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Abstract
The celebrated IP = PSPACE Theorem gives an efficient interactive proof for any bounded-
space algorithm. In this work we study interactive proofs for non-deterministic bounded space
computations. While Savitch’s Theorem shows that nondeterministic bounded-space algorithms can
be simulated by deterministic bounded-space algorithms, this simulation has a quadratic overhead.
We give interactive protocols for nondeterministic algorithms directly to get faster verifiers.

More specifically, for any non-deterministic space S algorithm, we construct an interactive proof
in which the verifier runs in time Õ(n + S2). This improves on the best previous bound of Õ(n + S3)
and matches the result for deterministic space bounded algorithms, up to polylog(S) factors.

We further generalize to alternating bounded space algorithms. For any language L decided by
a time T , space S algorithm that uses d alternations, we construct an interactive proof in which the
verifier runs in time Õ(n + S log(T ) + Sd) and the prover runs in time 2O(S). For d = O(log(T )),
this matches the best known interactive proofs for deterministic algorithms, up to polylog(S) factors,
and improves on the previous best verifier time for nondeterministic algorithms by a factor of log(T ).
We also improve the best prior verifier time for unbounded alternations by a factor of S.

Using known connections of bounded alternation algorithms to bounded depth circuits, we also
obtain faster verifiers for bounded depth circuits with unbounded fan-in.
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1 Introduction

Interactive proofs, introduced by Goldwasser Micali and Rackoff [22], are proof systems that
enable a prover to convince a verifier of the truth of a given statement. The interaction
proceeds in rounds where in each round the prover sends a message and the verifier responds.
Crucially, in every round the verifier uses randomness that the prover cannot predict. At the
end of the interaction the verifier either accepts or rejects the statement. We require that
the honest prover convinces the verifier to accept true statements with high probability (and
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47:2 Efficient Interactive Proofs for Non-Deterministic Bounded Space

in fact, in most1 protocols with probability 1) and that no prover, even a computationally
unbounded one, can convince the verifier to accept a false statement other than with some
small probability.

One of the most celebrated results in complexity theory is that IP = PSPACE [26, 34].
That is, the set of languages with polynomial space algorithms is exactly the set of languages
with interactive protocols whose verifiers run in polynomial time. Interactive proofs have
been prolific throughout other areas of complexity theory, including circuit lower bounds
[33, 28], pseudorandomness from uniform assumptions [42], and has also been very influential
in other proof systems, such as MIPs [5], PCPs [6, 14, 4, 3], and IOPs [7, 32].

The IP = PSPACE result can be generalized to any deterministic bounded space
computation. For a space S deterministic algorithm, the interactive protocols with the
fastest verifiers [9, 40] have a time Õ(n + S2) verifier and time 2O(S) prover, where Õ hides
polylog(S) factors.2

In this work we study interactive proofs for more general forms of bounded space
computations: non-deterministic bounded space and alternating bounded space. Recall that
a non-deterministic space S algorithm is a space S Turing machine that gets in addition
read-once access to a witness (which can be as long as 2S). For example, the complexity
class NL refers to non-deterministic logarithmic-space algorithms. Alternating algorithms
are a generalization of nondeterministic algorithms that can “alternate” quantifiers. The
prior best protocols [9] for space S nondeterministic algorithms have verifier time Ω(n + S3),
which is an S factor slower than the best verifiers for deterministic algorithms. See Table 1
for a more complete comparison with prior works.

1.1 Our Results
Our main result is an improved interactive proof for alternating algorithms. We start by
highlighting a special-case of this result for nondeterministic bounded-space algorithms. We
construct interactive proofs for space S nondeterministic algorithms whose verifier runs
in time Õ(n + S2), matching the time bound for deterministic verifiers (up to polylog(S)
factors). Broadly, our techniques combine the recent verifier efficient interactive proofs for
bounded space by Cook [9], with an efficient interactive proof for AC0

⊕ circuits of Goldreich
and Rothblum [20], and an improved derandomization through random walks on expander
graphs.

The new interactive proof for non-deterministic bounded space is a special case of a more
general result that we show for alternating bounded space algorithms. To state the result
precisely, we first set up the notation. Let ATISPd[T, S] be the set of languages decided by
a simultaneous time T , space S and d alternation algorithm. Alternating algorithms have 3
tapes, a read only input tape containing the input, a read once input containing a witness,
and a work tape. Only the work tape is limited to have space S. The input tape is read
only, but can be read many times. The witness tape can have T symbols on it, but must be
read sequentially and each symbol can only be read once. The witness can be thought of as
being separated into d segments, each with a different quantifier. The change of quantifier is
called an alternation. For example, nondeterministic algorithms have d = 1 since they only
use existential quantifiers.

1 By [17], probability 1 can always be achieved, but that reduction has a significant cost to the prover’s
runtime.

2 Throughout this work we mostly optimize for verification time and leave the proving time as a secondary
consideration. This is in contrast to doubly efficient interactive proofs (see [19]) in which we insist on a
polynomial-time prover. In this “doubly-efficient” regime, interactive proofs with a polynomial-time
prover and almost linear time verifier are known for linear depth, poly-size, uniform circuits [21] and
poly-time and bounded-poly space computation [32].
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Let ITIME[TV , TP ] be the set of languages with an interactive proof whose verifier runs
in time TV and whose prover runs in time TP . If TP is omitted, we assume it is the trivial
bound of TP = O(2TV ). In this paper, all our protocols are public-coin and have perfect
completeness.

Our most general result is an interactive protocol for alternating bounded-space algorithms.

▶ Theorem 1 (Interactive Proof For Alternating Space). For any T , S, and d constructible in
time O(S log(T )) and space O(S):

ATISPd[T, S] ⊆ ITIME
[
Õ (n + S log(T ) + Sd) , 2O(S)

]
.

Further, the verifier runs in space O(S log(d + S)), the protocol is public coin, has
O(S log(S)(log(T ) + d)) rounds, O(S log(S)(log(T ) + d) log(d + S)) bits of communication,
and perfect completeness.

For d = O(log(T )), up to small polylog(S) factors, our protocol has the same verifier time
and prover time as the best known protocol for deterministic bounded space algorithms [9]:
verifier time Õ(n + S log(T )) and prover time 2O(S). As a special case for nondeterministic
algorithms, this gives an interactive protocol with verifier time Õ(n + S log(T )), improving
upon the nondeterministic algorithms in [9], whose verifiers required time Õ(n + S log(T )2),
by a factor of log(T ). We note log(T ) may be as large as S.

In a limited sense, these results could be seen as tight, as they match, up to polylog(S)
factors, the best known results for simulating deterministic algorithms by alternating ones.
Chandra, Kozen, and Stockmeyer [8] show that any deterministic algorithm running in time T

and space S has an alternating algorithm running in time S log(T ). Specifically, TISP[T, S] ⊆
ATISPlog(T )[O(S log(T )), O(S)]. If we improved our verifier time dependence on S log(T )
or Sd, this would improve the time of alternating algorithms simulating deterministic ones.

