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Abstract
We give a simple proof that the (approximate, decisional) Shortest Vector Problem is NP-hard
under a randomized reduction. Specifically, we show that for any p ≥ 1 and any constant γ < 21/p,
the γ-approximate problem in the ℓp norm (γ-GapSVPp) is not in RP unless NP ⊆ RP. Our proof
follows an approach pioneered by Ajtai (STOC 1998), and strengthened by Micciancio (FOCS 1998
and SICOMP 2000), for showing hardness of γ-GapSVPp using locally dense lattices. We construct
such lattices simply by applying “Construction A” to Reed-Solomon codes with suitable parameters,
and prove their local density via an elementary argument originally used in the context of Craig
lattices.

As in all known NP-hardness results for GapSVPp with p < ∞, our reduction uses randomness.
Indeed, it is a notorious open problem to prove NP-hardness via a deterministic reduction. To
this end, we additionally discuss potential directions and associated challenges for derandomizing
our reduction. In particular, we show that a close deterministic analogue of our local density
construction would improve on the state-of-the-art explicit Reed-Solomon list-decoding lower bounds
of Guruswami and Rudra (STOC 2005 and IEEE Transactions on Information Theory 2006).

As a related contribution of independent interest, we also give a polynomial-time algorithm for
decoding n-dimensional “Construction A Reed-Solomon lattices” (with different parameters than
those used in our hardness proof) to a distance within an O(

√
log n) factor of Minkowski’s bound.

This asymptotically matches the best known distance for decoding near Minkowski’s bound, due to
Mook and Peikert (IEEE Transactions on Information Theory 2022), whose work we build on with
a somewhat simpler construction and analysis.
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37:2 Hardness of the (Approximate) Shortest Vector Problem

1 Introduction

[I]t may easily happen that other, perhaps in some sense simpler, lattices also
have the properties that are required from L to complete the proof. . . There
are different reasons which may motivate the search for such a lattice: to make
the proof deterministic; to improve the factor in the approximation result; to
make the proof simpler.

Miklós Ajtai, [3, Remark 2]

A lattice L is the set of all integer linear combinations of some n linearly independent vectors
b1, . . . , bn ∈ Rm. The matrix B = (b1, . . . , bn) whose columns are these vectors is called a
basis of L, and n is called its rank. Formally, the lattice L generated by B is defined as

L = L(B) :=
{ n∑

i=1
aibi : a1, . . . , an ∈ Z

}
.

Lattices are classically studied mathematical objects, and have proved invaluable in many
computer science applications, especially the design and analysis of cryptosystems. Indeed,
the area of lattice-based cryptography, which designs cryptosystems whose security is based
on the apparent intractability of certain computational problems on lattices, has flourished
over the past quarter century. (See [36] and its bibliography for a comprehensive summary
and list of references.)

The central computational problem on lattices is the Shortest Vector Problem (SVP):
given a lattice basis B as input, the goal is to find a shortest non-zero vector in L(B). This
paper is concerned with its γ-approximate decision version in the ℓp norm (γ-GapSVPp),
where p ≥ 1 is fixed and the approximation factor γ = γ(n) ≥ 1 is some function of the lattice
rank n (often a constant). Here the input additionally includes a distance threshold s > 0,
and the goal is to determine whether the length (in the ℓp norm) λ

(p)
1 (L) := minv∈L\{0}∥v∥p

of the shortest non-zero vector in L is at most s, or is strictly greater than γs, when one
of the two cases is promised to hold. For the exact problem, where γ = 1, we often simply
write GapSVPp.

Motivated especially by its central role in the security of lattice-based cryptography,
understanding the complexity of γ-GapSVP has been the subject of a long line of work. In
an early technical report, van Emde Boas [38] initiated the study of the hardness of lattice
problems more generally, and in particular showed that GapSVP∞ is NP-hard. Seventeen
years later, Ajtai [3] finally showed similar hardness for the important Euclidean case of
p = 2, i.e., he showed that exact GapSVP2 is NP-hard, though under a randomized reduction.
Subsequent work [10, 31, 27, 26, 23, 32] improved this by showing that γ-GapSVPp in any ℓp

norm is NP-hard to approximate for any constant γ ≥ 1, and hard for nearly polynomial
factors γ = nΩ(1/ log log n) assuming stronger complexity assumptions, also using randomized
reductions. Recent work [1, 7] has also shown the fine-grained hardness of γ-GapSVPp for
small constants γ (again under randomized reductions). On the other hand, γ-GapSVPp for
finite p ≥ 2 is unlikely to be NP-hard for approximation factors γ ≥ Cp

√
n (where Cp is a

constant depending only on p) [18, 2, 35], and the security of lattice-based cryptography
relies on the conjectured hardness of GapSVP or other problems for even larger (but typically
polynomial) factors.

While this line of work has been very successful in showing progressively stronger hardness
of approximation and fine-grained hardness for γ-GapSVPp, it leaves some other important
issues unresolved. First, for p ̸= ∞ the hardness reductions and their analysis are rather
complicated, and second, they are randomized. Indeed, it is a notorious, long-standing open
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problem to prove that GapSVPp is NP-hard, even in its exact form, under a deterministic
reduction for some finite p. While there have been some potential steps in this direction [31,
32], e.g., using plausible number-theoretic conjectures that appear very hard to prove, there
has been no new progress on this front for a decade.

1.1 Our Contributions
The primary contribution of this work is to give a substantially simpler proof that γ-GapSVPp

is NP-hard under a randomized reduction, for any p ≥ 1 and constant γ < 21/p. The heart
of our reduction is a family of “gadget” lattices L derived from Reed-Solomon codes C ⊆ Fn

q

(for prime q) via the very natural “Construction A” [13], which simply sets L = C + qZn.
These lattices and their properties were previously studied in work of Karabed, Roth, and
Siegel [25, 37]. Additionally, they are closely related to a family of algebraic lattices studied
by Craig [14]. We take advantage of this prior work in our analysis (see Section 1.3 for
details).

▶ Theorem 1 (Hardness of γ-GapSVPp). For any p ≥ 1 and constant γ satisfying 1 ≤ γ <

21/p, γ-GapSVPp is not in RP unless NP ⊆ RP.

We note that Theorem 1 is actually identical to the main result in [31]. As such, it matches
the best known NP-hardness of approximation for γ-GapSVPp (i.e., largest γ) achieved by a
“one-shot” reduction for all sufficiently small p, including p = 2. By “one-shot,” we mean that
the reduction does not amplify the approximation factor from an initial fixed constant to an
arbitrary constant (or more) via tensoring, as is done in [26, 23, 32]. (It is an interesting
question whether our hard γ-GapSVPp instances are amenable to tensoring; see Section 1.4.)

Although our reduction still uses randomness, we believe that it may be easier to
derandomize than previous reductions, both due to its simplicity, and because of its close
connection to prior work showing hardness of minimum distance problem on codes via
a deterministic reduction [12]. To that end, in the full version of our paper [6] we also
describe two approaches to potentially derandomizing our reduction, both of which aim to
deterministically construct a particular lattice coset and lower bound the number of short
vectors in it (see Section 1.2 for the motivation for this). The first approach is based on
Fourier analysis, using similar techniques to those in [12], and the second is based on “smooth”
proxies for point-counting functions.

In the full version of our paper [6] we also show that a close deterministic analog of
our randomized local-density construction would imply improved explicit Reed-Solomon
list-decoding lower bounds, going beyond the current state of the art from [20]. One may
interpret this implication either pessimistically, as a barrier to a very strong derandomization
of our reduction, or optimistically, as a potential route to improve Reed-Solomon list-decoding
lower bounds. Here there is a further connection between the two problems, in that [20]
obtains its list-decoding lower bounds by using the same Fourier-analytic tool underlying
one of our derandomization attempts – specifically, the Weil bound for character sums .
Unfortunately, the Weil bound falls just short of what we need in our context. (The Weil
bound and related techniques were first used for counting Reed-Solomon code words in [11],
and were also used in the deterministic hardness reduction for the minimum distance problem
on codes in [12].)

