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Abstract
One of the most important properties of high dimensional expanders is that high dimensional random
walks converge rapidly. This property has proven to be extremely useful in a variety of fields in
the theory of computer science from agreement testing to sampling, coding theory and more. In
this paper we present a state of the art result in a line of works analyzing the convergence of high
dimensional random walks [13, 10, 15, 1], by presenting a structured version of the result of [1].
While previous works examined the expansion in the viewpoint of the worst possible eigenvalue, in
this work we relate the expansion of a function to the entire spectrum of the random walk operator
using the structure of the function; We call such a theorem a Fine Grained High Order Random
Walk Theorem. In sufficiently structured cases the fine grained result that we present here can be
much better than the worst case while in the worst case our result is equivalent to [1].

In order to prove the Fine Grained High Order Random Walk Theorem we introduce a way
to bootstrap the expansion of random walks on the vertices of a complex into a fine grained
understanding of higher order random walks, provided that the expansion is good enough.

In addition, our single bootstrapping theorem can simultaneously yield our Fine Grained High
Order Random Walk Theorem as well as the well known Trickling down Theorem. Prior to this
work, High order Random walks theorems and Tricking down Theorem have been obtained from
different proof methods.
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1 Introduction

In recent years much attention has been given to the field of high dimensional expanders which
are high dimensioanl analogues of expander graphs. One extremely useful property of high
dimensional expanders is that higher dimensional random walks (which are higher dimensional
analogues of random walks on graphs) converge rapidly to their stationary distribution (For
example, this property was used in [10, 14, 4, 9] and more). Consequently there has been
some work studying the convergence of higher dimensional random walks [10, 13, 15, 1].
In this paper we improve upon these convergence results by relating the structure of the
function to its expansion. Specifically we present the following improvements:
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49:2 Fine Grained Analysis of High Dimensional Random Walks

Fine grained analysis of random walk

Prior to this paper, the state of the art analysis of high dimensional random walks was done
by Alev and Lau in [1] following [10, 13, 15]. Their work analyzed the eigenvalues of an
important random walk called the down-up random walk. Their result, however, was only
useful for the worst case analysis as it did not relate the structure of the function to its
expansion and thus was forced to consider the worst possible function. In this paper we
present an improvement upon Alev and Lau’s result by finding a connection between the
structure of a function and how well it expands and can therefore yield better results on
cochains that posses a “nice” structure.

In two-sided spectral expanders a fine grained analysis of high dimensional random walks
was already proven, based on Fourier analysis in high dimensional expanders [8, 15]. In the
two sided case even stronger results following from hypercontractivity are known [5, 6, 12]
and more. Our result is, importantly, about one-sided spectral expanders as there are cases
when the use of one-sided high dimensional expansion is crucial - for example in Anari et al’s
breakthrough proof of the fast convergence of the basis exchange walk [4] and thus showed an
algorithm that samples a basis of a matroid. This result started a wave of sampling results
that use high dimensional expanders [7, 3, 2] to name a few examples. This result relies
heavily on fast convergence of high dimensional random walks on one-sided expanders (As
they show that that the basis exchange corresponds to a down-up walk on the top dimension
of a one-sided high dimensional expander). In this work we present, to our knowledge, the
first result to show a fine grained analysis of the random walk operator in one-sided local
spectral expanders.

Replacing eigendecomposition

Previous fine grained analysis of high dimensional random walks relied on finding approximate
eigendecomposition of the high dimensional random walk. We present a new approach to
finding a fine grained understanding of the high dimensioanl random walks: bootstrapping
an understanding of the expansion of random walks on the vertices of the complex. We
show that, if the expansion of these random walks beat the expansion of high dimensional
random walks on the vertices of local structures1, we can bootstrap it into a fine grained
understanding of higher dimensional random walks.

Unification of the High order random walk theorem and the Tricking down theorem

In order to perform our fine grained analysis of the higher dimensional random walk operators
we develop a new bootstrapping framework. This new framework is fairly generic and seems
to be of independent interest as it can be used to prove another central theorem in the theory
of high dimensional expansion, namely the trickling down theorem [16]. We comment that
prior to this work these two important theorems were obtained by different proof techniques.

Before we can state our results more formally, we have to define the high dimensional
analogs of expander graphs as graphs do not posses high dimensions. This high dimensional
object is called a “simplicial complex” and is defined as:

▶ Definition 1 (Simplicial complex). A set X is a simplicial complex if it is closed downwards
meaning that if σ ∈ X and τ ⊆ σ then τ ∈ X. We call members of X the faces of X.

1 Specifically, high dimensional random walks on the vertices of the links of vertices.
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Simplicial complexes can be thought of as hyper-graphs with closure property (i.e. every
subset of a hyper-edge is a hyper-edge). We are interested in higher dimensions and therefore
it would be useful to define the dimension of these higher dimensional objects:

▶ Definition 2 (Dimension). Let X be a simplicial complex and let σ ∈ X be a face of
X. Define the dimension of σ to be dim (σ) = |σ| − 1. We also denote the set of all faces
of dimension i in X as X(i). Also define the dimension of the complex X as dim (X) =
maxσ∈X {dim (σ)}. Note that there is a single (−1)-dimensional face - the empty face.

Of particular interest are simplicial complexes whose maximal faces are of the same dimension,
defined below:

▶ Definition 3 (Pure simplicial complex). A simplicial complex X is a pure simplicial complex
if every face σ ∈ X is contained in some (dim (X))-dimensional face.

Throughout this paper we will assume that every simplicial complex is pure. In most cases
we will be interested in weighted pure simplicial complexes. In weighted pure simplicial
complexes the top dimensional faces are weighted and the weight of the rest of the faces
follows from there as described here:

▶ Definition 4 (Weight). Let X be a pure d-dimensional simplicial complex. Define its
weight function w : X → [0, 1] to be a function such that:∑

σ∈X(d) w (X) = 1
For every face τ of dimension i < d it holds that w (τ) = 1

(d+1
i+1)

∑
σ∈X(d)

τ⊆σ

w (σ).

It is important to note that we think of unweighted complex as complexes that satisfy ∀σ ∈
X(d) : w (σ) = 1

|X(d)| . While the top dimensional faces of unweighted complexes all have the
same weight, the same cannot be said for lower dimensional faces.

It is also important to note that the sum of weights in every dimension is exactly 1 and
therefore for every k the weight function can, and at times will, be thought of as a distribution
on X(k).

One key property of high dimensional expanders is that they exhibit local to global phenomena.
These phenomena are at the main interest of this paper. It is therefore useful to consider
local views of the simplicial complex which we define as follows:

▶ Definition 5 (Link). Let X be a simplicial complex and σ ∈ X be a face of X. Define
the link of σ in X as Xσ = {τ \ σ|σ ⊆ τ}. It is easy to see that the link of any face is a
simplicial complex.

The weight of faces in the links is induced by the weights of the faces in the original
complex. Specifically, we denote by wσ the weight function in the link of σ ∈ X(i) and it holds
that ∀τ ∈ Xσ(j) : wσ (τ) = w(τ∪σ)

(i+j+2
i+1 ) w(σ)

. Generally speaking, the local to global phenomena
are ways to derive properties of the entire complex by only looking at local views (i.e. links).

