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Abstract
We study the question of local testability of low (constant) degree functions from a product domain
S1 × · · · × Sn to a field F, where Si ⊆ F can be arbitrary constant sized sets. We show that this
family is locally testable when the grid is “symmetric”. That is, if Si = S for all i, there is a
probabilistic algorithm using constantly many queries that distinguishes whether f has a polynomial
representation of degree at most d or is Ω(1)-far from having this property. In contrast, we show
that there exist asymmetric grids with |S1| = · · · = |Sn| = 3 for which testing requires ωn(1) queries,
thereby establishing that even in the context of polynomials, local testing depends on the structure
of the domain and not just the distance of the underlying code.

The low-degree testing problem has been studied extensively over the years and a wide variety
of tools have been applied to propose and analyze tests. Our work introduces yet another new
connection in this rich field, by building low-degree tests out of tests for “junta-degrees”. A function
f : S1 × · · · × Sn → G, for an abelian group G is said to be a junta-degree-d function if it is a sum of
d-juntas. We derive our low-degree test by giving a new local test for junta-degree-d functions. For
the analysis of our tests, we deduce a small-set expansion theorem for spherical/hamming noise over
large grids, which may be of independent interest.
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1 Introduction

The main problem considered in this paper is “low-degree testing over grids”. Specifically given
a degree parameter d ∈ Z⩾0 and proximity parameter δ > 0 we would like to design a tester
(a randomized oracle algorithm) that is given oracle access to a function f : S1 ×· · ·×Sn → F
where F is a field and S1, . . . ,Sn ⊆ F are arbitrary finite sets, and accepts if f is a polynomial
of degree at most d while rejecting with constant probability (say 1/2) if f is δ-far (in relative
Hamming distance) from every degree d polynomial. The main goal here is to identify
settings where the test makes O(1) queries when d, 1/δ and maxi∈[n]{|Si|} are all considered
constants. (In particular the goal is to get a query complexity independent of n.)
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41:2 Low-Degree Testing over Grids

Low-degree testing

The low-degree testing problem over grids is a generalization of the classical low-degree testing
problem which corresponds to the special case where F is a finite field and S1 = · · · = Sn = F.
Versions of the classical problem were studied in the early 90s [5, 6, 11] in the context of
program checking and (multi-prover) interactive proofs. The problem was formally defined
and systematically studied by Rubinfeld and Sudan [24] and played a central role in the
PCP theorem [2, 3] and subsequent improvements. While the initial exploration of low-
degree testing focused on the case where d ≪ |F| (and tried to get bounds that depended
polynomially, or even linearly, on d), a later series of works starting with that of Alon,
Kaufman, Krivelevich, Litsyn and Ron [1] initiated the study of low degree testing in the
setting where d > |F|. [1] studied the setting of F = F2 and this was extended to the
setting of other constant sized fields in [17, 19]. An even more recent sequence of works
[10, 14, 15, 18] explores so-called “optimal tests” for this setting and these results have led to
new applications to the study of the Gowers uniformity norm, proofs of XOR lemmas for
polynomials [10], and novel constructions of small set expanders [8].

Part of the reason for the wide applicability of low-degree testing is the fact that evaluations
of polynomials form error-correcting codes, a fact that dates back at least to the work of
Ore [22]. Ore’s theorem (a.k.a. the Schwartz-Zippel lemma) however applies widely to the
evaluations of polynomial on entire “grids”, i.e., sets of the form S1 × · · · × Sn and bounds
the distance between low-degree functions in terms of the degree d and minimum set size
mini{|Si|}. This motivated Bafna, Srinivasan and Sudan [7] to introduce the low-degree
testing problem over grids. They proposed and analyzed a low-degree test for the special
case of the Boolean grid, i.e., where |S1| = · · · = |Sn| = 2. This setting already captures the
setting considered in [1] while also including some novel settings such as testing the Fourier
degree of Boolean functions (here the domain is {−1,+1}n while the range is R). The main
theorem in [7] shows that there is a tester with constant query complexity, thus qualitatively
reproducing the theorem of [1] (though with a worse query complexity than [1] which was
itself worse than the optimal result in [10]), while extending the result to many new settings.

In this work we attempt to go beyond the restriction of a Boolean grid. We discuss our
results in more detail shortly, but the main outcome of our exploration is that the problem
takes on very different flavors depending on whether the grid is symmetric (S1 = · · · = Sn)
or not. In the former case, we get constant complexity testers for constant |Si| whereas in
the latter setting we show that even when |Si| = 3 low-degree (even d = 1) testing requires
superconstant query complexity. (See Theorem 3 for details.) In contrast to previous testers,
our tester goes via “junta-degree-tests”, a concept that has been explored in the literature
but not as extensively as low-degree tests, and not been connected to low-degree tests in the
past. We describe this problem and our results for this problem next.

Junta-degree testing

A function f : S1 × · · · × Sn → G for an arbitrary set G is said to be a d-junta if it depends
only on d of the n variables. When G is an abelian group, a function f : S1 × · · · × Sn → G
is said to be of junta-degree d if it is the sum of d-juntas (where the sum is over G).1 In
the special case where |Si| = 2 for all i and G is a field, junta degree coincides with the

1 While in principle the problem could also be considered over non-abelian groups, in such a case it not
clear if there is a fixed bound on the number of juntas that need to be summed to get to a function of
bounded junta-degree.
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usual notion of degree. More generally every degree d polynomial has junta degree d, while a
function of junta-degree d is a polynomial of degree at most d ·maxi{|Si|}. Thus junta-degree
is softly related to algebraic degree and our work provides a step towards low-degree testing
via the problem of junta-degree testing.

Junta-degree testing considers the task of testing if a given function has junta-degree at
most d or if it is far from all functions of junta-degree at most d. While this problem has not
been considered in full generality before, two works do consider this problem for the special
case of d = 1. Dinur and Golubev [13] considered this problem in the setting where G = F2,
while Bogdanov and Prakriya [12] consider this for general abelian groups. This special case
corresponds to the problem of testing if a function is a direct sum, thus relating to other
interesting classes of properties studied in testing. Both works give O(1) query testers in
their settings, but even the case of d = 2 remained open.

In our work we give testers for this problem for general constant d in the general
asymmetric domain setting with the range being an arbitrary finite group G, though with
the restriction that the maximum set size |Si| is bounded. We then use this tester to design
our low-degree test over symmetric grids. We turn to our results below. Even though our
primary motivation in studying low-junta-degree testing is to ultimately use it for low-degree
testing, we note that junta-degree testing even for the case of G being the additive group
of R (or C) and Si = Ω (which is some finite set) for all i, is by itself already interesting
as in this case, junta-degree corresponds to the “degree” of the Fourier representation of
the function (in any basis). Low-Fourier-degree functions and such approximations form a
central object in complexity theory and computational learning theory, at least when the
domain size is |Ω| = 2. The problem of learning low-Fourier-degree functions in particular
has received much attention over the years [20,21], and hence testing the same family, over
general domains Ω, is an interesting corollary of our results, especially since our techniques
are more algebraic than analytic (modulo the usage of a hypercontractivity theorem).

1.1 Our results
We start by stating our theorem for junta-degree testing. (For a formal definition of a tester,
see Definition 7).

▶ Theorem 1. The family of junta-degree-d functions from S1 × · · · × Sn to G is locally
testable with a non-adaptive one-sided tester that makes Os,d(1) queries to the function being
tested, where s = maxi |Si|.

In the special case where |Si| = s for all i, the tester makes sO(s2d) queries.

In particular, if we treat all the parameters above except n as constant, this gives a test
that succeeds with high probability by making only a constant number of queries. Taking
(G,+) = (R,+) or (C,+), the above theorem results in a local tester for Fourier-degree:

▶ Corollary 2. The family of functions f : Ωn → R of Fourier-degree at most d is locally
testable in sO(s2d) = Os,d(1) queries, where s = |Ω|.2

We now turn to the question of testing whether a given function f : Sn → F is degree-d, i.e.,
whether there is a polynomial of degree at most d agreeing with f , or δ-far from it. Here S
can be any arbitrary finite subset of the field. Note that being junta-degree-d is a necessary
condition for f being degree-d. Combining the above Junta-deg with an additional test
(called Weak-deg ), we can test low-degree functions over a field, or rather over any subset
of a field.