Efficient decoding near Minkowski’s bound. As a separate contribution of independent
interest, in Appendix A we give a polynomial-time algorithm for decoding “Construction A
Reed-Solomon lattices” of rank n – the same family of lattices as in our hardness reduction,
but instantiated with different parameters – to a distance within a O(

√
log n) factor of

APPROX/RANDOM 2023



37:4 Hardness of the (Approximate) Shortest Vector Problem

Minkowski’s bound.1 The O(
√

log n) factor in our result asymptotically matches the best
factor known from prior work [34], which is for a different family of lattices. In fact, we rely
on one of the main underlying theorems from that work, but give a simpler construction and
analysis based on individual Reed-Solomon codes instead of towers of BCH codes.

Let RSq[k, S] denote the dimension-k Reed-Solomon code over Fq with evaluation set S

(defined below in Equation (3)). Note that n = q is the rank of the lattice L in the following
theorem.

▶ Theorem 2 (Decoding near Minkowski’s bound, informal). Let q be prime and let k :=
⌊q/(2 log2 q)⌋ ≤ q/2. Then for the “Construction A Reed-Solomon” lattice L := RSq[q −
k,Fq] + qZq ⊆ Zq:

1. We have Ω(
√

q/ log q) ≤ λ1(L) ≤ √
q · det(L)1/q ≤ O(√q), i.e., the minimum distance is

within a O(
√

log q) factor of Minkowski’s bound.
2. There is an algorithm that, on input q and a vector y ∈ Rq, outputs all lattice vectors

v ∈ L satisfying ∥y − v∥ ≤ C
√

k ≈ C
√

q/(2 log2 q) in time polynomial in q, for some
universal constant C > 0.

This result adds to a separate line of work on efficient (list) decoding for various families
of lattices [33, 19, 15, 34]. Recently, Ducas and van Woerden [16] further motivated this
study by showing cryptographic applications of lattices that can be efficiently decoded near
Minkowski’s bound. (However, their application is most compelling when the minimum
distances of both the lattice and its dual are close to Minkowski’s bound, which is not the
case in the present setting.)

1.2 Technical Overview
Here we give an overview of the key new elements in the proof of our main hardness theorem
(Theorem 1), which are the focus of Section 3. For concision, we defer the technical aspects
of our efficient decoding algorithm to Appendix A and of our derandomization attempts to
the full version of our paper [6], respectively.

Besides using randomness, another common feature in nearly all prior hardness results for
GapSVPp is the use of locally dense lattices as advice (the only exception being [27]). Roughly
speaking, a locally dense lattice for relative distance α ∈ (0, 1) in the ℓp norm is a lattice L
and a coset x + L (i.e., the lattice “shifted by” some vector x) such that there are at least
subexponentially many (in the lattice rank) vectors v ∈ x + L satisfying ∥v∥p ≤ α · λ

(p)
1 (L).

One may view such a coset x + L as a “bad” configuration for list-decoding L to within
relative distance α in the ℓp norm, because there are many lattice vectors relatively close
to −x.2

Prior works have obtained locally density from a variety of lattice families: the Schnorr-
Adelman prime number lattices [3, 10, 31]; a variant of Construction A [26] and Construc-
tion D [32] applied to (towers of) BCH codes; and random sublattices of Zn and lattices
with exponential kissing number [1, 7]. In this work, we give a simple construction of locally
dense lattices from Reed-Solomon codes, as described below.

1 Minkowski’s bound gives an upper bound on the “normalized density” of a lattice L. Specifically, it
asserts that λ

(2)
1 (L) ≤

√
n · det(L)1/n for all rank-n lattices L, where det(L) =

√
det(BT B) for any

basis B of L.
2 For technical reasons, the formal definition of local density, given in Definition 8, also requires a linear

transform that maps the short vectors in x + L onto the set of all binary vectors of a given dimension.
Such a transform can be obtained by random sampling using a probabilistic version of Sauer’s Lemma
(see Theorem 9) that is now standard in this context [3, 31]. Therefore, we defer further discussion of
this issue to the main body.
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Our main reduction (Theorem 12) shows how to use a locally dense lattice for relative
distance α in the ℓp norm to prove NP-hardness (via a randomized reduction) of γ-GapSVPp

for any constant γ > 1/α. This reduction is very similar to those from prior works, so for
the remainder of this section we focus on summarizing our new construction of locally dense
lattices.

Locally dense lattices from Reed-Solomon codes. We start with some basic definitions
and facts used in our construction. Recall that the Construction A lattice obtained from a
linear code C ⊆ Fn

q for some prime q is defined as L := C + qZn, i.e., an integer vector z ∈ Zn

is in the lattice if and only if z mod q is a code word. In fact, it will often be convenient
to work with an equivalent “dual view” of Construction A lattices. Namely, if H ∈ Fk×n

q is
a parity-check matrix of a linear code C := ker(H) ⊆ Fn

q for prime q, then the parity-check
lattice L⊥(H) obtained from H is defined as

L⊥(H) := {z ∈ Zn : Hz = 0 ∈ Fk
q } = ker(H) + qZn = C + qZn . (1)

Such lattices have determinant det(L⊥(H)) = |Zn/L⊥(H)| ≤ qk, with equality exactly
when H has full row rank (see Lemma 4).

We next define the family of parity-check matrices H = Hq(k, S) that we use to construct
our family of locally dense lattices. Such a matrix is parameterized by a prime q, a positive
integer k, and a set S ⊆ Fq. Letting s0, . . . , sn−1 be the elements of S in some arbitrary
order, we define

H = Hq(k, S) :=


1 1 1 · · · 1
s0 s1 s2 · · · sn−1
s2

0 s2
1 s2

2 · · · s2
n−1

...
...

...
. . .

...
sk−1

0 sk−1
1 sk−1

2 · · · sk−1
n−1

 ∈ Fk×n
q . (2)

That is, Hq(k, S) is the transposed Vandermonde matrix whose (i, s)th entry is si, where
for convenience we index the rows and columns of Hq(k, S) by i ∈ {0, . . . , k − 1} and s ∈ S,
respectively, and define 00 := 1.

The matrix H = Hq(k, S) defined in Equation (2) is a generator matrix of the dimension-k
Reed-Solomon code

RSq[k, S] := {(p(s))s∈S : p ∈ Fq[x], deg(p) < k} (3)

over Fq with evaluation set S, and hence is a parity-check matrix of its dual code, which
is a so-called generalized Reed-Solomon (GRS) code (see [22, Theorem 5.1.6]). Moreover,
in the special case where S = Fq, it turns out that Hq(k, S) is a parity-check matrix for
the (ordinary) Reed-Solomon code RSq[q − k,Fq] of dimension q − k with evaluation set
S = Fq. So, L⊥(Hq(k,Fq)) = RSq[q −k,Fq]+qZq is the Construction A lattice corresponding
to the Reed-Solomon code RSq[q − k,Fq]. For simplicity, in this overview we restrict to
these “Construction A Reed-Solomon” lattices by taking S = Fq, but note that our results
generalize to any sufficiently large S ⊆ Fq.

It is easy to see that for k < q, the GRS code having parity-check matrix H has minimum
distance (in the Hamming metric) k + 1: any k columns of H are linearly independent,
because they form a transposed Vandermonde matrix, while any k + 1 obviously are not.
Therefore, the corresponding Construction A lattice L := ker(H)+qZq has minimum distance
λ

(1)
1 (L) ≥ k + 1 in the ℓ1 norm. The key to our local density construction and its α ≈ 1/21/p

APPROX/RANDOM 2023



37:6 Hardness of the (Approximate) Shortest Vector Problem

relative distance is that the ℓ1 minimum distance is in fact almost twice this large (at least):
in Theorem 14 we show that λ

(1)
1 (L) ≥ 2k when k ≤ q/2. The proof is short and elementary,

proceeding via Newton’s identities. Essentially the same result and proof originally appeared
in work by Roth and Siegel [37], and closely related analysis also appeared in work on Craig
lattices [14] (see Section 1.3).

Obtaining a dense coset. Because the determinant of L (i.e., the number of its integer
cosets) is qk, the pigeonhole principle immediately implies that there exists an integer coset
of L containing at least

(
q
h

)
/qk binary vectors in {0, 1}q with Hamming weight h, which

have ℓ1 norm h. By setting parameters appropriately, this yields a coset with subexponentially
many vectors of ℓ1 norm at most α · λ

(1)
1 (L), for any constant α > 1/2.