Another important substructure of a simplicial complex is its skeletons

▶ Definition 6 (Skeleton). Let (X, w) be a weighted pure d-dimensional simplicial complex
and let i ≤ d. Define the i-skeleton of X as the following weighted simplicial complex:

X(i) = {σ ∈ X|dim σ ≤ i}

With the original weight function.

APPROX/RANDOM 2023



49:4 Fine Grained Analysis of High Dimensional Random Walks

In many cases we will think of the 1-skeleton of a simplicial complex as a graph. In addition,
it is important to note that even if the original complex is unweighted, the skeletons of said
complex might be.

We are now ready to define a high dimensional expander2.

▶ Definition 7 (Local spectral expander). A pure d-dimensional simplicial complex X is a
λ-local spectral expander3 if for every face σ of dimension at most d − 2 it holds that X

(1)
σ is

a λ-spectral expander4. Note that this includes σ = ∅, i.e. the entire complex.

Much like graphs, simplicial complexes also support random walks. In graphs, the random
walks are of the form vertex-edge-vertex - the walk might move between two vertices if they
are connected by an edge. The high dimensional analogue of these random walks travel
between two k-dimensional faces if they are part of a common (k + 1)-dimensional face. Our
particular random walk of interest is the higher dimensional analogue of the non-lazy random
walk, defined as follows:

▶ Definition 8 (Non-lazy up-down operator informal, for formal see 24). Define the k-
dimensional non-lazy up-down random walk, (M ′)+

k as the k dimensional analogue of the
non-lazy random walk on the vertices of a graph: A walk that moves between two k-dimensional
faces if they are contained in a (k + 1)-dimensional face and never stays in place.

We are going to improve our understanding of how these higher dimensional random walks
apply to structured states. These states correspond to another natural structure on high
dimensional expanders called cochains that is defined as follows:

▶ Definition 9 (Cochains). Let X be a pure d-dimensional simplicial complex. For −1 ≤ k ≤ d

define a k-dimensional cochain F to be any function from X(k) to R. We also denote by
Ck (X;R) the set of all k-dimensional cochains.

We are going to be interested in ways of viewing the cochains in the links of the complex.
For now we will only introduce one such way. Namely localization:

▶ Definition 10 (Localization). Let X be a pure d-dimensional simplicial complex, k, i be
dimensions such that i < k and F ∈ Ck (X;R). Also let σ ∈ X(i). Define the localization of
F to σ to be:

Fσ(τ) = F (σ ∪ τ).

We note that there is a very natural inner product defined on the cochains of a simplicial
complex, defined as follows:

▶ Definition 11 (Inner product). Let X be a pure d-dimensional simplicial complex and let
F, G ∈ Ck (X;R). Define the inner product of F and G to be:

⟨F, G⟩ =
∑

σ∈X(k)

w (σ) F (σ)G(σ).

2 There is no singular definition of high dimensional expander but in this paper we only use the algebraic
definition - local spectral expansion.

3 Much like one dimensional expanders, in high dimensions there is also notion of one-sided vs. two-sided
local spectral expansion. The definition we use throughout the paper is that of one-sided local spectral
expander. The difference being that in two-sided local spectral expander the underlying graph of every
link is a two-sided expander rather than a one-sided expander.

4 The complexes are weighted and therefore their expansion property is defined as the second largest
eigenvalue of the non-lazy random walk. A random walk that walks from a face to one of its neighbours
with probability equal to the proportion between the weight of the edge that connects them and the
sum of the weights of the edges that include said vertex.
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1.1 Main Results
In this paper we present a state of the art analysis the high dimensional analogue of the non-
lazy random walk. We are specifically interested in going beyond Alev and Lau’s worst case
result [1, Theorem 1.5] and relate the structure of the cochain to its expansion. Specifically,
we define:

▶ Definition 12 (i-level cochain, informal. For formal see Definition 29). A cochain F is an
i-level cochain with respect to localization if for every σ ∈ X(i − 1) it holds that ⟨Fσ,1⟩ = 0.5

Previously the best analysis of high dimensional random walk was due to Alev and Lau [1,
Theorem 1.5] who showed that:

▶ Theorem 13 (Alev and Lau [1], restated). Let X be a pure d-dimensioanl high dimensional
expander. Define γi = maxσ∈X(i) {λ2(Xσ)}. For any dimension k and any k-dimensional
0-level cochain F it holds that:

〈
(M ′)+

k F, F
〉

≤

1 − 1
k + 1

k−2∏
j=−1

(1 − γi)

 ∥F∥2
.

We show that this result can be vastly improved for structured cochains. Specifically, we
show the following decomposition of the high dimensional random walks:

▶ Theorem 14 (Fine grained analysis of high dimensional random walks, Informal. For formal see
Theorem 54). Let F ∈ Ck (X;R) and let F0, · · · , Fk be an orthogonal decomposition of F such
that Fi is an i-level cochain and F =

∑k
i=0 Fi. In addition, let γi = maxσ∈X(i) {λ2(Xσ)}

(Where λ2(Xσ) is the second largest eigenvalue of the underlying graph of Xσ) then:

〈
(M ′)+

k F, F
〉

≤
k∑

i=0

1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γj)

 ∥Fi∥2
.

Cases where we improve upon previous results

In the worst case (i.e. no assumption is made on the structure of F ) our result matches that
of Alev and Lau. In cases where the cochain is structured, however, our Theorem yields
strictly better results than what was previously known. We also give some examples of
families of structured cochains on which our result is strictly better than the result of Alev
and Lau - Specifically, we show two families of cochains that are highly structured: The
first is a set of cochains associated with a different form of high dimensional expansion, the
minimal cochains and the second is the indicator function of a balanced set of faces (for more
information see the full version).

Comparison with other known decompositions

Similar decompositions of the high dimensional random walks were already known for two-
sided high dimensional expanders [8, 15]. These decomposition relied on finding approximate
eigenspaces of the walk operator. Unlike the case in two-sided high dimensional expanders,

5 We note that every j-dimensional i-level cochain corresponds to a cochain in the ith dimension that
has been “lifted” up to the jth dimension. A more formal version of this statement can be found in
Lemma 53.

APPROX/RANDOM 2023



49:6 Fine Grained Analysis of High Dimensional Random Walks

in one-sided high dimensional expanders the eigenspaces of the high dimensional random
walks are not currently understood, even approximately. We do, however, understand the
expansion of key random walks on the 0-dimensional cochains. We follow this by showing
that if this expansion is strong enough (i.e. these random walks converge fast enough) we can
boost it to all levels and get a decomposition theorem without eigendecomposition. In order
to apply our bootstrapping method we have to show that the expansion of the aforementioned
0-dimensional cochains “beats” the expansion of cochains of higher levels. Note that the
decomposition achieved by our bootstrapping theorem differs from the decomposition known
in two-sided expanders in one crucial way: In our decomposition the level functions are
not approximate eigenfunctions. Moreover, applying the non-lazy up-down random walk
operator to any one of them yields a cochain that is not orthogonal to many of the other
Fjs. This allows us to sidestep a major technical barrier in previous works as we do not rely
on the existence of an eigendecomposition of the walk operator (or even an approximate
decomposition of that operator). Note that many results that use local spectral expanders,
such as their usage in proving the existence of cosystolic expanders, agreement testing, locally
testable codes and more only require one application of the walk operator and thus we believe
that our result will prove to be influential with regards to these fields.

