but without the final compression step.

The following properties follow elementarily4 from the definition of τ , s and the algorithms:
(i) τ(ω,A) = compress(τ3(ω,A, q)) for all 0 ≤ q ≤ q(ω,A)
(ii) τ3(ω,A1 ∪A2,max(q(ω,A1), q(ω,A2))) = merge1(τ(ω,A1), τ(ω,A2))
(iii) τ3({x}, 0) = single1(ω, x)
(iv) q(ω,A1) ≤ q(ω,A2) if A1 ⊆ A2

(v) q(A) ≥ 0
To verify Eq. 1 we can use i, iii and v and to verify Eq. 2 we use i, ii taking into account
that max(q(ω,A1), q(ω,A2)) ≤ q(ω,A1 ∪A2) because of iv. ◀

4 The verification relies on the semi-lattice properties of the max operator, as well as its translation
invariance (i.e. max(a + c, b + c) = max(a, b) + c).

E. Karayel 35:9

5.2 Overall Proof
Because of the argument in the previous section, τ(ω,A) will be the state reached after any
execution tree over the set A and the initial coin flips, i.e., ω ∈ Ω. Hence for the correctness
of the algorithm, we only need to show that:

▶ Theorem 7. Let ∅ ≠ A ⊆ [n] then Pω∈U(Ω) (estimate(τ(ω,A))− |A| > ε |A|) ≤ δ.

Proof: Postponed. This will be shown in two steps: First, we want to establish that the
cut-off threshold q will be equal to or smaller than qmax := max(0, ⌈ld |A|⌉ − ld b) with high
probability. And if the latter is true, then the estimate will be within the desired accuracy
with high probability. For the second part, we verify that the estimation step will succeed
with high probability for all 0 ≤ q ≤ qmax. (This will be because the sub-sampling threshold
s in the estimation step will be ≥ qmax with high probability.)

For the remainder of this section, let ∅ ̸= A ⊂ [n] be fixed and we will usually omit the
dependency on A. For example, we will write τ(ω) instead of τ(ω,A). Then, we can express
the decomposition discussed above using the following chain:

Pω∈Ω (|estimate(τ(ω))− |A|| > ε |A|) ≤

Pω∈Ω (∃q ≤ qmax. |estimate(τ2(ω, q))− |A|| > ε |A| ∨ q(ω) > qmax) ≤ δ

2 + δ

2
(3)

Thus we only have to show the following two inequalities:
Pω∈Ω (q(ω) > qmax) ≤ δ

2
Pω∈Ω (∃q ≤ qmax. |estimate(τ2(ω, q))− |A|| > ε |A|) ≤ δ

2
The first will be shown in the following subsection, and the next in the subsequent one.

5.3 Cut-off Level
This subsection proves that the cut-off level will be smaller than or equal to qmax. This
is the part where the tail estimate for sub-gaussian random variables over expander walks
(Lemma 5) is applied:

▶ Lemma 8. Pω∈Ω (q(ω) > qmax) ≤ δ
2

Proof. Let us make a few preliminary observations:

⌊ld(x+ 2)⌋ ≤ ld(x+ 2) ≤ (c+ 2) + max(x− 2c, 0) for (−1) ≤ x ∈ R and c ∈ N. (4)

This can be verified using case distinction over x ≥ 2c + 2.

Ef∼G2([n]) max(f(a)− qmax − 2c, 0) ≤ 2−qmax2−2c

for all a ∈ [n] and c ∈ N (5)

Note that this relies on the fact f is geometrically distributed.

|A| b−12−qmax ≤ 1 (6)

This follows from the definition of qmax via case distinction.
To establish the result, we should take into account that q(ω) is the smallest cut-off

level q fulfilling the inequality:
∑
i∈[l],j∈[b] ⌊ld(τ2(ω, q)[i, j] + 2)⌋ ≤ C5bl. In particular, if the

inequality is true for qmax, then we can conclude that q(ω) is at most qmax, i.e.:

Pω∈Ω (q(ω) > qmax) = Pω∈Ω

 ∑
i∈[l],j∈[b]

⌊ld(τ2(ω, qmax)[i, j] + 2)⌋ > C5bl

 (7)

APPROX/RANDOM 2023

35:10 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

Let us introduce the random variable X over the seed space Ψ. It describes the space
usage of a single column of the table B:

X(ψ) :=
∑
j∈[b]

⌊ld(τ1(ψ, qmax)[j] + 2)⌋

Which can be approximated using Eq. 4 as follows:

X(ψ) ≤
∑
j∈[b]

c+ 2 + max(τ1(ψ, qmax)[j]− 2c, 0) =
∑
j∈[b]

c+ 2 + max(τ0(ψ)[j]− qmax− 2c, 0)

for all 0 ≤ c ∈ N. Hence:

Pψ∼Ψ (X(ψ) ≥ (c+ 3)b) ≤ Pψ∼Ψ

(∑
j∈[b] max(τ0(ψ)[j]− qmax − 2c, 0) ≥ b

)
≤

P(f,g,h)∼Ψ

(∑
j∈[b] max{f(a)− qmax − 2c | a ∈ A ∧ h(g(a)) = j} ∪ {0} ≥ b

)
≤

P(f,g,h)∼Ψ
(∑

a∈A max(f(a)− qmax − 2c, 0) ≥ b
)
≤

b−1
∑
a∈A

E(f,g,h)∼Ψ max(f(a)− qmax − 2c, 0) ≤ b−1 |A| 2−qmax2−2c

≤ 2−2c

where the third and second-last inequality follow from Eq. 5 and 6. It is straightforward to
conclude from the latter that for all 20 ≤ x ∈ R:

Pψ∼Ψ

(
X(ψ)
b
− 3 ≥ x

)
≤ Pψ∼Ψ (X(ψ) ≥ b(⌊x⌋+ 3)) ≤ exp(−2⌊x⌋ ln 2) ≤ e−x(ln x)3

Hence, it is possible to apply Lemma 5 on the random variables b−1X(ψ)− 3 obtaining:

Pω∈Ω

(∑
i∈[l] b

−1X(h(ω, i))− 3 ≥ C1l
)
≤ exp(−l) ≤ δ

2

This lemma now follows using C5 ≥ C1 + 3 and that
∑
i∈[l] X(h(ω, i)) ≤ C5bl implies

q(ω) ≤ qmax as discussed at the beginning of the proof (Eq. 7). ◀

5.4 Accuracy
Let us introduce the random variables:

t(f) := max{f(a) | a ∈ A} − ld b+ 9 s(f) := max(0, t(f))

p(f, g, h) := |{j ∈ [b] | τ1((f, g, h), 0)[j] ≥ s(f)}| Y (f, g, h) := 2s(f)ρ−1(p(f, g, h))

where ρ(x) := b(1− (1− b−1)x) – the expected number of hit bins when x balls are thrown
into b bins. Note that the definitions t, p and Y correspond to the terms within the
loop in the estimate function under the condition that the approximation threshold q is
0. In particular: estimate(τ3(ω, 0)) = mediani∈[l]Y (ωi) for ω ∈ Ω. Moreover, we denote
by R(f) the set of elements in A whose level is above the sub-sampling threshold, i.e.:
R(f) := {a ∈ A | f(a) ≥ s(f)}. The objective is to show that the individual estimates
obtained in the loop in the estimate function (assuming q = 0) have the right accuracy and
that the threshold s ≥ qmax with high probability, i.e.:

Pψ∼Ψ (|Y (ψ)− |A|| > ε |A| ∨ s(f) < qmax) ≤ 1
16 (8)

In Lemma 14 this will be generalized to 0 ≤ q ≤ qmax. To be able to establish a bound on
the above event, we need to check the likelihood of the following 4 events:

E. Karayel 35:11

The computed sub-sampling threshold s(f) is approximately ld(|A|).
The size of the sub-sampled elements R(f) is a good approximation of 2−s(f) |A|.
There is no collision during the application of g on the sub-sampled elements R(f).
The count of elements above the sub-sampling threshold in the table is close to the
expected number ρ(R(f)) (taking collisions due to the application of h into account).

Then it will be possible to conclude that one of the above must fail if the approximation is
incorrect. More formally:

E1(ψ) :↔ 2−16b ≤ 2−t(f) |A| ≤ 2−1b E2(ψ) :↔
∣∣∣|R(f)| − 2−s(f) |A|

∣∣∣ ≤ ε
3 2−s(f) |A|

E3(ψ) :↔ ∀a ̸= b ∈ R(f).g(a) ̸= g(b) E4(ψ) :↔ |p(ψ)− ρ(|R(f)|)| ≤ ε
12 |R(f)|

for ψ = (f, g, h) ∈ Ψ. The goal is to show all four events happen simultaneously w.h.p.:

Pψ∼Ψ(¬E1(ψ) ∨ ¬E2(ψ) ∨ ¬E3(ψ) ∨ ¬E4(ψ)) ≤ 1
16 (9)

which can be shown by verifying: Pψ∼Ψ

(∧
j<iEj(ψ) ∧ ¬Ei(ψ)

)
≤ 2−6 for each i ∈ {1, . . . , 4}.

Let us start with the i = 1 case:

▶ Lemma 9. Pψ∈Ψ(¬E1(ψ)) ≤ 2−6

Proof. For X(f) = max{f(a) | a ∈ A} it is possible to show:

P(f,g,h)∼Ψ (X(f) < ld(|A|)− k − 1) ≤ 2−k P(f,g,h)∼Ψ (X(f) > ld(|A|) + k) ≤ 2−k

using the proof for the F0 algorithm by Alon et al. [4][Proposition 2.3]. The desired result
follows taking k = 7 and that t(f) = X(f)− ld b+ 9. ◀

The following lemma is the interesting part of the proof in this subsection. In previous
work, the sub-sampling threshold is obtained using a separate parallel algorithm, which
has the benefit that it is straightforward to verify that |R(f)| approximates 2−s |A|. The
drawback is, of course, additional algorithmic complexity and an additional independent
hash function. However, in the solution presented here, the threshold is determined from the
data to be sub-sampled itself, which means it is not possible to assume independence. The
solution to the problem is to show that |R(f)| approximates 2−s |A| with high probability
for all possible values s(f) assuming E1.

▶ Lemma 10. L := Pψ∼Ψ(E1(ψ) ∧ ¬E2(ψ)) ≤ 2−6

Proof. Let r(f, t) := |{a ∈ A | f(a) ≥ t}| and tmax be maximal, s.t. 2−16b ≤ 2−tmax |A|. Then
27 ≤ ε2

9 2−16b ≤ ε2

9 2−tmax |A|. Hence: 27+tmax−t ≤ ε2

9 2−t |A| = ε2

9 E r(f, t). Thus:

27+tmax−tV r(f, t) ≤ 27+tmax−t E r(f, t) ≤ ε2

9 (E r(f, t))2

for all 0 < t ≤ tmax. (This may be a void statement if tmax ≤ 0.) Hence:

P(f,g,h)∈Ψ

(
∃t.0 < t ≤ tmax ∧ |r(f, t)− E r(·, t)| > ε

3 E r(·, t)
)
≤

tmax∑
t=1
P(f,g,h)∈Ψ

(
|r(f, t)− E r(·, t)| >

√
27+tmax−tV r(f, t)

)
≤
tmax∑
t=1

2−7−tmax+t ≤ 2−6

APPROX/RANDOM 2023

35:12 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

Note that the predicate E2(ψ) is always true if s(f) = 0 because, in that case, there is no
sub-sampling, i.e., |R(f)| = |A|. On the other hand if s(f) > 0, then s(f) = t(f) ≤ tmax
assuming E1(ψ). Hence:

L ≤ P(f,g,h) (s(f) > 0 ∧ E1(f, g, h) ∧ ¬E2(f, g, h))