More specifically, set h := α · (2k) ≤ α · λ
(1)
1 (L) and q ≈ k1/ε for some positive constant

ε < 1 − 1/(2α). (For simplicity, assume that h is an integer.) Then there must exist an
integer coset of L containing at least(

q
h

)
qk

≥
( q

h

)h

· q−k = q(2α−1)k

(2αk)2αk
≈ q(2α−1)k

q2εαk
= q(2(1−ε)α−1)k = qΩ(k) = qΩ(qε) (4)

weight-h binary vectors, which is subexponentially large in q.
The above shows the existence of a suitable coset, but following previous works, it is

straightforward to show that a randomly sampled coset from a suitable distribution is likely
to have enough short vectors (see Lemma 16). Indeed, the difference between showing that
such a coset exists, versus sampling one efficiently, versus deterministically computing one
efficiently, is the main technical difference between getting a non-uniform, versus randomized,
versus deterministic hardness reduction (respectively) for GapSVPp using these techniques.

The above argument generalizes to arbitrary ℓp norms for finite p, albeit for larger relative
distances α > 1/21/p. Because L is integral, λ

(1)
1 (L) ≥ 2k implies that λ

(p)
1 (L) ≥ (2k)1/p for

any finite p ≥ 1. Moreover, reparameterizing the calculation in Equation (4) by choosing
α > 1/21/p and setting h := αp · (2k) shows that some coset of L contains subexponentially
many binary vectors of Hamming weight h, and hence of ℓp norm h1/p = α · (2k)1/p ≤
α · λ

(p)
1 (L). Therefore, this construction yields locally dense lattices in the ℓp norm for any

constant relative distance α > 1/21/p, which by our main reduction implies Theorem 1, i.e.,
randomized NP-hardness of γ-GapSVPp for any constant γ < 21/p.

1.3 Additional Related Work
First, we note that after this work was first published [5] used the properties of the gadget
lattices L = L⊥(Hq(k, S)) we construct to show improved results and answer an open question
about the parameterized complexity of GapSVP. Somewhat more specifically, [5] gave a
parameterized analog of Theorem 1 by showing W[1]-hardness (under randomized reductions)
of γ-GapSVPp for any p ≥ 1 and any γ satisfying 1 ≤ γ < 21/p. This in particular answered
a question from [17, 9], which asked whether γ-GapSVP was W[1]-hard in the ℓ1 norm. Prior
to [5] (which crucially relied on this work), such hardness was not known even in the exact
case of γ = 1.

The key lower bound of λ
(1)
1 (L) ≥ 2k for L = L⊥(Hq(k, S)) follows immediately from

works by Karabed, Roth, and Siegel [25, 37], which adapted an argument by Immink and
Beenker [24]. In fact, [25, 37] showed their lower bounds for the Lee minimum distance
of a family of BCH codes, including ones that are Reed-Solomon codes with parity check
matrices of the form Hq(k, S). However, their results immediately apply to the ℓ1 minimum
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distance of L = L⊥(Hq(k, S)) as well, because Lee distance is essentially “ℓ1 distance with
wrap-around.”3 Even earlier, Berlekamp [8, Chapter 9] gave an argument using Newton’s
identities to prove a similar lower bound on the Lee minimum distance of negacyclic codes,
which are codes whose parity check matrices are of the form in Equation (2) but with its even-
power rows deleted (i.e., with only its odd-power rows). Additionally, our Construction A
Reed-Solomon lattices L are closely related to a family of algebraic lattices studied by
Craig [14]; see also [13, Chapter 8, Section 6].4 Indeed, [13, Chapter 8, Section 6, Theorem 7]
again gives a very similar argument for lower bounding the minimum distance of Craig
lattices using Newton’s identities.Our proof of Theorem 14 is inspired by and similar to all of
these “minimum distance lower bounds via Newton’s identities” arguments, and in particular
is very similar to the ones in [37] and [13, Chapter 8, Section 6, Theorem 7].

We omit further discussion of related work due to space constraints and encourage the
reader to view the full version of this work [6].

1.4 Open Questions
The obvious question left open by our work is whether our reduction can be derandomized,
using the same family of lattices. Addressing this is the main focus of Section 5 in the full
version of this paper [6]. The full version also discusses several other open questions. We
omit this material due to space constraints, but strongly encourage the reader to view [6].

2 Preliminaries

Throughout this work we adopt the convention that 00 := 1 in any ring. For a positive
integer k, define [k] := {0, 1, . . . , k − 1}.

In general, every vector or matrix is indexed by some specified set S. For example,
x ∈ ZS is an integer vector indexed by S, having an entry xs ∈ Z for each s ∈ S (and no
other entries). When the index set is [n] for some non-negative integer n, we usually omit
the brackets in the exponent and just write, e.g., Zn. We emphasize that in this case the
indices start from zero. An object indexed by a finite set S of size n = |S| can be reindexed
by [n], simply by enumerating S = {s0, . . . , sn−1} under some arbitrary order, and identifying
index si with index i.

For a finite set S and a positive integer h ≤ |S|, let BS,h := {v ∈ {0, 1}S : ∥v∥1 = h} be
the set of binary vectors indexed by S of Hamming weight h. As above, when S = [n] we
often write Bn,h. Finally, let Bn

p (r) := {x : ∥x∥p ≤ r} ⊂ Rn denote the real n-dimensional ℓp

ball of radius r centered at the origin.

2.1 Basic Lattice Definitions
Given a lattice L = L(B) with basis B ∈ Rm×n, we define the rank of L to be n and the
(ambient) dimension of L to be m. We denote the minimum distance of L in the ℓp norm,
which is the length of a shortest non-zero vector in L, by

3 More precisely, the Lee distance of x ∈ Fn
q is

∑n

i=1 min{xi, q − xi}, where elements of the prime-order
field Fq are identified in the natural way with the integers {0, 1, . . . , q − 1}. This is the natural analog
of ℓ1 distance on Fq (or Zq). Moreover, the ℓ1 minimum distance of the Construction A lattice C + qZn

is equal to the minimum of q and the Lee minimum distance of C.
4 Specifically, [13] considers Craig lattices obtained from the coefficient vectors of polynomials in principal

ideals of the form (x − 1)mR in rings of the form R = Z[x]/(xp − 1), for some prime p and integer m ≥ 1.
The original definition of [14] is slightly different, and uses the “canonical” (Minkowski) embedding of
such ideals in the ring of integers R = Z[x]/(Φp(x)) of the pth cyclotomic number field.

APPROX/RANDOM 2023
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λ
(p)
1 (L) := min

x∈L\{0}
∥x∥p .

The central problem that we study in this work asks about the value of λ
(p)
1 (L) for a given

input lattice L.

▶ Definition 3. For p ≥ 1 and γ = γ(n) ≥ 1, the decisional, γ-approximate Shortest Vector
Problem in the ℓp norm (γ-GapSVPp) is the promise problem defined as follows. The input
consists of a basis B ∈ Zm×n of an integer lattice L and a distance threshold s > 0, and the
goal is to determine whether the input is a YES instance or a NO instance, where these are
defined as follows:

YES instance: λ
(p)
1 (L) ≤ s.

NO instance: λ
(p)
1 > γs.

We define the determinant of L to be det(L) :=
√

det(BT B), which is equal to |det(B)|
when m = n (i.e., when L is full-rank). We note that determinant is well defined because,
although lattice bases are not unique, they are equivalent up to multiplication on the right
by unimodular matrices.

The density of a rank-n lattice L is captured by its so-called root Hermite factor
λ1(L)/ det(L)1/n.5 The density of a lattice corresponds to its quality in various applic-
ations, including as the set of centers of a sphere packing and as an error-correcting code.
Minkowski’s bound asserts that the root Hermite factor of such a rank-n lattice is at most

√
n,

which is convenient to write in expanded form as

λ1(L) ≤
√

n · det(L)1/n . (5)

2.2 Parity-Check Matrices and Lattices
For a prime q and a matrix H ∈ Fk×n

q , we define the parity-check lattice L⊥(H) obtained
from H as

L⊥(H) := {z ∈ Zn : Hz = 0} = ker(H) + qZn . (6)

Note that L⊥(H) is simply the “Construction A” lattice [13, Chapter 5, Section 2] of the
linear error-correcting code C having H as a parity-check matrix, i.e., C = {c ∈ Fn

q : Hc = 0}.
More generally, for any “syndrome” u ∈ Fk

q we define

L⊥
u (H) := {x ∈ Zn : Hx = u} .

If there exists some x ∈ Zn such that Hx = u, then it follows immediately that L⊥
u (H) is

simply the lattice coset x+L⊥(H). So, we can identify cosets of L⊥(H) by their corresponding
syndromes. We recall some standard properties of parity-check lattices, and give a proof for
self-containment.