Our main tool for proving the decomposition of high dimensional random walks is a
bootstrapping theorem that reduces decomposition of higher dimensional random walk to
an understanding of highly structured cochains (for example cochains that correlate with
0-dimensional cochains). The bootstrapping theorem is fairly general and thus we bring a
special case of it here:

▶ Theorem 15 (Bootstrapping theorem, informal. For formal see Theorem 34). Let X be a
simplicial complex and k be a dimension. Every F ∈ Ck (X;R) that is orthogonal to the
constant functions can be decomposed into F =

∑k
i=0 Fi such that the cochains Fi are both:

1. i-level cochains with respect to localization.
2. Orthogonal: For every i ̸= j it holds that Fi is orthogonal to Fj.

We can use a solution of some recursive formula on 0-level cochains and values {λi}k
i=0 in

order to bootstrap a decomposition of the following form:

〈
(M ′)+

k F, F
〉

=
k∑

i=0
λi ∥Fi∥2

.

Solving the recursive formula in the bootstrapping theorem requires us to gain some
“advantage” for highly structured cochains in the complex. We can therefore view this
Theorem as a tool that allows us to bootstrap an advantage we have to a decomposition of
the non-lazy random walks.

As we said, our bootstrapping theorem is fairly generic and can also yield the celebrated
Oppenheim’s trickling down theorem [16, Theorem 4.1]:

▶ Theorem 16 (Trickling Down, [16]). Let X be a pure d-dimensional simplicial complex. If
it holds that:

For every vertex v: X
(1)
v is a λ spectral expander.

X is connected.
Then it holds that X(1) is a λ

1−λ spectral expander.

In order to prove the trickling down we use Theorem 15 while defining the i-level cochains
differently. For more detail, see Section A.
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1.2 Proof Layout
As we mentioned before, we analyze the non-lazy up-down random walk - a high dimensional
analogue of the non-lazy random walk in graphs. We would like to get a decomposition
of the non-lazy random walk operator. In order to do that we decompose the space of
cochains to spaces which we term level cochains. Our proof is then comprised of two steps:
A bootstrapping Lemma that reduces the problem of decomposing the non-lazy up-down
random walk operator to a simple recursive condition about the 0-level cochains and an
advantage that allows us to solve said recursive condition. We note that solving the recursive
condition is considerably simpler than proving the decomposition directly as the 0-level
cochains are very structured objects.

Link viewers

Local-to-global arguments are typically structured by taking a global cochain, decomposing
it to local cochains (i.e. cochains on the links of the vertices of the complex) and then using
a property of the cochains in the links in order to argue about the original cochain. Two
extremely useful ways of decomposing a global cochain to cochains in the links are restriction
and localization. These two methods share many properties, for example:

They preserve constant functions - Any global constant function is constant locally.
They are linear - The local view of sum of any two global cochains is the sum of the local
views.
They interact well with the inner product - The expected value of the local inner products
of two cochains is their inner product.

We start by identifying these properties and defining a general object that satisfy them called
a link viewer. A link viewer Λ defines the local view of a cochain F in the link of σ which we
denote by ΛσF . For the rest of this section, unless stated otherwise, we will think of the
localization link viewer defined as Λℓ

σF = Fσ.

Level cochains

Any link viewer decomposes the space of cochains to subspaces called i-level cochains.
These spaces are the set of cochains whose expected value is 0 when viewed from any
i-dimensional face. We think of these cochains as not correlated with any i-dimensional
face. For example, under the localization link viewer the i-level cochains are cochains G

that satisfy: ∀σ ∈ X(i) : Eτ∈Xσ(k−i−1)
[
Λℓ

σG(τ)
]

= Eτ∈Xσ(k−i−1) [Gσ(τ)] = 0. Note that
any i-level cochain is also an (i − 1)-level cochain and that of F is an i-level cochain then
ΛvF is an (i − 1)-level cochain in the link of every vertex v. It is therefore useful to define
proper level cochains as well - a proper i-level cochain is an i-level cochain that is orthogonal
to every (i − 1)-level cohain. Every cochain F can be decomposed to F =

∑p
i=−1 Fi such

that every Fi is a proper i-level cochain. This decomposition plays a key role in our proof.

The bootstrapping argument

We can now present our proof for the bootstrapping argument. We assume that the non-lazy
up-down random walk expands locally and show that this yields that the non-lazy up-down
random walk expands globally. We restrict our attention only to 0-level cochains (which are
not necessarily proper) as (−1)-level cochains correspond to the trivial eigenvalue in which
we are not interested. Let F =

∑p
i=0 Fi be a 0-level cochain. Consider its localization to

the links of vertices ΛvF =
∑p

i=0 ΛvFi. Note that
∑p

i=1 ΛvFi is a 0-level cochain in Xv(as

APPROX/RANDOM 2023



49:8 Fine Grained Analysis of High Dimensional Random Walks

the localization to links of vertices of i-level cochains is an (i − 1)-level cochain). Note that
ΛvF0 is not a 0-level cochain. We can, however, apply our decomposition theorem to some
part of ΛvF0 by decomposing it to two parts:

A 0-level cochain - ΛvF0 −E [ΛvF0]
A remainder - E [ΛvF0].

We can therefore apply our decomposition theorem to
∑p

i=0 ΛvFi −E [ΛvF0]. Note that a
key step in this decomposition is that despite the fact that these new localized cochains
are not orthogonal to each other, they are all orthogonal to the constants. This allows us
to separate them from the constant part of every localization. All we have left to do is to
compensate for the remainder. This is done using the advantage step which we will describe
next.

The Advantage

In the advantage step we try to bound the remainder we have left in the bootstrapping stage.
The advantage required in order to achieve the random walk decomposition Theorem is done
by considering the localization link viewer that showing the following observations:
1. Any 0-level function F0 is, in a sense, a high dimensional description of some other

0-dimensional cochain G ∈ C0 (X;R). This is true in the sense that ∥F0∥ = ∥G∥ and
E
[
Λℓ

vF0
]

=
∥∥M+k

0 G
∥∥ where M+k

0 is the random walk the applied the up step k times
followed by applying the down step k times.

2. There is a connection between the random walk on the underlying graph of the complex
and M+k. The key claim we use is that once the random walk has performed its first
up step it can already “see” all the vertices it will ever see (this is due to the structure
of simplicial complexes - if two vertices share a k-dimensional face then by the closure
property they also share an edge). Going further up only decreases the probability of
staying in place. Therefore M+k is a weighted sum of the underlying graph’s non-lazy
random walk transition matrix and a lazy component (which corresponds to staying
in place). We note that this observation can be generalized to any random walk on
k-dimensional faces that “walks through” faces of dimension higher than 2k.

Using these observations as well as our understanding of the 0-dimensional random walk we
obtain the advantage we seek.