≤ P(f,g,h)

(
0 < t(f) ≤ tmax ∧

∣∣∣|R(f)| − 2−t(f) |A|
∣∣∣ > ε

3 2−t(f) |A|
)

≤ P(f,g,h)

(
0 < t(f) ≤ tmax ∧

∣∣∣r(f, t(f))− 2−t(f) |A|
∣∣∣ > ε

3 2−t(f) |A|
)
≤ 2−6

where the last step follows from the previous equation. ◀

Note that: E1(f, g, h) ∧ E2(f, g, h)→ |R(f)| ≤ 2
3b for (f, g, h) ∈ Ψ (10)

▶ Lemma 11. L := Pψ∼Ψ(E1(ψ) ∧ E2(ψ) ∧ ¬E3(ψ)) ≤ 2−6

Proof. Using Eq. 10 we can conclude:

L ≤ P(f,g,h)∼Ψ (|R(f)| ≤ b ∧ (∃a < b ∈ R(f).g(a) = g(b)))

≤
∫

G2([n])
[|R(f)| ≤ b]Pg∼H2([n],[C7b2])(∃a < b ∈ R(f).g(a) = g(b)) df

≤
∫

G2([n])
[|R(f)| ≤ b]

∑
a<b∈R(f)

Pg∼H2([n],[C7b2])(g(a) = g(b)) df

≤
∫

G2([n])

b(b− 1)
2C7b2 df ≤ 1

2C7
= 2−6. ◀

▶ Lemma 12. L := Pψ∼Ψ(E1(ψ) ∧ E2(ψ) ∧ E3(ψ) ∧ ¬E4(ψ)) ≤ 2−6

Proof. Let R̃(f, g, h) = {i ∈ [C7b
2] | f(a) ≥ t(f)∧ g(a) = i∧a ∈ A} denote the indices hit in

the domain [C7b
2] by the application of g on the elements above the sub-sampling threshold.

If E3(f, g, h), then
∣∣R̃(f, g, h)

∣∣ = |R(f)| and if E1(f, g, h) ∧ E2(f, g, h) ,then |R(f)| ≤ b (see
Eq. 10). Recalling that p(ψ) is the number of bins hit by the application of k-independent
family from R̃(ψ) ⊆ [C7b

2] to [b] we can apply Lemma 20. This implies:

P(f,g,h)∼Ψ

(∧
i∈{1,2,3} Ei(f, g, h) ∧ |p(f, g, h)− ρ(|R(f)|)| ≥ ε

12 |R(f)|
)
≤

Pψ∼Ψ

(∣∣R̃(ψ)
∣∣ ≤ b ∧ ∣∣p(ψ)− ρ

(∣∣R̃(ψ)
∣∣)∣∣ ≥ ε

12
∣∣R̃(ψ)

∣∣) ≤
Pψ∼Ψ

(∣∣R̃(ψ)
∣∣ ≤ b ∧ ∣∣p(ψ)− ρ

(∣∣R̃(ψ)
∣∣)∣∣ ≥ 9b−1/2 ∣∣R̃(ψ)

∣∣) ≤ 2−6

where we used, that b ≥ 92122ε−2 (i.e. C4 >= 92122). ◀

▶ Lemma 13. Equation 8 is true.

Proof. Let us start by observing that E1(ψ) ∧E2(ψ) ∧E4(ψ)→ |A∗(ψ)− |A|| ≤ ε |A|. This
is basically an error propagation argument. First note that by using Eq. 10: p(f, g, h) ≤
ρ(R(f)) + ε

12 |R(f)| ≤ ρ(2
3b) + 1

12 |R(f)| ≤ 41
60b. Moreover, using the mean value theorem:∣∣ρ−1(p(f, g, h))− |R(f)|

∣∣ = (ρ−1)′(ξ) |p(f, g, h)− ρ(|R(f)|)| ≤ ε
3 |R(f)|

for some ξ between ρ(|B(f)|) and p(f, g, h) where we can approximate (ρ−1)′(ξ) < 4. Hence:

E. Karayel 35:13

∣∣∣ρ−1(p(f, g, h))− 2−s(f) |A|
∣∣∣ ≤ ∣∣ρ−1(p(f, g, h))− |R(f)|

∣∣+
∣∣∣|R(f)| − 2−s(f) |A|

∣∣∣
≤ ε

3 |R(f)|+
∣∣∣|R(f)| − 2−s(f) |A|

∣∣∣
≤

(
2ε
3 + ε2

9

)
2−s(f) |A| ≤ ε2−s(f) |A|

It is also possible to deduce that E1(f, g, h) → t(f) ≥ ⌈ld(|A|)⌉ − ld b → s(f) ≥ qmax.
Using Lemma 9 to 12 we can conclude that Equation 9 is true. And the implications derived
here show that then Equation 8 must be true as well. ◀

To extend the previous result to the case: q ≤ qmax, let us introduce the random variables:

tc(ψ, q) := max{τ1(ψ, q)[j] + q | j ∈ [b]} − ld b+ 9 sc(ψ, q) := max(0, tc(ψ, q))

pc(ψ, q) := |{j ∈ [b] | τ1(ψ, q)[j] + q ≥ sc(ψ, q)}| Yc(ψ, q) := 2sc(ψ,q)ρ−1(pc(ψ, q))

These definitions tc, pc and Yc correspond to the terms within the loop in the estimate
function for arbitrary q.