▶ Lemma 4. Let q be a prime, let k and n be positive integers, and let H ∈ Fk×n
q be a

parity-check matrix. Then the parity-check lattice L = L⊥(H) has rank n and determinant
det(L) ≤ qk, with equality if and only if the rows of H are linearly independent.

5 This ratio is the square root of the Hermite factor γ(L) := (λ1(L)/ det(L)1/n)2, which is defined in this
way for historical reasons.
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Proof. The first claim follows simply by noting that qZn ⊆ L⊥(H) ⊆ Zn. For the de-
terminant, observe that the map x 7→ Hx is an additive-group homomorphism from Zn

to Fk
q , and that L⊥(H) is its kernel by definition. So, by the first isomorphism the-

orem, the map induces an isomorphism from the quotient group Zn/L⊥(H) to the im-
age Im(H) = {Hx : x ∈ Zn} ⊆ Fk

q , where the subset relation is an equality if and only
if the rows of H are linearly independent. The claim then follows from the fact that
det(L⊥(H)) =

∣∣Zn/L⊥(H)
∣∣ = |Im(H)|. ◀

We next formally define the family of parity-check lattices that are at the heart of our
construction of locally dense lattices.

▶ Definition 5. For a prime q, positive integer k, and set S ⊆ Fq, define Hq(k, S) ∈ Fk×S
q

to be the matrix H whose rows and columns are respectively indexed by [k] = {0, 1, . . . , k − 1}
and S, and whose (i, s)th entry is

Hi,s := si ∈ Fq .

(Recall that 00 := 1.) Equivalently, if we enumerate S = {s0, . . . , sn−1} in some arbitrary
order, we have

H = Hq(k, S) :=


1 1 1 · · · 1
s0 s1 s2 · · · sn−1
s2

0 s2
1 s2

2 · · · s2
n−1

...
...

...
. . .

...
sk−1

0 sk−1
1 sk−1

2 · · · sk−1
n−1

 ∈ Fk×n
q . (7)

Notice that H is a transposed Vandermonde matrix. In particular, if k ≤ n then its rows are
linearly independent, and so det(L⊥(H)) = qk by Lemma 4.

We recall from the introduction that H = Hq(k, S) is a generator matrix (of row vectors)
of the dimension-k Reed-Solomon code over Fq with evaluation set S, and hence H is a
parity-check matrix of its dimension-(n − k) dual code. So, L⊥(H) is the Construction
A lattice of this dual code. These dual codes are in fact generalized Reed-Solomon codes,
a family of codes that include Reed-Solomon codes as a special case and that are closed
under taking duals (see [22, Theorem 5.1.6]). Moreover, in the special case where S = Fq,
the matrix H = Hq(k,Fq) is in fact a parity-check matrix of an (ordinary) Reed-Solomon
code. For our hardness proof it suffices to use this special case; i.e., we show NP-hardness
(under a randomized reduction) of GapSVP by using Construction A lattices of (ordinary)
Reed-Solomon codes as gadgets. See Appendix A and the section on derandomization in the
full version of this paper [6] for other connections between these lattices and Reed-Solomon
codes.

2.3 Symmetric Polynomials
A symmetric polynomial P (x1, x2, . . . , xm) is a polynomial that is invariant under any
permutation of its variables, i.e., P (x1, . . . , xm) = P (xπ(1), . . . , xπ(m)) as formal polynomials
for all permutations π of {1, 2, . . . , m}. Because the order of the variables is immaterial, we
usually just write a symmetric polynomial as P (X), where X = {x1, . . . , xm} is the set of
variables, and we write P (T ) for its evaluation on a multiset T of values.

We next recall two important symmetric polynomials and the relationship between them.
For a non-negative integer i, the ith power sum of a set X of variables is defined as

pi(X) :=
∑
x∈X

xi . (8)
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(Recall that 00 := 1.) For 1 ≤ i ≤ |X|, the ith elementary symmetric polynomial of X is
defined as

ei(X) :=
∑

Z⊆X,
|Z|=i

∏
z∈Z

z . (9)

That is, ei(X) is the multilinear polynomial whose monomials consist of all products of i

distinct variables from X. We extend this definition to i = 0 by setting e0(X) := 1 and to
integers i > |X| by setting ei(X) := 0.

Power sums and elementary symmetric polynomials are related by Newton’s identities
(see, e.g., [30]), which assert that for 1 ≤ i ≤ |X|,

i · ei(X) =
i∑

j=1
(−1)j−1 · ei−j(X) · pj(X) . (10)

The following standard claim uses Newton’s identities to show that if the first k power
sums of two multisets of field elements coincide, then so do the first k elementary symmetric
polynomials of those multisets.

▶ Lemma 6. Let T, U be multisets over a prime field Fq, let k ≤ q be a positive integer, and
suppose that pi(T ) = pi(U) for all i ∈ [k]. Then ei(T ) = ei(U) for all i ∈ [k].

Proof. The proof is by (strong) induction. For the base case where i = 0, we have by
definition that e0(T ) = e0(U) = 1. For the inductive case where 1 ≤ i < k, because
i ̸= 0 ∈ Fq we have that

ei(T ) = i−1 ·
i∑

j=1
(−1)j−1 · ei−j(T ) · pj(T ) = i−1 ·

i∑
j=1

(−1)j−1 · ei−j(U) · pj(U) = ei(U) ,

where the first and third equalities follow from Newton’s identities (Equation (10)), and the
second equality follows from the claim’s hypothesis and the inductive hypothesis (note that
the sums involve elementary symmetric polynomials ei−j only for i − j < i). ◀

We define the root polynomial fT (x) ∈ F[x] of a multiset T over a field F to be

fT (x) :=
∏
t∈T

(x − t) =
|T |∑
i=0

(−1)i · ei(T ) · x|T |−i . (11)

We then get the following result, which uses Lemma 6 to show that if sufficiently many
of the initial power sums of two multisets are equal, then the multisets themselves are equal.

▶ Proposition 7. Let q be a prime, let k ≤ q/2 be a positive integer, let T, U be multisets
over F = Fq of total cardinality |T | + |U | < 2k, and suppose that pi(T ) = pi(U) for all i ∈ [k].
Then T = U .

Proof. Because

|T | ≡ p0(T ) = p0(U) ≡ |U | (mod q)

and 0 ≤ |T | + |U | < 2k ≤ q, it follows that |T | = |U | and hence both fT (x), fU (x) have
degree |T | < k.

Next, by the hypotheses and Lemma 6, we have that ei(T ) = ei(U) for all i ≤ |T |. There-
fore, by the equality in Equation (11), fT (x) and fU (x) are identical as formal polynomials
in F[x]. Finally, because the polynomial ring F[x] is a unique factorization domain, and
because fT (x) and fU (x) split over F by construction, it follows that T = U . ◀
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2.4 Locally Dense Lattices
Roughly speaking, locally dense lattices are lattices that have one or more cosets with many
relatively short vectors. Somewhat more precisely, a locally dense lattice consists of an
integer lattice L ⊂ Zn and a shift x ∈ Zn such that for some α ∈ (0, 1), the number of points
in the coset x + L of norm at most α · λ1(L) is large (for our purposes, greater than 2nε

for some constant ε > 0). Therefore, locally dense lattices are not efficiently list decodable,
even combinatorially, to within distance α · λ1(L) in the worst case (in particular, around
center −x). For the purposes of proving hardness, we also require a linear map T that
projects the short vectors in x + L onto a lower-dimensional hypercube {0, 1}r.

▶ Definition 8. For p ∈ [1, ∞), real α > 0, and positive integers r and R, a (p, α, r, R)-locally
dense lattice consists of an integer lattice of rank R (and some dimension n) represented by
a basis matrix A ∈ Zn×R, a positive integer ℓ, a shift x ∈ Zn, and a matrix T ∈ Zr×n, where
1. λ

(p)
1 (L(A)) ≥ ℓ1/p and

2. {0, 1}r ⊆ T (V ) := {Tv : v ∈ V }, where V := (x + L(A)) ∩ Bn
p (α · ℓ1/p) is the set of all

vectors of ℓp norm at most α · ℓ1/p in the lattice coset x + L(A).