2 The Signless Differential and Its Adjoint Operator

One of the key operators induced by any simplicial complex is its signless differential operator.
The signless differential operator is an averaging operator that accepts a k-dimensional
cochain and returns a (k + 1)-dimensional cochain. We adopt the terminology of [15] and
consider repeated application of the signless differential and its adjoint operator.

▶ Definition 17 (Signless differential). The signless differential operator
dk : Ck (X;R) → Ck+1 (X;R) in the following way:

dkF (σ) = Eτ∈X(k) [F (τ)|τ ⊆ σ] =
∑

τ∈( σ
k+1)

1
k + 2F (τ).

When the dimension is clear from context it will be omitted from the notation. Also define
d∗

k : Ck+1 (X;R) → Ck (X;R) to be the adjoint operator of dk.

▶ Note. The signless differential does not meet the definition of a differential as dkdk−1 ̸= 0.
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▶ Lemma 18 ([15, Lemma 3.6], [8]). It holds that:

d∗
kF (τ) = Eσ∈X(k+1) [F (σ)|τ ⊆ σ] = Eσ∈Xτ (0) [Fτ (σ)].

For proof see the full version.
We will be interested in repeated application of the signless differential and its adjoint

operator. To that effect it will be useful to present them explicitly. Lemmas 19 and 20 will
present repeated applications of these operators explicitly (and the proofs of both Lemmas
can be found in the full version of this paper).

▶ Lemma 19. Let F be an i-dimensional cochain. Then:

dj−1 · · · diF (σ) = Eτ∈X(i) [F (τ)|τ ⊆ σ].

▶ Lemma 20. Let F be an i-dimensional cochain. Then:

d∗
i · · · d∗

j−1F (σ) = Eτ∈Xσ(j−i−1) [Fσ(τ)].

3 Up-Down and Down-Up Operators

In this section we will present two objects of interest - the up-down and down-up walks. These
are natural operators that result from considering a standard walk on the k-dimensional
faces of a simplicial complex using the following two steps: A down step where, given a
k-dimensional face, the walk moves to a (k − 1)-dimensional face that is contained in it with
equal probability. And an up step in which, given a k-dimensional face, the walk moves to a
(k + 1)-dimensional face with probability proportional to its weight. Applying the up step
followed by the down step yields the up-down walk while applying the down step followed by
the up step yields the down-up walk.

▶ Definition 21 (Up-down and down-up operators). Let X be a simplicial complex. Then
define the up-down random walk to be:

[
M+

k

]
σ,τ

=


1

k+2 σ = τ
wσ(τ\σ)

k+2 σ ∪ τ ∈ X(k + 1)
0 Otherwise.

And the down-up random walk to be:

[
M−

k

]
σ,τ

=


1

k+1
∑

τ ′∈(σ
k) wτ ′ (σ \ τ ′) σ = τ

1
k+1 wσ∩τ (τ \ σ) σ ∩ τ ∈ X(k − 1)
0 Otherwise.

We would now like to present characterization the up-down random walk and the down-
up random walk using the signless differential (this characterization had appeared in [15,
Corollary 3.7] and is given here for completeness). In order to do that, consider the following
Lemma:

▶ Lemma 22. Let X be a simplicial complex, it holds that:

M+
k = d∗

kdk M−
k = dk−1d∗

k−1.

For proof, see the full version of this paper.
We are also going to be interested in applying the signless differential and its adjoint

operator multiple times in a row. We will therefore define the k-dimensional i-up-down
operator and the k-dimensional i-down-up operator in the following way:

APPROX/RANDOM 2023



49:10 Fine Grained Analysis of High Dimensional Random Walks

▶ Definition 23. Let M+i
k be the k-dimensional i-up-down operator and M−i

k be the k-
dimensional i-down-up operator defined as follows:

M+i
k = d∗

k · · · d∗
k+i−1dk+i−1 · · · dk M−i

k = dk−1 · · · dk−i−1d∗
k−i−1 · · · d∗

k−1.

Recall that the i-up-down operator and the i-down-up operators can be presented explicitly
using Lemma 19 and Lemma 20. In addition, note that the i-up-down operator corresponds
to applying the up step i times and then applying the down step i times. Likewise the
i-down-up operator corresponds to applying the down step i times and then applying the up
step i times.

4 The Non-Lazy Walk Operator

Our main object of study is going to be the non-lazy k-dimensional random walk operator.
This operator is a generalization of the non-lazy random walk operator in graphs to higher
dimensions. In graphs the non-lazy random walk operator moves between two vertices if they
have an edge connecting them. The higher dimensional version of this operator is going to
be something very similar: It is going to move between two k-faces if there is a (k + 1)-face
that contains both faces.

▶ Definition 24 (The Non-Lazy k-dimensional Random Walk Operator). Let X be a pure
d-dimensional simplicial complex define the k-dimensional random walk operator to be the
following operator:[

(M ′)+
k

]
σ,τ

=
{

wσ(τ\σ)
k+1 σ ∪ τ ∈ X(k + 1)

0 Otherwise.

One can also think of the non-lazy random walk operator as the regular up-down operator
with the lazy part removed. Formally:

▶ Observation 25. For every dimension k it holds that (M ′)+
k = k+2

k+1 M+
k − 1

k+1 I.

Of specific interest is the 0-dimensional non-lazy up-down operator as it can be used to
describe every one of the 0-dimensional i-up-down operators. This is because every one of
these operators ultimately move between a vertex and its neighbours. The more steps one
takes up the complex the more mixed the result is. By that we mean that the non-lazy walk
operator has a larger effect on the result. Quantitatively, this can be formulated via the
following Lemma.

▶ Lemma 26. It holds that (M ′)+
0 = i+1

i M+i
0 − 1

i I.

For proof, see the full version.

5 Analyzing the Non-Lazy Random Walk Operator

We are now ready to start analyzing the random walk operators. In order to do so we are
going to use a local to global argument. In order to apply a local to global argument we must
understand how to view a cochain through the links. Specifically we will be interested in
viewing methods that satisfy the following:

▶ Definition 27 (Link viewer). A link viewer is any transformation Λ that accepts a face σ

and a cochain in X. It then returns a cochain in Xσ. In addition, a link viewer satisfies the
following:
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For every face σ it holds that Λσ is linear.
For every face σ it holds that Λσ1 = 1.
For every two cochains F, G and any two faces of the same dimension σ,τ it holds
that dim (F ) − dim (ΛσF ) = dim (G) − dim (Λτ G). In addition, denote the dimensional
difference for vertices by ∆ (Λ) = dim (F ) − dim (ΛvF ).
Viewing of a cochain in a link is only determined by the cochain and the face for which it
is the link (and not the path taken to achieve said view). Formally: For every τ ⊆ σ ∈ X

it holds that Λσ = Λσ\τ Λτ .
For every dimension i it holds that ⟨F, G⟩ = Eσ∈X(i) [⟨ΛσF, ΛσG⟩].

Of particular interest are link viewers that view the non-lazy random walk operator in “the
right way”:

▶ Definition 28. A link viewer respects the non-lazy up-down random walk if for every k:〈
(M ′)+

k F, F
〉

= Ev∈X(0)

[〈
(M ′)+

k−∆(Λ) ΛvF, ΛvF
〉]

.