▶ Lemma 14. Pψ∼Ψ (∃q ≤ qmax. |Yc(ψ, q)− |A|| > ε |A|) ≤ 1
16

Proof. It is possible to see that tc(ψ, q) = t(ψ) if q ≤ t(ψ). This is because τ1(ψ, q) + q

and τ1(ψ, 0) are equal except for values strictly smaller than q. With a case distinction on
t(ψ) ≥ 0 it is also possible to deduce that s(ψ, q) = s(ψ) if q ≤ s(ψ). Hence: pc(ψ, q) = p(ψ)
and Yc(ψ, q) = Y (ψ) (for q ≤ s(ψ)). Thus this lemma is a consequence of Lemma 13. ◀

▶ Lemma 15. L := Pω∈Ω (∃q ≤ qmax. |estimate(τ2(ω, q))− |A|| > ε |A|) ≤ δ
2

Proof. Because the median of a sequence will certainly be in an interval, if more than half
of the elements are in it, we can approximate the left-hand side as:

L ≤ Pω∈Ω

∃q ≤ qmax.
∑
i∈[l]

[|Y (ωi, q)− |A|| > ε |A|] ≥ l

2

≤ exp

(
−l

(
1
2 ln

((
1
16 + 1

16

)−1
)
− 2e−1

))
≤ exp

(
− l4

)
≤ δ

2

The second inequality follows from Lemma 4 and 14 as well as λ ≤ 1
16 . ◀

Proof of Theorem 7. Follows from Lemma 8 and the previous lemma, as well as the reason-
ing established in Equation 3. ◀

5.5 Space Usage
It should be noted that the data structure requires an efficient storage mechanism for the
levels in the bins. We need to store the table values in a manner in which the number of
bits required for a value x is proportional to ln x. A simple strategy would be to store each
value using a prefix-free universal code and concatenating the encoded variable-length bit
strings.5 A well-known universal code for positive integers is the Elias-gamma code, which

5 Note that a vector of prefix-free values can be decoded even if they are just concatenated.

APPROX/RANDOM 2023

35:14 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

requires 2 ⌊ldx⌋+ 1 bits for x ≥ 1 [13]. Since, in our case, the values are integers larger or
equal to (−1), they can be encoded using 2 ⌊ld(x+ 2)⌋+ 1 bits.6 In combination with the
condition established in the compress function of Algorithm 1 the space usage for the table
is thus (2C5 + 1)bl ∈ O(bl) ⊆ O(ln(δ−1)ε2). Additionally, the approximation threshold needs
to be stored. This threshold is a non-negative integer between 0 and ldn requiring O(ln lnn)
bits to store. In summary, the space required for the sketch is O(ln(δ−1)ε2 + ln lnn). For
the coin flips, we need to store a random choice from Ω, i.e., we need to store ln(|Ω|) bits.
The latter is in O(ln(|Ω|)) ⊆ O(ln(|Ψ|) + l ln(λ−1)) ⊆ O(lnn+ ln(ε−1)2 + ln(δ−1)3). Overall
the total space for the coin flips and the sketch is O(ln(δ−1)ε−2 + lnn+ ln(δ−1)3).

6 Extension to small failure probabilities

The data structure described in the previous section has a space complexity that is close
but exceeds the optimal O(ln(δ−1)ε−2 + lnn). The main reason this happens is that, with
increasing length of the random walk, the spectral gap of the expander is increasing as well –
motivated by the application of Lemma 5 in Subsection 5.3, with which we could establish
that the cut-level could be shared between all tables. A natural idea is to restrict that.

If δ−1 is smaller than lnn the term (ln(δ−1))3 in the complexity of the algorithm is not a
problem because it is dominated by the lnn term. If it is larger, we can split the table into
sub-groups and introduce multiple cut-levels. Hence a single cut-level would be responsible
for a smaller count of tables, and thus the spectral gap would be lower. (See also Figure 2).

A succinct way to precisely prove the correctness of the proposal is to repeat the previous
algorithm, which has only a single shared cut-level, in a black-box manner for the same
universe size and accuracy but for a higher failure probability. The seeds of each repetition
are selected again using an expander walk. Here the advantage of Lemma 4 is welcome, as
the inner algorithm needs to have a failure probability depending on n – the natural choice
is (lnn)−1. The length of the walk of the inner algorithm matches the number of bits of the
cut-level O(ln lnn). The repetition count of the outer algorithm is then O

(
ln(δ−1)
ln lnn

)
.

▶ Theorem 16. Let n > 0, 0 < ε < 1 and 0 < δ < 1. Then there exists a cardinality
estimation data structure for the universe [n] with relative accuracy ε and failure probability
δ with space usage O(ln(δ−1)ε−2 + lnn).

Proof. If δ−1 < lnn, then the result follows from Theorem 7 and the calculation in Subsec-
tion 5.5. Moreover, if n < exp(e5), then the theorem is trivially true, because there is an
exact algorithm with space usage exp(e5) ∈ O(1). Hence we can assume e5 ≤ lnn ≤ δ−1.
Let Ω∗, single∗, merge∗ and estimate∗ denote the seed space and the API of Algorithm 1
for the universe [n], relative accuracy ε and failure probability δ∗ := (lnn)−1. Moreover, let
m :=

⌈
4 ln(δ−1)

ln lnn

⌉
– the plan is to show that with these definitions Algorithm 2 fulfills the con-

ditions of this theorem. Let ν(θ,A)[i] := τ∗(θi, A) for i ∈ [m] and θ ∈ Θ := U(E(Ω∗, δ∗,m)).
Then it is straightforward to check that:

single(θ, x) = ν(θ, {x}) merge(ν(θ,A), ν(θ,B)) = ν(θ,A ∪B)

for x ∈ [n] and ∅ ̸= A,B ⊆ [n] taking into account Lemma 6. Hence the correctness follows
if: Pθ∈Θ(|estimate(ν(θ,A))− |A|| > ε |A|) ≤ δ. Because the estimate is the median of the
individual estimates, this is true if at least half of the individual estimates are in the desired
range. Similar to the proof of Lemma 15 we can apply Lemma 4. This works if

6 There are more sophisticated strategies for representing a sequence of variable-length strings that allow
random access. [7]