2 The same result also holds if the co-domain is C instead of R.
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▶ Theorem 3. For any subset S ⊆ F of size s, the family of degree-d functions from Sn to
F is locally testable with a non-adaptive, one-sided tester that makes (sd)O(s3d) = Os,d(1)
queries to the function being tested.

The special case of S = F = Fq (finite field of size q) is especially interesting. Although
this was already established for general finite fields first by Kaufman and Ron [19] and an
optimal query complexity (in terms of d, for constant prime q) was achieved by Haramaty,
Shpilka and Sudan [15], we nevertheless present it as a corollary of Theorem 3.

▶ Corollary 4 (Kaufman and Ron [19]). The family of degree-d functions f : Fnq → Fq is
locally testable in (qd)O(q3d) = Oq,d(1) queries.

Turning our attention to more general product domains, we show that while junta-degree
testing is still locally testable over there more general grids, testing degree in constantly
many queries, even for d = 1, is intractable for all sufficiently large fields F.

▶ Theorem 5. For a growing parameter n, there exists a field F and its subsets S1, . . . ,Sn of
constant size (i.e., 3) such that testing the family of degree-1 functions f : S1 × · · · × Sn → F
requires Ω(logn) queries.

▶ Remark 6. A recent work of Arora, Bhattacharyya, Fleming, Kelman and Yoshida [4]
considers low-degree testing over the reals and tests whether a given f : Rn → R is degree-d
or ε-far with respect to a distribution D. They give a test with query complexity independent
of n for their problem ([4, Theorem 1.1]). This seems to contradict our result which seems
to include the special case of their setting for D = Unif(S1 × · · · × Sn) and F = R, where
Theorem 5 shows that a dependence on n is necessary. The seeming contradiction is resolved
by noting that the models in our paper and that of [4] are quite different. In particular,
while in our setting the function f can only be queried on the support of the distribution
D (namely S1 × · · · × Sn), in [4] the function can be queried at any point in Rn and the
distribution D only shows up when defining the distance between two functions. (So in their
model a function f that happens to agree with a degree d polynomial on the support of D
but disagrees outside the support may be rejected with positive probability, while in our
model such a function must be accepted with probability one.)

1.2 Technical contributions
All low-degree tests roughly follow the following pattern: Given a function f on n variables
x1, . . . , xn they select some k = Od(1) new variables y = (y1, . . . , yk) and substitute xi =
σi(y), where σi’s are simple random functions, to get an O(1)-variate function g(y) = f(σ(y));
and then verify g is a low-degree polynomial in k variables by brute force. When the domain
is Fnq for some field Fq, σi’s can be chosen to be an affine form in y – this preserves the
domain and ensures degree of g is at most the degree of f , thus at least ensuring completeness.
While soundness of the test was complex to analyze, a key ingredient in the analysis is that
for any pair of points a ̸= b ∈ Fkq , σ(a) and σ(b) are uniform independent elements of Fnq
(over the randomness of σ). At least in the case where f is roughly 1/qk distance from the
degree d family, this ensures that with constant probability g will differ from a degree d
polynomial in exactly one point making the test reject. Dealing with cases where f is much
further away is the more complex part that we won’t get into here.

When the domain is not Fnq affine substitutions no longer preserve the domain and so we
can’t use them in our tests. In the cases of the domain being {−1,+1}n, [7] used much simpler
affine substitutions of the form xi = ciyj(i) where ci ∈ {−1,+1} uniformly and independently
over i and j(i) ∈ {1, . . . , k} uniformly though not independently over i. Then [7] iteratively



P. Amireddy, S. Srinivasan, and M. Sudan 41:5

reduce the number of variables as follows: When only r variables x1, . . . , xr remain, they
pick two uniformly random indices i ̸= j ∈ {1, . . . , r − 1} and identify xj with xi, and then
rename the r − 1 remaining variables as x1, . . . , xr−1. At the end when r = k, they pick a
random bijection between x1, . . . , xk and y1, . . . , yk. This iterative identification eventually
maps every variable xi to some variable yj(i). The nice feature of this identification scheme is
it leads to a sequence of functions fn, fn−1, ..., fk with fr being a function of r variables on
the same domain, and of degree at most d if f = fn has degree at most d. If however we start
with fn being very far from degree d polynomials, there must exist r such that fr is very far
from high-degree functions while fr−1 is only moderately far. The probability of a bad event
can be bounded (via some algebraic arguments) by O(d2/r2). This step is the key to this
argument and depends on the fact that fr−1 involves very small changes to fr. Summing
over r then gives the constant probability that the final function fk (or equivalently g) is far
from degree d polynomials. This still leaves [7] with the problem of dealing with functions
f that are close to codewords: Here they use the fact that this substitution ensures that
σ(a) is distributed uniformly in {−1,+1}n for every a ∈ {−1,+1}k. It is however no longer
true that σ(b) is uniform conditioned on σ(a) for b ≠ a, but it is still the case that if b is
moderately far in Hamming distance from a then σ(b) has sufficient entropy conditioned on
σ(a). (Specifically σ(b) is distributed uniformly on a sphere of distance Ω(n) from σ(a).) This
entropy, combined with appropriate small-set expansion bounds on the Boolean hypercube,
and in particular a spherical hypercontractivity result due to Polyanskiy [23]), ensures that if
f is somewhat close to a low-degree polynomial then g is far from every degree d polynomial
on an appropriately chosen subset of {−1,+1}k and so the test rejects.

To extend this algorithm and analysis to the setting on non-Boolean domains we are
faced with two challenges: (1) We cannot afford to negate variables (using the random
variables c(i) above) when the domain is not {−1,+1} – we can only work with identification
of variables (or something similar). (2) The increase in the domain size forces us to seek a
general spherical hypercontractivity result on non-Boolean alphabets and this is not readily
available. Overcoming either one of the restrictions on its own seems plausible, but doing it
together (while also ensuring that the sequence of restrictions/identifications do not make the
distance to the family being tested to abruptly drop in distance as we go from fn, fn−1, . . .

to fk) turns out to be challenging and this is where we find it critical to go via junta-degree
testing.

As a first step in our proof we extend the approach of [7] to junta-degree testing over the
domain Sn for arbitrary finite S. (It is relatively simple to extend this further to the case of
S1 × · · · × Sn – we don’t discuss that here.) This is achieved by using substitutions of the
form xi = πi(yj(i)) where πi : S → S is a random bijection. While this might increase the
degree of the function, this preserves the junta-degree (or reduces it) and makes it suitable
for analysis of the junta-degree test, which we now describe: Following the template of a
low-degree test stated at the beginning of this subsection, the junta-tester would simply
check whether g(y) = f(σ(y)) is of junta-degree at most d where σ is the random function
induced by the identifications j(.) and permutations πi of variables. The permutations πi
here serve the same purpose as the coefficients ci’s do in the substitutions xi = ciyj(i) of [7]
which is to ensure that for any a ∈ Sk, σ(a) is uniformly distributed in Sn. With this idea
in place extending the analysis of [7] to our setting ends up with a feasible path, except we
had to address a few more differences; one such challenge is that in the analysis the rejection
probability of junta-degree test on functions that are close to being junta-degree-d, we will
need to analyze the effect of a spherical noise operator on grids (i.e., a subset of coordinates
of fixed size is chosen uniformly at random and each coordinate in that subset is changed to

APPROX/RANDOM 2023



41:6 Low-Degree Testing over Grids

a different value uniformly at random). While [23] shows that such a noise operator has the
desired hypercontractivity behavior, and the corresponding small-set expansion theorem was
used in the test of [7], this was only for a Boolean alphabet. In this paper, when the alphabet
size s = |S| is more than 2, by doing Fourier analysis over Zns , we are able to relate it to
the more standard Bernoulli i.i.d. noise operator for which we do have a small-set expansion
theorem available – we believe this can be of independent interest.3

The other differences of our junta-degree test analysis compared to that of [7] are mainly
to account for the fact that we are aiming for junta-degree testing over any (abelian) group
whereas the low-degree testing ideas of [7] and other prior work utilize the properties of
polynomials over fields. We also give a cleaner proof as compared to [7] for the fact that the
sequence of functions of fewer and fewer variables obtained by the random identifications
(along with permutations) does not abruptly decrease in distance to the junta-degree-d family
like we pointed out earlier (see “large-distance lemma” Lemma 16).