▶ Definition 29 (i-level cochain). A cochain F is an i-level cochain with respect to Λ if it
holds that ∀σ ∈ X(i − 1) : ⟨ΛσF,1⟩ = 0.

When the link viewer is clear from context we will simply refer to them as i-level cochains.
Denote the set of i-level j-dimensional cochains in X by Cj

Λ,i (X;R).

▶ Lemma 30. For every dimension j ≤ i: Ck
Λ,i (X;R) ⊆ Ck

Λ,j (X;R).

Proof. Let F ∈ Ck
Λ,i (X;R) and let σ be a (j − 1)-dimensional face and note the following:

⟨ΛσF,1⟩ = Eτ∈Xσ(i−j) [⟨Λτ ΛσF, Λτ1⟩] = Eτ∈Xσ(i−j) [⟨ΛτσF,1⟩]. = 0

Where the last equality is due to the fact that σ ∪ τ is an (i − 1)-dimensional face. ◀

Of particular interest are i-level cochains that are orthogonal to the (i + 1)-level cochains.
We will therefore define the following:

▶ Definition 31 (Proper i-level cochain). A cochain F is a proper i-level cochain with respect

to Λ if it holds that F ∈ Cj
Λ,i (X;R) ∩

(
Cj

Λ,i+1 (X;R)
)⊥

.
When the link viewer is clear from context we will simply refer to them as proper i-level

cochains. Denote the set of proper i-level j-dimensional cochains in X by Cj

Λ,̂i
(X;R).

Consider the following key property of proper level cochains:

▶ Lemma 32. Let i < j and let F be a proper i-level cochain and G be a proper j-level
cochain then ⟨F, G⟩ = 0.

Proof. Due to Lemma 30 it holds that G is also a i + 1 level cochain and thus is orthogonal
to G by definition. ◀

Note that considering proper level cochains is one of the key ingredients of this paper. In
previous results (For example [15]) instead of considering proper i-level cochains the authors

essentially considered cochains in
(

Ck
Λ,i (X;R)

)⊥
. Using proper level cochains allows us to

separate the different levels completely and achieve a proper decomposition. Since analyzing
the decomposition with only pure level cochains in mind is hard (as even if F is a level
cochain the same cannot be said about ΛσF ) we resort to first show the following technical
theorem.

APPROX/RANDOM 2023
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▶ Theorem 33 (Bootstrapping Theorem, Technical Version). Let X be a pure d-dimensional
simplicial complex, Λ be a link viewer that respects the non-lazy up-down random walk and
for every i let Fi ∈ Ck

Λ,i (X;R) and F =
∑p

i=0 Fi. Denote r = k − ∆ (Λ) and suppose that
there are values of {λσ,i,j}σ∈X,i∈[d],j∈[d] (λσ,i,j is the contraction of an i-level j-dimensional
cochain in the link of σ) such that for every σ ∈ X and G0 a 0-level cochain:λσ,1,k ∥G0∥2 +Ev∈Xσ(0)

[
(1 − λσ∪{v},1,r) ∥M−r

r ΛvG0∥2
]

≤ λσ,0,k ∥G0∥2

maxv∈Xσ(0)
{

λσ∪{v},i−1,r

}
≤ λσ,i,k.

Then:〈
(M ′)+

k F, F
〉

≤
p∑

i=0
λ∅,i,k ∥Fi∥2 +

p∑
i=0

p∑
j=1
i<j

ci,j ⟨Fi, Fj⟩ .

For some constants {ci,j} and where p is the number of level functions that span the space
orthogonal to the constants.

Proof. Let r be the dimension of ΛσF . Consider the following:〈
(M ′)+

k F, F
〉

=
〈

(M ′)+
k

p∑
i=0

Fi,

p∑
i=0

Fi

〉

= Ev∈X(0)

[〈
Λv

(
(M ′)+

r

p∑
i=0

Fi

)
, Λv

(
p∑

i=0
Fi

)〉]

= Ev∈X(0)

[〈
(M ′)+

r

p∑
i=0

ΛvFi,

p∑
i=0

ΛvFi

〉]

= Ev∈X(0)

[〈
(M ′)+

r

(
I − M−r

r

) p∑
i=0

ΛvFi,
(
I − M−r

r

) p∑
i=0

ΛvFi

〉]

+Ev∈X(0)

[〈
(M ′)+

r M−r
r

p∑
i=0

ΛvFi, M−r
r

p∑
i=0

ΛvFi

〉]

= Ev∈X(0)

[〈
(M ′)+

r

(
I − M−r

r

) p∑
i=0

ΛvFi,
(
I − M−r

r

) p∑
i=0

ΛvFi

〉]
+Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2
]

.

(1)

We will now like to apply our Theorem to the localized cochains in the links. For that,
consider the following level cochains:

level cochain square of norm
k − 1 F v

k−1 := ΛvFk ∥ΛvFk∥2

...
...

...
1 F v

1 := ΛvF2 ∥ΛvF2∥2

0 F v
0 := ΛvF1 +

(
I − M−r

r

)
ΛvF0 ∥ΛvF1∥2 +

∥∥(I − M−r
r

)
ΛvF0

∥∥2 + 2 ⟨ΛvF1, ΛvF0⟩

Note that, by definition, for every i ≥ 2 it holds that ΛvFi ∈ Cr
Λ,i−1 (Xv;R). In addition

ΛvF1 + (I − M−r
r ) ΛvF0 ∈ Cr

Λ,0 (Xv;R). We can therefore apply the Theorem to every link
which (after some manipulation of the mixed terms that can be found in the full version)
yields that, for every link v, it holds that:
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〈
(M ′)+

v,k

(
I − M−r

r

)
ΛvF,

(
I − M−r

r

)
ΛvF

〉
≤

k−1∑
i=0

λv,i,r ∥F v
i ∥2 +

p∑
i=0

p∑
j=1
i<j

ci,j

〈
F v

i , F v
j

〉

=
k−1∑
i=0

λv,i,r ∥ΛvFi∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2 +
p∑

i=0

p∑
j=1
i<j

c′
i,j ⟨ΛvFi, ΛvFj⟩ .

Combining this with 1 and noting that λ∅,i,k ≥ maxv∈X(0) {λv,i−1,r} yields that:〈
(M ′)+

k F, F
〉

≤
k∑

i=1
λ∅,i,k ∥Fi∥2

+Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2
]

+
p∑

i=0

p∑
j=1
i<j

c′
i,j ⟨Fi, Fj⟩ .