E. Karayel 35:15

exp
(
−m

(
1
2 ln

(
(δ∗ + δ∗)−1)− 2e−1

))
≤ δ

which follows from m ≥ 4 ln(δ−1)(ln lnn)−1 and ln lnn ≥ 5. The space usage for the seed is:
ln |Θ| ∈ O(lnn+ln(ε−1)2 +(ln((δ∗)−1))3 +m ln((δ∗)−1)) ⊆ O(lnn+ln(ε−1)2 +ln(δ−1)). The
space usage for the sketch is: O(m ln((δ∗)−1)ε−2 +m ln lnn) ⊆ O(ln(δ−1)ε−2 + ln lnn). ◀

Algorithm 2 Algorithm for 0 < δ < (ln n)−1.

function init() : Θ
return randomU(Θ)

function single(x : U, θ : Θ) : S
D[i] = single∗(x, θi) for i ∈ [m]
return D

function merge(Da : S, Db : S) : S
D[i]← merge∗(Da[i], Db[i]) for i ∈ [m]
return D

function estimate(D : S) : R
Yi ← estimate∗(D[i]) for i ∈ [m]
return median(Y0, . . . , Ym−1)

table 0

bin 0

bin 1

...

bin b− 1

table 1

· · ·

table l − 1

cut-level 0

group 0

table 0

bin 0

bin 1

...

bin b− 1

table 1

· · ·

table l − 1

cut-level m− 1

group m− 1

· · ·

Figure 2 Schematic representation of the states of Algorithm 2 with m ∈ O
(

ln(δ−1)
ln ln n

)
repetitions

of the inner algorithm. The inner algorithm uses b ∈ O(ε−2) bins and l ∈ O(ln ln n) tables.

7 Optimality

The optimality of the algorithm introduced by Błasiok [9] follows from the lower bound
established by Jayram and Woodruff [23, Theorem 4.4]. The result (as well as its predeces-
sors [4, 40]) follows from a reduction to a communication problem. This also means that
their theorem is a lower bound on the information the algorithm needs to retain between
processing successive stream elements.

APPROX/RANDOM 2023

35:16 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

An immediate follow-up question to Theorem 16 is whether the space usage is also optimal
in the distributed setting. Let us assume there are p processes, each retaining m stream
elements, and they are allowed to communicate at the beginning, before observing the stream
elements, and after observing all stream elements. Even with these relaxed constraints, the
number of bits that each process will need to maintain will be the same as the minimum
number of bits of a sequential streaming solution. This follows by considering a specific
subset of the input set where except for process 0, the stream elements on all the other
processes are equal to the last stream element of process 0. In particular, the information the
processes 1, 2, . . . , p− 1 have is 0 bits from the perspective of process 0. If our distributed
hypothetical algorithm is correct, it can only be so if the worst-case space usage per process
is Ω(ln(δ−1)ε−2 + lnn).

8 Conclusion

A summary of this work would be that for the space complexity of cardinality estimation
algorithms, there is no gap between the distributed and sequential streaming models. More-
over, it is possible to solve the problem optimally (in either model) with expander graphs
and hash families without using code-based extractors (as they were used in previous work).
The main algorithmic idea is to avoid using a separate rough estimation data structure
for quantization (cut-off); instead, the cut-off is guided by the space usage. During the
estimation step at the end, an independent rough estimate is still derived, but it may be
distinct from the cut-off reached at that point. This is the main difference between this
solution and the approach by Kane et al. [24]. The main mathematical idea is to take the
tail estimate based on the Kullback-Leibler divergence for random walks on expander graphs,
first noted by Impagliazzo and Kabanets [22, Th. 10] seriously. With which, it is possible
to achieve a failure probability of δ using O

(
ln(δ−1)

ln((δ∗)−1)

)
repetitions of an inner algorithm

with a failure probability δ∗ > δ. Note that the same cannot be done with the standard
Gillman-type Chernoff [18] bounds. This allows the two-stage expander construction that we
needed. As far as I can tell, this strategy is new and has not been used before.

An interesting question is whether the two-stage expander construction can somehow be
collapsed into a single stage. For that, it is best to consider the following non-symmetric
aggregate:

Pω∈E(E(S,exp(−l(ln l)3),l),exp(−l/m),m)

∑
i∈[m]

∑
j∈[l]

X(ωij) ≥ C1

 ≥ m

2

 ≤ exp(−O(lm))

where X may be an unbounded random variable with, e.g., sub-gaussian distribution. Indeed,
the bound on the count of too-large cut-off values from Algorithm 2 turns out to be a
tail estimate of the above form. I tried to obtain such a bound using only a single-stage
expander walk but did not succeed without requiring too large spectral gaps, i.e., with
λ−1 ∈ O(1) for m ≪ l. There is a long list of results on more advanced Chernoff bounds
for expander walks [2, 28, 30, 34, 35, 38] and investigations into more general aggregation
(instead of summation) functions [10, 16, 19, 20, 32, 36], but I could not use any of these
results/approaches to avoid the two-stage construction. This suggests that either there
are more advanced results to be found or multi-stage expander walks are inherently more
powerful than single-stage walks.

E. Karayel 35:17

References
1 Archive of Formal Proofs. https://isa-afp.org. Accessed: 2023-07-03.
2 Rohit Agrawal. Samplers and Extractors for Unbounded Functions. In Dimitris Achlioptas

and László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM 2019), volume 145 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 59:1–59:21, Dagstuhl, Germany, 2019. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.59.

3 Noga Alon, Uriel Feige, Avi Wigderson, and David Zuckerman. Derandomized graph products.
computational complexity, 5:60–75, 1995. doi:10.1007/BF01277956.

4 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
doi:10.1006/jcss.1997.1545.

5 Frank J. Balbach. The cook-levin theorem. Archive of Formal Proofs, January 2023. , Formal
proof development. URL: https://isa-afp.org/entries/Cook_Levin.html.

6 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Trevisan. Counting distinct
elements in a data stream. In Randomization and Approximation Techniques in Computer
Science, pages 1–10. Springer Berlin Heidelberg, 2002. doi:10.1007/3-540-45726-7_1.

