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Abstract
A graph G on n vertices is ε-far from property P if one should add/delete at least εn2 edges to turn
G into a graph satisfying P. A distance estimator for P is an algorithm that given G and α, ε > 0
distinguishes between the case that G is (α − ε)-close to P and the case that G is α-far from P. If P
has a distance estimator whose query complexity depends only on ε, then P is said to be estimable.

Every estimable property is clearly also testable, since testing corresponds to estimating with
α = ε. A central result in the area of property testing is the Fischer–Newman theorem, stating
that an inverse statement also holds, that is, that every testable property is in fact estimable. The
proof of Fischer and Newmann was highly ineffective, since it incurred a tower-type loss when
transforming a testing algorithm for P into a distance estimator. This raised the natural problem,
studied recently by Fiat–Ron and by Hoppen–Kohayakawa–Lang–Lefmann–Stagni, whether one can
find a transformation with a polynomial loss. We obtain the following results.

We show that if P is hereditary, then one can turn a tester for P into a distance estimator with
an exponential loss. This is an exponential improvement over the result of Hoppen et. al., who
obtained a transformation with a double exponential loss.
We show that for every P, one can turn a testing algorithm for P into a distance estimator
with a double exponential loss. This improves over the transformation of Fischer–Newman that
incurred a tower-type loss.

Our main conceptual contribution in this work is that we manage to turn the approach of Fischer–
Newman, which was inherently ineffective, into an efficient one. On the technical level, our main
contribution is in establishing certain properties of Frieze–Kannan Weak Regular partitions that are
of independent interest.
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1 Introduction

1.1 Background on graph property testing
Property testers are fast randomized algorithms that can distinguish between objects satisfying
some predetermined property P and those that are ε-far from satisfying P. In most cases,
ε-far means that an ε-proportion of the object’s representation needs to be changed in order
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to obtain a new object satisfying P . Hence, testing for P is a relaxed version of the classical
decision problem which asks to decide whether an object satisfies P. In this paper we study
properties of graphs in the so called adjacency matrix model (which is also sometimes referred
to as the dense graph model). This is arguably one of the most well studied models in the
area of property testing. The reader is referred to [20] for more background and references
on property testing.

We now introduce the model of testing graph properties in the adjacency matrix model.
A graph property P is a family of graphs closed under isomorphism. A graph G on n vertices
is ε-far from P if one should add/delete at least εn2 edges to turn G into a graph satisfying
P . If G is not ε-far from P then it is ε-close to P . A tester for P is a randomized algorithm
that given ε > 0 distinguishes with high probability (say, 2/3) between graphs satisfying P
and those that are ε-far from P. We assume the algorithm can query for each 1 ≤ i, j ≤ n

whether the input G contains the edge (i, j). The edge query complexity, denoted Q(ε),
of a tester is the number of edge queries it performs. If P has a tester whose edge query
complexity depends only on ε (and is independent of n) then P is called testable. In what
follows we will mainly work with vertex query complexity which is the smallest q = q(ε) so
that we can ε-test P by inspecting a subgraph of the input graph G, induced by a set of
q randomly selected vertices. By a theorem of Goldreich and Trevisan [22] we know that
q(ε) ≤ 2Q(ε) ≤ q2(ε). In most (but not all) discussions below we will not care much about
these quadratic factors. In such cases we might use the term query complexity without
mentioning if this is vertex or edge query complexity.

Property testing in the adjacency matrix model was first introduced by Goldreich,
Goldwasser and Ron [21], who proved that every partition property (e.g. k-colorability and
MAX-CUT) is testable. There are several general results guaranteeing that a graph property
is testable [3, 10]. A result of this nature was obtained by Alon and Shapira [5] who proved
that every hereditary1 graph property is testable. Their proof applied Szemerédi’s regularity
lemma [35] (see also [33]), which is one of the most useful tools when studying properties of
dense graphs. Using this tool comes with a hefty price, since the bounds one obtains when
using the regularity lemma are of tower-type2.

One of the central open (meta) problems related to testing graph properties is when
can one turn an ineffective (e.g. one with tower-type bounds) result into an efficient one,
preferably with polynomial bounds. While this is a quantitative question, what lies beneath
it is in fact the following qualitative problem; when can we prove a testability result while
avoiding Szemerédi’s regularity lemma, either by giving a direct combinatorial argument
or by using a weaker variant of the regularity lemma (e.g. the Frieze–Kannan regularity
lemma [18] which we discuss below). For example, Rödl and Duke [31] used the regularity
lemma in order to (implicitly) prove that k-colorability is testable. The tower-type bounds
obtained in [31] were improved to polynomial in [21] using a direct argument which avoided
the use of the regularity lemma. A specific central open problem, due to Alon and Fox [4],
concerns hereditary properties, and asks which hereditary properties are testable with query
complexity poly(1/ε). A systematic investigation of this problem was carried out in [19].

1.2 Distance estimation
In the dense graph model we say that a graph’s distance from P is α, if α is the smallest
real so that G is α-close to P. In other words, this is the minimum number of edges one
should add/delete in order to obtain a graph satisfying P, normalised by n2. We denote

1 A graph property is hereditary if it is closed under vertex removal. Some examples are being 3-colorable,
being triangle-free and being induced H-free, for some fixed H.

2 The tower function tower(x) is a tower of exponents of height x.
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this quantity by distP(G). A distance estimator for P is a randomized algorithm that given
α, ε > 0 distinguishes with high probability (say, 2/3) between graphs that are (α − ε)-close
to P and those that are α-far from P. If for every α, ε there is a distance estimator for P
whose query complexity depends only on ε, then P is said to be estimable. Note that testing
P is equivalent to distance estimation with α = ε, hence this notion is at least as strong as
testability.

Distance estimation was first studied in [30] and has since been studied in various other
settings such as distributions [7], strings [6], sparse graphs [11, 13, 28], boolean functions
[1, 9], error correcting codes [23, 26] and image processing [8]. It is known that in certain
settings, there are testable properties which are not estimable [15]. One of the central and
most unexpected results in the area of graph property testing is the Fischer–Newman theorem
[16], which states that in the setting of graphs, every testable property is also estimable. As
with several of the main results in this area, the proof in [16] relied on Szemerédi’s regularity
lemma [35] and thus resulted in a tower-type loss when transforming a tester for P into a
distance estimator for P. Returning to the discussion in the last paragraph of the previous
subsection, it is natural to ask if one can improve the transformation of [16] and turn a tester
for P into a distance estimator with a polynomial loss.