Therefore all we have to do is prove that:

Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2
]

≤ λ∅,0,k ∥F0∥2

This follows directly from our choice of λs:

Ev∈X(0)

[∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

∥∥(I − M−r
r

)
ΛvF0

∥∥2
]

=Ev∈X(0)

[
(1 − λv,0,r)

∥∥M−r
r ΛvF0

∥∥2 + λv,0,r

(∥∥M−r
r ΛvF0

∥∥2 +
∥∥(I − M−r

r

)
ΛvF0

∥∥2
)]

=Ev∈X(0)

[
(1 − λv,0,r)

∥∥M−r
r ΛvF0

∥∥2 + λv,0,r ∥ΛvF0∥2
]

≤Ev∈X(0)

[
(1 − λv,0,r)

∥∥M−r
r ΛvF0

∥∥2
]

+ λ∅,1,k ∥F0∥2 ≤ λ∅,0,k ∥F0∥2 . ◀

▶ Theorem 34 (Bootstrapping Theorem). Let X be a pure d-dimensional simplicial complex,
Λ be a link viewer that respects the non-lazy up-down random walk and for every i let
Fi ∈ Ck

Λ,̂i
(X;R) be a proper i-level cochain and F =

∑p
i=0 Fi. Denote r = k − ∆ (Λ) and

suppose that there are values of {λσ,i,j}σ∈X,i∈[d],j∈[d] such that for every σ ∈ X and G0 a
0-level cochain:λσ,1,k ∥G0∥2 +Ev∈Xσ(0)

[
(1 − λσ∪{v},1,r) ∥M−r

r ΛvG0∥2
]

≤ λσ,0,k ∥G0∥2

maxv∈Xσ(0)
{

λσ∪{v},i−1,r

}
≤ λσ,i,k

Then:〈
(M ′)+

k F, F
〉

≤
p∑

i=0
λ∅,i,k ∥Fi∥2

.

For some constants {ci,j} and where p is the number of level functions that span the space
orthogonal to the constants.

Proof. Note that the difference between this Theorem and Theorem 33 is the choice of Fis.
Specifically, in this Theorem the the cochains Fi are chosen to be proper i-level cochains.
Therefore, due to Lemma 32, they are orthogonal to each other. This allows us to apply
Theorem 33 and note that:〈

(M ′)+
k F, F

〉
≤

p∑
i=0

λ∅,i,k ∥Fi∥2 +
p∑

i=0

p∑
j=1
i<j

c′′
i,j ⟨Fi, Fj⟩ =

p∑
i=0

λ∅,i,k ∥Fi∥2
. ◀
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It is important to note that, unlike the decomposition known in the two-sided case, this
decomposition is not a decomposition to approximate eigenfunctions. When applying the
walk operator to a level function the result might be spread over multiple levels. Theorem 34
also yields a decomposition to the up-down operator:

▶ Corollary 35. With the same assumptions as Theorem 34 it holds that

〈
M+

k F, F
〉

≤
p∑

i=0

(
k + 1
k + 2λ∅,i,k − 1

k + 1

)
∥Fi∥2

.

Proof. The following holds:

〈
M+

k F, F
〉

= k + 2
k + 1

〈
(M ′)+

k F, F
〉

− 1
k + 1 ⟨F, F ⟩

≤ k + 2
k + 1

〈
λ∅,i,kF, F

〉
− 1

k + 1 ∥F∥2 = k + 2
k + 1λ∅,i,k ∥F∥2 − 1

k + 1 ∥F∥2

=
p∑

i=0

(
k + 1
k + 2λ∅,i,k − 1

k + 1

)
∥Fi∥2

. ◀

We use the bootstrapping theorem in order to show both a fine grained analysis of higher
order random walks (for full proof, see Appendix B) and the trickling down theorem (for full
proof, see Appendix A).

6 Fine Grained Analysis of High Dimensional Random Walks From the
Bootstrapping Theorem

In this short section we will present a shortened version of our fine grained analysis of higher
order random walks. For the a more detailed version of this analysis, see Appendix B and
the full version of this paper.

We define the localization link viewer in the following way:

▶ Definition 36 (Localization). Given a simplicial complex X and a cochain F ∈ Ck (X;R)
define the localization link viewer in the following way ∀σ ∈ X : Λℓ

σF = Fσ.

First, we show that it is indeed a link viewer that respects the non-lazy random walk. We
then prove the following:

▶ Lemma 37. Let X be a pure d-dimensional simplicial complex and let F ∈ Ck (F ;R) be a
cochain. Then ⟨F,1⟩ = 0 ⇔ F ∈ ker

(
d∗

−1 · · · d∗
k−1
)
.

We use this observation to gain the following advantage:

▶ Lemma 38 (The advantage). Let X be a d dimensional simplicial complex whose 1-skeleton
is a γ spectral expander. Also let F ∈ Ck

Λℓ,0 (X;R) then:

∥∥d∗
0 · · · d∗

k−1F
∥∥2 ≤

(
1 − k

k + 1 (1 − γ)
)

∥F∥2
.

For more details on the proof of this Lemma, see Lemma 53.
We then use this advantage together with our bootstrapping theorem in order to show

the following:
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▶ Theorem 39 (Random walk decomposition). Let X be a d-dimensional pure simplicial
complex. Also, assume that for every face σ of dimension smaller than d − 2 it holds that
λ2

(
(M ′)+

σ,0

)
≤ λσ. Denote by γτ,i = maxσ∈Xτ (i) (λσ). For every set of proper level cochains

Fi ∈ Ck
Λℓ ,̂i

(X;R) it holds that:

〈
(M ′)+

k

k∑
i=0

Fi,

k∑
i=0

Fi

〉
≤

k∑
i=0

1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γj)

 ∥Fi∥2
.

Proof sketch, for full proof see Theorem 54. We will prove this theorem by applying The-
orem 34 to the k-dimensional non-lazy random walk operator. We start by noting that the
space of k-dimensional cochains that are orthogonal to the constants is comprised of exactly
k level functions as the space orthogonal to the constants is exactly ker (d∗

0 · · · d∗
k).

We prove the rest of this theorem using a recursive argument. First note that for k = 0
the claim holds trivially as

〈
(M ′)+

0 F, F
〉

≤ λσ ∥F∥2 = γ−1 ∥F∥2.

Assume that for every non-empty face σ it holds that λσ,i,k ≤ 1− 1
k−i+1

∏k−1
j=i−1 (1 − γσ,j).

Note that for every i ≥ 1:

λ∅,i,k = max
v∈X(0)

{λv,i−1,k−1}

≤ max
v∈X(0)

1 − 1
k − i + 1

k−2∏
j=i−2

(1 − γσ,j)

 ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γ∅,j).

Consider the left hand side of the recursive formula:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

≤ λ∅,0,k ∥F0∥ . (2)

We show that:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

= λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)
∥∥d∗

0 · · · d∗
k−1F0

∥∥2
.

Consider, again, the left hand side of inequality 2 and note that due to Lemma 53 it suffices
to solve the following:

λ∅,1,k

∥∥F =0∥∥2 + (1 − λ∅,1,k)
(

1 − k

k + 1 (1 − γ−1)
)∥∥F =0∥∥2 ≤ λ∅,0,k

∥∥F =0∥∥2
.

We show that if we set λ∅,0,k = 1 − 1
k+1

∏k−1
j=−1 (1 − γ∅,j) we get that for every face σ and

dimensions i, k:

λσ,i,k ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γσ,j).