We then return to the task of low-degree testing: For this we design a new test: We first
test the given oracle for junta-degree d, then if it passes, we pick a fresh random identification
scheme setting xi = yj(i) for uniform independent j(i) ∈ {1, . . . , k} and verify (by brute-force)
that the resulting k variate function has degree at most d. The advantage with this two
stage tester is that in the second stage the given function is already known to be close to
a polynomial of degree at most sd where s = maxi{|Si|}. This makes the testing problem
closer to a polynomial identity testing problem, though the problem takes some care to define,
and many careful details to be worked out in the analysis. A particular challenge arises
from the fact that the first phase only proves that our function is only close to a low-degree
polynomial and may not be low-degree exactly – so in the second stage we have to be careful
to sample the function on essentially uniform inputs. This prevents us from using all of Sk
when looking at the restricted function g(y), but only allows us to use balanced inputs in
Sk (where a balanced input has an equal number of coordinates with each value v ∈ S). In
turn understanding what the lowest degree of function can be given its values on a balanced
set leads to new algebraic questions. Section 4 gives a full proof of the low-degree test and
analysis spelling out the many technical questions and our solutions to those.

The final testing-related result we prove is an impossibility result, showing that while
low-degree functions are locally testable over Sn, this cannot be extended to general grids
S1×· · ·×Sn for large enough fields (Theorem 5). From a coding theory perspective, this reveals
that local testability of even polynomial evaluations codes requires more structure than simply
having a large distance. To sketch the idea, let d = 1 and F be any field of size at least n+ 2
with distinct elements {0, 1, a1, . . . , an}. For i ∈ [n], let Si = {0, 1, ai}. We will refer to 0, 1 as
Boolean elements and the remaining as non-Boolean ones. Let ζ(b) = b if b is Boolean and ⋆
otherwise. As degree-1 functions over S1 × · · · × Sn form a linear subspace over F, by a result
due to Ben-Sasson, Harsha and Raskhodnikova [9] any test can be converted to a one-sided,
non-adaptive one without changing the number of queries or the error by more than a factor
of 2. Thus, we may assume that the test (call it Test) is of the following form: Test samples
a matrix M ∈ Fℓ×n according to a distribution D with rows x(1), . . . , x(ℓ) ∈ S1 × · · · × Sn
and accepts f if and only if P (f(x(1)), . . . , f(x(ℓ))) is true where P is some fixed predicate.
We will show that if Test accepts degree-1 functions with probability 1 and rejects Ω(1)-far
functions with probability Ω(1), then ℓ = Ω(logn). By the one-sidedness, we must have
for all M ∈ sup(D) that if fM := (f(x(1)), . . . , f(x(ℓ))) ∈ colspace(M), then Test accepts,
where sup denotes the support and colspace denotes the column space. Picking i ∈ [n]
uniformly at random, note that the function g(x) := xi(xi − 1) is Ω(1)-far from degree-1.

3 We note that the hypercontractivity setting we are considering and analyzing in this part is not sufficient
to get a direct analysis of low-degree testing. Such an analysis would require hypercontractivity for
more delicate noise models than the simpler “q-ary symmetric” models we analyze here.
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Then we argue that the “evaluation vector” gM := (g(x(1)), . . . , g(x(ℓ))) lies in the column
space of M with high probability (over i) if ℓ = o(logn), so Test faultily accepts g. The
idea is that if ℓ = o(logn) then there are at least two columns (say i ̸= j ∈ [n]) of M that
are identical under the ζ mapping, so subtracting one from the other gives a vector in Fℓ
that is (up to a constant factor) equal to gM . This is because for k ∈ [ℓ], the k-th coordinate
of the difference vector is ai − aj (some constant) if ζ(x(k)

i ) = ⋆ and 0 otherwise. Similarly
the k-th coordinate of gM is ai(ai − 1) (some constant) if ζ(x(k)

i ) = ⋆ and 0 otherwise.

2 Preliminaries

We denote [n] = {1, . . . , n} ⊆ Z, [m..n] = [n] \ [m − 1] and Zs = Z/sZ = {0, 1, . . . , s − 1}
for s ⩾ 2. Throughout the paper, let (G,+) be an arbitrary abelian group and (F,+, ·) an
arbitrary field. Fnq is a vector space over the finite field of q elements, to which we associate
an inner product (bilinear form) as: ⟨x, y⟩ =

∑n
i=1 xi · yi.

For any finite set S and a ∈ Sn we denote the Hamming weight of a by #a = {i ∈
[n] : ai ̸= 0}, assuming S contains an element called 0. If I ⊆ [n], we use aI to denote the
tuple a restricted to the coordinates of I, i.e., aI = (ai)i∈I . Similarly SI = {aI : a ∈ Sn}.
For disjoint subsets I, J ⊆ [n], and a ∈ SI and b ∈ SJ , we denote their concatenation by
a ◦ b ∈ SI∪J . Denoting a product domain/grid by S = S1 × · · · × Sn, we let SI = ×i∈ISi
denote the Cartesian product of sets restricted to the coordinates of I.

We use
([n]
⩽d

)
to denote the set of subsets of [n] of size at most d. For m a multiple of

s, let “balanced set” B(S,m) ⊆ Sm be the set of points that contain exactly m/s many
repetitions of each element of S. Abusing notation, sometimes we may think of B(S,m)m′

as a subset of Smm′ by flattening the tuple of m-tuples. The group-integer multiplication
operation · : G × Z → G is defined by g · m = g + · · · + g (|m| times) if m ⩾ 0 and
−g − · · · − g (|m| times) otherwise.

2.1 Local testability
The distance between f : S → G and a family of functions F with the same domain S is
δF (f) = ming∈F δ(f, g), where δ(f, g) = Prx∼S [f(x) ̸= g(x)] . We say that f is δ-far from F
if δF (f) ⩾ δ. When F is the family of junta-degree-d functions, we denote δF (.) by simply
δd(.). Similarly f is δ-close to F if δF (f) ⩽ δ.

▶ Definition 7 (Local testability). A randomized algorithm A with an oracle access to a
function f : S → G as its input, is said to be q-local if it performs at most q queries for any
given f . For a family of functions F with domain S and co-domain G, we say that F is
q-locally testable for q = q(F) if there exists a q-local test A that accepts f with probability 1
if f ∈ F , and rejects f with probability at least δF (f)/2 if f /∈ F . Further if q(F) = O(1)
(i.e., independent of the number of variables n), we simply refer to F as being locally testable.

One can define more general two-sided error and adaptive tests, but in the context of this
paper, the above definition for local testability is without loss of generality as we know from
the work of Ben-Sasson, Harsha and Raskhodnikova [9] that for linear properties4, any “test”
can be transformed to be one-sided and non-adaptive without altering the query complexity
(locality) and success probability by more than constant factors.

4 i.e., for families F for which f ∈ F and g ∈ F implies c1f + c2g ∈ F for all c1, c2 ∈ F.
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41:8 Low-Degree Testing over Grids

The family of functions F of our study (namely “junta-degree-d” and “degree-d” to be
formally defined shortly) are parameterized by s = maxi |Si| and an integer d which we treat
as constants. All tests we are going to present are Os,d(1)-local, one-sided and non-adaptive.
However, the probability of rejection in case of f /∈ F is only Ωs,d(δF (f)); nevertheless by
repeating the test an appropriate Os,d(1) number of times, we get a Os,d(1)-local test for F
that succeeds with probability δF (f)/2 when f /∈ F and with probability 1 when f ∈ F .

2.2 Junta-polynomials and polynomials
For this section, we let S = S1 × · · · × Sn denote an arbitrary finite product domain (or grid)
and s = maxi {si}, where si = |Si|.

▶ Definition 8 (Junta-degree). A function f : S → G 5 is said to be junta-degree-d if

f(x) = f1(xD1) + · · · + ft(xDt)

for some t ∈ Z, Dj ∈
([n]
⩽d

)
and functions fj : SDj → G for j ⩽ t. If t = 1, we call f a

d-junta.
The junta-degree of f is the minimum d ⩾ 0 such that f is junta-degree-d.

For junta-degree testing over arbitrary grids S = S1 × · · · × Sn, we may assume that
Si = Zsi

without loss of generality, where si = |Si|. The following claims about junta-
polynomials are analogous to standard facts about multi-variate polynomials over a field.

