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Abstract
We study the classic weighted maximum throughput problem on unrelated machines. We give a
(1 − 1/e − ε)-approximation algorithm for the preemptive case. To our knowledge this is the first
ever approximation result for this problem. It is an immediate consequence of a polynomial-time
reduction we design, that uses any ρ-approximation algorithm for the single-machine problem to
obtain an approximation factor of (1 − 1/e)ρ − ε for the corresponding unrelated-machines problem,
for any ε > 0. On a single machine we present a PTAS for the non-preemptive version of the problem
for the special case of a constant number of distinct due dates or distinct release dates. By our
reduction this yields an approximation factor of (1 − 1/e) − ε for the non-preemptive problem on
unrelated machines when there is a constant number of distinct due dates or release dates on each
machine.
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1 Introduction

We study the classic scheduling problem of maximizing weighted throughput. We are given a
set J of n jobs, where job j has release date rj , due date dj and nonnegative weight wj . The
jobs are to be scheduled on a set M of m machines so that no two jobs are ever processed
simultaneously on the same machine. Job j completes when it has been processed for an
amount equal to its processing time. If preemption is allowed, the processing of a job may be
interrupted and resumed later at no cost. The objective is to maximize the total weight of
jobs that complete by their due dates. This basic problem has been studied for decades, but
for most of its versions we have no tight approximability results.

We employ the standard 3-field notation α| β| γ of [18], where α stands for the machine
environment, β for the job characteristics and γ for the objective function. When β = pmtn

preemption is allowed. When α = 1 there is a single machine; α = P stands for m identical
parallel machines: job j has processing time pj on every machine i. When α = R the m

machines are unrelated: job j has processing time pij on machine i. In this paper we focus on
the most general machine environment of unrelated machines. The problem of maximizing
weighted throughput on unrelated machines without preemption is denoted by R|rj |

∑
wjŪj .
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5:2 Approximation Algorithms for Maximum Weighted Throughput

We provide a polynomial-time reduction that shows that a ρ-approximation algorithm
for the single-machine problem 1| rj , β|

∑
wjŪj yields a ((1 − 1/e)ρ − ε)-approximation for

R|rj , β|
∑

wjŪj , for any ε > 0 (cf. Theorem 2). For the preemptive version and using different
ideas, Kalyanasundaram and Pruhs gave a 6-approximate reduction from P |rj , pmtn|

∑
wjŪj

to the single-machine problem [13]. Pruhs and Woeginger [19] designed an FPTAS for
1| rj , pmtn|

∑
wjŪj , using a pseudopolynomial algorithm by Lawler [17]. Therefore, our

framework produces a (1 − 1/e − ε)-approximation algorithm for R| rj , pmtn|
∑

wjŪj . To
our knowledge this is the first approximation result for preemptive throughput maximization
on unrelated machines (see also [7]). Our reduction is based on a simple idea. We write a
Configuration LP for the parallel-machine setting and use the single-machine algorithm as
an approximate separation oracle for the dual. Except for the definition of what constitutes
a configuration, the LP and its dual are essentially the same as the ones in [8]. In the latter
a Knapsack subroutine was used as a separation oracle. We round the fractional primal LP
solution using the dependent rounding method of [21, 9]. Despite its simplicity, our reduction
is powerful enough to allow machine-dependent release and due dates: on machine i, job j

can be processed in the interval [rij , dij ]. Moreover, for the preemptive case, our algorithm
produces a schedule on the unrelated machines with the desirable property of no migrations:
every job is processed in its entirety on a single machine. For the non-preemptive case,
our approach shows the existence of a ((1 − 1/e)ρ∗ − ε)-approximation algorithm, where ρ∗
is the approximability threshold of 1| rj |

∑
wjŪj . Despite decades of research, the latter

threshold is yet to be determined; we only know that ρ∗ ≤ 1/2 [4, 2]. The best known bound
for the unweighted case (i.e., wj = 1, ∀j) is 0.6448 [12]. Currently, our reduction does not
improve on the best known non-preemptive algorithms for R| rj |

∑
wjŪj , which achieve a

ratio of 1/2 − ε [2, 4]. Since the single-machine problem is far from well-understood, special
cases have received considerable attention. Our method can translate all existing optimal
algorithms or approximation schemes for special cases of the single-machine problem to an
(1 − 1/e − ε) guarantee on unrelated machines. See Corollary 1 for a list of results.

The unrelated machines setting can be further extended by adding constraints on the
grouping of jobs. We provide one such extension. Every job j has a type tj from a finite set T

of types. Machines need to undergo preparation to accommodate different job types. For every
machine i, we are thus given a set Ei ⊆ 2T that specifies the allowed combinations of types that
may be processed on i in a feasible schedule. Denote this problem as R| rj , types |

∑
j wjŪj .