1.3 New results concerning hereditary graph properties
As we mentioned in the previous subsection, the family of hereditary graph properties has
been extensively studied within the setting of graph property testing. The fact that every
hereditary property is testable follows from the following statement, where we use ind(F, G)
to denote the probability that a random mapping φ : V (F ) → V (G) is an injective induced
homomorphism. 3

▶ Lemma 1 (Induced Removal Lemma, [5]). For every ε > 0 and every hereditary P, there
exists M = M1(ε, P), δ = δ1(ε, P) > 0 and n0 = n1(ε, P) such that if a graph G on n ≥ n0
vertices is ε-far from P then there is a graph F ̸∈ P with |V (F )| ≤ M such that ind(F, G) ≥ δ.

The first version of the above lemma was obtained by Alon, Fischer, Krivelevich and
Szegedy [2] who proved it when P can be characterized using a finite number of forbidden
induced subgraphs. The lemma was proved in full generality by Alon and Shapira [5].
Alternative proofs were later obtained by Lovász and Szegedy [27], Conlon and Fox [12] and
Borgs et al. [10]. It was also extended to the setting of hypergraphs by Rödl and Schacht [32].

Note that it follows immediately from Lemma 1 that every hereditary property is testable
with vertex query complexity

q(ε) = max{n0, M/δ} . (1)

Indeed, the algorithm samples a set X of q vertices, queries about all pairs within X, and
then accepts if and only if the graph on X satisfies P. If G satisfies P then the algorithm
clearly answers correctly (with probability 1). If G is ε-far from P, then by Lemma 1 a
random M -tuple of vertices spans an induced copy of a graph F ̸∈ P with probability at
least δ. Hence, a sample of size M/δ contains an induced copy of F with probability at least
2/3, thus guaranteeing that the sample of vertices does not satisfy P (since P is hereditary).
Recall that [22] proved that if P is testable, then it is testable using an algorithm as above.
Hence, the bounds in Lemma 1 more or less determine the query complexity of testing a

3 A mapping φ : V (F ) → V (G) is an induced homomorphism if uv ∈ E(F ) if and only if φ(u)φ(v) ∈ E(G).

APPROX/RANDOM 2023
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hereditary P . This raises the following natural problem, introduced by Hoppen et al. [25, 24]
and by Fiat and Ron [14], asking if it is possible to estimate every hereditary P with (roughly)
the same query complexity with which it can be tested as in (1).

▶ Problem 2. Determine if every hereditary graph property P is estimable with query
complexity

n0 · M/δ ,

where M = M1(ε′, P), δ = δ1(ε′, P), n0 = n1(ε′, P) are given by Lemma 1 with ε′ = poly(ε).

▶ Remark 3. There are hereditary graph properties (e.g. triangle-freeness) for which the
best known bounds for M and δ in Lemma 1 are of tower-type. One can argue that in
such cases there is little difference between the tower(M/δ) bounds given by [16] and those
suggested by Problem 2. However, we should emphasize that for many of these properties
(e.g. triangle-freeness) the tower-type bounds are not known to be tight (indeed, the best
known lower bounds are just slightly super polynomial). Perhaps more importantly, there are
numerous hereditary graph properties for which it is known that both M and δ in Lemma 1
are polynomial in ε (e.g. k-colorability, being an interval graph or being a line graph; see the
detailed discussion in [19]). For all these properties, Problem 2 suggests a poly(1/ε) bound,
versus the tower(1/ε) bound given by [16].

Problem 2 was studied by Hoppen et al. [25, 24]. Their main result was that every
hereditary P is estimable with query complexity 2poly((1/δ)M2

,log n0). Our first main result
is the following exponential improvement of this result, making a significant step towards
resolving Problem 2.

▶ Theorem 4. Every hereditary P is estimable with query complexity

2poly(M/δ,log n0) ,

where M = M1(ε/2, P), δ = δ1(ε/2, P) and n0 = n1(ε/2, P) are the parameters of Lemma 1.

▶ Remark 5. In all known cases, the best bounds in Lemma 1 are such that log n0 ≪ 1/δ,
hence the upper bound of [25] is 2(1/δ)O(M2) while the one in Theorem 4 is 2poly(M/δ).

In almost all cases, results concerning testing of dense graphs rely on combinatorial
statements which imply trivial algorithms. For example, the algorithm for testing a hereditary
property P is trivial once we have Lemma 1 at our disposal. In sharp contrast, many
estimation results involve sampling a set of vertices and then carrying out a highly non-trivial
computation over this sample. This is certainly the case in the present paper, see the proofs
of Lemmas 14 and 15. However, thanks to a well known sampling trick [21], one can transfer
any estimation result into a combinatorial statement. For example, this trick gives the
following corollary of Theorem 4.

▶ Corollary 6. Set q = 2poly(M/δ,log n0) as in Theorem 4. Then

Pr
X

[|distP(G[X]) − distP(G)| ≤ ε] ≥ 2/3 ,

where the probability is over randomly selected subsets X of q vertices from G, and G[X] is
the graph induced by G on X.
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It is interesting to note that with Corollary 6 at hand, we can now go back and reprove
Theorem 4 using the “trivial/natural” algorithm which samples a set of q vertices X, computes
distP(G[X]), and then states that G is (α − ε)-close to P if distP(G[X]) ≤ α − ε/2 and is
otherwise α-far from P.

Our proof of Theorem 4 actually gives the bound 2poly(M/εδ,log n0). One can speculate
that poly(M/εδ) = poly(M/δ) since in all known cases δ is at best polynomial in ε, and in
many cases much smaller. In order to formally be able to remove the dependence on ε from
our bound, we prove the following proposition, where P is trivial if either P contains all
graphs or if it contains finitely many graphs. The proof of this proposition relies on a subtle
application of Ramsey’s theorem.

▶ Proposition 7. The following holds for every non-trivial hereditary property P. If q(ε)
denotes the vertex query complexity of P then for every small enough ε, we have

M/δ ≥ q(ε) ≥ Ω(1/ε) , (2)

where M = M1(ε, P) and δ = δ1(ε, P) are the constants of Lemma 1.

The left inequality above follows from (1). Observe that the lower bound on q(ε) is best
possible since it is tight when P is the property of having no edges (in which case q(ε) =
O(1/ε)). The proof of the proposition will appear in the journal version of the paper.

It is of course natural to study Problem 2 also for specific hereditary properties. A natural
problem of this type is whether every hereditary P that is testable with query complexity
poly(1/ε) is also estimable with query complexity poly(1/ε). Such an investigation was
initiated recently by Fiat and Ron [14] who proved such a statement for many natural
hereditary properties such as Chordality and not containing an induced path on 4 vertices.

1.4 New results concerning general graph properties
Given the discussion above, the following problem seems natural.

▶ Problem 8. Determine if every property P that is testable with vertex query complexity
q(ε), is estimable with query complexity q(ε′) for some ε′ = poly(ε).

Prior to this work, the only result concerning general graph properties P was the
transformation of Fischer and Newman [16] which turns a testing algorithm for a graph
property P with query complexity q(ε) into a distance estimator with query complexity
tower(q(ε/2)). Using the tools we develop in order to obtain Theorem 4, we also obtain the
following improved bound.