▷ Claim 9. Any junta-degree-d function f : Zns → G can be uniquely6 expressed as

f(x1, . . . , xn) =
∑
a∈Zs

n

#a⩽d

ga ·
∏

i∈[n]: ai ̸=0

δai
(xi), (1)

where ga ∈ G and δb : Zs → Z is defined as δb(y) = 1 if b = y and 0 otherwise.

▶ Definition 10 (Junta-polynomial). We will call such a representation as a junta-polynomial,
and the degree of a junta-polynomial is defined as maxa∈Zs

n:ga ̸=0 #a. It can be seen that the
degree of a junta-polynomial is exactly equal to the junta-degree of the function it computes,
assuming that the degree of the identically 0 junta-polynomial is 0.

We will refer to the summands in (1) as terms, the constants ga as coefficients, the integer
products

∏
i∈[n]: ai ̸=0 δai

(xi) as monomials. We say that a is a root of a junta-polynomial P
if P (a) = 0 and a is a non-root otherwise.

▷ Claim 11. Any non-zero junta-polynomial P : Zns → G of degree at most d has at least
sn−d non-roots.

We will now discuss standard facts about formal polynomials. Let F be a field and
S ⊆ F be of size s ⩾ 2. For a polynomial P (x1, . . . , xn) ∈ F[x1, . . . , xn] the individual degree
of xi is the largest degree xi takes in any (non-zero) monomial of P . The individual degree
of P is the largest individual degree of any variable xi. We say that P is degree-d if its
degree is at most d. We say that f : Sn → F is degree-d iff there is a degree-d polynomial
P ∈ F[x1, . . . , xn] computing f . For the analysis of our degree-tester, we also need a notion
of degree-d for non-product domains: for any T ⊆ Sn, we say that f : T → F is degree-d if
there is a degree-d polynomial P ∈ F[x1, . . . , xn] computing f .

5 Here we treat a tuple of sets as the domain of the function
6 up to the commutativity of the Σ (group addition) and Π (integer multiplication) operations
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▷ Claim 12. Any degree-d function f : Sn → F has a unique polynomial representation with
degree at most d and individual degree at most s− 1.

By setting d = n(s− 1) (or ∞) in the above claim, we see that the set of all functions
from Sn to F is a vector space over F of dimension sn – the monomials with individual degree
at most s − 1 form a basis. More generally, for any T ⊆ Sn the set of functions from T
to F forms a vector space of dimension |T | with an inner product defined for f, g : T → F
as ⟨f, g⟩ =

∑
x∈T f(x) · g(x). For any d, the set of degree-d functions is a subspace of this

vector space.
It is easy to see that if f : Sn → F is degree-d, then it is also junta-degree-d (w.r.t. to the

additive group of F). Conversely, if f : Sn → F is junta-degree-d, then it is degree-(s− 1)d:
this follows by applying Claim 12 to the d-junta components of f . If s = 2, the degree is
exactly equal to the junta-degree.

Let δ′
d(f) denote the distance of f to the degree-d family.

2.3 Fourier analysis

▶ Definition 13 (Fourier representation). Any function f : Zns → C can be uniquely expressed
as

f(x) =
∑
α∈Zn

s

f̂(α)χα(x) (2)

where the characters are defined as χα(x) =
∏
i∈[n] χαi(xi) where χβ(y) = ωβy mod s for

β, y ∈ Zs and ω ∈ C is a (fixed) primitive s-th root of unity.

▶ Definition 14 (Noise operators). For ν ∈ [0, 1] and x ∈ Zns , we define Nν(x) 7 to be the
distribution over Zns where each coordinate of x is unchanged with probability 1 − ν, and
changes to a different value uniformly at random with probability ν. Similarly, the spherical
noise corresponds to Sν(x) where a subset J ⊆ [n] of fixed size νn is chosen uniformly at
random and the coordinates outside J are unchanged and those within J are changed to
a uniformly different value. Let Dν denote the probability distribution over Zs with mass
1 − ν at 0 and ν/(s− 1) at all the other points. Let Eν denote the uniform distribution over
{y ∈ Zns : #y = νn}. For µ1 ∼ D⊗n

ν and µ2 ∼ Eν , note that Nν(x) and x+µ1 are identically
distributed; so are Sν(x) and x+ µ2.

3 Low-junta-degree testing

We note that junta-degree-d functions with domain S1 × · · · × Sn such that |Si| = s for all i
are “equivalent” to those with domain Zns as one can fix an arbitrary ordering of elements
in each Si and treat the function as being over Zns : this does not change the junta-degree.
Hence, we will fix Si = Zs. The more general case of unequal domain sizes is handled in the
full version of the paper.

We claim that the following test works to check if a given function f : Zns → G is
junta-degree-d.

7 This is different from the standard usage Nρ where ρ denotes the probability of “retention” and not of
noise.

APPROX/RANDOM 2023
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The junta-degree test (Junta-deg)

For a parameter k = Os,d(1) that is yet to be fixed, the junta-degree test (which we shall
refer to as Junta-deg) for f : Zns → G is the following algorithm with I = [n], r = n and
fr = f :

Test TI,r(fr): gets query access to fr : ZI
s → G where I ⊆ [n] is of size r.

1. If r ⩽ k, accept iff fr is junta-degree-d (check this by querying fr at all points in its
domain). Otherwise,

2. Choose i ̸= j ∈ I and a permutation πj : Zs → Zs independently and uniformly at
random. Let I ′ = I \ {j}.

3. Apply the test TI′,r−1(fr−1) where fr−1 : ZI′

s → G is the function obtained by setting
xj = πj(xi) in fr: that is, fr−1(aI′) := fr(aI

′ ◦ (πj(ai)){j}) for a ∈ SI′ .

The query complexity of the Junta-deg test is sk = Os,d(1) regardless of the randomness
within the test. Furthermore, if the function f happens to be a junta-degree-d function,
then the test Junta-deg always accepts it, since permuting variables and substituting some
variables with other variables does not change the junta-degree, so Step 1 succeeds. In
this section, we will show that if δ := δd(f) > 0, then Pr[Junta-deg rejects f ] ⩾ εδ for
appropriate ε = Ωs,d(1).

We follow the same approach as [7] (which itself follows [10]) and argue that if δd(f) is
“small”, then we will be able to prove Pr[Junta-deg rejects f ] ⩾ ε·δd(f) and if not, at least
we will be able to find some r ∈ [k + 1..n] such that δd(fr) is small enough (but importantly,
not too small). Then, we apply the small-distance analysis to that fr.

We state here the two main lemmas to prove that the correctness of the junta-degree
tester. Here, the parameters ε0 ⩽ ε1 and ε will be chosen to be at least s−O(k). In the
context of the test TI,r(fr) described above, we will set k = ψs2d for a sufficiently large but
constant ψ to be fixed in the proofs of the below lemmas8.

▶ Lemma 15 (Small-distance lemma). For any I ⊆ [n] of size r > k, if δ = δd(fr) ⩽ ε1, then

Pr[TI,r rejects fr] ⩾ εδ.

▶ Lemma 16 (Large-distance lemma). For any I ⊆ [n] of size r > k, if δd(fr) > ε1, then

Pr
i,j,πj

[δd(fr−1) ⩽ ε0] ⩽ k2/2r(r − 1).

Assuming the above two lemmas to be true, the proof of Theorem 1, at least for symmetric
domains S1 × · · · × Sn = Zns , follows the same approach as in [7] and we omit it here. We
also defer the proof of the large-distance lemma to the full version (and Appendix B). The
case of junta-degree testing over general grids can be reduced to that of symmetric grids and
we refer the reader to the full version for details.

3.1 Small-distance lemma
Proof of Lemma 15. We will “unroll” the recursion of the Junta-deg test and state it
more directly as follows: Fix an arbitrary r > k. As r is fixed, we denote fr by f (not to be
confused with the initial function on n variables). For the proof, we will need the following
alternate description of TI,r (subsequently, we shall drop the subscript I). Here, σ : [r] → [k]
is a map chosen according to the following random process:

8 For d = 0, we can take k = ψs2 so that it is non-zero.
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For i = 1 to k, set σ(i) = i.
For i = k + 1 to r, set σ(i) = j with probability |{i′ < i : σ(i′) = j}| /(i − 1), for each
j ∈ [k].