Using a ρ-approximate oracle for 1| rj , β|
∑

wjŪj we obtain a ((1 − 1/e)ρ − ε) guarantee for
R| rj , β, types |

∑
j wjŪj in time polynomial in

∑
i∈M |Ei|. To avoid clutter we present in

Theorem 2 the result where all jobs have the same type and provide the details for the more
general setting in the Appendix.

Our algorithm for R| rj , pmtn|
∑

wjŪj uses the FPTAS of [17, 19] for the preemptive
case on a single machine as a black box. For the single-machine non-preemptive case, the
dynamic program of Lawler [17] can produce an FPTAS only for the case of similarly ordered
release and due dates, i.e., di < dj implies ri ≤ rj for each pair of jobs i and j. The dynamic
program in [17] yields thus an FPTAS for the non-preemptive version when all jobs have
a common due date or a common release date. It takes significant effort and new ideas to
overcome the restriction of similarly ordered release and due dates. We show how to do this
and obtain a PTAS for the single-machine, non-preemptive version, when there is a constant
number of distinct due dates (or release dates) (cf. Theorems 8 and 9). At a high level our
PTAS combines the FPTAS of [17] with the ideas from the PTAS of Khan et al. [15] for
the Generalized Assignment Problem with a constant number of bins. More specifically,
our approach can be summarized as follows (we restrict our description to the case of a
constant number of distinct due dates; the arguments are symmetric for the constant number
of release dates). By guessing the jobs straddling the due dates, we split the schedule into
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Table 1 Summary of our main results for weighted throughput on unrelated machines; ρ∗ is the
approximability threshold of 1| rj |

∑
wjŪj .

Preemption m # distinct dj # distinct rj Previous This work
√

any any any − 1 − 1/e − ε (Cor. 1)
− any any any 1/2 − ε [2, 4] (1 − 1/e)ρ∗ − ε (Thm. 2)
− 1 O(1) any 1/2 − ε [2, 4] PTAS (Thm. 8)
− 1 any O(1) 1/2 − ε [2, 4] PTAS (Thm. 9)
− any O(1) any 1/2 − ε [2, 4] 1 − 1/e − ε (Cor. 1)
− any any O(1) 1/2 − ε [2, 4] 1 − 1/e − ε (Cor. 1)

bins of two different kinds: (i) bins with jobs whose release dates occur before the bin, and
(ii) bins with jobs whose release date may occur inside the bin. By partitioning the jobs of
J , we split the problem into a constant number of subproblems each defined on a disjoint
subset of jobs and where each subproblem contains only one bin of the second kind. This
allows us to apply the ideas of [17] on the bin of kind (ii), and the GAP ideas of [15] on the
bins of kind (i) simultaneously. The combination of all “parallel” subproblems defines the
dynamic programming state of our PTAS.

By the aforementioned reduction our PTAS yields a (1 − 1/e − ε)-approximation on
unrelated machines when on every machine the number of distinct due dates or release dates
is constant. Even for these special cases, we are not aware of any previous results that
improve upon the 1/2 − ε ratio of [2, 4]. We summarize our main results in Table 1.

Other related work. The single-machine problem without release dates 1| |
∑

j wjŪj is
equivalent in optimality with the problem of minimizing the total weight of late jobs. The
latter was one of Karp’s 21 NP-complete problems [14]. Without release dates, preemption
is of no use; therefore, 1| pmtn|

∑
j wjŪj is also NP-complete. Several versions of the

unweighted problem are hard. 1| rj |
∑

j Ūj is strongly NP-complete [10], and R| rj |
∑

j Ūj

is MAX SNP-hard [3]. P | pmtn|
∑

Ūj is NP-complete [16]. Chuzhoy et al. [6] provide a
(1 − 1/e − ε)-approximation algorithm for the Job Interval Selection Problem, in which for
every job we are given an explicit list of allowed intervals and the intervals selected for all
scheduled jobs must be disjoint. The objective is to maximize the number of scheduled jobs.
Because of the explicit list requirement, the running time of the algorithm of [6] becomes
pseudopolynomial when applied to R| rj |

∑
j Ūj . Hyatt-Denesik et al. [11] provide a PTAS

that works for unweighted jobs on identical machines, when m, the number of distinct release
dates, and the number of distinct due dates, are all bounded by a constant. A number of
further results for identical machines are given in [4, 12].

The paper is structured as follows. In Section 2 we provide the reduction from the
unrelated machines to the single-machine problem and the improved approximation bounds
that are obtained as a consequence. In Section 3 we present the PTAS for the single-machine
case when the number of distinct due dates is fixed. In Section 4 we outline the necessary
modifications to the algorithm from Section 3 in order to obtain a PTAS for the single-machine
when the number of distinct release dates is fixed.

2 Reduction to the single-machine case

In this section we provide a polynomial-time approximation-preserving reduction from
the problem with machine-dependent release and due dates, R| rij , dij , β|

∑
wjŪj , to

1| rj , β|
∑

wjŪj . We provide first a Configuration LP relaxation for R| rij , dij , β|
∑

wjŪj .