For d = T , Theorem 1 improves over the best known interactive proofs for alternating
algorithms, with unbounded alternations, by Fortnow and Lund [16], which have verifier
time Õ(n + S2T ) and verifier space O(S log(T )). Our protocol’s verifier is at least a factor S

faster (when ST = Ω(n)).
See Table 1 for a comparison of how our protocol compares to prior protocols for

nondeterministic algorithms, and Table 2 for a comparison of how our protocol compares to
prior protocols for alternating algorithms.

The best verifiers [9, 40] for deterministic algorithms have verifier time Õ(S log(T ) + n),
verifier space O(S log(S)), and provers with time 2O(S). The best provers [32] for determin-
istic algorithms have prover time T 1+o(1)poly(S), but require verifier time T o(1)poly(S) +
npolylog(T ). These protocols are incomparable for T much larger than S, but much smaller
than 2S . For a more comprehensive summary, see the full version [11].

Table 1 Comparison of different protocols for NTISP[T, S] with polylog(S) factors omitted.

NTISP[T, S] Verifier Time Verifier Space Prover Time
[34] (n + S) log(T )2 (n + S) log(n + T ) 2poly(S,n)

[16] n + S3 log(T ) S log(S) 2poly(S,n)

[21] n + S2 log(T ) S log(S) 2O(S)

[9] n + S log(T )2 S log(T ) 2O(S)

This Work n + S log(T ) S log(S) 2O(S)

APPROX/RANDOM 2023
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Table 2 Comparison of different protocols for ATISPd[T, S] with polylog(S) factors omitted.

ATISPd[T, S] Verifier Time Verifier Space Prover Time
[34] (n + S(log(T ) + d))S(log(T ) + d) n + S log(T ) + Sd 2poly(S,n)

[16] n + S2T S log(T ) 2poly(S,n)

[21] n + S2 log(T ) + S2d S log(S + d) 2O(S)

[9] n + (S log(T ) + Sd)2 S log(T ) + Sd 2O(S log(T )+Sd)

This Work n + S log(T ) + Sd S log(S + d) 2O(S)

When S = O(log(n)), our prover runs in polynomial-time. This gives us doubly efficient
proofs for alternating algorithms with few alternations and logarithmic space. As a special
case, we give doubly efficient interactive proofs for NL where the number of bits communicated
is Õ(log(n)2). This improves on the amount of communication achieved by GKR (specialized
for NL), which uses Ω̃(log(n)3) bits of communication.

▶ Corollary 2 (Doubly Efficient Interactive Proofs for NL). NL has interactive protocols whose
provers run in polynomial time, verifiers run in quasilinear time, verifiers use Õ(log(n))
space, the protocol uses Õ(log(n)2) rounds, Õ(log(n)2) bits of communication, is public coin
and has perfect completeness.

More generally, our protocols for nondeterministic algorithms use a factor log(T ) less
communication then the previous best protocols by Cook, and match the best prior protocols
for deterministic algorithms, up to polylogarithmic factors.

1.1.1 Unbounded Fan in Circuit Results

Let SIZE − DEPTH[2S , d] be the set of space O(S) uniform circuits of size 2S and depth
d with unbounded fan in AND and OR gates. Let T -uniform SIZE − DEPTH[2S , d] be the
set of time T uniform, space S circuits of size 2S and depth d with unbounded fan in AND
and OR gates. Then due to a close relationship between alternating circuits and low depth
circuits by Ruzzo and Tompa [37] (see the full version [11]), we have

▶ Theorem 3 (Uniform Shallow Circuits Have Fast Interactive Proofs). For any d, T, S con-
structible in time O(S log(T )) and space O(S), we have

T -uniform SIZE − DEPTH
[
2S , d

]
⊆ITIME

[
Õ(n + S log(T ) + Sd), 2O(S)

]
SIZE − DEPTH

[
2S , d

]
⊆ITIME

[
Õ(n + S2 + Sd), 2O(S)

]
.

Further, the verifier runs in space O(S log(d + S)) and the protocol is public coin and has
perfect completeness.

For fan in 2 circuits, this matches the verifier time of GKR [21], while the prover time
remains polynomial in the circuit size3. For unbounded fan in circuits, or for alternating
algorithms, our verifier is a factor of S faster than GKR.

3 Note however that recent improvements [12, 39, 44, 45] of GKR have a (close to) linear prover, whereas
our prover is only polynomial in the circuit size.
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1.2 Proof Overview

We start by reviewing our efficient interactive proofs for deterministic algorithms. Then we
explain the difficulty of extending this to nondeterministic algorithms, and how to overcome
these problems. Finally we show how to extend this technique to alternating algorithms. We
assume familiarity with the sumcheck protocol [26]. For a more detailed explanation of our
interactive proofs for deterministic algorithms, see [9] or the nearly identical protocol by
Thaler [41, Section 4.5.5] (see also [23, 40]).

1.2.1 Deterministic Algorithms

For a deterministic algorithm A, we first reduce the problem to repeated matrix squaring,
then give an interactive protocol for that. Suppose A runs in time T on some input x and has
unique start state a and accept state b. Let M be the adjacency matrix of A’s computation
graph on input x. Then A accepts x if and only if (MT )a,b = 1 (where MT is M raised to
the T th power, not M transposed). For notation, we write Ma,b as M(a, b). At a high level,
the idea is that if we have an interactive protocol that can reduce a claim that M2i(u, v) = α

to the claim that M i(u′, v′) = α′, then by applying this protocol log(T ) times, we can verify
the value of MT (a, b). We give such a reduction, but on the multilinear extensions of M2i

and M i.
Like [9, 40], we reduce to matrix exponentiation and give an interactive protocol for that,

instead of reducing to a quantified Boolean formula [34], or to a uniform circuit [21]. This
both simplifies the protocol somewhat and makes it more efficient to compute the prover.
The idea is to arithmetize these adjacency matrices, and then use a sum check [26] to reduce
the statement about M2i to the statement about M i. In particular, we use the sum check
for matrix exponentiation given by Thaler [39], details follow.

For a finite field F, for any i define M̂ i : FS × FS → F as the multilinear extension of M i.
That is, M̂ i is multilinear and for each u, v ∈ {0, 1}S we have M̂ i(u, v) = M i(u, v). Then
observe that for any i, and u, v ∈ FS we have

M̂2i(u, v) =
∑

w∈{0,1}S

M̂ i(u, w)M̂ i(w, v).

To see that this formula is correct, first observe that it is correct for Boolean values as it
precisely corresponds to the definition of matrix multiplication. So the formula is correct on
Boolean values. Since both sides of the equation are multi-linear4, it follows that the formula
holds for all values.

Then, we can use the sum check of [26] to reduce this to a claim that for some w′ ∈ FS

and some β ∈ F we have β = M̂ i(u, w′)M̂ i(w′, v). Then using a multi-point reduction, as
was done in GKR [21], we reduce this to a claim that for some u′, v′ ∈ FS and α′ ∈ F we
have that α′ = M̂ i(u′, v′).

Finally running this log(T ) times gives the interactive protocol for deterministic algorithms,
since the verifier can efficiently calculate M̂ itself.