The only property we need about the above distribution of σ is that it is “well-spread”,
which was already shown in [7] as the following lemma.

▶ Lemma 17 (Corollary 6.9 in [7]). With probability at least 1/2O(k), we have
∣∣σ−1(j)

∣∣ ⩾ r/4k
for all j ∈ [k] – we call such a σ good.

Test Tr(f): gets query access to f : S[r] → G with variables x1, . . . , xr.
1. Choose a tuple of permutations of Zs, π = (π1, . . . , πr) u.a.r.
2. Choose a bijection µ : [r] → [r] u.a.r.
3. Choose a map σ : [r] → [k] according to the distribution described above Lemma 17.
4. For y = (y1, . . . , yk) ∈ Zks , define xπσµ(y) =

(
π1(yσ(µ−1(1))), . . . , πr(yσ(µ−1(r)))

)
.

5. Accept iff f ′(y) := f(xπσµ(y)) is junta-degree-d.

Let δ = δd(fr) = δ(f, P ) ⩽ ε1 where P : Z[r]
s → G is junta-degree-d and E ⊆ Sr be the

points where f and P differ. Our objective is to show that

Pr
π,σ,µ

[Tr rejects f ] = Pr
π,σ,µ

[f ′ is not junta-degree-d] ⩾ εδ. (3)

Let the functions f ′ : Sk → G and P ′ : Sk → G be defined by f ′(y) = f(xπσµ(y)) and
P ′(y) = P (xπσµ(y)) respectively (these functions depend on π, σ, µ) and E′ ⊆ Sk be the
points where these two restricted functions differ.

To proceed further, we will need a subset U of Zks with the following properties (we defer
the proof to Appendix A and the full version):

▷ Claim 18. Let w =
⌈
log(8ψs2)d

⌉
< k. There exists a set U ⊆ Zks of size 2w such that

1. (Code) For all y ̸= y′ ∈ U ,

k/4 ⩽ ∆(y, y′) ⩽ 3k/4

where ∆(y, y′) denotes the number of coordinates where y and y′ differ.
2. (Hitting) No two junta-degree-d functions P : Sk → G and Q : Sk → G can differ at

exactly one point in U .

Let V = {xπσµ(y) : y ∈ U} ⊆ Zrs. Because the mapping y 7→ xπσµ(y) is one-one
conditioned on σ being good, it holds that |V ∩ E| = |U ∩ E′| under this conditioning.
Now suppose the randomness is such that |U ∩ E′| = 1. Then, since no two junta-degree-d
functions can disagree at exactly one point in U (Property 2 of Claim 18), it must be the
case that f ′ be of junta-degree greater than d (as P ′, being a restriction of a junta-degree-d
function is already junta-degree-d). Therefore, for (3) we can set ε := Prσ[σ good] ⩾ 1/2O(k)

and show

Pr
π,σ,µ

[|U ∩ E′| = 1 | σ good] = Pr
π,µ

σ good

[|U ∩ E′| = 1] ⩾ δ.

By a simple inclusion-exclusion, the above probability is

Pr
π,µ

σ good

[|V ∩ E| = 1] ⩾
∑
y∈U

Pr
π,µ

σ good

[xπσµ(y) ∈ E] −
∑

y ̸=y′∈U

Pr
π,µ

σ good

[xπσµ(y) ∈ E and xπσµ(y′) ∈ E]

(4)
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For any y ∈ U , xπσµ(y) =
(
π1(yσ(µ−1(1))), . . . , πr(yσ(µ−1(r)))

)
is uniformly distributed over

Zrs since π1, . . . , πr are random permutations of Zs. Hence the first part of (4) is

∑
y∈U

Pr[xπσµ(y) ∈ E] = |U | · |E|
sr

= |U | · δ. (5)

For any fixed y ̸= y′ ∈ U and good σ, using Property 1 of Claim 18 for points in U we
claim that the random variables x := xπσµ(y) and x′ := xπσµ(y′) are related as follows:

▷ Claim 19. x′ ∼ Sν(x), for some ν ∈ [1/32, 31/32].

For the second term of (4),

Pr
π,µ

σ good

[xπσµ(y) ∈ E and xπσµ(y′) ∈ E] = Pr
x∼Zr

s

x′∼Sν (x)

[x ∈ E and x′ ∈ E]

(for some ν ∈ [1/32, 31/32] depending on σ, using Claim 19)

⩽ C · δ1+λ for some constant C and λ = 1/214 log s.
(6)

(Using spherical noise small-set expansion (Theorem 23))

Plugging the bounds (5) and (6) back in (4), we get

Pr
π,µ,
σ good

[|V ∩ E| = 1] ⩾ |U | δ − |U |2 Cδ1+λ ⩾ |U | δ/2 ⩾ δ.

The above inequalities follow from |U | = 2w and δ ⩽ ε1; this is where we set ε1 :=
(1/2C |U |)1/λ = (1/2C2w)214 log s ⩾ 1/sO(log(8ψs2)d) ⩾ 1/sO(k). Hence we conclude that

Pr
π,σ,µ

[Tr rejects f ] ⩾ Pr
σ

[σ good] · Pr
π,µ

σ good

[|U ∩ E′| = 1] ⩾ ε Pr
π,µ

σ good

[|V ∩ E| = 1] ⩾ εδ. ◀

4 Low-degree testing

We will describe our low-degree test now.

The degree test (Deg)

Given query access to f : Sn → F, the following test (called Deg) works to test whether f is
degree-d. We may assume that s = |S| ⩾ 2 as f is a constant function otherwise.

Test Deg(f): gets query access to f : Sn → F.
Run Junta-deg(f) to check if f is junta-degree-d.
Run Weak-deg(f).
Accept iff both the above tests accept.

In the above description, the sub-routine Weak-deg corresponds to the following test.
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Test Weak-deg(f): gets query access to f : Sn → F.
Choose a map µ : [n] → [K] u.a.r. where K = t(d+ 1) and t = s3.
For y = (y1, . . . , yK) ∈ SK , define xµ(y) = (yµ(1), . . . , yµ(n)).
Define the function f ′ : B(S, t)K/t → F as f ′(y) = f(xµ(y)), where B(S, t), defined
in Section 2, is the “balanced” subset of St.
Accept iff f ′ is degree-d.

We now move on to the analysis of this test, proving Theorem 3.

Proof of Theorem 3. Let g : Sn → F be a closest junta-degree-d function to f i.e., δd(f) =
δ(f, g). We shall assume that δd(f) ⩽ ε2 for a small enough ε2 = K−O(K), and neither f
nor g are degree-d. Otherwise, we will be able to appeal to the correctness of Junta-deg.

Let E ⊆ Sn be the points where f and g differ; thus |E| /sn = δd(f) ⩽ ε2. Let

Vµ =
{
xµ(y) : y ∈ B(S, t)K/t

}
.

Suppose µ : [n] → [K] is such that Vµ ∩ E = ∅ and Weak-deg rejects g. Then
Weak-deg does not distinguish between f and g and hence rejects f as well. We will
show that both these events occur with good probability. For the first probability, we will
upper bound

Pr
µ

[Vµ ∩ E ̸= ∅] = Pr
µ

[
∃y ∈ B(S, t)K/t : xµ(y) ∈ E

]
⩽

∣∣∣B(S, t)K/t
∣∣∣ · Pr

µ

[
For fixed arbitrary y ∈ B(S, t)K/t, xµ(y) ∈ E

]
.

Note that since all points in B(S, t)K/t contain an equal number of occurrences of all the
elements of S, xµ(y) is uniformly distributed in Sn for a uniformly random µ. Hence, the
above probability is

Pr
µ

[Vµ ∩ E ̸= ∅] ⩽ |S|K · |E|
sn

⩽ sKε2 <
1

2Kd
. (by setting ε2 := 1/4sKKd ⩾ K−O(K))

We show that Weak-deg indeed rejects g with good probability.

▷ Claim 20. Prµ[Weak-deg rejects g] ⩾ 1/Kd.

Assuming this claim,

Pr[Deg rejects f ] ⩾ Pr[Weak-deg rejects f ]

⩾ Pr[Weak-deg rejects g] − Pr[Vµ ∩ E ̸= ∅] ⩾ 1
2Kd

⩾
δ′
d(f)
2Kd

.