▶ Theorem 9. If P is testable with query complexity q(ε) then it is estimable with query
complexity 2poly(1/ε)·2q(ε/2) .

We would like to argue at this point that since any “natural” property satisfies q(ε) ≥
log(1/ε) the above bound can be written as exp(exp(poly(q(ε/2)))). In order to formally
make such a claim, we prove the following variant of Proposition 7, in which P is unnatural
if there is ε0 so that the following holds for every 0 < ε < ε0 and n ≥ n0(ε): either every
n-vertex graphs is ε-close to P, or every n-vertex graph does not belong to P. If P is not
unnatural then it is (naturally) natural.

▶ Proposition 10. Let P be a natural property and let q(ε) be its vertex query complexity,
and Q(ε) be its edge query complexity. Then

Q(ε) = Ω(1/ε) . (3)

In particular, q(ε) = Ω(
√

1/ε).

APPROX/RANDOM 2023
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The “in particular” part above follows directly from the Goldreich–Trevisan [22] theorem
mentioned earlier. Observe that the general lower bound given in (3) is best possible since it
is tight when P is the property of having no edges, where Q(ε) = O(1/ε). The proof of the
proposition will appear in the journal version of the paper.

1.5 Main technical contributions and comparison to previous approaches

Summary of previous approaches

The main reason why Szemerédi’s regularity lemma is so useful when studying testing/estim-
ation problems is that an ε-regular partition of a graph G determines (approximately) the
values of ind(F, G) for all small F . Hence, on a very high level, the way one can estimate a
graph’s distance to a hereditary property P is to take a single ε-regular partition of G (one
such exists by the regularity lemma) and then try to modify this partition using the smallest
possible number of edge modifications, so that the new partition “predicts” that there are no
induced copies of graphs F ̸∈ P in the new graph G′. A key “continuity” feature one has to
use at this stage is that if G has a regular partition with certain edge densities between the
clusters of the partition, and one would like to modify G so that in the new graph G′ one
has a regular partition where the edge densities between the clusters will change on average
by γ, then one can achieve this by modifying (γ + o(1))n2 edges of G. Fischer and Newman
[16] critically relied on the fact that regular partitions in the sense of Szemerédi have this
continuity property. The approach of [16] was ineffective since although a regular partition
has constant size (i.e., depending only on ε), this constant has tower-type dependence on
ε. We should point that one of the key novel ideas of [16] was a method for obtaining the
densities of a single Szemerédi partition of the input G.

The way Hoppen et al. [25, 24] managed to improve upon [16] (for hereditary P) was
by first observing that in order to estimate ind(F, G) for all small F , one does not need the
full power of Szemerédi’s regularity lemma. Instead, one can use the weak regularity lemma
of Frieze and Kannan [17] which involves constants that are only exponential in ε. The
main reason why their proof gave a doubly exponential bound is that Frieze–Kannan regular
partitions do not (seem to) have the same continuity feature we mentioned in the previous
paragraph with respect to Szemerédi partitions. To overcome this, Hoppen et al. [25, 24]
introduced a sophisticated method that somehow combines working with Frieze–Kannan
regular partitions in some parts of the proof, together with vertex partitions that have no
regularity4 features at all (these are sometimes called GGR partitions, after [21]) in other
parts of the proof.

Our main technical contribution

Our main technical contribution in this paper establishes that Frieze-Kannan weak regular
partitions “almost” satisfy the same continuity feature we mentioned above with respect
to Szemerédi partitions. What we show is that one can indeed efficiently modify a Frieze–
Kannan partition if one starts with a partition with guarantees slightly stronger than those
of Frieze–Kannan, and one is content with ending with a usual Frieze–Kannan partition.

4 Working with partitions that have no regularity requirements has the advantage that they trivially
have the continuity property. Indeed, if we want to change the edge density between two sets A, B by
γ we just add/remove γ|A||B| edges. Needless to say that working with such partitions has various
disadvantages resulting from their lack of regularity features.
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See Lemma 28 for the precise statement, whose proof relies on a randomized-rounding-
type argument. With the above continuity feature at hand, we can now go back to the
Fischer–Newman approach and turn it into an effective one, by taking full advantage of the
Frieze–Kannan lemma. One additional hurdle we need to overcome in order to make sure
we only incur an exponential loss in our proof, is a method for finding a Frieze–Kannan
partition of a graph using a constant number of queries. Here we introduce a variant of the
method of Fischer–Newman tailored for Frieze–Kannan partitions, see Lemma 14. The main
tools we develop for proving Theorem 4 turn out to be also applicable for proving Theorem
9. The reason why in Theorem 9 we have a double exponential loss is that it is not enough
to estimate ind(F, G) for a single F (as in Theorem 4 thanks to Lemma 1) but we instead
need to control ind(F, G) for all graphs F of order q(ε). We expect Lemmas 14 and 28 to be
applicable in future studies related to efficient testing and estimation of graph properties.

Paper overview

In Section 2 we introduce the two main lemmas in the paper, and show how they imply
Theorem 4. These lemmas are proved in Sections 3 and 4. In Section 5 we prove Theorem 9.
We prove Proposition 7 at the end of Section 2 and Proposition 10 at the end of Section
5. We use a = poly(x) to denote the fact that a is bounded from above (or below, when
0 < x < 1) by xd for some fixed d, which is independent of n or ε. Also, when we say that
“for every a = poly(x) there is b = poly(x)” we mean that for every d there is d′ so that if
a ≤ xd then there is a b ≤ xd′ .

2 The Key Lemmas and Proof of Theorem 4

Our goal in this section is to state Lemmas 14 and 15 and then use them to derive Theorem 4.
We prove these lemmas in Sections 3 and 4. At the end of this section we also prove
Proposition 7.

To state Lemmas 14 and 15 we need some definitions. We first recall that given a
graph G = (V, E), an equipartition A = {V1, . . . , Vk} of V (G) is a partition satisfying
||Vi| − |Vj || ≤ 1. Given a graph G and subsets X, Y ⊆ V (G), we use e(X, Y ) to denote the
number of edges between X and Y , and d(X, Y ) = e(X, Y )/|X||Y | to denote the density
between them.

▶ Definition 11 (Signature). For an equipartition A = {V1, . . . , Vt} of V (G), a (γ, ε)-signature
of A is a sequence of reals S = (ηi,j)1≤i<j≤t, such that |d(Vi, Vj) − ηi,j | ≤ γ for all but at
most ε

(
t
2
)

of the pairs i < j. A (γ, γ)-signature is referred to as γ-signature.

▶ Definition 12 (Index of a partition). For an equipartition A of a graph V (G) into t sets,
we define the index of A to be

ind(A) = 1
t2

∑
1≤i<j≤t

d2(Vi, Vj) .