4 To show it is multilinear, we take any variable, say ui, and show the formula is linear in ui. For
any w see that M̂ i(u, w) is linear in ui since M̂ i is multilinear, and M̂ i(w, v) is constant in ui. Thus∑

w∈{0,1}S M̂ i(u, w)M̂ i(w, v) is linear in ui.

APPROX/RANDOM 2023
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We remark that, using linearization type ideas (as in [35]), the above can be extended from
the task of deciding whether a deterministic algorithm accepts, to verifying the multilinear
extension of a function that the algorithm computes. This will be important for us later on
when we use the above interactive proof as a subroutine in the protocol for nondeterministic
algorithms.

1.2.2 Nondeterministic Algorithms and Changing Arithmetization
To try to apply this technique to a nondeterministic algorithm, A, we immediately encounter
an issue with how to formulate the problem. Namely, if we are doing arithmetic over Z, if the
underlying matrix M corresponds to a non-deterministic computation, then the matrix MT

a,b

is no longer 1 if and only if A accepts x. Rather, MT
a,b specifies the number of length T paths

from a to b. This might be as large as 2Ω(T ). If we do arithmetic over a field of characteristic
q, then MT

a,b is the number of paths mod q. If the number of paths is some adversarial
product of many small primes, we may need q = Ω(T ) for the number of accepting paths to
be non zero, mod q. This gave the less efficient verifier time for nondeterministic algorithms
in [9].

We will still solve this problem by arithmetization, but we need to change our matrix
multiplication from a field matrix multiplication to a binary multiplication, then arithmetize
that. We define the matrix multiplication with binary operations where multiplication is
AND and addition is OR. So let M (2) : {0, 1}S × {0, 1}S → {0, 1} denote this binary matrix
multiplication, squaring, so that for any u, v ∈ {0, 1}S we have

M (2i)(u, v) =
∨

w∈{0,1}S

M (i)(u, w)M (i)(w, v).

With this form of matrix exponentiation, it suffices to check if M
(T )
a,b = 1. To do so, we

convert binary matrix multiplication into an algebraic circuit. The obvious approach is to
use a formula like

˜M (2i)(u, v) = 1 −
∏

w∈{0,1}S

(
1 − M̂ (i)(u, w) · M̂ (i)(w, v)

)
.

Unfortunately, this has too high of individual degree: 2S . One can insert some linearization
operations between the multiplications to reduce the degree, like those used by Shen [35]. But
then for each of the S variables in w, one would need to add O(S) linearization operations,
giving a size O(S2) algebraic circuit, which we cannot afford.

Instead, we use an idea of Goldreich and Rothblum [20] to probabilistically reduce the
degree of these large conjunctions by leveraging the Razborov-Smolensky [31, 36] approxima-
tion of large disjunctions as low degree polynomials. Razborov-Smolensky give a reduction
from a large disjunction to a random parity check that succeeds with high probability:

∀g ∈ {0, 1}n : Pr
r∈{0,1}n

 ∨
i∈[n]

gi =
∑
i∈[n]

giri (mod 2)

 ≥ 1
2 .

We note that if g = 0n, then for any r, we have
∑

i∈[n] giri (mod 2) = 0. That is, the error is
one sided. The formula

∑
i∈[n] giri (mod 2) is a linear polynomial in a field of characteristic

2. As this is useful for us, we shall only work with fields of characteristic 2 in this paper.
Then, taking an OR of k independent choices of randomness, we get an individual degree

k polynomial that succeeds with probability 1 − 1
2k . If n = 2S and k = S, this gives us a

degree log(n) polynomial for the disjunction that is only wrong with probability 1
n .
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The idea is to replace our boolean formula with a low degree polynomial through Razborov-
Smolensky. So let Dr : {0, 1}ℓ × {0, 1}S → {0, 1} be a function outputting our random bits.
Here 2ℓ = k = O(S) is the number of choices of random bits. Then our new approximation
for M (2i) is

M̃ (2i)(u, v) = 1 −
∏

j∈{0,1}ℓ

1 −
∑

w∈{0,1}S

Dr(j, w)M̂ (i)(u, w)M̂ (i)(w, v)

 . (1)

Now we only need to insert ℓ = log(S) levels of linearizations. In the technical details of the
paper, we will not actually use algebraic circuits with linearization operations, but will work
with these polynomials directly with an “unlinearization” procedure, to avoid discussing
circuit uniformity.

1.2.3 Efficient Randomness

At this point we encounter a problem - Equation (1) calls for sampling 2ℓ+S random bits
for Dr, which we cannot afford (since we want our verifier to run in time Õ(S)). So as in
GR, we need to sample these using an ϵ biased set. For our ϵ biased set, we use the same
one as GR, described in [1] (which is based on a Reed-Solomon code concatenated with a
Hadamard code).

Thus, for every value of j ∈ {0, 1}ℓ, we would like to set Dr(j, ·) to be an ϵ-biased set.
As ℓ = log(S), if we were to sample these independently, as in GR (i.e., the protocol given
in [20]), our verifier would require O(S2) bits of randomness. Instead, we sample these small
bias sets in a correlated manner - via a random walk on an expander (each node in the
expander specifies a seed for a small bias set). We use the Margulis [27] expander since it
is a constant degree, constant spectral expander with extremely simple edge descriptions:
simple additions and subtractions. This makes it very easy to take a start vertex and a
(specification of a) random walk and compute any given step on that walk in both small
space and small time.

Thus, we only require R = O(S) truly random bits to describe a length O(S) random
walk on the ϵ biased sets described by a Reed-Solomon code concatenated with a Hadamard
code. So let D : {0, 1}R × {0, 1}ℓ × {0, 1}S → {0, 1} be a function that generates our pseu-
dorandomness, given R bits of true randomness. The verifier first chooses that randomness
r, and then Dr(j, w) = D(r, j, w).

Since D is both space and time efficient, we can have the prover compute its value for the
verifier, and then have the verifier run the deterministic interactive protocol to confirm its
value. In contrast, the GR verifier must calculate some low degree extension of Dr directly
to use a constant number of rounds. This saves us time over GR.

Finally, as in GR, there is a chance that our pseudorandom bits give a polynomial that
fails to compute the disjunctions correctly. In this case, to get perfect completeness we
need to prove that the pseudorandom bits are incorrect. To do this, the prover just finds
a disjunction closest to the input where the low degree approximation fails and tells the
verifier where it fails. This would be a gate where its value in the low degree polynomial is
one thing, but one of its input gates should force it to be something else. For instance, an
OR gate with a value of 0, and an input to it with a value of 1. Then the verifier can run
the interactive protocol to confirm that the low degree polynomial indeed says the gate’s
value conflicts with its input gate value, showing the pseudorandom bits were bad.

APPROX/RANDOM 2023
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1.2.4 Alternating Algorithms In Terms Of Nondeterministic Algorithms
To use our protocol with alternating algorithms, we want to reduce the alternating algorithm
to one with a few large disjunctions or conjunctions over a nondeterministic algorithm. This
is similar to what is done when converting alternating algorithms to alternating circuits.
Once we have few conjunctions and disjunctions over a nondeterministic algorithm, we can
do the same low degree approximations again.