This finishes the analysis of the low-degree test assuming Claim 20. ◀

4.1 Soundness of Weak-deg
Proof of Claim 20. We will need the following lemma about the vector space formed by
functions over B(S, t)K/t ⊆ SK .

▶ Lemma 21. For T ⊆ SK , the vector space of functions from T to F has a basis
{m1, . . . ,mℓ} such that for any f : T → F of the form f = c1m1 + . . . cℓmℓ for some
ci ∈ F, we have

f is degree-d ⇐⇒ ∀i, ci = 0 or mi is degree-d. (7)
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Let g′ : B(S, t)K/t → F be defined as g′(y) = g(xµ(y)) where xµ(y) = (yµ(1), . . . , yµ(n)).
Then, recall that Weak-deg rejects g iff g′ is not degree-d. We use Lemma 21 above to fix
a suitable basis m1, . . . ,mℓ for functions from T = B(S, t)K/t to F. Then we can write each
g′(y) obtained above uniquely as

g′(y) =
ℓ∑
i=1

ci ·mi

where the coefficients ci are some functions of µ. We will treat µ : [n] → [K] as a random
element of [K]n.

We argue that each ci is junta-degree-d (as a function of µ). To see this, we recall that
g is junta-degree-d. Consider the case when g is a function of only xi1 , . . . , xis for some
s ⩽ d. In this case, clearly the polynomial g′ depends only on µi1 , . . . , µis . In particular,
each ci is just an s-junta. Extending the argument by linearity, we see that for any g that is
junta-degree-d, the underlying coefficients ci of g′(y) are junta-degree-d polynomials in the
co-ordinates of µ.

Now assume that there exists a µ∗ : [n] → [K] such that g′(y) is not degree-d (we will
show the existence of such a “good” µ in the next subsection). Thus, by Lemma 21 there
exists i∗ ∈ [ℓ] such that mi∗ is not degree-d and ci∗(µ∗) ̸= 0. In particular, the function ci∗

is non-zero.
We have argued that there is an mi∗ in the basis such that the associated coefficient ci∗

is a non-zero junta-degree-d polynomial. In particular, Claim 11 implies that the probability
that c∗

i (µ) ̸= 0 for a random µ is at least 1/Kd. Therefore, using Lemma 21,

Pr
µ

[Weak-deg rejects g] = Pr
µ

[g′ is not degree-d] ⩾ Pr
µ

[ci∗(µ) ̸= 0] ⩾ 1/Kd. ◀

4.2 Existence of a good map µ

We will show for any function g : Sn → F that is not degree-d, there exists a map µ : [n] → [K]
such that the function g′(y) = g(xµ(y)) defined for y ∈ B(S, t)K/t is also not degree-d. This
is easy to prove if the domain of g′ were to be SK , but is particularly tricky in our setting.

Let D = d+ 1. We will give a map µ : [n] → [t] × [D] ≡ [tD] = [K] instead. Let P be
the polynomial with individual degree at most s− 1 representing g; suppose the degree of P
is d′ > d and let m(x) = c · xa1

i1
· · ·xaℓ

iℓ
be a monomial of P (x) of degree d′ for some non-zero

c ∈ F, where aj ⩾ 1 for all j and i1, . . . , iℓ are some distinct elements of [n] and ℓ ⩽ d as g is
junta-degree-d. Then, we define µ as follows for i ∈ [n]:

µ(i) =
{

(1, j), if i = ij for some j ∈ [ℓ]
(1, D), otherwise.

It is easy to inspect that P (xµ(y)) (call it Q(y)) is a polynomial in variables y(1,1), . . . , y(1,D),
and is of degree d′ > d – this is because the monomial m(x), upon this substitution turns to

m(xµ(y)) = c · ya1
(1,1) · · · yaℓ

(1,ℓ),

which cannot be cancelled by m′(xµ(y)) for any other monomial m′(x) of P (x), as if m′

contains the variable xi for some i /∈ {i1, . . . , iℓ} then m′(xµ(y)) contains the variable y(1,D)
and on the other hand if m′ only contains variables xi for some i ∈ {i1, . . . , iℓ}, then the
individual degree of y(1,j) in the two substitutions differs for some j. Hence, the degree of
Q(y) is a1 + · · · +aℓ = d′. As we can express the function ya(1,D) for a > s− 1 as a polynomial
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in y1,D of individual degree at most s − 1, we can further transform Q(y) so that it has
individual degree at most s−1, while maintaining the properties that it still only contains the
variables y(1,1), . . . , y(1,D) (i.e., the first “row”) and has degree d′ and computes the function
g′(y). The following claim then completes the proof of the existence of a good µ by setting
w = D and d′ = d′.

▷ Claim 22. For formal variables y ≡ (y1, . . . , yw) ≡ (y(i,j))(i,j)∈[t]×[w], let Q(y) be a
polynomial of degree d′ ⩾ 0 containing only the variables from the first row. Then the degree
of Q(y) as a function over B(S, t)w is exactly d′.

The proof of the above claim is deferred to Appendix C.

5 Small-set expansion for spherical noise

In this section, we will prove a small-set expansion theorem for spherical noise, which
we have used for (6) in the proof of the small-distance lemma of junta-degree testing.
Let f : Zns → C be arbitrary. For ν ∈ [0, 1] the Bernoulli noise operator is defined as
Nνf(x) = Ey∼Nν (x) [f(y)] = Ey∼D⊗n

ν
[f(x + y)]. Similarly, the spherical noise operator is

defined for ν ∈ [0, 1] such that νn ∈ Z: Sνf(x) = Ey∼Sν (x)[f(y)] = Ey∼Eν [f(x+ y)]. For the
rest of this section, let ρ ∈ [0, 1] and ν = (1 − 1/s)(1 − ρ) ∈ [0, 1]; it is easy to check that if
each coordinate of x is retained with probability ρ and randomized (uniformly over Zs) with
probability 1 − ρ, the resulting string is distributed according to Nν(x).

The goal of this section is to show for s ⩾ 3, that we can reduce the problem of small-set
expansion for spherical noise to that of Bernoulli noise, for which such a theorem is already
known.

▶ Theorem 23 (Small-set expansion for spherical noise). Let s ⩾ 3 and A ⊆ Zns be such that
Prx∼Zn

s
[x ∈ A] = δ. Then, for any ν ∈ [1/32, 1]

Pr
x∼Zn

s

y∼Sν (x)

[x ∈ A and y ∈ A] ⩽ 2 · δ1+λ, (8)

where λ = 1
214 log s .

▶ Remark. When the size of the domain s is equal to 2 and ν ∈ [1/32, 31/32], the above
statement still holds (with the factor 2 replaced with some other constant factor C) as proved
by [23] (or Corollary 2.8 in [7]).

Proof of Theorem 23. Let f : Zns → C be the indicator function of A and consider its
Fourier representation as in Definition 13: f(x) =

∑
α∈Zn

s
f̂(α)χα(x). Then the probability

in (8) is equal to

Pr
x∼Zn

s

y∼Sν (x)

[x ∈ A and y ∈ A] =
∑
α∈Zn

s

∣∣∣f̂(α)
∣∣∣2

E
y∼Eν

[χα(y)] . (9)

We will show that for any α ∈ Zns , the quantity Ey∼Eν
[χα(y)] above is upper bounded by

2 · ρ̃#α for some constant ρ̃. We have

E
y∼Eν

[χα(y)] = E
y∼Eν

[χα1 (y1) · · ·χαn (yn)] = E
I∼([n]

νn)
µ∼Zs\{0}

y∼0I ◦µI

[∏
i∈I

χαi (yi)
∏
i/∈I

χαi (yi)

]

(where I and µ are independent)
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= E
I,µ,y

[∏
i∈I

χαi (µi)

]
(where I ∼

([n]
νn

)
, µ ∼ Zs \ {0}, and y ∼ 0I ◦ µI)

= E
I

[∏
i∈I

E
µi∼Zs\{0}

[χαi (µi)]

]
. (10)

Now we note that the inner term

E
µi∼Zs\{0}

[χαi (µi)] =

{
1, if αi = 0, and

1
s−1

(∑
µi∈Zs\{0} χαi (µi)

)
= 1

s−1 (sEµi∼Zs
[χαi (µi)] − 1) = −1

s−1 otherwise.