▶ Definition 13 (Final partition). For a function f : N → N and γ > 0, we say that an
equipartition A of G consisting of t sets is (f, γ)-final if there exists no equipartition B of
V (G) with at least t and up to f(t) sets for which ind(B) ≥ ind(A) + γ .

The above notion of a final partition is useful since (as we show later) every graph has
such a partition and furthermore, we can design an algorithm for finding a signature of one
such partition of an input G. The first key lemma leading to the proof of Theorem 4 does
exactly that.

APPROX/RANDOM 2023
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▶ Lemma 14. For every k, ζ > 0, and every γ = poly(ζ) and fζ(x) = x · 2poly(1/ζ), there are
q = q14(ζ, k), N = N14(ζ, k) and T = T14(ζ, k) so that

q, N, T ≤ poly(k) · 2poly(1/ζ)

and such that the following holds. If G is a graph on at least N vertices then there is an
algorithm making at most q queries to G, computing with probability at least 2

3 a γ-signature
of an (fζ , γ)-final partition of G into at least k and at most T sets.

We prove the above lemma is Section 3. The following is the second key lemma, which
we prove in Section 4. In its statement we use the notion ind(F, G) which we defined before
the statement of Lemma 1. What it roughly states, is that having a signature of G (with
good parameters) is enough for estimating G’s distance to satisfying P.

▶ Lemma 15. For every h, ε, δ > 0, there are γ = γ15(h, ε, δ), s = s15(h, ε, δ) and f
(h,ε,δ)
15 :

N → N so that

γ = poly(εδ/h), s = poly(h/εδ), f15(x) = x · 2poly(h/εδ)

and the following holds. For every family H of graphs, each on at most h vertices, there
exists a deterministic algorithm, that receives as an input a γ-signature S of an (f15, γ)-final
partition A into t ≥ s sets of a graph G with n ≥ N15(h, ε, δ, t) = poly(t) · 2poly(h/εδ) vertices,
and distinguishes given any α between the following two cases:

(i) G is (α − ε) close to some graph G′ for which ind(H, G′) = 0 for every H ∈ H.
(ii) G is α-far from every G′ for which ind(H, G′) < δ for every H ∈ H.

Proof (of Theorem 4). Suppose P is a hereditary graph property, and let α, ε > 0. Lemma
1 with inputs ε/2 and P asserts that there are

h = M1(ε/2), δ = δ1(ε/2), n0 = n1(ε/2) ,

so that if a graph G on at least n0 vertices is ε/2-far from P, then ind(H, G) ≥ δ for some
H /∈ P with |V (H)| ≤ h. We need to describe an algorithm making 2poly(h/δ,log n0) queries
to G and distinguishes with probability at least 2/3 between the case that G is (α − ε)-close
to P and the case that G is α-far from P. Set

γ = γ15(h, ε/2, δ), s = s15(h, ε/2, δ), f = f
(h,ε/2,δ)
15 .

Finally, set ζ = δε/h and observe that

γ = γ15(h, ε/2, δ) = poly(εδ/2h) = poly(ζ) ,

that

f(x) = f
(h,ε/2,δ)
15 (x) = x · 2poly(2h/εδ) = x · 2poly(1/ζ) ,

that

s = s15(h, ε/2, δ) = poly(2h/εδ) = poly(1/ζ) .

Also, note that by Proposition 7 we have poly(1/ζ) = poly(h/δ). Let q, N, T be the
parameters given by Lemma 14 when applied with k = s, and ζ, γ, f defined above. (note
that γ and f satisfy the assumptions of the lemma). Lemma 14 then guarantees that
q, N, T ≤ 2poly(1/ζ) ≤ 2poly(h/δ).
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If G has less than N vertices then we can just ask about all the edges of G and answer
correctly with probability 1. The number of queries is then at most N2 ≤ 2poly(h/δ) as
needed. If G has more than N vertices then we can use the algorithm of Lemma 14 with the
parameters k, ζ, γ, f defined above. The algorithm makes at most q ≤ 2poly(h/δ) queries and
with probability at least 2/3 returns a γ-signature S of an equipartition of G into s ≤ t ≤ T

sets that is (f, γ)-final. Let

N ′ = N15(h, ε/2, δ, T ) = poly(T ) · 2poly(h/εδ) = 2poly(h/δ) .

Again, if G has less than N1 = max{N ′, n0} vertices then we can just ask about all the
edges of G and answer correctly with probability 1. The number of queries is then at most
(N1)2 ≤ 2poly(h/δ,log n0) as needed.

Suppose then that G has at least max{N, N1} vertices. Let H be the family of graph on
at most h vertices which do not satisfy P . Then we can now run the algorithm of Lemma 15
on the signature S, with respect to H, with α′ = α − ε/2 and with ε/2 instead of ε (note that
we chose the parameters with ε/2). If the algorithm says that case (i) holds (namely that G

is (α′ − ε/2)-close to some G′ with ind(H, G′) = 0 for every H ∈ H) then we declare that G

is (α − ε)-close to P, and if the algorithm says that case (ii) holds (namely that G is α′-far
from every G′ with ind(H, G′) < δ for every H ∈ H) then we declare that G is α-far from P .

Let us prove the correctness of the above algorithm. If G is (α − ε)-close to P then it is
(α − ε)-close to a graph G′ satisfying ind(H, G′) = 0 for every H ∈ H. Since α − ε = α′ − ε/2
the algorithm will say that case (i) holds, hence the algorithm answers correctly in this
case. Suppose now that G is α-far from P. Then any G′ that is α′-close to G must be
ε/2-far from P. Hence, by Lemma 1 in any such G′ we have ind(H, G′) ≥ δ for at least
one H ∈ H. We conclude that G is α′-far from every G′ satisfying ind(H, G′) < δ for every
H ∈ H. Hence, the algorithm of Lemma 15 will say that case (ii) holds , so our algorithm
will answer correctly in this case as well. ◀

3 Proof of Lemma 14

The proof is similar to one in [16]. What they have shown is that for every f, γ, one can find
an (f, γ)-final partition with a constant, albeit huge tower-type, query complexity. What we
do here is show that for restricted types of f , one can get a much better bound. To do this
we also need to rely on a recent result of [34].

3.1 Preliminary lemmas
In this subsection we describe some preliminary lemmas that will be used in the next
subsection in which we prove Lemma 14. We will need the following Chernoff-type large
deviation inequality.

▶ Lemma 16. Suppose X1, . . . , Xm are m independent Boolean random variables, so that
for every 1 ≤ i ≤ m we have Pr[Xi = 1] = pi. Let E =

∑m
i=1 pi. Then, Pr[|

∑m
i=1 Xi − E| ≥

θm] ≤ 2e−2θ2m.