A useful tool for satisfying Item 2 in the above definition is the following probabilistic
version of Sauer’s Lemma due to Micciancio [31]. It roughly says that for n ≫ r, for any
large enough collection of vectors W ⊆ Bn,h (the weight-h slice of {0, 1}n), and for a random
matrix T ∈ {0, 1}r×n whose coordinates are sampled independently with a suitable bias,
{0, 1}r ⊆ T (W ) with good probability. We emphasize that all the arithmetic in this theorem
is done over the integers (not over F2).

▶ Theorem 9 ([31, Theorem 4]). Let r, n, h be positive integers, let W ⊆ Bn,h, and let ε > 0.
If |W | ≥ h! · n24r

√
h/ε and T ∈ {0, 1}r×n is sampled by setting each entry to 1 independently

with probability 1/(4hr), then {0, 1}r ⊆ T (W ) with probability at least 1 − ε.

2.5 Hardness of GapSVP via Locally Dense Lattices
We next recall a variant of (the decision version of) the Closest Vector Problem (CVP), which
will be the hard problem that we reduce to GapSVPp. In this variant, called GapCVP′

p,
the target vector is either within a specified distance of a lattice vector given by a binary
combination of basis vectors, or all non-zero integer multiples of the target vector are more
than a γ multiple of this distance from the lattice (where distance is measured in the ℓp

norm).

▶ Definition 10. For p ∈ [1, ∞], an instance of the γ-GapCVP′
p problem consists of a rank-r

lattice basis B ∈ Zd×r, a target vector t ∈ Zd, and a distance threshold s > 0. The goal is to
determine whether an input is a YES instance or a NO instance, where these are defined as
follows:

YES instance: there exists a binary c ∈ {0, 1}r such that ∥Bc − t∥p ≤ s.
NO instance: distp(wt, L(B)) > γs for all w ∈ Z \ {0}.

The following hardness theorem follows via a reduction from Exact Set Cover to GapCVP′
p.

▶ Theorem 11 ([4]). For every p ∈ [1, ∞) and every constant γ ≥ 1, γ-GapCVP′
p is NP-hard.

The following theorem gives a polynomial-time reduction from γ-GapCVP′
p to γ′-GapSVPp

for some approximation factors γ > γ′ ≥ 1, which uses a locally dense lattice as advice.
In general, this advice makes the reduction non-uniform, but when the advice is efficiently
computable by a (randomized) algorithm, as it is in this and prior works, the procedure is
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an efficient (randomized) reduction. The reduction below is very similar to the one in [32,
Theorem 5.1], but written so as to allow for using an arbitrary locally dense lattice as advice.
Due to this similarity, and for concision we defer its proof to the full version of our paper [6].

▶ Theorem 12. Let p ≥ 1, r and n be positive integers, α > 0 be a constant, and γ, γ′ be
constants satisfying

1/α > γ′ ≥ 1 and γ ≥ γ′ ·
( 1

1 − (αγ′)p

)1/p

.

There is a deterministic polynomial-time algorithm that, given a γ-GapCVP′
p instance (B, t, s)

of rank r and a (p, α, r, R)-locally dense lattice (A, ℓ, x, T ) as input, outputs a γ′-GapSVPp

instance (B′, s′) of rank R + 1 which is a YES (respectively, NO) instance if (B, t, s) is a
YES (resp., NO) instance.

From these two theorems we get the following hardness results for GapSVP.

▶ Corollary 13. Let p ≥ 1, let r be a positive integer, let α > 0 be a constant, and suppose
that there is an algorithm A that computes a (p, α, r, poly(r))-locally dense lattice in poly(r)
time. Let γ be a constant satisfying 1 ≤ γ < 1/α. Then:
1. If A is deterministic, then γ-GapSVPp is NP-hard (and exact GapSVPp is NP-complete).
2. If A is randomized and its output satisfies Item 1 of Definition 8 with probability 1 and

Item 2 of Definition 8 with probability at least 2/3, then γ-GapSVPp is not in RP unless
NP ⊆ RP.6

3. If A is randomized, and its output satisfies Items 1 and 2 of Definition 8 with probability
at least 2/3, then there is no randomized polynomial-time algorithm for γ-GapSVPp

unless NP ⊆ BPP.

Proof. Items 1 and 3 follow immediately by combining Theorems 11 and 12. Inspection of
the proof of Theorem 12 shows that for NO instances to be mapped to NO instances, only
Item 1 of Definition 8 is needed, from which Item 2 of the claim follows. ◀

3 Local Density from Reed-Solomon Codes

In this section we show how to obtain locally dense lattices from Reed-Solomon codes with
appropriate parameters. More specifically, we show to satisfy Definition 8 using a lattice
L := L⊥(H) corresponding to a parity-check matrix H = Hq(k, S) from Definition 5. (Recall
that H is the parity-check matrix of a Reed-Solomon code when S = Fq, and of a generalized
Reed-Solomon code for any S ⊆ Fq.)

The overall structure of the argument is as follows. First, in Section 3.1 we give a
lower bound of λ

(p)
1 (L) ≥ (2k)1/p, which corresponds to Item 1 of Definition 8, by using

the connection between power sums and symmetric polynomials (see Section 2.3). Then,
in Section 3.2 we use the upper bound det(L) ≤ qk from Lemma 4 and the pigeonhole
principle to show that there exists a lattice coset with many short (binary) vectors, and in
fact a suitably sampled random coset has this property with good probability. Finally, in
Section 3.3 we set parameters and use Theorem 9 to satisfy Item 2 of Definition 8 with good
probability.

6 The condition “γ-GapSVPp is not in RP” is a slight abuse of notation, since γ-GapSVPp for γ > 1 is a
promise problem rather than a language. However, the definition of RP can naturally be extended to
encompass promise problems, which is the intended meaning here.
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3.1 Minimum Distance
The following theorem says that for any k ≤ |S| /2, the ℓ1 minimum distance of L = L⊥(H)
for H = Hq(k, S) is at least 2k. Essentially the same result and proof appeared in works of
Karabed, Roth, and Siegel [25, 37], and a very similar theorem and proof for lower bounding
the minimum distance of Craig lattices appears in [14] and [13, Chapter 8, Theorem 7]. We
reprove the result here in a slightly different form for completeness.

Note that a weaker bound of λ
(1)
1 (L) ≥ k + 1 (for any k < q) follows trivially from the

minimum Hamming distance k + 1 of the (generalized Reed-Solomon) code having parity-
check matrix H. However, this bound is not strong enough for the rest of the local-density
argument below, which requires λ

(1)
1 (L) ≥ (1 + Ω(1))k.

▶ Theorem 14. Let q be a prime, let S ⊆ Fq, let k ≤ |S| /2 be a positive integer, and let
H := Hq(k, S) ∈ Fk×S

q be the matrix from Definition 5. Then L = L⊥(H) has ℓ1 minimum
distance λ

(1)
1 (L) ≥ 2k.

As a consequence, for any p ∈ [1, ∞) the ℓp minimum distance satisfies λ
(p)
1 (L) ≥ (2k)1/p.

We point out that the 21/p factor in Theorem 14 propagates to the relative-distance
bound for local density in Theorem 17 below, and then to the GapSVP approximation factor
in our main hardness theorem, Theorem 1.

Proof. The consequence follows immediately from the fact that L ⊆ ZS and ∥v∥p ≥ ∥v∥1/p
1

for all v ∈ ZS .
Now consider some arbitrary x ∈ L ⊆ ZS for which ∥x∥1 < 2k; we will show that

x = 0. Let x+, x− ∈ ZS be the unique non-negative integer vectors satisfying x = x+ − x−.
Define multisets T + and T − over S that respectively depend on x+ and x− as follows. For
each s ∈ S with x+

s > 0 (respectively, x−
s > 0), let T + (respectively, T −) contain s with

multiplicity x+
s (respectively, x−

s ).7
Note that |T +| + |T −| = ∥x∥1 < 2k. Because Hx = H(x+ − x−) = 0 ∈ Fk

q , by definition
of H we have that pi(T +) = pi(T −) for all i ∈ [k] (where recall that pi denotes the ith
power sum). Because k ≤ |S| /2 ≤ q/2, by Proposition 7 it follows that T + = T −. Since
T + ∩ T − = ∅ by construction, we must have T + = T − = ∅, and hence x = 0, as desired. ◀

The following lemma (which is well known in other forms) shows that the lower bound
λ

(p)
1 (L⊥(H)) ≥ (2k)1/p from Theorem 14 is in fact an equality under mild conditions on

the parameters, by giving an explicit lattice coset that has multiple short vectors. However,
because it proves only that the number of such vectors is polynomial in the dimension, it is
insufficient to establish local density.