(11)

Therefore, denoting the coordinates of α with non-zero entries by J ⊆ [n], plugging (11) into
(10) gives

E
y∼Eν

[χα(y)] = E
I∼([n]

νn)

[(
−1
s− 1

)|J∩I|
]
⩽ E
I∼([n]

νn)

[(
1
2

)|J∩I|
]

(as s ⩾ 3)

⩽ Pr
I∼([n]

νn)
[|J ∩ I| < νk/2] · 1 + E

I∼([n]
νn)

[(
1
2

)|J∩I|
∣∣∣∣∣ |J ∩ I| ⩾ νk/2

]
.

Denoting |J | = #α by k, we observe that |J ∩ I| is distributed according to the hypergeometric
distribution of k draws (without replacement) from a population of size n and νn many success
states. Hence, by a tail bound [16] Pr[|J ∩ I| < νk/2] ⩽ e−ν2k/2 and using ν ⩾ 1/32, we get
that Ey∼Eν

[χα(y)] ⩽ Pr
I∼([n]

νn) [|J ∩ I| < νk/2]·1+E
I∼([n]

νn)
[( 1

2
)|J∩I|

∣∣∣ |J ∩ I| ⩾ νk/2
]
⩽ 2·ρ̃k

for ρ̃ := 2−2−11 .
Plugging the above bound in (9), letting ν̃ = (1 − 1/s)(1 − ρ̃) and q = 2 + ε = 2 + 1

212 log s ,
we get

Pr
x∼Zn

s

y∼Sν (x)

[x ∈ A and y ∈ A] ⩽ 2
∑
α∈Zn

s

∣∣∣f̂(α)
∣∣∣2
ρ̃#α = 2 Pr

x∼Zn
s

y∼Nν̃ (x)

[x ∈ A and y ∈ A] ⩽ 2δ2−2/q,

where the last step uses the small-set expansion theorem corresponding to Bernoulli noise
(e.g. Theorem 10.25 in [21]). ◀
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A Existence of the code U

In order to prove Claim 18 we will need the following:

▷ Claim 24. There exists a matrix M ∈ Fk×w
2 such that U := {Mz : z ∈ Fw2 } ⊆ Fk2 is if size

2w and:
For all y ̸= y′ ∈ U , we have k/4 ⩽ ∆(y, y′) ⩽ 3k/4.
There exists a function χ : U → {±1} such that for all I ∈

( [k]
⩽d

)
, we have∑

y∈U : yI =1I

χ(y) = 0.

Proof. We will show that picking M uniformly at random satisfies both the items with
positive probability. For Item 1, if suffices if for all y ̸= 0k in U , k/4 ⩽ #y ⩽ 3k/4; that is,
for all z ∈ Fa2 \ {0d+1}, k/4 ⩽ #Mz ⩽ 3k/4. For any fixed z ̸= 0a, we note that y = Mz

is uniformly distributed over Fk2 as M ∼ Fk×w
2 . Hence, by a Chernoff bound, we have

PrM [#Mz /∈ [k/4, 3k/4]] ⩽ 2e−k/24. A union bound over all z ∈ Fw2 \ {0w} gives

Pr
M

[¬ (∀y ̸= y′ ∈ U, k/4 ⩽ ∆(y, y′) ⩽ 3k/4)] ⩽ 2w · 2e−k/24 < 1/2.

However, it is a known fact that a uniformly chosen rectangular matrix has full rank with
probability at least 1/2. Therefore, with positive probability there must be a matrix M such
that it is full rank and Item 1 holds. We fix such an M and prove Item 2.

For y ∈ U , as M is full rank there exists a unique z ∈ Fw2 such that Mz = y. Then we
define

χ(y) := (−1)⟨z,η⟩ = (−1)z1η1+···+zwηw ,

where η ∈ Fw2 is an arbitrary vector such that it is not in the Fw2 -span of any d rows of
M . Such an η always exists as the number of vectors that can be expressed as a linear
combination of d rows of M is at most(

k

d

)
2d ⩽

(
ek

d

)d

2d =
(
2eψs2)d

< 2w,

the total number of vectors in Fw2 .
Let M1, . . . ,Mk ∈ Fw2 denote the rows of M . For any I ∈

( [k]
⩽d

)
and y = Mz, the condition

yI = 1I is equivalent to: ⟨z,Mi⟩ = 1 for all i ∈ I. Hence we have∑
y∈U : yI =1I

χ(y) =
∑

z∈Fa
2 : ∀i∈I, ⟨z,Mi⟩=1

(−1)⟨z,η⟩ (12)

As η is linearly independent with {Mi}i∈I , there exists η′ ̸= 0a such that ⟨η′,Mi⟩ = 0 for
all i ∈ I and ⟨η′, η⟩ = 1: this is because we can treat these conditions as a system of linear
equations over F2.

Note that for any z ∈ Fw2 , ⟨z,Mi⟩ = 1 if and only if ⟨z + η′,Mi⟩ = ⟨z,Mi⟩ + ⟨η′,Mi⟩ = 1.
Since z ̸= z + η′, we may partition the summation (12) into buckets of size 2, each bucket
corresponding to z and z + η′ for some z. For each such bucket, the sum is

(−1)⟨z,η⟩ + (−1)⟨z+η′,η⟩ = (−1)⟨z,η⟩ + (−1)⟨z,η⟩+⟨η′,η⟩ = (−1)⟨z,η⟩
(

1 + (−1)⟨η
′,η⟩

)
= 0,

so the overall sum is also 0. ◁



P. Amireddy, S. Srinivasan, and M. Sudan 41:19

Using this result, we will prove Claim 18:

Proof of Claim 18. Identifying the 0’s (resp. 1’s) in F2 and Zs, we will rephrase the above
claim as U being a subset of Zks instead of Fk2 : Then, this set U ⊆ {0, 1}k ⊆ Zks immediately
satisfies Item 1 of Claim 18. For Item 2, it suffices to show that for any non-zero junta-degree-d
function P : Zks → G,∑

y∈U
P (y) · χ(y) = 0 (13)

where χ : {0, 1}k → Z is from Claim 24. Towards a contradiction, suppose that a junta-
degree-d function P has exactly one point in y∗ ∈ U such that P (y∗) ̸= 0. Then using (13),
0 + · · · + 0 + P (y∗) · χ(y∗) + 0 + · · · + 0 = 0 and as χ(y∗) = ±1, P (y∗) = 0, a contradiction.

To prove (13), we expand P into its junta-polynomial representation:

∑
y∈U

P (y) · χ(y) =
∑
y∈U

∑
a∈Zs

k

#a⩽d

ga ·

 ∏
i∈[k]: ai ̸=0

δai
(yi)

χ(y)

=
∑
a∈Zs

k

#a⩽d

ga ·

∑
y∈U

χ(y)
∏

i∈[k]: ai ̸=0

δai(yi)


For any a ∈ Zks , letting I := {i ∈ [k] : ai ̸= 0}, the inner factor is∑

y∈U
χ(y)

∏
i∈[k]: ai ̸=0

δai
(yi) =

∑
y∈U : yI =aI

χ(y).

Now if a contains any coordinates taking values other than 0 and 1, the above sum is 0 since
all the coordinates of y ∈ U are either 0 or 1. On the other hand, if a ∈ {0, 1}k, then aI = 1I
and Claim 24 is applicable, again giving a sum of 0. Therefore,

∑
y∈U

P (y) · χ(y) =
∑
a∈Sk

#a⩽d

ga ·

∑
y∈U

χ(y)
∏

i∈[k]: ai ̸=0

δai
(yi)

 =
∑
a∈Sk

#a⩽d

ga · 0 = 0. ◁

B Proof of the large-distance lemma

Proof of Lemma 16. For this proof, we may assume without loss of generality that I = [r]
as relabelling the variables does not affect the probability of a random restriction (i.e.,
xj = πj(xi)) being ε0-close to junta-degree-d. We will prove the contrapositive: assuming
δd(fr−1) ⩽ ε0 for more than k2/2r(r − 1) fraction of choices of (i, j, πj) (call these bad
restrictions), we will construct a junta-degree-d function P such that δ(fr, P ) ⩽ ε1. Like
in [7, 10], the high level idea is to “stitch” together low-junta-degree functions corresponding
to the restrictions fr−1 (which we shall call P (h)) into a low-junta-degree function that is
close to fr.