7 Daniel K. Blandford and Guy E. Blelloch. Compact dictionaries for variable-length keys and
data with applications. ACM Trans. Algorithms, 4(2), May 2008. doi:10.1145/1361192.
1361194.

8 Jarosław Błasiok. Optimal streaming and tracking distinct elements with high probability.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 2432–2448, 2018. doi:10.1137/1.9781611975031.156.

9 Jarosław Błasiok. Optimal streaming and tracking distinct elements with high probability.
ACM Trans. Algorithms, 16(1):3:1–3:28, 2020. doi:10.1145/3309193.

10 Gil Cohen, Noam Peri, and Amnon Ta-Shma. Expander random walks: A fourier-analytic
approach. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 1643–1655, New York, NY, USA, 2021. doi:10.1145/3406325.
3451049.

11 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: A flexible data processing tool. Commun.
ACM, 53(1):72–77, January 2010. doi:10.1145/1629175.1629198.

12 Manuel Eberl and Lawrence C. Paulson. The prime number theorem. Archive of Formal
Proofs, September 2018. , Formal proof development. URL: https://isa-afp.org/entries/
Prime_Number_Theorem.html.

13 P. Elias. Universal codeword sets and representations of the integers. IEEE Transactions on
Information Theory, 21(2):194–203, 1975.

14 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31(2):182–209, 1985. doi:10.1016/
0022-0000(85)90041-8.

15 Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering. Addison-Wesley Longman Publishing Co., Inc., USA, 1995.

16 Ankit Garg, Yin Tat Lee, Zhao Song, and Nikhil Srivastava. A matrix expander chernoff
bound. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, pages 1102–1114, New York, NY, USA, 2018. doi:10.1145/3188745.3188890.

17 Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of data
streams. In Proceedings of the Thirteenth Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’01, pages 281–291, 2001. doi:10.1145/378580.378687.

18 David Gillman. A chernoff bound for random walks on expander graphs. SIAM Journal on
Computing, 27(4):1203–1220, 1998. doi:10.1137/S0097539794268765.

19 Louis Golowich. A new berry-esseen theorem for expander walks. Electron. Colloquium
Comput. Complex., TR22, 2022.

APPROX/RANDOM 2023

https://isa-afp.org
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://doi.org/10.1007/BF01277956
https://doi.org/10.1006/jcss.1997.1545
https://isa-afp.org/entries/Cook_Levin.html
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1145/1361192.1361194
https://doi.org/10.1145/1361192.1361194
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.1145/3309193
https://doi.org/10.1145/3406325.3451049
https://doi.org/10.1145/3406325.3451049
https://doi.org/10.1145/1629175.1629198
https://isa-afp.org/entries/Prime_Number_Theorem.html
https://isa-afp.org/entries/Prime_Number_Theorem.html
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1016/0022-0000(85)90041-8
https://doi.org/10.1145/3188745.3188890
https://doi.org/10.1145/378580.378687
https://doi.org/10.1137/S0097539794268765

35:18 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

20 Louis Golowich and Salil Vadhan. Pseudorandomness of expander random walks for symmetric
functions and permutation branching programs. In Proceedings of the 37th Computational
Complexity Conference, CCC ’22, Dagstuhl, Germany, 2022. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.CCC.2022.27.

21 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders
and randomness extractors from parvaresh–vardy codes. J. ACM, 56(4), July 2009. doi:
10.1145/1538902.1538904.

22 Russell Impagliazzo and Valentine Kabanets. Constructive proofs of concentration bounds.
In Maria Serna, Ronen Shaltiel, Klaus Jansen, and José Rolim, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 617–631,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-15369-3_46.

23 T. S. Jayram and David P. Woodruff. Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3), June 2013.
doi:10.1145/2483699.2483706.

24 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’10, pages 41–52, New York, 2010.
doi:10.1145/1807085.1807094.

25 Emin Karayel. Distributed distinct elements. Archive of Formal Proofs, April 2023. , Formal
proof development. URL: https://isa-afp.org/entries/Distributed_Distinct_Elements.
html.

26 Emin Karayel. An embarrassingly parallel optimal-space cardinality estimation algorithm,
2023. arXiv:2307.00985.

27 Emin Karayel. Expander graphs. Archive of Formal Proofs, March 2023. , Formal proof
development. URL: https://isa-afp.org/entries/Expander_Graphs.html.

28 Pascal Lezaud. Chernoff-type bound for finite Markov chains. The Annals of Applied Probability,
8(3):849–867, 1998. doi:10.1214/aoap/1028903453.

29 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan. Deterministic Approximation
of Random Walks in Small Space. In Dimitris Achlioptas and László A. Végh, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019), volume 145 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 42:1–42:22, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.42.

30 Assaf Naor, Shravas Rao, and Oded Regev. Concentration of markov chains with bounded
moments. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 56(3):2270–2280,
2020. doi:10.1214/19-AIHP1039.

31 Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-Verlag,
Berlin, Heidelberg, first edition, 2002.

32 Daniel Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral
methods. Electronic Journal of Probability, 20:1–32, 2015. doi:10.1214/EJP.v20-4039.

33 Seth Pettie and Dingyu Wang. Information theoretic limits of cardinality estimation: Fisher
meets shannon. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 556–569, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3451032.

34 Shravas Rao. A hoeffding inequality for markov chains. Electronic Communications in
Probability, 24:1–11, 2019. doi:10.1214/19-ECP219.

35 Shravas Rao and Oded Regev. A sharp tail bound for the expander random sampler, 2017.
arXiv:1703.10205.

36 Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branching
programs via fourier analysis. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and
José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 655–670, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-40328-6_45.

https://doi.org/10.4230/LIPIcs.CCC.2022.27
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1007/978-3-642-15369-3_46
https://doi.org/10.1145/2483699.2483706
https://doi.org/10.1145/1807085.1807094
https://isa-afp.org/entries/Distributed_Distinct_Elements.html
https://isa-afp.org/entries/Distributed_Distinct_Elements.html
https://arxiv.org/abs/2307.00985
https://isa-afp.org/entries/Expander_Graphs.html
https://doi.org/10.1214/aoap/1028903453
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://doi.org/10.1214/19-AIHP1039
https://doi.org/10.1214/EJP.v20-4039
https://doi.org/10.1145/3406325.3451032
https://doi.org/10.1214/19-ECP219
https://arxiv.org/abs/1703.10205
https://doi.org/10.1007/978-3-642-40328-6_45

E. Karayel 35:19

37 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1-3):1–336, 2012. doi:10.1561/0400000010.