The idea is to, instead of quantifying over the symbols in the read once proof, quantify
over the potential states the algorithm could be in when the quantifier changes. Then a
nondeterministic algorithm describes if a proof could cause the state to change from one
intermediate state to the next when the quantifier changes.

For example, suppose A is an algorithm with d = 2 alternations and running in space
S recognizing language L. Think of A as a deterministic algorithm taking a proof and
outputting true or false. Then since A is an alternating algorithm, x ∈ L if and only if

∀BigProof1 : ∃BigProof2 : A(x, (BigProof1, BigProof2)).

We can instead be more fine grain with A and talk about its states. Let a be the start
state of A and b be its unique accept state. Let B be the algorithm which takes an initial
state u a final state v and a proof p, then checks if A starting at u is at state v when given
the proof p after time |p|. Then our algorithm accepts x if and only if

∀w ∈ {0, 1}S : ((∃Proof1 : B(x, a, w, Proof1)) =⇒ (∃Proof2 : B(x, w, b, Proof2))) .

If we know how long Proof1 is supposed to be, we can replace

∃Proof1 : B(x, a, w, Proof1)

with a nondeterministic algorithm C. Then our alternating algorithm becomes

∀w ∈ {0, 1}S : C(x, a, w) =⇒ C(x, w, b).

Now, beside our nondeterministic algorithm, we are only quantifying over a variable of size
O(S), whereas Proof1 has size O(T ).

For a more general example, we can replace

∀π1 : ∃π2 : ∀π3 : ∃π4 : A(x, (π1, π2, π3, π4))

with

∀w1 : C(x, a, w1) =⇒ (∃w2 : C(x, w1, w2) ∧ (∀w3 : C(x, w2, w3) =⇒ C(x, w3, b))).

1.2.5 Protocols for Alternating Algorithms
At this point, each quantification is now only over S variables, so we can use the same trick
as before to replace these quantifications with low degree polynomials. Each of the universal
quantifiers gets replaced with a large conjunction, and each of the existential quantifiers
gets replaced with a large disjunction. Then we use Razborov-Smolensky to replace these
conjunctions and disjunctions with low degree polynomials and use an interactive proof to
remove the quantifiers one by one.

A few subtleties show up when doing this. One subtlety of this process is that in a
straightforward reduction, a d alternation algorithm would give our verifier a claim about
C at d different places. Running an interactive protocol d times to confirm each of these d
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claims independently would require time dS log(T ), which is too much for us. Instead, we
need to use a multi point reduction again to reduce this to a claim about C at one location
before running an interactive protocol to confirm that value.

Another subtlety is that it is not convenient to represent C as a nondeterministic algorithm
taking two states as an input and checking if there is a computation path from one to the
other. It is more convenient to describe C directly with the computation graph of A (now
viewing A as a nondeterministic algorithm). For this to work, we need to make sure each

alternation takes the same amount of time, say T . Then we write C(x, u, v) = M̂
(T )
x (u, v).

So for example, consider the simple case of a 2 alternation algorithm. That is, suppose
we want to verify that

∀w ∈ {0, 1}S : C(x, a, w) =⇒ C(x, w, b).

As described before, we replace C with M̂ (T ). So we want to verify

∀w ∈ {0, 1}S : M̂
(T )
x (a, w) =⇒ M̂

(T )
x (w, b).

Now we need to arithmetize the formula being quantified. So let

Ẽ(w) = 1 − M̂
(T )
x (a, w)(1 − M̂

(T )
x (w, b)).

See that E is low degree and agrees with the predicate M̂
(T )
x (a, w) =⇒ M̂

(T )
x (w, b) on

binary inputs. Of course, Ẽ is not multilinear, it has individual degree 2. Luckily, if we
let Ê be the multilinear function consistent with D on binary inputs, then one can use an
unlinearization operation (similar to those used by Shen [35]) to reduce from a statement
about Ê to a statement about Ẽ. So we need to verify that

∀w ∈ {0, 1}S : Ê(w).

Using our low degree approximation, our verifier first chooses Dr, then wants to check if

1 =
∏

j∈{0,1}ℓ

1 −
∑

w∈{0,1}S

Dr(j, w)(1 − Ê(w))

 . (2)

Then we can reduce this to a statement about D̂r at a random location, and Ê at a random
location by using ℓ = O(log(S)) product reductions. We can unlinearize the statement about

Ê to get a claim about Ẽ, or equivalently, about M̂
(T )
x at two locations. Now we can verify

the value of M̂
(T )
x by using our protocol for nondeterministic algorithms. But to avoid doing

this twice, we first run a multi-point reduction to reduce this to a statement about M̂
(T )
x at

one location first.
We can do a similar thing d times for an alternating algorithm. One more subtlety is

that for d > 2, we need to make Ê a function of a and b. This is so that we can view the
formula in Equation (2) as a function of a and b so we can properly linearize and unlinearize
it with respect to a and b. See the full proof for details.
▶ Remark 4 (Proof For Unbounded Fan in Depth Circuits Directly). We could have made an
interactive protocol for unbounded fan-in circuits directly. After all, we start with a formula
that is essentially the low depth, unbounded fan in circuit for an alternating algorithm, if we
view C as a low depth circuit. We can think of our alternating algorithms as a particular
kind of very uniform circuit. We don’t give an interactive proof for circuits directly to avoid
handling uniformity.
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One reason we chose not to just provide an interactive protocol for circuits directly is that
we need a faster interactive protocol for deterministic algorithms as a subroutine to verify
our pseudorandom bits. Since we view this interactive protocol as a problem for bounded
space, we find it natural to present the rest of the results in this framework.

An overview of the protocol for alternating algorithms are in Appendix A, but a full
proof is given in the full version [11].

1.2.6 Extensions
We note that our paper focuses on verifier time, so we have not optimized other parameters, like
verifier space. There are also some other straightforward extensions to further generalizations
of alternations we don’t prove here.
▶ Remark 5 (Parity Gates and Parity Quantifiers). Like GR, our techniques can also be used
on alternating circuits with parity gates, or bounded space algorithms with parity quantifiers.
This is clear since a parity gate is an addition gate over fields of characteristic 2, so is of low
degree already.

We emphasize that our protocol is different from GR since we need more randomness
efficient pseudorandom bits, efficient computation of those pseudorandom bits, more rounds
of interaction to keep our degree (and thus verifier time) lower, use of an interactive protocol
for deterministic algorithms as a subroutine, and by using connections between low space
algorithms, low alternation algorithms, and uniform, low depth circuits.
▶ Remark 6 (Space Efficiency of Our Verifier). While we only achieve a verifier running in
space O(S log(S)), for any ϵ > 0 we should be able to get verifier space O(S/ϵ) using standard
techniques, at the cost of increasing verifier time by a factor of Sϵ. Specifically, instead of
using multilinear polynomials, we would use individual degree Sϵ polynomials. Since we are
focused on improving verifier time, we do not prove this result.

This technique was used by Shamir, Fortnow and Lund, and GKR [34, 16, 21] to give the
space efficiency claimed in those papers. We state the special case where ϵ = 1

log(S) in our
results since we want to compare verifier time.