▶ Lemma 15. Let q be a prime, let k be a positive integer that divides q − 1, and let
H := Hq(k, S) ∈ Fk×S

q where F∗
q ⊆ S ⊆ Fq. Then for u := (k, 0, . . . , 0) ∈ Fk

q , the lattice coset
L⊥

u (H) = {x ∈ ZS : Hx = u} contains (q − 1)/k binary vectors of Hamming weight k and
pairwise disjoint support. As a consequence, when k < q − 1, we have λ

(p)
1 (L⊥(H)) = (2k)1/p

for any p ∈ [1, ∞).

Proof. Let G be the order-k subgroup of the (cyclic, multiplicative) group F∗
q , i.e., the

subgroup of the kth roots of unity. Then the binary indicator vectors xC ∈ {0, 1}S of each
of the (q − 1)/k pairwise disjoint cosets C = cG of G all belong to the coset L⊥

u (H). This

7 For example, if S = {0, 1, 2, 3, 4} = Fq and x = (x0, x1, x2, x3, x4)t = (1, −2, 0, 1, 0)t, then x+ =
(1, 0, 0, 1, 0), x− = (0, 2, 0, 0, 0), and accordingly T + = {0, 3}, T − = {1, 1}.
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is simply because for any such coset, the 0th power sum of its elements is k, and the ith
power sum for 0 < i < k is zero; this can be seen by Newton’s identities and the fact that
the root polynomial of C is fC(x) =

∏
c∈C(x − c) = xk − rC , where rC = ck for every c ∈ C.

Finally, when k < q − 1, there is more than one such vector xC , and the differences between
distinct pairs of them are lattice vectors in {0, ±1}S of Hamming weight 2k, and hence ℓp

norm (2k)1/p. ◀

3.2 Dense Cosets
Following an approach previously used in [31, 26, 32] (and implicitly in [3]), we first show via
a pigeonhole argument that a dense lattice coset must exist, and then show how to sample
such a coset efficiently (with good probability).

For a prime q, a positive integer k, and a set S ⊆ Fq of size n (with some arbitrary ordering
of its elements), let H = Hq(k, S) ∈ Fk×n

q be the parity-check matrix from Definition 5.
By Lemma 4, the lattice L = L⊥(H) ⊆ Zn has det(L) ≤ qk integer cosets. Recall that
Bn,h is the set of n-dimensional binary vectors of Hamming weight h, which has cardinality
|Bn,h| =

(
n
h

)
. Therefore, by the pigeonhole principle, there must exist some integer coset

x + L with |(x + L) ∩ Bn,h| ≥
(

n
h

)
/qk weight-h binary vectors. In particular, taking n ≈ q,

h ≈ αp · (2k) for some constant α > 1/21/p, and k = qε for a suitable small constant ε > 0
implies the existence of a coset with roughly q(2αp−1)k = qΩ(qε) such vectors. These vectors
have ℓp norm h1/p ≈ α · (2k)1/p, whereas by Theorem 14 the lattice minimum distance is at
least (2k)1/p, yielding a local-density relative distance of roughly α.

The following lemma extends the above existential result by showing that something very
similar holds for a uniformly random shift x ∈ Bn,h: for any δ > 0, the coset x + L contains
at least δ ·

(
n
h

)
/qk weight-h binary vectors with probability greater than 1 − δ. The proof

given below closely follows the structure of the very similar one of [26, Lemma 4.3].

▶ Lemma 16. For a prime q, positive integer k, and set S ⊆ Fq of size n, let H = Hq(k, S) ∈
Fk×n

q be the parity-check matrix from Definition 5. There is an efficient randomized algorithm
that, for any δ ≥ 0, and on input H and any h ∈ [n], outputs a shift x ∈ Bn,h such that

Pr
x

[
|(x + L) ∩ Bn,h| ≥ δ ·

(
n

h

)
/qk

]
> 1 − δ .

Proof. The algorithm simply samples and outputs a uniformly random binary vector x ∈ Bn,h.
This is clearly efficient. To show correctness, we will use the syndromes of H. For each
u ∈ Fk

q , define Ku := |{z ∈ Bn,h : Hz = u}|, and define s := Hx ∈ Fk
q to be the syndrome

corresponding to x. So, we need to prove that Ks ≥ δ ·
(

n
h

)
/qk with probability greater than

1 − δ. Indeed, we have:

Pr
x

[
|(x + L) ∩ Bn,h| < δ ·

(
n

h

)
/qk

]
= Pr

x

[
Ks < δ ·

(
n

h

)
/qk

]
=

∑
u∈Fk

q :Ku<δ·(n
h)/qk

Pr
x

[Hx = u]

=
∑

u∈Fk
q :Ku<δ·(n

h)/qk

Ku(
n
h

)
<

∑
u∈Fk

q :Ku<δ·(n
h)/qk

δ

qk

≤ δ ,
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where the first inequality uses the fact that the sum is over syndromes u with Ku < δ ·
(

n
h

)
/qk,

and the second inequality uses the fact that there are at most qk terms in the sum. ◀

3.3 The Main Argument
▶ Theorem 17 (Locally dense lattices from Reed-Solomon codes). For any p ∈ [1, ∞) and
constant α > 1/21/p, there exists a randomized polynomial-time algorithm that, given any
sufficiently large positive integer r in unary as input, outputs a (p, α, r, R = poly(r))-locally
dense lattice (Definition 8) with probability at least 2/3. Moreover, the algorithm’s output
satisfies Item 1 of Definition 8 with probability 1.

Proof. The algorithm starts by setting its parameters as follows. It sets ε := 2αp − 1 > 0,
and chooses:

a poly(r)-bounded integer k ≥ r1/(1/2−δ) for some arbitrary constant δ ∈ (0, 1/2), and
a poly(r)-bounded prime q ≥ k3(1+ε)/ε. (Such a prime q always exists by Bertrand’s
Postulate.)

The algorithm then computes the components of a (p, α, r, R = q)-locally dense lattice
(A, ℓ, x, T ) as follows. It lets:

A ∈ Zq×q be a basis of L := L⊥(H), where H = H(k, S) ∈ Fk×q
q for S = Fq;8

ℓ := 2k;
x ∈ Bq,h be a uniformly random q-dimensional binary vector of Hamming weight h :=
⌊(1 + ε)k⌋;
T ∈ {0, 1}r×q be chosen by independently setting each of its entries to be 1 with probability
1/(4hr), and to be 0 otherwise.

It then outputs (A, x, ℓ, T ).
We first analyze the algorithm’s running time. A suitable prime q can be found in poly(r)

time using, e.g., trial division (recall that r is given in unary). The basis A can be computed
in deterministic polynomial time from the generating set of column vectors (B | qIq), where B

is a basis of ker(H) ⊆ Fq
q (lifted to the integers). It is clear that ℓ can be computed in

deterministic polynomial time, and that x and T can be computed in randomized polynomial
time. So, the algorithm runs in randomized polynomial time.

It remains to show correctness, i.e., that (A, x, ℓ, T ) satisfies the two conditions in
Definition 8 with suitable probability over the random choices of x and T . First, Item 1 is
always satisfied, because by Theorem 14 we have

λ1(L) ≥ (2k)1/p = ℓ1/p .

In the rest of the proof we consider Item 2 of Definition 8. Let W := (x + L) ∩ Bq,h.
Because

∥w∥p
p = h ≤ (1 + ε)k = αp · ℓ

for each w ∈ W , we have W ⊆ V := (x + L) ∩ Bq
p(α · ℓ1/p).

By Lemma 16, Prx[|W | ≥
(

q
h

)
/(10qk)] > 1 − 1/10 = 9/10. If this event holds, and(

q
h

)
10qk

≥ h! · q240r
√

h , (12)

8 For appropriate parameters, our argument works more generally for any sufficiently large subset S ⊆ Fq,
with R = |S|; we use S = Fq for simplicity.
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then by Theorem 9 we have {0, 1}r ⊆ T (W ) ⊆ T (V ) with probability at least 1−1/10 = 9/10
(over the choice of T ). So, it suffices to show that the condition in Equation (12) holds for
all sufficiently large k, and hence for all sufficiently large r. By taking a union bound over
the 1/10 failure probabilities from Lemma 16 and Theorem 9, we get that the algorithm’s
overall success probability is at least 1 − 2/10 > 2/3 for all sufficiently large r, as needed.