APPROX/RANDOM 2023



5:4 Approximation Algorithms for Maximum Weighted Throughput

For machine i ∈ M we define a set C(i) of configurations. A configuration C ∈ C(i) is
a schedule of a subset J ⊆ J of jobs on machine i such that (i) all jobs in J respect their
release and due dates on i (ii) there is no unnecessary idle time (iii) the β-constraints are met.
C(i) is a finite set whose size can be naively bounded by (n!)2n. We slightly abuse notation
and we also view a configuration C as the set of jobs in the corresponding schedule. Without
loss of generality we can assume that C(i) ∩ C(j) = ∅ for i, j ∈ M, i ≠ j. The configuration
LP, here denoted (CLP), is the formulation (1) of [8] and has a variable xC for each machine
i and configuration C ∈ C(i):

max
∑
j∈J

wj

 ∑
i∈M

∑
C∈C(i):j∈C

xC

 (CLP)

∑
C∈C(i)

xC ≤ 1 ∀i ∈ M (1)

∑
i∈M

∑
C∈C(i):j∈C

xC ≤ 1 ∀j ∈ J (2)

xC ≥ 0 ∀i ∈ M, ∀C ∈ C(i) (3)

The set of constraints (1) ensures that to each machine is assigned at most one config-
uration. Constraints (2) ensure that each job is assigned at most once. Clearly, an integer
solution to (CLP) corresponds to a feasible schedule for R| β|

∑
wjŪj . For a configuration

C, let w(C) :=
∑

j∈C wj . The dual of (CLP) is the following:

min
∑
i∈M

yi +
∑
j∈J

zj (D-CLP)

yi +
∑
j∈C

zj ≥ w(C) ∀i ∈ M, ∀C ∈ C(i) (4)

y, z ≥ 0 (5)

In what follows, we will use the notion of a ρ-approximate separation oracle for (D-CLP)
(see e.g., [8]), i.e., a polynomial-time algorithm that, given values y, z, either returns a violated
constraint, or guarantees that values y/ρ, z satisfy constraints (4)-(5). It is well-known (cf.
Lemma 2.2 in [8]) that such an oracle, combined with binary search on the optimal value,
implies a polynomial-time (ρ − δ)-approximate algorithm for solving (D-CLP), and hence
(CLP), for any constant δ > 0 (without any constraint violations). The facet complexity
ϕ of (D-CLP) is O(n log wmax), where wmax = maxj∈J wj . Since the coefficients of the
objective function are all 1, by well-known arguments the optimal value of (D-CLP) can be
represented by O(n2ϕ) bits and hence binary search on the optimum runs in polynomial-time
(see Corollary 10.2a in [20]). Our reduction is based on the following simple fact.

▶ Lemma 1. If there is a polynomial-time ρ-approximation algorithm Aβ for the problem
1| rj , β|

∑
wjŪj , then there is a ρ-approximate separation oracle for (D-CLP).

Proof. Given a candidate solution (y, z) to (D-CLP), the separation oracle has to solve |M |
instances of 1| β|

∑
wjŪj , one instance Ii for each i ∈ M.

We define instance Ii. We have a single machine and the n jobs in J where job j has
processing time pij , release date rij , due date dij . Job j has a (possibly negative) value
vj := wj − zj . There is a violated constraint (4) corresponding to machine i iff there is a
feasible schedule for Ii where the total value of the on-time jobs exceeds yi. Any such schedule
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can contain only jobs of positive value; therefore, we discard any job j with vj ≤ 0. If there
are no jobs of positive value, then the constraint cannot be violated for any configuration in
C(i) and we move to examine the next instance Ii+1.

We run algorithm Aβ on instance Ii. Aβ will return a feasible schedule whose value is
at least ρ-times the maximum value, for ρ ≤ 1. If this value exceeds yi we have identified a
violated constraint. Else the vectors (y/ρ, z) satisfy all constraints (4) for machine i. ◀

▶ Theorem 2. If there is a polynomial-time ρ-approximation algorithm Aβ for the
problem 1| rj , β|

∑
wjŪj , then there is a ((1 − 1/e)ρ − ε)-approximation algorithm for

R| rij , dij , β|
∑

wjŪj where ε > 0 is any constant of our choice.

Proof. By Lemma 1 and Lemma 2.2 in [8] the ρ-approximation algorithm Aβ for 1|β|
∑

wjŪj ,

can be used to compute a (ρ−δ)-approximate solution x∗ to (CLP), for some δ > 0. It remains
to round the fractional solution x∗ to an integer one. We use the dependent rounding method
of [21, 9] in the setting where we have a collection of m star graphs, each corresponding to
a machine i ∈ M and the subset of configurations from C(i) that have been assigned by a
non-zero amount by x∗ to i. We sample independently from m distributions, one for each
star, to produce an integer assignment x̂ of configurations to the machines. Each distribution
and the corresponding sampling method are designed using the technique of [21], so that,
with probability 1, each machine gets one configuration and the assignment of configurations
to a machine respects negative correlation. Moreover, the expectation of x̂C equals x∗

C .