2 Preliminaries

We assume the reader is familiar with basic complexity concepts like circuits, Turing machines,
and big O notation. See [2] for a reference. For notation, we define Õ to hide polylogarithmic
factors in whatever is inside it in general, not specifically polylog(T ) or polylog(n). That is:

▶ Definition 7 (Big Tilde O). For functions f, g : N → N, we define f(n) = Õ(g(n)) if and
only if there exists some constant c such that f(n) = O(g(n) log(g(n))c).

2.1 Bounded Space and Alternating Algorithms
We denote by TISP[T, S] languages that are computable by a Turing Machine running in
time T and space S.

▶ Definition 8 (TISP). For functions T, S : N → N, we say language L is in TISP[T, S] if
there is an Turing Machine, A, running in time T and space S that decides L.

We want interactive proofs for a generalization of nondeterministic algorithms called
alternating algorithms, as was formally defined in [8]. Like how a nondeterministic algorithms
have existential states where the algorithm accepts if any transition from that state accepts,
alternating algorithms get both existential and accept states.
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We further parameterize our alternating algorithms by the number of alternations. The
number of alternations is the number of times it switches between existential and universal
states, plus one. For instance, nondeterministic algorithms can be viewed as having one
alternation, the second level of the polynomial hierarchy has two, and so on.

▶ Definition 9 (ATISP). For functions T, S, d : N → N, we say a language L is in
ATISPd[T, S] if there is an alternating Turing Machine, A, running in time T and space
S that recognizes L such that on any input x, our algorithm A only changes from no
quantification to one, from existential to universal quantifiers, or from universal to existential
quantifiers d times.

So for instance, nondeterministic time T and space S algorithms would be contained in
ATISP1[T, S].

2.2 Interactive Proofs
An interactive proof informally is a proof system where a verifier with access to unpredictable
randomness can verify a result such that if the statement is true, an honest prover can
convince the verifier with high probability. And if the statement is false, no prover, no matter
how powerful, can convince the verifier the statement is true above some constant probability.

For our definition of interactive time, let Int(V, P ′, x) denote the random variable that V

outputs on input x when interacting with prover P ′. See the full version for a more detailed
definition [11]. Now we define interactive time. We note that in all our protocols, we achieve
perfect completeness. That is, c = 1.

▶ Definition 10 (Interactive Time (ITIME)). If for any language L, soundness s ∈ [0, 1],
completeness c ∈ [0, 1], verifier V and prover P we have
Completeness: If x ∈ L, then Pr[Int(V, P, x) = 1] ≥ c, and
Soundness: if x /∈ L, then for any function P ′ we have Pr[Int(V, P ′, x) = 1] ≤ s,

then we say V and P are an interactive protocol for L with soundness s and completeness c.
If in addition verifier V runs in time TV , soundness s < 1

3 , and completeness c > 2
3 , then

L ∈ ITIME[TV ].

If P is also computable by an algorithm running in time TP , we say

L ∈ ITIME[TV , TP ].

2.3 Expander Graphs
We will use expander graphs to create hitting samplers through the hitting properties of
expanders [24]. See [43] for a more detailed review of expander graphs. We will assume some
basic familiarity with graphs here.

We use an expander graph given by Margulis [27] proven by Gabber and Galil [18]. We
use this expander because it’s simple structure makes it very clear that we can compute
random walks on it in very little time and linear space.

▶ Lemma 11 (Efficient Expander Graphs). For any square n = m2, there exists an expander
graph G with constant degree d and constant spectral expansion λ < 1.

Let V be the vertex set of G, and E : V × [d] → V be the edge function taking in a vertex,
v, and the index of an edge, e, out of v, and outputting the other vertex incident to e. Then
E can be computed in space O(log(n)) and time O(log(n)).
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2.4 Arithmetization
A core technique of standard interactive proofs is called “arithmetization”. Arithmetization
is the process of converting some Boolean function, f , to a low degree formula over a larger
field, F, which agrees with f on Boolean inputs. The main function we will be arithmetizing
is the state transition of Turing Machines. So for a given algorithm, on a length n input x

and two states s0 and s1, let the state transition function Mn(x, s0, s1) be one if and only if
the algorithm on input x starting in state s0 can transition to state s1 in one step. See the
full version for a more detailed definition [11].

We use [10, Lemma 36] for our arithmetization of the Turing Machine State transition.

▶ Theorem 12 (Arithmetization of State Transition). Suppose A is a space S nondeterministic
algorithm with transition matrix Mn : {0, 1}n × {0, 1}S × {0, 1}S → {0, 1} as above.

Then we can compute the multilinear extension of Mn, denoted M̂n : Fn × FS × FS → F,
in time (n + S)Õ(log(|F|)) and space O((log(S) + log(n)) log(|F|)).

2.5 Standard Algebraic, Interactive Proof Tools
We use a few standard tools in interactive proofs. Like [21, 9, 40, 26, 34, 35], perhaps the
most important tool is the original sum check from [26]. We also use an unlinearization
protocol, like the one used by Shen [35]. And a multi-point reduction, like those used in
[21, 9]. Similar query reductions have a long history in PCP literature [3, 15, 13, 30, 25]. To
see statements of these lemmas, see the full version [11].

3 Interactive Proof For Deterministic Algorithms

Internally, our proof will need interactive proofs for deterministic algorithms. We use a
variation of the deterministic protocols from [9, 40]. A full proof can be found in our full
version [11], here is just an overview.

The idea of the algorithm is that for a time T algorithm A, if on an input x algorithm
A has computation graph G with adjacency matrix M , then for unique start state a and
end state b, algorithm A accepts A if and only if MT

a,b = 1. Then by using a matrix square
reduction repeatedly, this can be reduced to a statement about the value of M̂ , the multilinear
extension of M , at a random point. And M̂ can be calculated quickly using Theorem 12.

Our matrix square reduction is very similar to the matrix reduction by Thaler [39], except
generalized to the case where the matrix is also a multilinear extension of a third input. The
main difference with Thaler’s is that we need to perform a few unlinearizations, similar to
Shen’s [35].

▶ Lemma 13 (Matrix Square To Matrix Reduction). Given a function M : {0, 1}n × {0, 1}S ×
{0, 1}S → F, denote for any x ∈ {0, 1}n the matrix Mx such that (Mx)u,v = M(x, u, v).
Then M2

x is defined in the usual way: (M2
x)u,v =

∑
w∈{0,1}S Mx(u, w)Mx(w, v). Now define

M2 : {0, 1}n × {0, 1}S × {0, 1}S → F by M2
x(u, v) = (M2

x)u,v. Let M̂ be the multilinear
extension of M and M̂2 be the multilinear extension of M2.

Then there is an S + n + 2 round interactive protocol with O((S + n) log(|F|)) bits of
communication, a verifier V that runs in time (S+n)Õ(log(|F|)) and space O((S+n) log(|F|)),
and a prover P that runs in time 2S+nÕ(log(|F|)) with O(2S+n) oracle queries to M̂ . The
protocol takes as input α ∈ F, u, v ∈ FS, and x ∈ Fn and acts such that
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Completeness: If α = M̂2(x, u, v), then when V interacts with P , V outputs a u′, v′ ∈ FS,
x′ ∈ Fn, and α′ ∈ F such that α′ = M̂(x′, u′, v′).