Applying Theorem 34 proves the decomposition. ◀
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A Trickling Down

Before we present our random walk decomposition Theorem, let us start with a “warm up”:
An alternative proof for the trickling down theorem [16] that is based on Theorem 34. We
believe that the fact that the main tool presented here can be used to prove the trickling
down theorem is of independent interest: it shows that there is a single, local to global
argument at the heart of both claims. In the trickling down theorem we are interested in the
connection between the 0-dimensional non-lazy random walk on the vertices of a complex
and the 0-dimensional non-lazy up-down random walk on the links of the vertices of the
complex. It will, therefore, be natural to consider a link viewer that does not incur a decrease
in dimension. One such link viewer is the restriction link viewer defined as:

▶ Definition 40 (Restriction). Given a simplicial complex X and a cochain F ∈ Ck (X;R)
define the restriction link viewer in the following way: ∀σ ∈ X : Λr

σF (τ) = F0(τ).

This link viewer maps the 0-dimensional non-lazy up-down random walk to the 0-dimensional
non-lazy up-down on the links of the vertices. We will show that applying Theorem 34
to the restriction link viewer yields the trickling down theorem. However, before applying
Theorem 34, we must first show that restriction is indeed a link viewer that respects the
non-lazy up-down random walk. We state here that this is indeed the case and leave the
proofs of these claims to the full version of this paper.

▶ Lemma 41. The restriction link viewer is a link viewer.

▶ Lemma 42. The restriction link viewer respects the non-lazy random walk operator.

▶ Lemma 43. It holds for every vertex v and every cochain F ∈ C0 (X;R) that:

M−
v,0Λr

vF0 = ⟨Λr
vF,1⟩v = Eu∈Xv(0) [Λr

vF (u)] = (M ′)+
0 F (v)

Proof.

(M ′)+
0 F (v) =

[
(M ′)+

0 F
]

v
=

∑
u∈X(0)

[
(M ′)+

0

]
v,u

F (u) =
∑

u∈X(0)
u∪v∈X(1)

wv (u \ v) F (u)

=
∑

u∈Xv(0)

wv (u) Λr
vF (u) = Eu∈Xv(0) [Λr

vF (u)] . ◀

▶ Corollary 44 (The advantage). If X’s 1-skeleton is a λ-spectral expander it holds for every
vertex v and every cochain F ∈ C0 (X;R) that:

∥d∗
0Λr

vF0∥ =
∥∥M−

0 Λr
vF0
∥∥ ≤ λ2 ∥F∥2

.

Proof. Note that the 1-skeleton of X is a λ-spectral expander and F ∈ C0 (X;R) therefore∥∥∥(M ′)+
0 F

∥∥∥2
≤ λ2 ∥F∥2. Combining this with Lemma 43 yields:

∥∥M−
0 Λr

vF0
∥∥2 =

∥∥∥(M ′)+
0 F

∥∥∥2
=
∥∥∥(M ′)+

0 F0

∥∥∥2
≤ λ2 ∥F0∥2

. ◀
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We can now show how applying Theorem 34 to the restriction link viewer yields Oppenheim’s
trickling down theorem [16, Theorem 4.1].

▶ Theorem 45 (Trickling Down, restated Theorem 16). If it holds that:
For every vertex v: Xv is a λv,0,k spectral expander.
X is connected.

Then it holds that λ∅,0,k = λ∅,1,k

1−λ∅,1,k
.

Proof. Consider the following:

λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)Ev∈X(0)

[∥∥M−
v,0Λr

vF0
∥∥2
]

≤ λ∅,0,k ∥F0∥2
.

Using Corollary 44 it suffices to find values of λσ,i,j such that:

λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)λ2
∅,0,k ∥F0∥2 ≤ λ∅,0,k ∥F0∥2

.

Therefore solving the following inequality would bound λ∅,0,k:

λ∅,1,k + (1 − λ∅,1,k)λ2
∅,0,k ≤ λ∅,0,k.

Note that picking λ∅,0,k = λ∅,1,k

1−λ∅,1,k
satisfies the inequality and thus proves the Theorem. ◀

B Decomposition of the Random Walk Operators

We are now ready to present the random walk decomposition theorem based on Theorem 34.
Unlike the tricking down theorem, here the assumption we have is only on the expansion
of the no-lazy up-down random walk on the vertices. We will, therefore, be interested in a
link viewer that decreases the dimension of the cochain. Namely, the localization link viewer,
defined as follows:

▶ Definition 46 (Localization). Given a simplicial complex X and a cochain F ∈ Ck (X;R)
define the localization link viewer in the following way: ∀σ ∈ X : Λℓ

σF = Fσ.

As with the trickling down theorem, we will be interested in applying Theorem 34 to the
localization link viewer. We start by proving that the localization link viewer that respects
the non-lazy up-down random walk. Full proofs of these claims can be found in the full
version of this paper.

▶ Lemma 47. The localization link viewer is a link viewer.

▶ Lemma 48. The localization link viewer respects the non-lazy random walk operator.

B.1 Gaining the Advantage
Before we present the exact Lemma we use as the advantage step we should expand our
understanding of Λℓ’s level functions. We will begin by characterising the space of cochains
that are orthogonal to the eigenspace of 1 (i.e. the constant functions).

▶ Lemma 49. Let X be a pure d-dimensional simplicial complex and let F ∈ Ck (F ;R) be a
cochain. Then: ⟨F,1⟩ = 0 ⇔ F ∈ ker

(
d∗

−1 · · · d∗
k−1
)
.

Proof. Note that, due to Lemma 20 it holds that: ⟨F,1⟩ = Eσ∈X(k) [F (σ)] = d∗
−1 · · · d∗

k−1(∅).
This proves the lemma. ◀
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Now that we understand the constant part of a cochain we are ready to move on to
understanding cochains of a higher level.

▶ Lemma 50. Let X be a pure d-dimensional simplicial complex, i be a dimension and
F ∈ Ck (X;R) be a cochain. Then: ∀σ ∈ X(i) :

〈
Λℓ

σF,1
〉

σ
= 0 ⇔ F ∈ ker

(
d∗

i · · · d∗
k−1
)
.

Proof. Using Lemma 20 we prove that:

∀σ ∈ X(i) :
〈
Λℓ

σF,1
〉

σ
=

∑
τ∈Xσ(0)

wσ (τ) Λℓ
σF (τ)

= d∗
σ,i−1 · · · d∗

σ,k−2Fσ(∅) =
(
d∗

i · · · d∗
k−1F

)
σ

(∅) = d∗
i · · · d∗

k−1F (σ).

Which proves the Lemma. ◀

▶ Corollary 51. It holds that F is a proper k-dimensional i-level cochain
iff F ∈ Im (dk−1 · · · di) ∩ ker

(
d∗

i−1 · · · d∗
k−1
)
.