Adapting slightly the analysis for the maximum coverage problem in [21] we obtain that the
expected total weight of the jobs that appear in at least one configuration in the support of
x̂ is at least (1 − 1/e) the value of the x∗ solution. For the sake of completeness we include
in Appendix A the relevant details from [21]. Every configuration chosen by x̂ corresponds
to a feasible schedule on the corresponding machine. To obtain the final schedule, for every
job j that appears in more that one configurations we arbitrarily delete all but one of its
occurrences. Note that every machine gets exactly one configuration by x̂, therefore the
occurrences of j happen each on a different machine. Since x∗ is (ρ − δ)-approximate we
obtain the theorem. ◀

The upcoming corollary collects applications of Theorem 2 to settings where an (F)PTAS
exists for the single machine case. The additive laxity of a job j is defined as dj − pj − rj .

For each application we provide the reference for the single-machine result. Note that the
algorithm in [1] finds an optimal solution.

▶ Corollary 1. There is a polynomial-time (1 − 1/e − ε)-approximation algorithm for
R| rij , dij , β|

∑
j wjŪj where jobs have machine-dependent release and due dates and β can

stand for the following: (i) preemption is allowed [17, 19] (ii) on every machine the number
of distinct release dates or the number of distinct due dates is constant (Theorems 8, 9)
(iii) on every machine the number of distinct processing times is constant and all jobs have
unit weights [11] (iv) for every machine i and job j, pij = pi, i.e., all jobs have the same
processing time on machine i [1] (v) on every machine the jobs have equal additive laxity [5]
(vi) on every machine release dates and due dates are similarly ordered [17, 19].

In all the results of Corollary 1, we used as a lower bound for the optimum the value
of (CLP), i.e., the value of a (fractional) schedule in which a job may be simultaneously
executed on more than one machine. On the other hand the algorithm of Theorem 2 produces
an integer solution where every scheduled job runs completely on one machine, i.e., in the
preemptive case it produces a schedule with no migrations. The following is immediate.

APPROX/RANDOM 2023



5:6 Approximation Algorithms for Maximum Weighted Throughput

▶ Corollary 2. The approximation ratio of (1 − 1/e − ε) for R| rij , dij , pmtn|
∑

j wjŪj holds
both for the problem version where a job may be simultaneously executed on two or more
machines and for the version where this is not allowed.

The above can be extended to the setting where jobs have different types, see Appendix B.

3 Constant number of distinct due dates

In this section we provide a PTAS for the setting where we have a single machine and the
number of distinct due dates is constant.

3.1 Preliminaries
For a set of jobs S, we denote by w(S) =

∑
j∈S wj its total weight, p(S) =

∑
j∈S pj its

total processing time. Wlog only jobs that meet their due dates are processed in a feasible
schedule. Given a schedule σ in which a set S of jobs is processed we denote by w(σ) the
quantity w(S). For a time interval B we denote its length by |B|. The jobs scheduled in B

are jobs that start and finish in the interval. We slightly abuse notation and denote by w(B)
the total weight of the jobs scheduled in B if an associated schedule is clear from the context.

We assume that the due dates of the n jobs take a value out of k possible numbers
D1 ≤ D2 ≤ . . . ≤ Dk. Let D0 := 0. We assume that time 0 coincides with the earliest
release date. Wlog the time horizon T = Dk. For an integer m, the notation m ∈ (i, k] (resp.
m ∈ [i, k]) stands for m = i+1, . . . , k (resp. m = i, . . . , k). Similarly m ∈ [i, k) is a shorthand
for m = i, . . . , k − 1. We denote by Ri, i ∈ [1, k], the set of jobs j s.t. Di−1 ≤ rj < Di.

3.2 A structure lemma
In this section we devise structural properties of a near-optimal solution and show how to
pre-compute in polynomial time some of its features.

Let OPT be an optimal solution for the problem 1| rj |
∑

wjŪj . Wlog w(OPT ) ≥ wmax.

Let ε1 > 0 be any constant. We apply the classic knapsack rounding in order to reduce
the job weights within a polynomial range: by rounding all job weights down to the closest
multiple of θ := ε1wmax/n, the total weight is still at least (1 − ε1)OPT , but now all job
weights are between 1 and O(n/ε1) in units of θ. In addition, we can impose the following
special structure:

We shift all scheduled jobs later, to start as late as possible: the schedule consists of
contiguous (i.e., without idle time) blocks of jobs, each finishing at a due date (with the
last block finishing at Dk).
In every interval [Di−1, Di), we can rearrange the jobs that start and finish within the
interval to be scheduled in non-decreasing order of release dates. Note that any jobs from
the set Ri that are scheduled in the interval, are scheduled last.