▶ Definition 17 (Partition Properties). A partition property is a triple π = (s, ℓ, u) where s

is an integer (the size of the partition property), ℓ is a vector of
(

s
2
)

reals 0 ≤ αi,j ≤ 1 for
each 1 ≤ i < j ≤ s, and u is a vector of

(
s
2
)

reals 0 ≤ βi,j ≤ 1 for each 1 ≤ i < j ≤ s. We
say that a graph G satisfies π if there is an equipartition {V1, . . . , Vs} of V (G), such that
αij ≤ d(Vi, Vj) ≤ βij for every 1 ≤ i < j ≤ s.

APPROX/RANDOM 2023
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Given s and µ we use π(s, µ) to denote the family of partition properties π of size s in
which every αi,j and βi,j is an integer multiple of µ (so π(s, µ) contains {0, µ, 2µ, . . . , 1}2(s

2)
partition properties). Finally, define Π(t, µ) =

⋃
s≤t π(s, µ).

Note that each π as above is one of the partition properties studied in [21], where it
was shown that they are µ-testable with query complexity (1/µ)poly(s). This was improved
recently to poly(s/µ) in [34]. The next lemma states that with (roughly) the same query
complexity we can in fact simultaneously test all properties in Π(t, µ).

The proof of the next lemma will appear in the journal version of the paper.

▶ Lemma 18. For every t and µ > 0 there is q = q18(t, µ) = poly(t/µ) satisfying the
following. There is a randomized algorithm, that given a graph G, makes q queries to G

and with probability at least 2/3, for every π ∈ Π(t, µ), distinguishes between the case that G

satisfies π and the case that G is µ-far from π.

Proof (of Lemma 14): Given k, ζ, γ and fζ as in the statement of the lemma, we define
T0 = k and for i ≥ 1 define Ti = fζ(Ti−1). Now set the following parameters.

N = N14(k, ζ) = T2/γ = k · 2poly(1/ζ), T = T14(k, ζ) = T2/γ = k · 2poly(1/ζ) ,

and

t = fζ(T ) = k · 2poly(1/ζ), µ = γ

48(fζ(T ))2 = 1
poly(k) · 2poly(1/ζ) .

We now describe the algorithm for finding a signature S satisfying the requirement of
the lemma. For what follows let π′(s, µ) be the partition properties in which βi,j = αi,j + µ

for every 1 ≤ i < j ≤ s. Also for each π ∈ π′(s, µ) define the index of π to be ind(π) =
1
t2

∑
1≤i<j≤t α2

ij . In the Step-1 we run the algorithm of Lemma 18 with the parameters t, µ

defined above. This is the only randomized part of the algorithm. In the Step-2 of the
algorithm we do the following.

(i) For each k ≤ s ≤ t set M(s) = maxπ ind(π) where the maximum is taken over all
π ∈ π′(s, µ) which the algorithm of Step-1 accepted.

(ii) Let s⋆ be the smallest number in {k, . . . , T} such that M(s′) ≤ M(s⋆) + 3
4 γ for every

s′ ∈ {s⋆ + 1, . . . , fζ(s⋆)}. If there exists such an s⋆, output the signature S⋆ that
achieves the maximum over s⋆. Otherwise, the algorithm fails.

Note that the query complexity of the algorithm is q = q18(t, µ) = poly(t/µ) = poly(k) ·
2poly(1/ζ), as needed. Also, Lemma 18 guarantees that Step-1 of the above described algorithm
succeeds with probability at least 2/3. It thus remains to show that assuming this event
holds, Step-2 of the algorithm will return an (fζ , γ)-final partition. First of all note that if it
succeeds then it returns a partition of size at least k and at most T , as required.

The proof that if Step-1 succeeded, then Step-2 returns an (fζ , γ)-final partition is
identical to the proof of Claim 5.5 in [16], so we give a sketch of the proof. First, the reader
might be wondering why every graph necessarily has an (fζ , γ)-final partition as in the
statement of the lemma. Let us actually explain why every G has an (fζ , γ/2)-final partition,
while using the definitions we introduced above. Start from an arbitrary equipartition A0 of
G into T0 = k sets, and let ind0 = ind(A0) denote the index of A0 as in Definition 12. If
A0 is (fζ , γ/2)-final then we are done. If not, then there must be another partition A1 of G

with at least T0 and at most f(T0) = T1 parts, with index ind(A1) ≥ ind(A0) + γ/2. Since
0 ≤ ind(A) ≤ 1 for every equipartition, we see that this process will eventually end up with
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a partition A of size k ≤ s ≤ T so that all partitions of G into at least s and at most f(s)
parts have index less than ind(A) + γ/2. But this means that A is (fζ , γ/2)-final. Note that
we thus get that G has a (fζ , γ/2)-final partition A of size s ≤ T .

Let us now explain how to turn the above existential proof into a proof of correctness of
the algorithm describe earlier. Let MG(s) denote the largest index of an equipartition of G

of size s. First we claim that for every k ≤ s ≤ t,

M(s) − γ/8 ≤ MG(s) ≤ M(s) + γ/8. (4)

For the second inequality in (4), let A be an equipartition with s parts such that MG(s) =
ind(A). Let π ∈ π′(s, µ) be the partition property obtained from A by rounding down the
densities to the closest integer multiple of µ. Then we have |ind(A) − ind(π)| ≤ 3µ ≤ γ/8.
Hence, M(s) ≥ ind(π) ≥ ind(A) − γ/8 = MG(s) − γ/8.

For the first inequality in (4), let π ∈ π′(s, µ) be a partition property which the algorithm
accepted and such that M(s) = ind(π). Then G must be µ-close to π (as otherwise π

should have been rejected). Let G′ be a graph µ-close to G that satisfies π, and let A be
the vertex partition of G′ witnessing that G′ satisfies π. Note that when turning G into
G′, for each pair of parts of A, we change the density between this pair by at most µs2.
Hence, in G, the partition property π is a 2µs2-signature of A (here and in what follows,
we view π as a signature). So |ind(A) − ind(π)| ≤ 6µs2 ≤ γ/8, using our choice of µ. Now,
MG(s) ≥ ind(A) ≥ ind(π) − γ/8 = M(s) − γ/8. This proves (4).

It follows from the existential proof above that there is k ≤ s⋆ ≤ T and an equipartition
A of G into s⋆ parts which is (fζ , γ/2)-final. We can assume that MG(s⋆) = ind(A), because
the equipartition satisfying this must also be final. We have MG(s′) ≤ MG(s⋆)+γ/2 for every
s⋆ ≤ s′ ≤ fζ(s⋆). By (4), this implies that M(s′) ≤ M(s⋆) + 3γ/4 for every s⋆ ≤ s′ ≤ fζ(s⋆).
So the algorithm will return a partition.