38 Roy Wagner. Tail estimates for sums of variables sampled by a random walk. Comb. Probab.
Comput., 17(2):307–316, March 2008. doi:10.1017/S0963548307008772.

39 Mark N. Wegman and J. Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981. doi:
10.1016/0022-0000(81)90033-7.

40 David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings of the
Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’04, pages 167–175,
USA, 2004. Society for Industrial and Applied Mathematics.

A Proof of Lemma 5

▶ Lemma 5 (Deviation Bound). Let G = (V,E) be a λ-expander graph and f : V → R≥0 s.t.
Pv∼U(V)(f(v) ≥ x) ≤ exp(−x(ln x)3) for x ≥ 20 and λ ≤ exp(−l(ln l)3) then

Pw∼Walk(G,l)

(∑
i∈[l] f(wi) ≥ C1l

)
≤ exp(−l)

where C1 := e2 + e3 + (e− 1) ≤ 30.

Proof. Let µk := Ev∼V [ek ≤ f(v)] ≤ exp(−ekk3) for k ≥ 3. We will show

Lk := Pw∼Walk(G,l)

∑
i∈[l]

[ek ≤ f(wi)] ≥ le−kk−2

 ≤ exp(−l − k + 2) for all k ≥ 3 (11)

by case distinction on the range of k:
Case k ≥ max(ln l, 3): In this case the result follows using Markov’s inequality. Note that

the random walk starts from and remains in the stationary distribution, and thus for any
index i ∈ [l] the distribution of the i-th walks step wi will be uniformly distributed over V ,
hence:

Lk ≤ ekk2l−1 Ew∼Walk(G,l)
∑
i∈[l][ek ≤ f(wi)] = ekk2 Ev∼V [ek ≤ f(v)]

≤ ekk2 exp(−ekk3) = exp(k + 2 ln k − ekk3) ≤ exp(2k − ek(k2 + 2))
≤ exp(2k − ekk2 − ek − ek) ≤ exp(−l − k + 2)

Here we use that k3 ≥ k2 + 2 and ek ≥ k for k ≥ 3 and ek ≥ l.
Case 3 ≤ k < ln l: Then we have

Lk ≤ exp
(
−l(e−kk−2 ln((µk + λ)−1)− 2e−1)

)
using Lemma 4

≤ exp
(
−l(e−kk−2(ekk3 − ln 2)− 2e−1)

)
≤ exp

(
−l(k − e−kk−2 ln 2− 2e−1)

)
≤ exp (−l(k − 1)) ≤ exp (−l − k + 2)

Concluding the proof of Eq. 11.
Note that:∑
i∈[l]

f(wi) ≤ e2l +
∑
i∈[l]

∑
k≥2

ek+1[ek ≤ f(wi) < ek+1]

≤ e2l +
∑
i∈[l]

∑
k≥2

ek+1[ek ≤ f(wi)]−
∑
k≥2

ek+1[ek+1 ≤ f(wi)]

≤ (e2 + e3)l + (e− 1)

∑
i∈[l]

∑
k≥3

ek[ek ≤ f(wi)]

APPROX/RANDOM 2023

https://doi.org/10.1561/0400000010
https://doi.org/10.1017/S0963548307008772
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1016/0022-0000(81)90033-7

35:20 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

Hence:

Pw∼Walk(G,l)

∑
i∈[l]

f(wi) ≥ C1l

 ≤ Pw∼Walk(G,l)

 ∑
k≥3,i∈[l]

ek[ek ≤ f(wi)] ≥ l

≤ Pw∼Walk(G,l)

∨
k≥3

∑
i∈[l]

[ek ≤ f(wi)] ≥ le−kk−2

≤
∑
k≥3

Lk ≤
∑
k≥3

exp (−l − k + 2) ≤ exp(−l). ◀

B Balls and Bins

Let Ω = U([r]→ [b]) be the uniform probability space over the functions from [r] to [b] for
b ≥ 1 and 0 ≤ r ≤ b and let X(ω) = |ω([r])| be the size of the image of such a function. This
models throwing r balls into b bins independently, where X is the random variable counting
the number of hit bins. Moreover, let Ei(ω) = {ω | i ∈ ω([r])} be the event that the bin i

was hit. Note that X(ω) =
∑
i∈[b] Ei(ω). And we want to show that

Eω∼Ω X(ω) = b

(
1−

(
1− 1

b

)r)
Vω∼Ω X(ω) ≤ r(r − 1)

b

▶ Lemma 17. Eω∼Ω X(ω) = b
(
1−

(
1− 1

b

)r)
The proof is available in the full version [26].

▶ Lemma 18. Vω∼Ω X(ω) ≤ r(r−1)
b

The proof is available in the full version [26]. The above is a stronger version of the result
by Kane et al. [24][Lem. 1]. Their result has the restriction that r ≥ 100 and a superfluous
factor of 4.

Interestingly, it is possible to obtain a similar result for k-independent balls into bins.
For that let Ω′ be a probability space of functions from [r] to [b] where

Pω∼Ω′

(∧
i∈I

ω(i) = x(i)
)

= r−|I|

for all I ⊂ [r], |I| ≤ k and all x : I → [b]. As before let us denote X ′(ω) := |ω([r])| the
number of bins hit by the r balls. Then the expectation (resp. variance) of X ′ approximates
that of X with increasing independence k, more precisely:

▶ Lemma 19. If ε ≤ e−2 and k ≥ 1 + 5 ln(bε−1)(ln(ln(bε−1)))−1 then:

|Eω′∈Ω′ X ′(ω′)− Eω∈Ω X(ω)| ≤ εr |Vω′∈Ω′ X ′(ω′)− Vω∈Ω X(ω)| ≤ ε2 .