A job j straddles time t if j starts at or before t and finishes after t. Let S1, S2, . . . , Sk−1
be the jobs straddling due dates D1, . . . , Dk−1, and let si, fi be the starting and finishing
times of straddler Si. Note that due to the structure of OPT , some due dates may not have
a straddler, just like D0, Dk; in this case Si = ∅. Wlog we may assume that no job straddles
more than one due date. We will assume that we know the straddlers by enumerating all
O(nk) possibilities.

Let Km = (fm−1, sm) be the interval between the end of Sm−1 and the beginning of Sm,
and |Km| ≤ Dm − Dm−1 its length. Km is the concatenation of intervals B1

m, B2
m, . . . , Bm

m

in this order, so that Bh
m contains only the jobs of Rh scheduled in Km. We refer to these
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intervals as bins. Note that the jobs in each Bh
m are scheduled al late as possible, and each

bin straddles only release dates. Figure 1 shows bins B1
m, . . . , Bm−2

m , Bm−1
m , Bm

m of Km. The
following lemma will allow us to enumerate the bin sizes in polynomial time for the PTAS.

...

rhrh+1rh+2rh+3rh+4rh+5rh+6

Dm−1 Dm

B1
m

Bm−2
m

Bm−1
m

Bm
mSm−1 Sm

sm−1 smfm−1 fm

Figure 1 Bins B1
m, . . . , Bm−2

m , Bm−1
m , Bm

m of Km. Bin Bm
m contains jobs in Rm, i.e., with release

dates rh, rh+1, . . . , rh+5. Jobs with release date rh+6 will be scheduled in Bm−1
m .

▶ Lemma 3. Let ε > 0 be any given constant. Let be J ⊆ J be a set of jobs feasibly scheduled
in an interval I without idle time where I does not contain a due date. Then there is Ĵ ⊆ J ,
and a subinterval Î of I s. t. (i) Î has the same right endpoint as I, (ii) w(Ĵ) ≥ (1 − 3ε)w(J)
and p(Ĵ) ≤ |Î| ≤ |I|, (iii) the jobs in Ĵ can be feasibly scheduled without idle time in Î, and
(iv) |Î| takes values from a set of size O(n1/ε2 log1+ε |I|).

Proof. Let σ be the feasible schedule of the jobs of J in I. The set Ĵ and the corresponding
feasible schedule σ̂ are derived in two phases. We adapt the methods in [15] to account for
the presence of release dates in I. In Phase 1, we apply Theorem 11 of [15] for a single bin
that corresponds to interval I. We establish the existence of subsets X and Y of J. Define
J ′ = J − X − Y. By Theorem 11, for every j ∈ J ′, pj ≤ ε(|I| − p(X)). We produce a schedule
σ′ of X ∪ J ′ by deleting from σ the jobs of Y and replacing them by idle time. Schedule σ′

executes in the same interval I as σ. By Theorem 11, w(X ∪ J ′) ≥ (1 − ε)w(J).
In Phase 2, we extend the trimming method of [15] to show that there is R ⊆ J ′ s.t.

w(R) ≤ (2ε/(1−ε))w(J ′) and there is an integer β s.t. p(J ′ −R) ≤ (1+ε)β ≤ |I|−p(X). See
Appendix D.3. We set Ĵ = X ∪ (J ′ − R). We have that w(Ĵ) ≥ (1 − ε)(1 − 2ε/(1 − ε))w(J) =
(1 − 3ε)w(J). The schedule σ̂ results from σ′ by deleting all jobs in R and shifting jobs as
needed to the right to remove any idle time. This is feasible, since I doesn’t contain any due
dates. It suffices to set Î to an interval that ends at the right endpoint of I such that |Î|
equals p(Ĵ). By Theorem 11, there are O(n1/ε2) choices for the set X and accordingly that
many choices for p(X). The value p(J ′ − R) can be upper-bounded by a number that takes
O(log1+ε |I|) many values. Therefore |Î| takes values from a set of size O(n1/ε2 log1+ε |I|). ◀

We apply Lemma 3 with ε := ε2 to the jobs scheduled in OPT in each of the O(k2)
bins Bi

m, m ∈ [1, k], i ∈ [1, m]. There are sets Xi
m and integers ai

m such that there is a
near-optimal feasible schedule that assigns to each bin Bi

m a set Si
m of “small” jobs in

addition to Xi
m so that p(Si

m) ≤ (1 + ε2)ai
m . By enumerating all O(nO(k2/ε2

2)(log1+ε2 Dk)k2)
possibilities, we can assume that we have determined all the Xi

m’s and ai
m’s.

Let ÔPT be the solution of value at least (1 − 3ε2)(1 − ε1)w(OPT ) obtained from OPT

by replacing each bin Bi
m by a (smaller) bin B̂i

m with known size |B̂i
m| = p(Xi

m) + (1 +
ε2)ai

m . By Lemma 3 |B̂i
m| ≤ |Bi

m|. Then Km has been replaced by a (smaller) K̂m of size
K̂m =

∑m
i=1 |B̂i

m|, and all scheduled jobs are shifted as late as possible, while maintaining
S1, S2, . . . , Sk−1 as straddlers. Figure 2 shows ÔPT .