Note that the algorithm does not necessarily return the same signature/partition-property
as above π that is µ-close to the above partition A. The reason for the algorithm to choose
a different partition is that there might be another partition of size s with a larger index
(which is of course also (fζ , γ)-final) or there might be an s∗ < s with the same properties, or
there might be other partitions with the same index. However, one can invert the reasoning
in the previous paragraph and show that if a π is returned then it must be the γ-signature
of an (fζ , γ)-final partition. ◀

4 Proof of Lemma 15

4.1 Preliminary lemmas
In this subsection we describe some preliminary lemmas that will be used in the next
subsection in which we prove Lemma 15. We start with introducing the Frieze–Kannan
regularity lemma [17, 18]. We first state their notion of γ-regularity.

▶ Definition 19 (Frieze–Kannan Regularity [18]). Let G = (V, E) be a graph and A =
{V1 . . . , Vk} be an equipartition of V (G). For a subset X ⊆ V and 1 ≤ i ≤ k denote
Xi = X ∩ Vi. We say that A is γ-Frieze–Kannan-regular if:

dA
□(G) := max

S,T ⊆V

1
n2

∣∣∣∣ ∑
i,j∈[k]2

(
d(Si, Tj) − dij

)
|Si||Tj |

∣∣∣∣ < γ (5)
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Roughly speaking, a partition A is γ-Frieze–Kannan-regular, or γ-FK-regular for short,
if we can estimate the number of edges between large sets S, T from the intersection sizes
S ∩ Vi and T ∩ Vi. We will also need the following slightly stronger notion of weak regularity
that was introduced in [29].

▶ Definition 20 (Frieze–Kannan Regularity⋆ [29]). In the setting of Definition 19, we say that
A is γ-Frieze–Kannan Regular⋆ if:

d⋆A
□ (G) := max

S,T ⊆V

1
n2

∑
i,j∈[k]2

∣∣∣∣d(Si, Tj) − dij

∣∣∣∣|Si||Tj | < γ (6)

The translation between these two notions will be crucial in Lemma 28 below. Suppose
A = {V1, . . . , Vk} is an equipartition of V (G). Then an equipartition B = {W1, ..., Wℓ} of
V (G) is said to refine A if each Wi ∈ B is contained in some Vj ∈ A. The following lemma
is proved in [29] using a simple variant of the original proof of Frieze and Kannan [18].

▶ Lemma 21 (Frieze–Kannan Weak Regularity Lemma [18, 29]). For every k0 and γ > 0 there
is T = T21(k0, γ) = k0 · 2poly(1/γ) so that the following holds for every graph G on at least T

vertices. If A is an equipartition of V (G) into at most k0 sets, then there is a refinement B

of A into at most T sets such that d⋆B
□ (G) < γ.

Let us now extend the definition of d□ to distance between pairs of weighted graph,
where a weighted graph R is a complete graph, so that every edge (i, j) is assigned a weight
0 ≤ R(i, j) ≤ 1.

If R, R′ are two weighted graphs on n vertices then we define

d1(R, R′) = 1
n2

∑
i<j

|R(i, j) − R′(i, j)| , (7)

and

d□(R, R′) = max
α,β

1
n2

∣∣∣∣∣∣
∑
i<j

α(i)β(j)(R(i, j) − R′(i, j))

∣∣∣∣∣∣ , (8)

where the maximum is taken over all functions α, β : [n] → [0, 1].

▶ Definition 22 (ind(F, R)). Let R be a weighted graph on [k] and let φ be an injective
function φ : V (F ) → [k]. We set

indφ(F, R) =
∏

i<j∈E(F )

R(φ(i), φ(j))
∏

i<j ̸∈E(F )

(1 − R(φ(i), φ(j)))

In the case of φ not being injective, we define

indφ(F, R) = 0

Denoting by Φ the set of functions from V (F ) to [k], we define

ind(F, R) = 1
|Φ|

∑
φ∈Φ

indφ(F, R) . (9)

Note that we can think of a signature S = (ηi,j)1≤i<j≤t as a weighted graph on t vertices.
This means that for a pair of signatures S, S′ we can define d1(S, S′) and d□(S, S′) as in (7)
and (8) respectively, and we can also define ind(F, S) as in (9). We will need the following
lemmas from [25]. The proof of the next two lemmas will appear in the journal version of
the paper.
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▶ Lemma 23. Suppose R, R′ are two weighted graphs on n vertices, and H is a graph on h

vertices. Then for any γ ≥ d□(R, R′) and n ≥ 2
γ , we have |ind(H, R) − ind(H, R′)| ≤ 2h2 · γ

Given a graph G on n vertices, and an equipartition A = {V1, . . . , Vk}, we define the
graph GA on V (G) to be the weighted graph with weights GA(u, v) = d(Vi, Vj) for every
u ∈ Vi and v ∈ Vj . Let SA be the 0-signature of A, that is, the weighted graph on k vertices
with S(i, j) = d(Vi, Vj). Observe that if k divides n (so all sets of A are of equal size)
then ind(H, GA) is almost the same as ind(H, SA). It is not hard to see that for general
equipartitions these quantities do not differ my much.

▶ Lemma 24. Given a graph G on n vertices, and an equipartition A = {V1, . . . , Vk}, let GA

and SA be defined as above. Then |ind(H, GA) − ind(H, SA)| ≤ 2h2

k + 2kh
n for every graph H

on h vertices.

We now combine the above facts to conclude that a signature of a γ-FK-partition of a
graph gives a good approximation of ind(H, G). The proof of the next lemma will appear in
the journal version of the paper.

▶ Lemma 25. For every h, k and δ > 0 there are

γ = γ25(h, δ) = poly(δ/h), r = r25(h, δ) = poly(h/δ), N = N25(h, k, δ) = poly(hk/δ) ,

so that if G is a graph on at least N vertices, and A is a γ-FK-regular partition of G with at
least r and up to k parts, then for every γ-signature S of A, we have |ind(H, G)−ind(H, S)| ≤
δ for every H on h vertices.

▶ Definition 26 (Extension). Given a signature S = (ηij)1≤i<j≤t of an equipartition A, and a
refinement B = {W1, . . . , Ws} of A, the extension of S to B is the sequence S′ = (η′

ij)1≤i<j≤s

defined as η′
i,j = ηk,l if there exist k ̸= l such that Wi ⊆ Vk and Wj ⊆ Vl, and setting η′

i,j = 0
if Wi and Wj are both subsets of the same Vk.

The proof of the next claim will appear in the journal version of the paper.

▷ Claim 27. For every ε and s there exists r = r27(ε) = poly(1/ε) and N = N27(ε, s) =
poly(s/ε) so that the following holds for every pair of graphs G, G′ on the same set of n ≥ N

vertices. If G, G′ are α-close and S, S′ are γ, γ′-signatures of G, G′ respectively, of the same
equipartition A of the vertex set of G, G′ into s ≥ r sets, then d1(S, S′) ≤ α + ε + 2(γ + γ′).

The proof of the next lemma will appear in the journal version of the paper.