Proof. The Corollary holds due the definition of i-level cochains and Lemma 50. ◀

Note that cochains that pure i-level cochains can be thought of as originating in the i-
dimensional faces. For example, for every pure 0-level cochain there is a 0-dimensional
cochain G such that F = d · · · dG. We also note that any cochain that is not originated in
the vertices can be distributed along the links in the sense that they remain orthogonal to
the constants when applying the localization link viewer. We will therefore be interested in
the cochains that originated in the vertices (as these are exactly the cochains which the local
perspective seems to miss). Specifically, we show that the following hold:

▶ Lemma 52. Let F be a k-dimensional proper 0-level cochain then there exists F =0 ∈
C0 (X;R) such that:
1. d∗

−1F =0 = 0
2. ∥F∥2 =

∥∥F =0
∥∥2

3.
∥∥d∗

0 · · · d∗
k−1F

∥∥2 =
∥∥dk−1 · · · d0F =0

∥∥2

The proof of this Lemma can be found in the full version of this paper.
We are now ready to present the advantage we use:

▶ Lemma 53 (The advantage). Let X be a d dimensional simplicial complex whose 1-skeleton
is a γ spectral expander. Also let F ∈ Ck

Λℓ,0 (X;R) then:

∥∥d∗
0 · · · d∗

k−1F
∥∥2 ≤

(
1 − k

k + 1 (1 − γ)
)

∥F∥2

Proof. Let F0 be the projection of F into Ck
Λℓ,0 (X;R)∩

(
Ck

Λℓ,1 (X;R)
)⊥

. Due to Lemma 50
it holds that for every dimension i that Ck

Λℓ,i (X;R) = ker
(
d∗

i−1 · · · d∗
k−1
)

and therefore
F0 ∈ Im (dk−1 · · · d0) ∩ ker

(
d∗

−1 · · · d∗
k−1
)
. We can therefore use Lemma 52 to find F =0 such

that:
1. d∗

−1F =0 = 0
2. ∥F0∥2 =

∥∥F =0
∥∥2

3.
∥∥d∗

0 · · · d∗
k−1F0

∥∥2 =
∥∥dk−1 · · · d0F =0

∥∥2
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Due to Lemma 26 it holds that:

M+k
0 = k

k + 1 (M ′)+
0 + 1

k + 1I

And therefore:∥∥dk−1 · · · d0F =0∥∥2 =
〈
dk−1 · · · d0F =0, dk−1 · · · d0F =0〉 =

〈
M+k

0 F =0, F =0〉 =

=
〈(

k

k + 1 (M ′)+
0 − 1

k + 1I

)
F =0, F =0

〉
=

= k

k + 1

〈
(M ′)+

0 F =0, F =0
〉

+ 1
k + 1

〈
F =0, F =0〉 ≤

≤
(

k

k + 1γ + 1
k + 1

)∥∥F =0∥∥2 =

=
(

k

k + 1γ − k

k + 1 + 1
)∥∥F =0∥∥2 =

=
(

1 − k

k + 1 (1 − γ)
)∥∥F =0∥∥2 =

(
1 − k

k + 1 (1 − γ)
)

∥F0∥2

And thus:∥∥d∗
0 · · · d∗

k−1F
∥∥2 = ∥dk−1 · · · d0F0∥2

≤
(

1 − k

k + 1 (1 − γ)
)

∥F0∥2 ≤
(

1 − k

k + 1 (1 − γ)
)

∥F∥2
. ◀

B.2 Decomposing the Random Walk Operators
Now that we have developed the tools we need, we can move on to strengthening the result
of Alev and Lau [1] by showing a decomposition of the random walk operators. We will do
so by applying Theorem 34 to the localization link viewer:

▶ Theorem 54 (Random walk decomposition). Let X be a d-dimensional pure simplicial
complex. Also, assume that for every face σ of dimension smaller than d − 2 it holds that
λ2

(
(M ′)+

σ,0

)
≤ λσ. Denote by γτ,i = maxσ∈Xτ (i) (λσ). For every set of proper level cochains

Fi ∈ Ck
Λℓ ,̂i

(X;R) it holds that:

〈
(M ′)+

k

k∑
i=0

Fi,

k∑
i=0

Fi

〉
≤

k∑
i=0

1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γj)

 ∥Fi∥2
.

Proof. We will prove this theorem by applying Theorem 34 to the k-dimensional non-lazy
random walk operator. We start by noting that the space of k-dimensional cochains that are
orthogonal to the constants is comprised of exactly k level functions as the space orthogonal
to the constants is exactly ker (d∗

0 · · · d∗
k).

We prove the rest of this theorem using a recursive argument. First note that for k = 0
the claim holds trivially as:〈

(M ′)+
0 F, F

〉
≤ λσ ∥F∥2 = γ−1 ∥F∥2

.

Assume that for every non-empty face σ it holds that λσ,i,k ≤ 1 − 1
k−i+1

∏k−1
j=i−1 (1 − γσ,j)

and note that for every i ≥ 1:
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λ∅,i,k = max
v∈X(0)

{λv,i−1,k−1}

≤ max
v∈X(0)

1 − 1
k − i + 1

k−2∏
j=i−2

(1 − γσ,j)

 ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γ∅,j).

Consider the left hand side of the recursive formula:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

≤ λ∅,0,k ∥F0∥ . (3)

And note that:

λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥∥M
−(k−1)
(k−1) Λℓ

vF0

∥∥∥2
]

= λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥d∗
−1 · · · d∗

k−2Λℓ
vF0
∥∥2]

= λ∅,1,k ∥F0∥2 +Ev∈X(0)

[
(1 − λ∅,1,k)

∥∥Λℓ
vd∗

0 · · · d∗
k−1F0

∥∥2]
= λ∅,1,k ∥F0∥2 + (1 − λ∅,1,k)

∥∥d∗
0 · · · d∗

k−1F0
∥∥2

.

Consider, again, the left hand side of inequality 3 and note that due to Lemma 53 it suffices
to solve the following:

λ∅,1,k

∥∥F =0∥∥2 + (1 − λ∅,1,k)
(

1 − k

k + 1 (1 − γ−1)
)∥∥F =0∥∥2 ≤ λ∅,0,k

∥∥F =0∥∥2

λ∅,1,k + (1 − λ∅,1,k)
(

1 − k

k + 1 (1 − γ−1)
)

≤ λ∅,0,k

k

k + 1 (1 − γ−1) λ∅,1,k +
(

1 − k

k + 1 (1 − γ−1)
)

≤ λ∅,0,k.

Consider the following:
k

k + 1 (1 − γ−1) λ∅,1,k +
(

1 − k

k + 1 (1 − γ−1)
)

≤ k

k + 1 (1 − γ−1)

1 − 1
k

k−1∏
j=0

(1 − γ∅,j)

+ 1 − k

k + 1 (1 − γ−1)

= k

k + 1 (1 − γ−1) − 1
k + 1

k−1∏
j=−1

(1 − γ∅,j) + 1 − k

k + 1 (1 − γ−1)

= 1 − 1
k + 1

k−1∏
j=−1

(1 − γ∅,j).

Thus if we set:

λ∅,0,k = 1 − 1
k + 1

k−1∏
j=−1

(1 − γ∅,j).

We get that for every face σ and dimensions i, k:

λσ,i,k ≤ 1 − 1
k − i + 1

k−1∏
j=i−1

(1 − γσ,j).

Applying Theorem 34 proves the decomposition. ◀
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Note that the decomposition presented in Theorem 54 is the first decomposition theorem
to offer a proper (i.e. not approximate) decomposition of the k-dimensional random walk
whose components are orthogonal to each other.
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