Expansion of Xi
m. Let |B̂i

m|′ := |B̂i
m| − p(Xi

m) be the bin space available for jobs other
than Xi

m in ÔPT , i.e., job sets J i
m s.t. p(J i

m) ≤ |B̂i
m|′. In order to be able to apply the

techniques of [15] later, we need to keep in ÔPT only jobs of J i
m that satisfy a property

APPROX/RANDOM 2023
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0

D1 Di−1 Di DK

t

... ...S1 Si−1 SiK̂1 K̂i−1 K̂i K̂k

r1r2rhrh+1rh+2rh+3rn−1rn

s1 si−1
sif1 fi−1 fi

rh+4

Figure 2 An approximate optimal schedule ÔP T . Note that the length of K̂i is at most the
length of the original Ki. Release dates are in non-increasing order. Ri contains all jobs with release
dates rh, rh+1, rh+2, rh+3.

stronger than the property pj ≤ ε(|Bi
m| − p(Xi

m)) guaranteed by Lemma 3 for all jobs of
J i

m. We apply the structure theorem of [15] (Theorem 11 in Appendix D) on each job set
J i

i+1, J i
i+2, . . . , J i

k for each i ∈ [1, k), to define job sets W i
m and U i

m with |W i
m| = O(1/ε2

3),
such that w(∪i,mU i

m) ≤ ε3ÔPT and

pj ≤ ε3(|B̂i
m|′ − p(W i

m)), ∀j ∈ J i
m − W i

m − U i
m.

Note that bins Bi
i , i = 1, 2, . . . , k do not participate in this process, and, therefore, W i

i := ∅.
We expand the sets Xi

m to include W i
m, i.e., we reset Xi

m := Xi
m ∪ W i

m for all i and m. The
sets W i

m can be enumerated in O(nk2/ε2
3) time.

▶ Definition 1. A job j is large if j ∈
⋃

i,m Xi
m.

▶ Definition 2. A job j is small for bin B̂i
m if j is not large and pj ≤ ε3(|B̂i

m|′ − p(W i
m)).

Since | ∪i,m Xi
m| = O(k2/(min{ε2, ε3})2), for the rest of the paper we will assume that

we have “guessed” all sets Xi
m of large jobs and their placement in bins. Keeping in ÔPT

only the large and small jobs, as defined in Definitions 1 and 2, ÔPT still achieves total
weight at least (1 − ε3)(1 − 3ε2)(1 − ε1)OPT .

Calculation of times si, fi. Since we can enumerate them in polynomial time, in what
follows we will assume that we have “guessed” sizes |K̂i|, i = 1, . . . , k. Starting from Dk, and
going backwards in time, we use these sizes to calculate times fk−1, sk−1, fk−2, sk−2, . . . , f1, s1.
We should only be careful in case si − |K̂i| − p(Si−1) < Di − Di−1, i.e., when the beginning
of K̂i is more than p(Si−1) time units after Di−1. In this case, we don’t allow Si−1 to be
scheduled after Di−1 (as a non-straddler), but we set si−1 := Di−1, and continue.

The following lemma summarizes the properties of ÔPT :

▶ Lemma 4 (Structure Lemma). There is a feasible schedule ÔPT of weight at least (1 −
ε3)(1 − 3ε2)(1 − ε1)OPT , such that:

Job weights are between 1 and O(n/ε1).
There are k known straddlers Si, with known starting and finishing times si, fi, i ∈ [1, k].
Jobs are scheduled in intervals K̂i ⊆ (fi−1, si) contiguously as late as possible, and in
Earliest Release Date (ERD) order. Each K̂i is adjacent to Si, and its size |K̂i| is known.
Only large and small jobs are scheduled; the large jobs can be computed in polynomial-time.

3.3 A PTAS for ÔP T

We order the jobs in Latest Release Date (LRD) ordering, i.e., in non-increasing release date
order r1 ≥ r2 ≥ . . . ≥ rn = 0. The algorithm will schedule the jobs one at a time, and a job
scheduled in some bin B̂i

m of K̂i is scheduled right before the jobs already scheduled in B̂i
m.

There are at most k2 different bins overall. Recall that all job weights are at most O(n/ε1),
hence there are O((n2/ε2

1)k2) different combinations of total weights for the bins.
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3.3.1 Intuition
When there is only one due date D1, the DP of [17] for non-preemptive maximum throughput
is applicable, because its requirement of similarly ordered release and due dates is met.
Crucially, the correctness of the algorithm is based on DP subproblems computing the
minimum total schedule time needed to achieve a total weight target (cf. Appendix C).
Unfortunately, this approach cannot work with more than one due date, because for a
given Ri, the notion of minimum total scheduling time is not well-defined for all its bins
simultaneously.