▶ Lemma 28. For every ε and t there exists γ = γ28(ε) = poly(ε) and N = N28(t, ε) =
poly(t/ε), so that for every graph G on n ≥ N vertices, if S is a γ-signature of a γ-FK-
regular⋆ partition A of G with t sets, then for every signature S′ satisfying d1(S, S′) ≤ δ for
some δ, there is a graph G′ that is (δ + ε)-close to G, so that A is an ε-FK-regular partition
of G′, and S′ is an ε-signature of A.

We will also need the following lemmas.

▶ Lemma 29 ([2] Lemma 3.7). For every ε, t there exists γ = γ29(ε) = poly(ε) and N =
N29(t, ε) = poly(t/ε) satisfying the following. Assume A is an equipartition into s sets of a
graph G with n ≥ N vertices, and that B is a refinement of A into at most t sets. Assume
further that S is any γ-signature of A, and that T is its extension to B. If B satisfies
ind(B) ≤ ind(A) + γ, then T is an ε-signature for B.
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▶ Lemma 30 ([16] Lemma 6.6). For every ε, t there exists N = N30(t, ε) = poly(t/ε) so that
for every equipartition A of G with n ≥ N vertices into s sets, and every refinement B of A

into at most t sets, ind(B) ≥ ind(A) − ε.

The next observation is implicit in the proof of the Frieze–Kannan Regularity Lemma
(i.e. Lemma 21). The main step of the proof involves showing that if A is an equipartition of
G into t parts and A is not ε-FK-regular⋆, then A has a refinement B into k ≤ 16t/ε4 sets
so that ind(B) ≥ ind(A) + ε4

2 (see, e.g., the proof of Theorem 1.1 in [33] and the proof of
Theorem 6 in [29]).

▶ Lemma 31. For every ε > 0 there exists γ = γ31(ε) = poly(ε) and f = f
(ε)
31 : N → N

satisfying f(x) = poly(1/ε) · x and such that every (f, γ)-final partition of a graph is also
ε-FK-regular⋆.

The proof of the next lemma will appear in the journal version of the paper.

▶ Lemma 32. For every s and ε > 0 there are γ = γ32(ε), T = T32(s, ε), f = f
(ε)
32 and

N = N32(ε, s) so that

γ = poly(ε), T = s · 2poly(1/ε), f(x) = x · 2poly(1/ε), N = poly(s) · 2poly(1/ε)

and the following holds. Suppose G has at least N vertices and A is an (f, γ)-final partition
of G into at most s sets and that S is a γ-signature of A. Then for every G′ on the same
vertex set of G, there exists a refinement A′ of A into t ≤ T sets so that

(i) A′ is an ε-FK-regular⋆ partition of G′.
(ii) Every refinement A′′ of A with t ≤ T sets (and in particular A′), is an ε-FK-regular⋆

partition of G.
(iii) For every refinement A′′ of A with t ≤ T sets, the extension S′′ of S (in the sense of

Definition 26) with respect to A′′ is an ε-signature of A′′ with respect to G (note that
A′ is such an A′′).

4.2 Proof of Lemma 15
Given h, ε and δ we first choose

γ0 = min{ε/10, γ25(h, δ/6), γ28(min{ε/2, γ25(h, δ/6)})} = poly(εδ/h) ,

and then define

γ = γ32(γ0) = poly(εδ/h), s = max{r25(h, δ/6), r27(ε/10), 20h2/δ} = poly(h/εδ) ,

f(x) = f
(γ0)
32 (x) = x · 2poly(1/γ0) = x · 2poly(h/εδ) ,

to be the constants and function in the statement of Lemma 15, noting that they satisfy the
guarantees of that lemma. Given t as in the statement of Lemma 15, we set

T = T32(t, γ0)

and define

N = max{N25(h, T, δ/6), N27(ε/10, T ), N32(γ0, s), N28(t, γ0)} = poly(t) · 2poly(h/εδ) ,

to be the constant in Lemma 15.
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Given a family of graphs H on at most h vertices, we define a family of signatures as
follows

Cδ,H,T = {C : |C| ≤ T and ind(H, C) ≤ δ/2 for every H ∈ H} .

In order for Cδ,H,T to be finite, we only put in it signatures C with edge weights ηi,j that
are integer multiples of β = min{ε/10, δ/10h2}. Intuitively, this is the set of signatures
“certifying” (hence C) that a graph with that signature is close to being induced H-free. We
also define ST to be the set of all signatures on up to T parts, that are extensions5 of S.
Intuitively, these are the signatures one can obtain by refining A into at most T sets (recall
that the crucial point is that the algorithm only has access to S and not to G).

Suppose now that we are given a γ-signature S of some (f, γ)-final (with the above defined
f, γ) partition A of a graph G, so that S has t ≥ s parts and G has at least N vertices. The
algorithm checks if there are S′ ∈ ST and C ∈ Cδ,H,T satisfying d1(S′, C) ≤ α − ε

2 . If there
is such a pair, the algorithm says that case (i) holds, otherwise it says that case (ii) holds.
We now prove the correctness of the algorithm.

Proof of first direction

Suppose there is a graph G′ which is (α − ε)-close to G, and satisfies ind(H, G′) = 0 for
every H ∈ H. We will show that the algorithm will declare that case (i) holds.

Recall that A is an (f, γ)-final partition of G into t ≥ s sets and that S is a γ-signature
of A. By Lemma 32, there exists a refinement A′ of A into at most T sets so that A′ is
γ0-FK-regular⋆ for both G and G′. Moreover, denoting by S′ the corresponding extension of
S to A′, we have that S′ is a γ0-signature of A′ with respect to G. Note that S′ ∈ ST . By the
choice of γ0, this implies that A′ is γ25(h, δ/6)-FK-regular⋆ for both G and G′, and that S′

is a 1
10 ε-signature of A′ with respect to G. Let C ′ be the 0-signature of A′ over G′. Lemma

25 (using A′ and G′) implies that |ind(H, G′) − ind(H, C ′)| ≤ δ/6 for all H ∈ H. Thus
ind(H, C ′) ≤ δ/6 for all H ∈ H. Clearly there is a signature C of size C ′ so that all of C’s
weights are constant multiples of β and d1(C ′, C) ≤ β. Since d□(C ′, C) ≤ d1(C ′, C) ≤ δ/10h2

we infer from Lemma 23 (applied on δ
10h2 , as s ≥ 20h2

δ ) that ind(H, C) ≤ δ/6 + δ/5 < δ/2
for all H ∈ H, so C ∈ Cδ,H,T . In addition, by Claim 27 (since A′ has at least r27(ε/10) parts
and assuming that n is large enough), we infer that d1(S′, C) ≤ α − ε

2 (since G and G′ are
(α − ε)-close and d1(C, C ′) ≤ ε/10). Thus, S′ and C provide a witness that the algorithm
will indeed declare that case (i) holds.