Soundness: If α ̸= M̂2(x, u, v), then for any prover P ′ with probability at most 4S+3n
|F| will

V output a u′, v′ ∈ FS, x′ ∈ Fn, and α′ ∈ F such that α′ = M̂(x′, u′, v′).

Now applying this square reduction log(T ) times gives our interactive proof for the
multilinear extension of a space efficient function. The proof is essentially many calls to
Lemma 13, along with a final check by computing M̂n directly at the final point using
Theorem 12.

▶ Theorem 14 (Interactive Proof For Multilinear Extension of Bounded Space). For any
function D : {0, 1}n × {0, 1}m → {0, 1}, for any x ∈ {0, 1}n, denote Dx : {0, 1}m → {0, 1}
by Dx(y) = D(x, y). Let D̂x be the multilinear extension of Dx. If D is computed by a
space S time T deterministic algorithm, then there is a (m + S + 2) log(T ) round interactive
protocol with O((m + S) log(T ) log(|F|)) bits of communication, a verifier V that runs in
time (n + (m + S) log(T ))Õ(log(|F|)) and space O((log(n) + m + S) log(|F|)), and a prover
P that runs in time 22m+2S log(T )Õ(log(|F|)) which takes as input an x ∈ {0, 1}n, w ∈ FS

and α ∈ F such that
Completeness: If D̂x(w) = α, then when V interacts with P , V accepts.
Soundness: If D̂x(w) ̸= α, then for any prover P ′ with probability at most (4S+3m) log(T )

|F|
will V accept.

4 Interactive Proofs For Nondeterministic Algorithms

Now we describe an interactive proof for nondeterministic algorithms because it is an
interesting special case in its own right, it develops the tools needed for the more general
alternating algorithm, and gives a good warm up for the general case. Here we give an
outline of the proof, a full proof is in the full version [11].

But before we start, we quickly make a detour to explain that the matrix “multiplication”
used here for nondeterministic algorithms is different than the one used for deterministic
algorithms. For deterministic algorithms, we used standard multiplication and addition
in some field. But for nondeterministic algorithms, we do binary matrix multiplication,
with multiplication replaced with AND, and addition replaced with OR. To emphasize the
difference, we use parentheses around the exponent to indicate we are performing binary
matrix multiplication.

▶ Definition 15 (Binary Matrix Multiplication). Let M : {0, 1}S × {0, 1}S → {0, 1} be any
function. Then by induction, define M (1) = M and for any i, define

M (i+1)(u, v) =
∨
w

M (i)(u, w)M(w, v).

See that if M is an adjacency matrix of a graph, then M (i)(s, t) = 1 if and only if there
is a path from s to t of length i.

▶ Remark 16. M i is different from M (i) in that M (i+1) uses an OR function, whereas M i+1

uses a plus function. These are equivalent for the adjacency matrix of a deterministic
algorithm, but crucially differ for a nondeterministic algorithm.

We emphasize that these binary matrix multiplications algebraically act very similarly to
integer matrix multiplication. Specifically, M (T ) can still be calculated with log(T ) repeated
binary squaring.
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Now our goal is to replace the matrix sum check used for deterministic algorithms, with a
new efficient reduction for nondeterministic algorithms. It is not clear how to do this directly,
so we use a Razborov-Smolensky style low degree approximation, and give a reduction for
that instead.

4.1 Extended Product Reduction
The main tool for this new reduction is this extended product reduction. This reduces a
statement about the multilinear extension of a large product of terms to a statement about
the multilinear extension of one term. This product reduction could be used to give a square
reduction for nondeterministic algorithms directly, but is much more efficient if the number
of multiplications is smaller. This is why we use Razborov-Smolensky.

The idea is to just apply many unlinearizations and product reductions, to one variable
the product ranges over at a time. See the full version for a proof [11].

▶ Lemma 17 (Extended Product Reduction). Suppose f̂ : Fℓ × FS → F is multilinear. Let
g : {0, 1}S → F be defined by g(v) =

∏
u∈{0,1}ℓ f̂(u, v) and let ĝ be the multilinear extension

of g.
Then there is an ℓ(S + 1) round interactive protocol with O(ℓS log(|F|)) bits of commu-

nication, a verifier V that runs in time ℓSÕ(log(|F|)) and space O((ℓ + S) log(|F|)), and a
prover P that runs in time 2ℓ+SÕ(log(|F|)) which takes as input w ∈ FS, and α ∈ F such
that
Completeness: If ĝ(w) = α, then when V interacts with P , V outputs a u′ ∈ Fℓ, v′ ∈ FS,

and α′ ∈ F such that f̂(u′, v′) = α′.
Soundness: If ĝ(w) ̸= α, then for any prover P ′ with probability at most l(3S+1)

|F| will V

output a u′ ∈ Fℓ, v′ ∈ FS, and α′ ∈ F such that f̂(u′, v′) = α′.

4.2 Low degree Approximations
To use Razborov-Smolenski efficiently, we need to be able to sample and calculate our ϵ

biased sets, Dr, so they work with high probability and can be calculated efficiently.
Construction of efficient ϵ-biased sets is well researched and very efficient constructions

are known [29, 38] and is equivalent to constructing good, linear codes. We use the third
construction in [1] as our ϵ biased sets. This is the same ϵ biased set used in [20], except
that we need to sample them more efficiently.

▶ Lemma 18 (ϵ-Biased Set). For any S, there is an m = O(S) and a function D′ :
{0, 1}m × {0, 1}S → {0, 1} such that for any X ⊆ {0, 1}S \ ∅

Pr
r∈{0,1}m

[∑
x∈X

D′(r, x) = 1 (mod 2)
]

≥ 1
4

such that D′ runs in poly(S) time and O(S) space.

Now we have a D′ which with constant probability correctly converts an OR to a parity.
Now we need to sample enough of these so that with constant probability, we convert 2S

ORs into parities. If we take O(S) independent samples of D′, then with probability less
than 2−2S will any of these ORs fail to be converted into a parity, so by a union bound with
probability at most 2−S will any of them fail to be converted into parity. Of course, we can
not afford to take O(S) samples of a string of length O(S). So we take correlated samples
using random walks on an expander graph.
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Then by using a random walk on the Margulis expander, Lemma 11, with our ϵ biased
sets as vertices, we can sample a good choice of ϵ biased sets with high probability.

▶ Lemma 19 (Sampling a Good D for Many ORs). Suppose for n = 2S and m = 2S′ , for
each i ∈ [m] there is an fi ∈ {0, 1} and ui ∈ {0, 1}i such that fi =

∨
j∈[n] ui

j.
Then for any ϵ, for R = O(S + S′ + log(1/ϵ)), L = 2ℓ = O(S′ + log(1/ϵ)), there is a

space O(S + log(1/ϵ)), time poly(S + log(1/ϵ)) algorithm D such that for each i ∈ [m] define

F r
i =1 +

∏
k∈{0,1}ℓ

(1 +
∑

j∈[n]

Dr(k, j)ui
j) mod 2.

If ∀i ∈ [m] : F r
i = fi, then we say Dr is good for each f . Then Prr[Dr is not good for f ] < ϵ.