For a different approach that allows for simultaneous scheduling across all K̂m’s, one
may turn to [15], who give a very interesting PTAS for the Generalized Assignment Problem
(GAP) with a constant number of bins (cf. Appendix D). When discretizing the state space
of the dynamic program the algorithm of [15] augments bin capacities by a (1 + ε) factor. It
then employs trimming (see Appendix D.2) to remove a low-weight contiguous set of jobs,
which exists by the Pigeonhole Principle, so that the remaining jobs fit in the bins with
the original capacities restored. In our case, increasing the bin capacities may entail that
in some K̂m, jobs may end up scheduled to start before their release dates in (fm−1, sm).
(We remind the reader that fm−1 > Dm−1 is the completion time of the (m − 1)th straddler
and sm ≤ Dm is the start time of the mth straddler). Unfortunately, the trimming part of
[15] may fail when applied to such a block of jobs: it can only work if the jobs removed are
the latest ones in the block so that all the previous ones can be shifted later and meet their
release date. On the other hand, if all release dates of the jobs in the block occur before
Dm−1, then the whole procedure works as for GPA, without any problems. The two key
observations for deriving a PTAS for our problem are the following:
Obs1 We can break the problem into a constant number of subproblems that schedule disjoint

subsets of jobs: we are going to have one subproblem for each set Ri, i = 1, 2, . . . , k.
Obs2 The subproblem for Ri consists of at most k bins B̂i

i , B̂i
i+1, . . . , B̂i

k, each being a “slice”
of K̂i, K̂i+1, . . . , K̂k (recall that in each K̂m, jobs in Rg are scheduled before jobs in Rh

when g < h). Note that the release dates of jobs in Ri do not affect the scheduling of
bins B̂i

i+1, . . . , B̂i
k, since these release dates occur before Di and all those intervals start

after Di; for these bins the PTAS of [15] for GAP is applicable, when the bin capacities
|B̂i

i+1|, . . . , |B̂i
k| are given. This leaves bin B̂i

i , which is scheduled using the minimum
total processing time idea of [17], while respecting the total processing time and weight
targets of the rest of the bins and so that the release dates of Ri are respected.

Obs1 above together with the total processing times, |B̂i
i |, . . . , |B̂i

k|, for the bins for each
Ri, allows us to combine all “parallel” subproblems in a common DP state, computed by k

“parallel” applications of Obs2.

3.3.2 Scheduling of the jobs
Recall that we have “guessed” the large jobs Xi

m that have already been slotted for each bin
B̂i

m. We consider jobs one-by-one for scheduling in a Latest Release Date (LRD) ordering. If
large and small jobs have the same release date, the large jobs are scheduled first. Recall that
Lemma 3 allowed us to “guess” bin sizes |B̂i

m|. Let |B̂i
m|′ := |B̂i

m| − p(Xi
m) be the bin space

available for jobs small for B̂i
m, as defined in Definition 2. Note that given the (guessed)

|B̂i
m|′ and W i

m the algorithm can determine whether a job j is small for bin B̂i
m.

Resource augmentation. We increase the bin capacities allocated to small jobs |B̂i
m|′ in

each bin B̂i
m, m > i, and set |B̂i

m|′′ := (1 + ε3)|B̂i
m|′, and round the job processing times

according to the resource augmentation scheme of [15] (cf. Appendix D.1). The bin capacity
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allocated to the large jobs of the bin is not augmented. Now small jobs may have different
processing times for different bins; let pmj be the processing time of a small job j ∈ Ri

for bin B̂i
m (pmj = ∞ if j cannot be scheduled in B̂i

m, e.g., when it is not small for this
bin, according to definition 2). Let ÔPT a be the maximum throughput schedule for the
resource-augmented instance. The following lemma is a direct corollary of Lemma 1 in [15].

▶ Lemma 5. Schedule ÔPT is feasible for the resource-augmented instance, hence
w(ÔPT a) ≥ w(ÔPT ).

DP states and state transitions. Recall that jobs are scheduled one by one, in LRD
order. The DP table records whether a given state is feasible. It is initialized with value ∞,
indicating infeasibility, everywhere except for base-case-state (0, 0, . . . , 0) that is initialized
to value 1, indicating feasibility. Table entries that cannot be reached by legitimate state
transitions as described below will remain infeasible throughout the execution.

Assume that the first j − 1 jobs have been considered, and we are now considering
job j ∈ Ri. For brevity, we present the portion (substate) Si(j − 1) of the DP state
S(j − 1) = (S1(j − 1), S2(j − 1), . . . , Sk(j − 1)) that corresponds to the i-th “parallel”
subproblem, defined for jobs in Ri. It has the form of the following tuple:

Si(j − 1) = (Zj−1
i , W j−1

i , Zj−1
i+1 , W j−1

i+1 , . . . , Zj−1
k , W j−1

k ),

where Zj−1
m is the processing time used by the jobs in {1, 2, . . . , j − 1} ∩ Ri scheduled in B̂i

m,
and W j−1

m is their total weight. Scheduling job j ∈ Ri produces the following transitions
S(j − 1) → S(j):

Large job j ∈ Xi
m is scheduled in B̂i

m, m ≥ i : There is a transition to state S(j) with

Si(j) = (Zj−1
i , W j−1

i , . . . , Zj−1
m + pmj , W j−1

m + wj , . . . , Zj−1
k , W j−1

k ).