Proof of second direction

Suppose the algorithm declares that case (i) holds. We show that in this case there is a
graph G′, which is α-close to G, and satisfies ind(H, G′) < δ for all H ∈ H.

Indeed, if the algorithm declared that case (i) holds then there are signatures S′ ∈ ST

and C ∈ Cδ,H,T satisfying d1(S′, C) ≤ α − ε
2 . As S′ ∈ ST , there is a refinement A′ of A,

so that S′ is the extension of S according to A′. Lemma 32 (regarding A′ as a possible

5 Note that strictly speaking, an extension per Definition 26 must be relative to a partition A and its
refinement B, while here we only have the signature S. So what we mean here is that if one takes some
graph that has a partition A whose 0-signature is S, then ST is the family of all signatures that one
obtains by taking all refinements of A into at most T sets, and then taking the extension of S to these
refinements. Of course we do not need any graph in order to produce ST ; we just break the “parts” of
S into a total of at most T new “parts”, and then define the densities η′

i,j between the new vertices as
in Definition 26.
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refinement of A with respect to G) asserts that S′ is a γ0-signature of A′ (with respect to
G), which by the choice of γ0 means that it is a γ28(min{ ε

2 , γ25(h, δ/6)})-signature for A′

with respect to G. Now, Lemma 28 (applied with A′ as the γ0-FK-regular⋆ partition of G,
and with S′ as S and C as S′) implies that there is a graph G′ that is (α − ε

2 + ε
2 )-close to

G, namely α-close to G, and for which C is a γ25(h, δ/6)-signature of A′, which in turn is
γ25(h, δ/6)-FK-regular over G′ . Lemma 25 implies that |ind(H, G′) − ind(H, C)| ≤ δ/6 for
all H ∈ H. Thus, ind(H, G′) < δ/2 + δ/6 < δ for all H ∈ H as required. Hence we have
found the required G′.

5 Proof of Theorem 9

The proof of Theorem 9 is very similar to that of Theorem 4. In order to assist the reader who
is already familiar with the proof of Theorem 4, we mention in several places where certain
lemmas are analogous to lemmas we introduced in one of the previous sections. The idea is
the following: by a theorem of Goldreich and Trevisan [22], every testable property is testable
by a canonical tester, which samples a set of vertices of size q = qP(ε) and accepts/rejects
based on the graph induced by these q vertices. Hence the acceptance/rejection of the
algorithm only depends on the number of induced copies in G of graphs on q vertices. Hence,
turning a graph into a graph satisfying P is equivalent to turning it into a graph with a
certain number of copies of certain graphs on q vertices. As evident, this is very similar to
the case of Theorem 4 where we wanted to have a very small number of copies of graphs not
in P . The reason why there is an additional exponential factor is that we need to control the
number of induced copies of all graphs on q vertices.

We now state the key lemmas, which are variants of lemmas we used in the proof of
Theorem 4.

▶ Definition 33. Given two distributions µ and ν over a finite family H of combinatorial
structures, their variation distance is defined as: |µ − ν| = 1

2
∑

H∈H | Prµ(H) − Prν(H)|

▶ Lemma 34. If two distributions µ and ν over a finite family H of combinatorial structures
satisfy |µ − ν| ≤ δ , then for any set A ⊂ H we have | Prµ(A) − Prν(A)| ≤ δ

▶ Lemma 35. Suppose that µ and ν are two probability distributions over graphs with set
of vertices {v1, . . . , vq}, where each edge vivj is independently chosen to be an edge with
probability µi,j and νi,j respectively. If |µi,j − νi,j | ≤ ε/

(
q
2
)

for every 1 ≤ i < j ≤ q, then the
variation distance between µ and ν is bounded by ε.

▶ Definition 36 (q-statistic). The q-statistic of a graph G is the probability distribution over
all (labeled) graphs with q vertices that result from picking at random q distinct vertices of
G and considering the induced subgraph. For a given graph H we denote the probability for
obtaining H when drawing a graph according to the q-statistic by PrG(H).

▶ Definition 37. For an equipartition A = {V1, . . . , Vt} of G, and a signature S =
(ηi,j)1≤i<j≤t of A, the perceived q-statistic according to S is the following distribution PrS

over labeled graphs with q vertices v1, . . . , vq. Start by choosing a uniformly random sequence
without repetitions of indices i1, . . . , iq from 1, . . . , t. Then, independently, take every vkvl

for k < l to be an edge with probability ηik,il
if ik < il and with probability ηil,ik

if il < ik.
Then PrS(H) is defined as the probability that the resulting labeled graph equals H.

The following lemma will replace Lemma 1 in the proof of Theorem 9.
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▶ Lemma 38 (see [22]). If there is an ε-test for a graph property P that makes Q = Q(ε)
edge queries, then there exists an appropriate family H of labeled graphs on q = 2Q vertices
such that any graph G which satisfies P, satisfies also PrG(H) ≥ 2

3 , and any graph G that is
ε-far from satisfying P, satisfies also PrG(H) < 1

3 .

We now introduce a variant of Lemma 25 that is suited for the proof of Theorem 9. The
proof of the lemma will appear in the journal version of the paper.

▶ Lemma 39. For every q, ε there are γ = γ39(q, ε), r = r39(q, ε) so that

γ = poly(ε · 2−q2
), r = poly(1/ε · 2q2

)

and for every γ-signature S of a γ-FK-regular equipartition A into t ≥ r sets, of a graph G

on n ≥ N39(q, ε, t) = poly(t/ε)2poly(q) vertices, we have | PrS − PrG | ≤ ε, where PrG is the
q-statistic and PrS is the perceived q-statistic according to S.

We now introduce a variant of Lemma 15 that is suited for the proof of Theorem 9. The
proof of the lemma will appear in the journal version of the paper.

▶ Lemma 40. For every q and ε there exist γ = γ40(q, ε), s = s40(q, ε) and f
(q,ε)
40 : N → N,

such that

γ = poly(ε · 2−q2
), s = poly

(2q2

ε

)
, f

(q,ε)
40 (x) = x · 2poly

(
2q2

ε

)
with the following property. For every family H of graphs with q vertices, there exists a
deterministic algorithm, that receives as an input a γ-signature S of an (f, γ)-final partition
A into t ≥ s sets of a graph G with n ≥ N40(q, ε, t) = t · 2poly(1/ε)·2poly(q) vertices and
distinguishes given any α between the following two cases:

(i) G is (α − ε)-close to some graph G′ for which PrG′(H) ≥ 2
3 .

(ii) G is α-far from every G′ for which PrG′(H) ≥ 1
3 .

Theorem 9 is derived from Lemmas 14 and 40, similarly to how Theorem 4 is derived
from Lemmas 14 and 15. This will appear in the journal version of the paper.
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