4.3 Interactive Proofs For Nondeterministic Algorithms
Now we give a summary of our proof, full version available at [11]. We start by defining our
interactive proof we wish to run, assuming we got a good Dr. This is a square reduction,
assuming we can use the Razborov-Smolensky formula to describe M (2). We call the
Razborov-Smolensky style polynomial given by our pseudorandomness D as “M relative to
D”. We say that our Dr is good if M (T ) relative to D is M (T ). If Dr is good, we are done.
Otherwise, Dr is bad, and makes some mistake first. Then we give an interactive proof to
show where it is bad.

First, we formally define M relative to D.

▶ Definition 20 (M Relative to D). For any M : {0, 1}S × {0, 1}S → {0, 1}, and D :
{0, 1}ℓ×{0, 1}S → F, we define M relative to D as the functions, for k = 1, M

(1)
D = MD = M ,

and for any k > 1 the function M
(2k)
D : {0, 1}S × {0, 1}S → {0, 1} is

M
(2k)
D (u, v) = 1 +

∏
j∈{0,1}ℓ

(1 +
∑

w∈{0,1}S

D(j, w)M (2k−1)
D (u, w)M (2k−1)

D (w, v)).

Similar to the deterministic case Lemma 13, we have a repeated square reduction for M

relative to D. This is based on an extended product reduction, Lemma 17, and a sum check.

▶ Lemma 21 (Repeated Square Reduction For M relative to D). For some M : {0, 1}S ×
{0, 1}S → {0, 1}, let M̂ be the multilinear extension of M and M̂ (2) be the multilinear

extension of M (2). For some D : {0, 1}ℓ ×{0, 1}S → F and T = 2t let M̂
(T )
D be the multilinear

extension of M relative to D given by Definition 20.
Then there is an O(ℓS log(T )) round interactive protocol with O(ℓS log(T ) log(|F|)) bits

of communication, a verifier V that runs in time ℓS log(T )Õ(log(|F|)) and space O((S +
ℓ) log(|F|)), and a prover P (with access to the truth table of M and D) that runs in time
2O(ℓ+S)Õ(log(|F|)) which takes as input u, v ∈ FS, and α ∈ F such that

Completeness: If M̂
(T )
D (u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS,

j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D(j′, w′) = β′.

Soundness: If M̂
(T )
D (u, v) ̸= α, then for any prover P ′ with at most log(T )(ℓ+2)(6S+2)

|F| prob-
ability will V output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′

and D(j′, w′) = β′.

If D is good, this gives our interactive protocol for nondeterministic algorithms. Unfortu-
nately, D is not always good. But if it is not good, then a prover can show the verifier where
it is bad, giving us perfect completeness. See [11] for full details.
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We note here that the field size in our final protocol is |F| = poly(S) and l = O(log(S)).
So the specific polylog(S) hidden by Õ in our main result is O(log(S)2polylog(log(S))). This
is worse than the polylog(S) overhead for deterministic algorithms given in [9], which was
O(log(S)polylog(log(S))). This is because our extended product reduction is slower than a
sum check, but only a log(S) factor slower.

An overview of the protocol for alternating algorithms are in Appendix A, but a full
proof is given in the full version [11].

5 Open Problems

While this mostly closes the gap between the best verifier for deterministic and nondetermin-
istic algorithms, many interesting open problems remain, including:

1. Finding a stronger relationship between verifier time (or even alternating time) and
bounded space. We know, for S ≥ n, that

TISP[T, S] ⊆ ITIME[Õ(S log(T ))].

But it is unknown whether, even with the stronger class of alternating algorithms, if

TISP[T, S] ⊆ ATIME[o(S log(T ))].

2. Finding a stronger relationship between verifier time and alternating time. We know, for
T ≥ n, that

ATISP[T, S] ⊆ ITIME[Õ(ST )].

Can this factor of S in verifier time be removed?
3. Find interactive protocols for BPTISP[T, S] with simultaneous verifier time Õ(n +

S log(T )), prover time 2O(S) and perfect completeness.
Cook [9] gave a protocol with that verifier and prover time, but with imperfect complete-
ness. Perfect completeness can be achieved in a black box way [17], but these black box
reductions do not preserve the prover time.

4. Better doubly efficient proofs. In our special case of alternating algorithms, we can not
get provers who run in less than exponential time, without giving sub-exponential time
deterministic algorithms for nondeterministic problems.
But even in the deterministic time and space bounded setting, for S ≥ n, a major open
problem is whether

TISP[T, S] ⊆ ITIME[poly(S), poly(T )].

We do know from [21] that

TISP[T, S] ⊆ ITIME[poly(S), 2O(S)],

and from [32] that

TISP[T, S] ⊆ ITIME[T o(1), poly(T )],

but it is unknown if both the fast verifier time and prover time can be achieved simultan-
eously.
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5. Similar verifier time for algorithms with more general kinds of quantifiers. For instance,
threshold quantifiers.
Currently the most verifier efficient known interactive protocol for threshold circuits is
to use shallow circuits to compute threshold and run GKR. In this paper, we showed
one can do better for unbounded fan-in AND and OR gates. Can this also be done for
unbounded fan-in threshold gates? This would be interesting because threshold gates
seem much more powerful than AND, OR, or parity gates.
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A Interactive Proofs For Alternating Algorithms

Now we a sketch of our interactive protocols for alternating algorithms. This still uses the
same Razborov-Smolensky degree reduction technique used for nondeterministic algorithms
to reduce the degree of large fan in AND and ORs. The main conceptual challenge is
rewriting the alternating algorithm in the correct format. So we do this first. For full proofs,
see the full paper [11].

A.1 Alternation Reductions For Bounded Space
To prove our interactive protocol with alternating algorithms, we first must convert our
algorithm into a simpler, layered algorithm. This is closely related to the reduction from an
alternating algorithm to a low depth circuit by Ruzzo and Tompa [37], and a similar reduction
was used by Fortnow and Lund [16] in their interactive proof for alternating algorithms.
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▶ Definition 22 (M with d Alternations). For any M : {0, 1}S × {0, 1}S → {0, 1} and
integer d, define M with time T and d alternations inductively on d as a function Bd :
{0, 1}S × {0, 1}S → {0, 1} by

d = 1: B1(u, v) = M(u, v).
d is even

Bd(u, v) =∀w ∈ {0, 1}S : M(u, w) =⇒ Bd−1(w, v)

=¬
∨

w∈{0,1}S

(M(u, w) ∧ ¬Bd−1(w, v))

d is odd

Bd(u, v) =∃w ∈ {0, 1}S : M(u, w) ∧ Bd−1(w, v)

=
∨

w∈{0,1}S

M(u, w) ∧ Bd−1(w, v).

Our interactive proof will focus on this intermediate representation of an alternating
circuit as a matrix M with d quantifiers of S variables between them. Any alternating
algorithm can be converted to a problem of a matrix M (which is the computation graph of
a nondeterministic algorithm) with alternations. The idea is that the quantifiers guess the
states at which the alternating algorithm switches quantifiers. A more detailed relationship
is shown in the full version [11].