Using the standard bound
(

q
h

)
≥ (q/h)h for binomial coefficients and that h ≥ (1+ε)k −1,

we have that(
q
h

)
10qk

≥ qh−k

10hh
= Ω

(qεk−1

hh

)
. (13)

Furthermore, by the choice of k relative to r and h ≤ (1 + ε)k, we have that

h! · q240r
√

h ≤ hh · q240k1/2−δ
√

(1+ε)k ≤ hh · qo(k) . (14)

So, by combining Equations (13) and (14), in order to establish Equation (12) it suffices to
show that q(1−o(1))εk ≥ h2h. By taking logs, this is equivalent to

(1 − o(1)) · εk log q ≥ 2h log h . (15)

Finally, using that k3(1+ε)/ε ≤ q ≤ poly(k) and h ≤ (1 + ε)k, in order for Equation (15) to
hold it suffices to have

(1 − o(1)) · εk · 3(1 + ε)
ε

· log k = (3 − o(1)) · (1 + ε) · k log k ≥ 2(1 + ε) · k log k + O(k) ,

which indeed holds for all sufficiently large k, as needed. ◀

We emphasize that Theorem 17 uses randomness only to sample x and T . As an immediate
corollary, we obtain our main hardness result, Theorem 1 – which, to recall, asserts that for
all constants p ∈ [1, ∞) and γ < 21/p, there is no polynomial-time algorithm for γ-GapSVPp

unless NP ⊆ RP.

Proof of Theorem 1. Combine Item 2 of Corollary 13 with Theorem 17. ◀

References
1 Divesh Aggarwal and Noah Stephens-Davidowitz. (Gap/S)ETH hardness of SVP. In STOC,

2018.
2 Dorit Aharonov and Oded Regev. Lattice problems in NP cap coNP. J. ACM, 52(5):749–765,

2005. Preliminary version in FOCS 2004.
3 Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions

(extended abstract). In STOC, pages 10–19, 1998.
4 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate

optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317–331,
1997. Preliminary version in FOCS 1993.

5 Huck Bennett, Mahdi Cheraghchi, Venkatesan Guruswami, and João Ribeiro. Parameterized
inapproximability of the Minimum Distance Problem over all fields and the Shortest Vector
Problem in all ℓp norms. In STOC, 2023.

6 Huck Bennett and Chris Peikert. Hardness of the (approximate) shortest vector problem: A
simple proof via reed-solomon codes, 2023. arXiv:2202.07736.

7 Huck Bennett, Chris Peikert, and Yi Tang. Improved hardness of BDD and SVP under
Gap-(S)ETH. In ITCS, 2022.

https://arxiv.org/abs/2202.07736


H. Bennett and C. Peikert 37:17

8 Elwyn Berlekamp. Negacyclic Codes for the Lee Metric, chapter 9, pages 207–217. World Sci-
entific, 2015. Preliminary version in Symposium on Combinatorial Mathematics and its Applic-
ations, 1967. URL: https://www.worldscientific.com/doi/abs/10.1142/9789814635905_
0009.

9 Arnab Bhattacharyya, Édouard Bonnet, László Egri, Suprovat Ghoshal, Karthik C.S., Bingkai
Lin, Pasin Manurangsi, and Dániel Marx. Parameterized intractability of even set and shortest
vector problem. J. ACM, 68(3), 2021. doi:10.1145/3444942.

10 Jin-yi Cai and Ajay Nerurkar. Approximating the SVP to within a factor (1 + 1/dimϵ) is
NP-hard under randomized reductions. In CCC, 1998.

11 Qi Cheng and Daqing Wan. On the list and bounded distance decodibility of the Reed-Solomon
codes (extended abstract). In FOCS, 2004.

12 Qi Cheng and Daqing Wan. A deterministic reduction for the gap minimum distance problem.
IEEE Trans. Inf. Theory, 58(11):6935–6941, 2012. Preliminary version in STOC 2009.

13 John Conway and Neil J. A. Sloane. Sphere packings, lattices, and groups. Springer, 1999.
14 Maurice Craig. Automorphisms of prime cyclotomic lattices. Preprint.
15 Léo Ducas and Cécile Pierrot. Polynomial time bounded distance decoding near Minkowski’s

bound in discrete logarithm lattices. Des. Codes Cryptogr., 87(8):1737–1748, 2019.
16 Léo Ducas and Wessel P. J. van Woerden. On the lattice isomorphism problem, quadratic

forms, remarkable lattices, and cryptography. In EUROCRYPT, 2022.
17 Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on

approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6),
2020. doi:10.3390/a13060146.

18 Oded Goldreich and Shafi Goldwasser. On the limits of nonapproximability of lattice problems.
J. Comput. Syst. Sci., 60(3):540–563, 2000. Preliminary version in STOC 1998.

19 Elena Grigorescu and Chris Peikert. List-decoding Barnes-Wall lattices. Comput. Complex.,
26(2):365–392, 2017. Preliminary version in CCC 2012.

20 Venkatesan Guruswami and Atri Rudra. Limits to list decoding Reed-Solomon codes. IEEE
Trans. Inf. Theory, 52(8):3642–3649, 2006. Preliminary version in STOC 2005.

21 Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon and algebraic-
geometry codes. IEEE Trans. Inf. Theory, 45(6):1757–1767, 1999. Preliminary version in
FOCS 1998.

22 Jonathan I. Hall. Notes on coding theory. Available at https://users.math.msu.edu/users/
halljo/classes/CODENOTES/CODING-NOTES.HTML.

23 Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within
almost polynomial factors. Theory Comput., 8(1):513–531, 2012. Preliminary version in STOC
2007.

24 K. Immink and G. Beenker. Binary transmission codes with higher order spectral zeros at
zero frequency (corresp.). IEEE Transactions on Information Theory, 33(3):452–454, 1987.

25 R. Karabed and P.H. Siegel. Matched spectral-null codes for partial-response channels. IEEE
Transactions on Information Theory, 37(3):818–855, 1991.

26 Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM,
52(5):789–808, 2005. Preliminary version in FOCS 2004.

27 Subhash Khot. Hardness of approximating the shortest vector problem in high ℓp norms. J.
Comput. Syst. Sci., 72(2):206–219, 2006. Preliminary version in FOCS 2003.

28 Ralf Koetter and Alexander Vardy. Algebraic soft-decision decoding of Reed-Solomon codes.
IEEE Trans. Inf. Theory, 49(11):2809–2825, 2003.

29 Swastik Kopparty. Personal communication, 2020.
30 D. G. Mead. Newton’s identities. The American Mathematical Monthly, 99(8):749, October

1992. doi:10.2307/2324242.
31 Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some

constant. SIAM J. Comput., 30(6):2008–2035, 2000. Preliminary version in FOCS 1998.

APPROX/RANDOM 2023

https://www.worldscientific.com/doi/abs/10.1142/9789814635905_0009
https://www.worldscientific.com/doi/abs/10.1142/9789814635905_0009
https://doi.org/10.1145/3444942
https://doi.org/10.3390/a13060146
https://users.math.msu.edu/users/halljo/classes/CODENOTES/CODING-NOTES.HTML
https://users.math.msu.edu/users/halljo/classes/CODENOTES/CODING-NOTES.HTML
https://doi.org/10.2307/2324242


37:18 Hardness of the (Approximate) Shortest Vector Problem

32 Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a deterministic
reduction. Theory Comput., 8(1):487–512, 2012.

33 Daniele Micciancio and Antonio Nicolosi. Efficient bounded distance decoders for Barnes-Wall
lattices. In ISIT, pages 2484–2488. IEEE, 2008.

34 Ethan Mook and Chris Peikert. Lattice (list) decoding near Minkowski’s inequality. IEEE
Trans. Inf. Theory, 68(2):863–870, 2022.

35 Chris Peikert. Limits on the hardness of lattice problems in ℓp norms. Computational
Complexity, 17(2):300–351, May 2008. Preliminary version in CCC 2007.

36 Chris Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci., 10(4):283–
424, 2016.

37 Ron M. Roth and Paul H. Siegel. Lee-metric BCH codes and their application to constrained
and partial-response channels. IEEE Trans. Inf. Theory, 40(4):1083–1096, 1994. doi:10.1109/
18.335966.