As there are more than k2

2r(r−1)r(r − 1)s! = k2s!/2 many bad tuples (i, j, πj), by pigeon-
hole principle, there must be some permutation π : Zs → Zs such that the number of bad
tuples of the form (i, j, π) is more than k2/2. In fact, we can say something more: Consider
the directed graph Gbad over vertices [r] with a directed edge (i, j) for each bad tuple (i, j, π).
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As the number of edges in Gbad is at least k2/2, by the pigeon-hole principle, we can conclude
that there is a matching or a star9 in Gbad of size L := k/4. For the rest of the proof, we
will handle both the cases in parallel as the differences are minor.

Suppose we are in the matching case and the corresponding bad tuples are

(i1, j1, π), . . . (iL, jL, π),

where i1, . . . , iL, j1, . . . , jL are all distinct. Let id denote the identity permutation of Zs.
Consider the function f̃r(x1, . . . , xr) obtained by replacing the variables xi1 , . . . , xiL in fr
with π(xi1), . . . , π(xiL) respectively. Then, δd(f̃r) = δd(fr) and (ih, jh, π) is a bad restriction
for fr if and only if (ih, jh, id) is a bad restriction for f̃r, for all h ∈ [L]. Moreover, if f̃r
satisfies δ(P̃ , f̃r) ⩽ ε1, then there also exists a junta-degree-d P such that δ(P, fr) ⩽ ε1
(obtained from P̃ by applying the inverse permutation π−1 to xi1 , . . . , xiL). Therefore,
without loss of generality we may assume that π = id to construct a junta-degree-d function
P such that δ(P, fr) ⩽ ε1. A similar reduction holds in the star case.

We may further assume w.l.o.g. that the matching case corresponds to the tuples

(L+ 1, 1, id), (L+ 2, 2, id), . . . (2L,L, id)

and the star case corresponds to

(r, 1, id), (r, 2, id), . . . , (r, L, id).

For h ∈ [L], we define

Rh :=
{

{x ∈ Zrs : xL+h = xh} in the matching case,
{x ∈ Zrs : xh = xr} in the star case.

as the points that agree with the h-th bad restriction (i, j, π) in the matching or star case
correspondingly. Let R′

h denote the complement of Rh. Then for any function P : Zrs → G,

Pr
x∼Zr

s

[fr(x) ̸= P (x)] ⩽ Pr
x

[
x /∈

⋃
h⩽L

Rh

]

+
∑
h⩽L

Pr
x

[
x ∈ Rh \

⋃
h′<h

R′
h

]
· Pr

x

[
fr(x) ̸= P (x)

∣∣∣∣∣x ∈ Rh \
⋃

h′<h

Rh′

]
(14)

To estimate the above probabilities, we note that in both the matching or the star case,
Prx∼Zr

s

[
x /∈

⋃
h⩽L

Rh

]
= Prx

[
x ∈

⋂
h⩽L

R′
h

]
=

(
1 − 1

s

)L
, and Prx∼Zr

s

[
x ∈ Rh \

⋃
h′<h

Rh′
]

=
Prx

[
x ∈ Rh ∩

⋂
h′<h

R′
h′

]
= 1

s

(
1 − 1

s

)h−1.
For h ∈ [L], let f (h)

r−1 : Zrs → G be the restricted function corresponding to the h-th bad
tuple, treated as a function of all the r many variables (rather than r − 1). Let P (h) denote
the junta-degree-d function that is of distance at most ε0 from f

(h)
r−1. We will use the following

claim that there is a junta-degree-d function P that agrees with P (h) over Rh, for all h.

▷ Claim 25. There exists a junta-degree-d function P such that P (x) = P (h)(x) for all
h ∈ [L] and x ∈ Rh.

9 A matching is a set of disjoint edges and a star is a set of edges that share a common start vertex, or a
common end vertex.



P. Amireddy, S. Srinivasan, and M. Sudan 41:21

We defer its proof to the full version and only mention here that the idea is to first show
for h ̸= h′ ⩽ L that P (h)|h′ = P (h′)|h, since both these functions agree (with f (h)

r−1 and f (h′)
r−1)

over a “large” subset Rh ∩ Rh′ of their domain. Then one can interpolate the restricted
functions into a junta-degree-d function P . Then for such P and any h ⩽ L,

Pr
x

[
fr(x) ̸= P (x)

∣∣∣∣∣x ∈ Rh \
⋃
h′<h

Rh′

]
⩽

Prx [fr(x) ̸= P (x) | x ∈ Rh]
Pr

[
x ∈ Rh \

⋂
h′<hRh′ | x ∈ Rh

]
= Prx [fr(x) ̸= P (x) | x ∈ Rh](

1 − 1
s

)h−1

⩽

(
s

s− 1

)h−1
ε0.

Then we can bound (14) as Prx∼Zr
s

[fr(x) ̸= P (x)] ⩽
(
1 − 1

s

)L + Lε0
s ⩽ ε1/2 + ε1/2 = ε1 as

we can set ε0 := 2sε1/k ⩾ 1/sO(k) and(
1 − 1

s

)k/4
⩽ e−k/4s = e−ψsd/4 ⩽

1
2

(
1

2C2⌈log(8ψs2)d⌉

)214 log s
= ε1

2 .

(for the last inequality, we can take ψ to be a sufficiently large constant)

◀

C Proof of Claim 22

Proof of Claim 22. The proof is by induction on w. The base case w = 1 is crucial and it is
equivalent to the following claim:

▷ Claim 26. For 0 ⩽ d′ ⩽ s− 1, the function fd′ : B(S, t) → F defined as fd′(z) = zd
′

1 for
z = (z1, . . . , zt) ∈ B(S, t) has degree exactly d′.

Assuming the above claim to be true, let w > 1 be arbitrary. As d′ = 0 is trivial to handle,
we will assume that d′ ⩾ 1. Hence, Q contains at least one monomial m of degree d′ and
containing some variable y(1,j) with individual degree a ∈ [s− 1]. Without loss of generality,
suppose j = w. Since Claim 26 states that the function ya(1,w) is linearly independent of
degree-(a− 1) functions over B(S, t), there exists a function C : B(S, t) → F such that for
any f : B(S, t) → F

⟨C, f⟩ =
{

1 if f = ya(1,w) i.e., a-th power of the last coordinate
0 if f is degree-(a− 1).

(15)

Now we decompose Q as a polynomial over variables in the first w−1 columns and coefficients
being the monomials over variables in the last column: that is

Q(y) =
∑

α∈[0..a]

Q′
α(y1, . . . , yw−1) · yα(1,w), (16)

where yj represents the variables in the j-th column Q′
a ̸= 0 has degree d′ − a. Here, we are

using the fact that Q only contains variables from the first row.
Towards a contradiction, suppose there is some degree-(d′ − 1) polynomial R(y) such that

Q(y) = R(y) for all y ∈ B(S, t)w. We may decompose R as follows:
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R(y) =
∑

α∈[0..s−1]t

R′
α(y1, . . . , yw−1) · yαw

where yαw = yα1
(1,w) · · · yαt

(t,w) and for all α, either R′
α = 0 or is of degree (as a formal polynomial)

at most d′ − 1 − |α|1, where |α|1 = α1 + · · · + αt.
Fixing y1, . . . , yw−1 ∈ B(S, t) to arbitrary values and treating Q(y) and R(y) as functions

of yw, we get

⟨C,Q(y1, . . . , yw−1, yw)⟩ =
〈
C,

∑
α∈[0..a]

Q′
α(y1, . . . , yw−1) · yα(1,w)

〉

=
∑

α∈[0..a]

Q′
α(y1, . . . , yw−1) ·

〈
C, yα(1,w)

〉
= Q′

a(y1, . . . , yw−1). (using (15))

Similarly,

⟨C,R(y1, . . . , yw−1, yw)⟩ =
〈
C,

∑
α∈[0..s−1]t

R′
α(y1, . . . , yw−1) · yαw

〉

=
∑

α∈[0..s−1]t: |α|1⩾a

R′
α(y1, . . . , yw−1) · ⟨C, yαw⟩ (using (15))

As a polynomial in the variables of y1, . . . , yw−1, the final expression above is of degree at
most d′ − 1 − |α|1 ⩽ d′ − 1 − a. However, as a function it is equivalent to Q′

a, which has a
strictly higher degree, d′ − a. This contradicts the induction hypothesis. ◁
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