▶ Lemma 23 (Layered Alternating Programs). For any L ∈ ATISPd[T, S], there is a
nondeterministic algorithm A running in time T ′ = O(T ) and space S′ = O(S) such that
on any input x, if M is the adjacency matrix of the computation graph of A on input x,
then x ∈ L if and only if the M (T ′) with d alternations, Bd as defined in Definition 22, has
Bd(a, b) = 1 for some unique starting state a and unique accepting state b.

A.2 Interactive Proof For Layered Alternations
Now the rest of the proof closely follows the proof for nondeterministic algorithms, defining M

with alternations relative to D, showing how an alternation reduction for M with alternations
relative to D, and a protocol to show that D is bad.

A subtle difference is that our interactive protocols actually reduce a statement about
our alternating algorithm, to a statement about M (T ), where M is the adjacency matrix
of a nondeterministic algorithm. So we then have to apply our interactive proofs for
nondeterministic algorithms. That is, we reduce our statement about alternating algorithms
to one about nondeterministic ones, which we already developed the tools for.

▶ Definition 24 (M with d Alternations, Relative to D). For any M : {0, 1}S×{0, 1}S → {0, 1},
and D : {0, 1}ℓ ×{0, 1}S → {0, 1}, we define M with d alternations, relative to D, inductively
on d as a function Bd

D : {0, 1}S × {0, 1}S → {0, 1} by

d = 1: B1
D(u, v) = M(u, v).

d is even Bd
D(u, v) =

∏
k∈{0,1}ℓ(1 +

∑
w∈{0,1}S Dr(k, w)(M(u, w) + M(u, w)Bd−1

D (w, v)))
mod 2.

d is odd Bd
D(u, v) = 1 +

∏
k∈{0,1}ℓ(1 +

∑
w∈{0,1}S Dr(k, w)(M(u, w)Bd−1

D (w, v))) mod 2.
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Now there is an interactive protocol for reducing the number of alternations by 1. Similar
to our product reduction for nondeterministic algorithms, it uses our extended product
reduction, Lemma 17, and a sum check.

▶ Lemma 25 (IP for M with d Alternations, Relative To D, Single Step). For any M :
{0, 1}S × {0, 1}S → {0, 1} and integer d > 1, D : {0, 1}ℓ × {0, 1}S → {0, 1} let Bd

D :
{0, 1}S × {0, 1}S → {0, 1} be M with d layered alternations relative to D, as defined in
Definition 24. Let B̂d

D be the multilinear extension of Bd
D.

Then there is an O(ℓS) round interactive protocol with O(ℓS log(|F|)) bits of communica-
tion, a verifier V that runs in time ℓSÕ(log(|F|)), space O((ℓ + S) log(|F|)), and a prover P

(given the truth table of M , Bd
D and D) that runs in time 2O(ℓ+S)Õ(log(|F|)) which takes as

input u, v ∈ FS, and α ∈ F such that
Completeness: If B̂d

D(u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS,
j′ ∈ Fℓ, and α′, β′, γ′ ∈ F such that B̂d−1

D (w′, v′) = α′, D̂(j′, w′) = β′, and M̂(u′, w′) = γ′.
Soundness: If B̂d

D(u, v) ̸= α, then for any prover P ′ with probability at most (ℓ+1)(6S+1)
|F|

will V output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′, γ′ ∈ F such that B̂d−1
D (w′, v′) = α′,

D̂(j′, w′) = β′, and M̂(u′, w′) = γ′.

Applying this many times gives an interactive protocol reducing a statement about our
alternating algorithm to one about a nondeterministic one, which we can solve using the
ideas in Lemma 21.

▶ Lemma 26 (IP for M with d Alternations, Relative To D). For any M : {0, 1}S × {0, 1}S →
{0, 1} and integer d, D : {0, 1}ℓ × {0, 1}S → {0, 1} let Bd

D : {0, 1}S × {0, 1}S → {0, 1} be
M with d layered alternations relative to D, as defined in Definition 24. Let B̂d

D be the
multilinear extension of Bd

D.
Then there is an O(ℓSd) round interactive protocol with O(ℓSd log(|F|)) bits of communic-

ation, a verifier V that runs in time ℓSdÕ(log(|F|)), space O((ℓ + S) log(|F|)), and a prover
P (given the truth table of M , Bd

D and D) that runs in time d2O(ℓ+S)Õ(log(|F|)) which takes
as input u, v ∈ FS, and α ∈ F such that
Completeness: If B̂d

D(u, v) = α, then when V interacts with P , V outputs a u′, v′, w′ ∈ FS,
j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

Soundness: If B̂d
D(u, v) ̸= α, then for any prover P ′ with probability at most d(ℓ+2)(6S+2)

|F|

will V output a u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and
D̂(j′, w′) = β′.

This would be enough if D was always good, but D may be bad, which must be handled
to get perfect completeness. First, let us define what it means for D to be good.

▶ Definition 27 (D is good for M up to d Alternations). For any M : {0, 1}S ×{0, 1}S → {0, 1},
d and D : {0, 1}ℓ × {0, 1}S → {0, 1}, we say that D is good for M with up to d alternations
if for all k ∈ [d] with k > 1 we have Bk

D = Bk.

But when D is bad, we give a protocol showing where it is bad. A similar protocol exists
for non deterministic algorithms. The idea is to find the first quantifier that D is not good
for, and tell them both which clause it has the wrong value on, and which input should have
given it a different value.
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For instance, if D would claim (∀y : ϕ(x, y)) = 1, but it isn’t, the prover says which y

gives this wrong claim, and which x would have ϕ(x, y) = 0. Our protocol can then show the
verifier that indeed D claims that ϕ(x, y) = 1, but ϕ(x, y) = 0 since D is correct all the way
up to the quantification on y.

More detailed proofs can be found in the full version [11].

▶ Lemma 28 (Proving D is Bad for M with Alternations). For some M : {0, 1}S × {0, 1}S →
{0, 1}, and integer d, let M̂ be the multilinear extension of M . Let ℓ be an integer and
D : Fℓ × FS → F a multilinear function.

Then there is a round O(ℓSd) interactive protocol with O(ℓSd log(|F|)) bits of commu-
nication, a verifier V that runs in time ℓSdÕ(log(|F|)) and space O((ℓ + S) log(|F|)), and a
prover P (with access tot he truth table of M) that runs in time d2O(ℓ+S)Õ(log(|F|)) such
that
Completeness: If D is not good for M up to d alternations, then when V interacts with

P , V outputs u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such that M̂(u′, v′) = α′ and
D̂(j′, w′) = β′.

Soundness: If D is good for M up to d alternations, then when V interacts with P , with
probability at most d(ℓ+2)(6S+2)

|F| will V output u′, v′, w′ ∈ FS, j′ ∈ Fℓ, and α′, β′ ∈ F such
that M̂(u′, v′) = α′ and D̂(j′, w′) = β′.

Combining all of these gives our main theorem. Again, we see that the polylogarithmic
factor overhead is O(log(S)2polylog(log(S))). As noted in the nondeterministic section, this
is worse than the O(log(S)polylog(log(S))) factor overhead for deterministic algorithms
in [9].

For a full proof, see [11].
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