This has been shown7 by Kane et al. [24][Lem. 2]. The proof relies on the fact that
X =

∑
i∈[b] max(1, Yi) where Yi denotes the random variable that counts the number of balls

in bin i. It is possible to show that E(Yi)j = E(Y ′
i)j for all j ≤ k (where Y ′

i denotes the
same notion over Ω′). Their approach is to approximate max(1, ·) with a polynomial g of

7 Without the explicit constants mentioned in here.

E. Karayel 35:21

degree k. Since E g(Yi) = E g(Y ′
i) they can estimate the distance between EX and EX ′ by

bounding the expectation of each approximation error: g(Yi)−max(1, Yi). Obviously, larger
degree polynomials (and hence increased independence) allow better approximations. The
reasoning for the variance is analogous.

▶ Lemma 20. If k ≥ C2 ln b+ C3 then:

L := Pω′∈Ω′

(
|X ′(ω′)− ρ(r)| > 9b−1/2r

)
≤ 2−6

Proof. This follows from Lemma 17, 18 and the previous lemma for ε = min(e−2, b−1/2) in
particular: VX ′ ≤ VX + 1

b ≤
r2

b and hence:

L ≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′|+ |EX ′ − ρ(r)| ≥ 9b−1/2r

)
≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′|+ b−1/2r ≥ 9b−1/2r

)
≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′| ≥ 8b−1/2r

)
≤ Pω′∈Ω′

(
|X ′(ω′)− EX ′| ≥ 8

√
VX ′

)
≤ 2−6

where the last line follows from Chebychev’s inequality. ◀

C Table of Constants

Table 2 Table of Constants.

Constant References Constant References

C1 := e2 + e3 + (e− 1) Lemma 5 C2 := 15
2 Lemma 19

C3 := 16 Lemma 19 C4 := 32223 Lemma 9 and 12
C5 := ⌈C1 + 3⌉ = 33 Lemma 8 C6 := 4 Lemma 15
C7 := 25 Lemma 11

D Formalization

As mentioned in the introduction the proofs in this work have been machine-checked using
Isabelle. They are available [25, 27] in the AFP (Archive of Formal Proofs) [1] – a site hosting
formal proofs verified by Isabelle. Table 3 references the corresponding facts in the AFP
entries. The first column refers to the lemma in this work. The second is the corresponding
name of the fact in the formalization. The formalization can be accessed in two distinct forms:
As a source repository with distinct theory files, as well as two “literate-programming-style”
PDF documents with descriptive text alongside the Isabelle facts (optionally with the proofs).
The latter is much more informative. The third column of the table refers to the file name 8

of the corresponding source file, while the last column contains the reference of the AFP
entry, including the section in the PDF versions.

8 Distributed_Distinct_Elements is abbreviated by DDE and Without with WO.

APPROX/RANDOM 2023

35:22 An Embarrassingly Parallel Optimal-Space Cardinality Estimation Algorithm

Table 3 Reference to the formal entities.

Lemma Formalized Entity Theory Src.
Thm. 1 This theorem from Impagliazzo and Kabanets was stated for motivational

reasons and is never used in any of the following results, hence it is not
formalized.

Thm. 2 theorem hitting-property Expander_Graphs_Walks [27, §9]
Thm. 3 theorem kl-chernoff-property Expander_Graphs_Walks [27, §9]
Lem. 4 lemma walk-tail-bound DDE_Tail_Bounds [25, §5]
Lem. 5 lemma deviation-bound DDE_Tail_Bounds [25, §5]
Lem. 6 (1) lemma single-result DDE_Inner_Algorithm [25, §6]
Lem. 6 (2) lemma merge-result DDE_Inner_Algorithm [25, §6]
Lem. 8 lemma cutoff-level DDE_Cutoff_Level [25, §8]
Lem. 9 lemma e-1 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 10 lemma e-2 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 11 lemma e-3 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 12 lemma e-4 DDE_Accuracy_WO_Cutoff [25, §7]
Lem. 13 lemma

accuracy-without-cutoff
DDE_Accuracy_WO_Cutoff [25, §7]

Lem. 14 lemma accuracy-single DDE_Accuracy [25, §9]
Lem. 15 lemma estimate-result-1 DDE_Accuracy [25, §9]
Thm. 7 lemma estimate-result DDE_Accuracy [25, §9]
Thm. 16 (1) theorem correctness DDE_Outer_Algorithm [25, §10]
Thm. 16 (2) theorem space-usage DDE_Outer_Algorithm [25, §10]
Thm. 16 (3) theorem

asymptotic-space-complexity
DDE_Outer_Algorithm [25, §10]

Lem. 17 lemma exp-balls-and-bins DDE_Balls_And_Bins [25, §4]
Lem. 18 lemma var-balls-and-bins DDE_Balls_And_Bins [25, §4]
Lem. 19 (1) lemma exp-approx DDE_Balls_And_Bins [25, §4]
Lem. 19 (2) lemma var-approx DDE_Balls_And_Bins [25, §4]
Lem. 20 lemma deviation-bound DDE_Balls_And_Bins [25, §4]

	1 Introduction
	2 Notation and Preliminaries
	3 Chernoff-type estimates for Expander Walks
	4 Explicit Pseudo-random Constructions
	4.1 Strongly explicit expander graphs
	4.2 Hash Families

	5 The Algorithm
	5.1 History-Independence
	5.2 Overall Proof
	5.3 Cut-off Level
	5.4 Accuracy
	5.5 Space Usage

	6 Extension to small failure probabilities
	7 Optimality
	8 Conclusion
	A Proof of Lemma 5
	B Balls and Bins
	C Table of Constants
	D Formalization