38 Peter van Emde Boas. Another NP-complete partition problem and the complexity of
computing short vectors in a lattice. Technical Report, 1981. Available at https://staff.
fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html. URL: https://staff.fnwi.uva.nl/
p.vanemdeboas/vectors/mi8104c.html.

A Efficient Decoding Near Minkowski’s Bound

In this appendix, we show that a recent result of Mook and Peikert [34], which builds on work of
Guruswami and Sudan [21] and Koetter and Vardy [28] on list-decoding Reed-Solomon codes,
yields a polynomial-time algorithm for decoding lattices L = L⊥(H) with H = Hq(k,Fq)
up to distance Θ(

√
k). We additionally observe that by choosing k = Θ(q/ log q), such

lattices are asymptotically nearly tight with Minkowski’s bound (Equation (5)). Putting
these observations together, we obtain an efficient algorithm for decoding to a distance within
a O(

√
log q) factor of Minkowski’s bound (here q = n is the lattice rank and dimension).

A.1 Construction and Algorithm
Define the additive quotient group Rq := R/(qZ) and the Euclidean norm of any ŷ ∈ Rn

q as

∥ŷ∥ := min{∥y∥ : y ∈ ŷ + qZn} . (16)

Equivalently, ∥ŷ∥ is the standard Rn Euclidean norm of the unique real vector y ≡ ŷ

(mod qZn) having coordinates in [−q/2, q/2). In additive arithmetic that mixes elements
of Fq and Rq, we implicitly “lift” the former to the latter in the natural way.

We again use the fact that for evaluation set S = Fq, the matrix H = Hq(k,Fq) defined in
Equation (7) is a parity-check matrix of the Reed-Solomon code RSq[q − k,Fq], and therefore
L⊥(Hq(k,Fq)) = RSq[q − k,Fq] + qZq. This view lets us take advantage of the decoding
algorithm from the following theorem of [34], which gives an efficient (list) decoder in the ℓ2
norm for Reed-Solomon codes.9

9 In fact, the cited result from [34] is more general, giving a decoder for Fp-subfield subcodes of Reed-
Solomon codes over finite fields of order q = pr, for a prime p. Here we need only the special case
where the Reed-Solomon code is over a prime field (i.e., where r = 1). On the other hand, we note
that if Proposition 18 were extended to handle generalized Reed-Solomon codes, then we would get a
corresponding strengthening of Corollary 19 for decoding lattices L⊥(Hq(k, S)) with general S, not just
S = Fq.
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▶ Proposition 18 ([34, Algorithm 1 and Theorem 3.4]). Let q be a prime, S ⊆ Fq be an
evaluation set of size n := |S|, k ≤ n be a nonnegative integer, and ε > 0. There is a
deterministic algorithm that, on input q, S, k, ε, and a vector ŷ ∈ Rn

q , outputs all codewords
c ∈ RSq[n − k, S] such that ∥ŷ − c∥2 ≤ (1 − ε)(k + 1)/2, in time polynomial in n, log q, and
1/ε.10

The following corollary, which is the main result of this section, says that by taking
S = Fq and k = Θ(q/ log q), (1) the root Hermite factor of L⊥(H) is within an O(

√
log q)

factor of Minkowski’s bound (Equation (5)), and (2) it is possible to efficiently decode this
lattice to a distance of Ω(

√
k) = Ω(

√
q/ log q), which is again within an O(

√
log q) factor of

Minkowski’s bound.
We remark that by setting ε ≤ 1/(k + 1) in Corollary 19, we get efficient decoding to a

distance at least
√

k/2 but less than
√

(k + 1)/2, which is slightly more than half the lower
bound of

√
2k on the minimum Euclidean distance of the lattice (Theorem 14). Recall that

this lower bound is tight when k is a proper divisor of q − 1 (see Lemma 15), so with this
parameterization we get efficient list decoding (i.e., the algorithm may return more than one
lattice vector) slightly beyond the unique-decoding bound of half the minimum distance.

▶ Corollary 19 (Efficient decoding near Minkowski’s bound). Let H = Hq(k,Fq) for a prime q

and k := ⌊q/(2 log q)⌋ ≤ q/2, where all logarithms are base two. Then for L := L⊥(H) ⊆ Zq:
1.

√
q/ log q − 2 ≤

√
2k ≤ λ1(L) ≤ √

q · det(L)1/q ≤
√

2q.
2. For any ε > 1/ poly(q), there is an algorithm that, on input q and a vector y ∈ Rq, outputs

all lattice vectors v ∈ L satisfying ∥y − v∥ ≤
√

(1 − ε)(k + 1)/2 in time polynomial in q.

Proof. For Item 1, we have√
q/ log q − 2 ≤

√
2k ≤ λ1(L) ≤ √

q · det(L)1/q = √
q · qk/q ≤

√
2q .

The first inequality follows from the choice of k, the second inequality is by Theorem 14, the
third inequality is Minkowski’s bound (Equation (5)), the equality follows from Lemma 4
(recall that the rows of H are linearly independent), and the final inequality again follows
from the choice of k.11

The algorithm claimed in Item 2 works as follows. First, it computes k and ŷ =
y mod qZq ∈ Rq

q from the input q and y. It then calls the algorithm from Proposition 18 on
q, S = Fq, k, ε, and ŷ, and receives as output zero or more codewords c ∈ RSq[q − k,Fq].
For each such c, it outputs the unique vector v := arg minv′∈c+qZq ∥y − v′∥ ∈ L.

The value k and vectors ŷ, v can be computed efficiently (assuming that v is well defined),
so it is clear from Proposition 18 that this algorithm runs in time polynomial in q (recall
that the dimension n = q). It remains to show correctness. First, it is immediate from the
definitions that for any r < q/2, the function f(v) = v mod qZq is a bijection from the set
of lattice vectors

{v ∈ L : ∥y − v∥ ≤ r} ,

10 Formally, the runtimes of the decoding algorithms in Proposition 18 and Corollary 19 additionally
depend on the lengths of the respective “received words” ŷ and y that they take as input, which must
be specified to finite precision. However, for simplicity we describe the algorithms in the “Real RAM
model,” while noting that their runtime dependence on the encoding lengths of ŷ, y is polynomial.

11 Analyzing the derivative of log(
√

2k/qk/q) with respect to k shows that our choice of k is asymptotically
optimal for maximizing the root Hermite factor of L⊥(Hq(k,Fq)).
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to the set of codewords

{c ∈ RSq[q − k,Fq] : ∥ŷ − c∥ ≤ r} ,

and that g(c) := arg minv′∈c+qZq ∥y −v′∥ is the inverse function of f , i.e., g = f−1. Moreover,
because q ≥ 2, we have that the decoding distance r satisfies

r :=
√

(1 − ε)(k + 1)/2 ≤
√

(1 − ε)(q/(2 log q) + 1)/2 ≤
√

1 − ε · q/2 < q/2 .

Because the algorithm from Proposition 18 outputs (exactly) {c ∈ RSq[q−k,Fq] : ∥ŷ−c∥ ≤ r},
it follows that the algorithm described above outputs (exactly) {v ∈ L : ∥y − v∥ ≤ r}, as
needed. ◀

▶ Remark 20. We remark that the main consequence of Item 1 of Corollary 19 – namely, an
explicit construction of a family of lattices having root Hermite factors within a O(

√
log n)

factor of Minkowski’s bound, obtained via Construction A (where n is the lattice dimension)
– only needs a family of codes satisfying milder conditions than what (generalized) Reed-
Solomon codes satisfy. Namely, achieving this result only requires a family of linear q-ary
codes C for prime q with block length n, codimension k = Θ(n/ log n), and minimum distance
(in the Hamming metric) d = Ω(k). The latter is a weaker condition than maximum distance
separability (MDS), which requires that d = k + 1. Indeed, d = Ω(k) implies that the
corresponding Construction-A lattice C + qZn has an ℓ2 minimum distance of Ω(min{

√
k, q}),

which is Ω(
√

k) when k = O(q2). So, unlike our main hardness result, Corollary 19 does not
use Theorem 14 in any essential way.

Finally, we also note that obtaining a direct analog of Item 2 of Corollary 19 – i.e.,
efficiently decoding to within an O(

√
log n) factor of Minkowski’s bound on C + qZn –

additionally requires an efficient algorithm for decoding C to an ℓ2 distance of Ω(
√

k), but
that this is in turn a weaker requirement than what Proposition 18 fulfills.
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