Job j is scheduled as small in a B̂i
m, m > i: We check whether the following conditions

hold: (i) dj is not violated, (ii) large jobs in Xi
m with release dates smaller than rj can

still be feasibly scheduled in B̂i
m, (iii) Zj−1

m + pmj ≤ |B̂i
m|′′, and (iv) there isn’t already a

feasible state T (j − 1) with

T i(j − 1) = (T, W j−1
i , . . . , Zj−1

m + pmj , W j−1
m + wj , . . . , Zj−1

k , W j−1
k )

such that T < Zj−1
i . Note that large jobs with release dates at least rj have already been

scheduled before j, so given Zi
m it is easy to check condition (iii) above. If all conditions

hold, then there is a transition to state S(j) with

Si(j) = (Zj−1
i , W j−1

i , . . . , Zj−1
m + pmj , W j−1

m + wj , . . . , Zj−1
k , W j−1

k ),

otherwise j is not scheduled in B̂i
m.

Job j is scheduled as small in B̂i
i : We check whether the following conditions hold: (i)

large jobs in Xi
i with release dates smaller than rj can still be feasibly scheduled in LRD

order in B̂i
i , (ii) Zj−1

i + pij ≤ |B̂i
i |′′, and (iii) the scheduling of j doesn’t violate rj . If all

conditions hold, then we consider the state T (j − 1) with

T i(j − 1) = (Z, W j−1
i + wj , Zj−1

i+1 , W j−1
i+1 , . . . , Zj−1

k , W j−1
k )

that, after scheduling the j −1 first jobs, achieves total weight W j−1
i +wj in B̂i

i , while the
rest of the state is the same as S(j − 1). If state T (j − 1) is not feasible, then we schedule
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j in B̂i
i as in the previous case. Otherwise, Z is well defined as a sum of processing times.

Then there is a transition to state S(j) with

Si(j) =
{

(Zj−1
i + pij , W j−1

i + wj , Zj−1
i+1 , W j−1

i+1 , . . . , Zj−1
k

, W j−1
k

), Zj−1
i + pij < Z

T i(j − 1), Zj−1
i + pij ≥ Z.

(6)

Job j is not scheduled: In this case S(j) = S(j − 1).

After the feasibility of all DP states S(j) = (S1(j), S2(j), . . . , Sk(j)) has been computed
for all j, we keep as a solution the feasible state S(n) with the maximum sum of total weights
in all bins, as well as the schedule S that achieves it.

▶ Lemma 6. The DP algorithm correctly outputs a feasible schedule S that is as good as
ÔPT a, if the latter exists.

Proof. First note that ÔPT a complies with the structure of Lemma 4. Let ÔPT a(j) be the
sub-schedule of ÔPT a containing only jobs 1, . . . , j in the LRD order. Note that ÔPT a(j)
continues to comply with the structure of Lemma 4. Let Z̄i

m(j), W̄ i
m(j) be the total processing

time and total weight scheduled in B̂i
m by ÔPT a(j).

▷ Claim 7. For j = 0, 1, . . . , n, there is a feasible state S(j) with substates

Si(j) = (Zi
i (j), W i

i (j), Zi
i+1(j), W i

i+1(j), . . . , Zi
k(j), W i

k(j)), i = 1, . . . , k

corresponding to jobs in Ri, produced by the DP after considering jobs 1, 2, . . . , j, such that

Zi
m(j) = Z̄i

m(j), W i
m(j) = W̄ i

m(j), ∀i, m : m > i, and Zi
i (j) ≤ Z̄i

i (j), W i
i (j) = W̄ i

i (j), ∀i.

Proof. The proof is by induction on j. For the base case j = 0, the feasible DP state
S(0) = (0, 0, . . . , 0) proves the claim trivially true. We assume that the claim is true up to
job j − 1, and we consider the case j ∈ Ri. Let S(j − 1) be the state which by the inductive
hypothesis corresponds to ÔPT a(j − 1). There are three cases to consider.

If j is not scheduled in the transition from ÔPT a(j − 1) to ÔPT a(j) then setting
S(j) = S(j − 1) satisfies the claim.

If ÔPT a(j) is obtained from ÔPT a(j − 1) by scheduling j in B̂i
m for some m > i, then

the transition from the state S(j − 1) to a state S(j) with the same placement of j as
ÔPT a(j − 1) is feasible, since it is feasible for ÔPT a(j), and S(j) satisfies the claim.

If ÔPT a(j) is obtained from ÔPT a(j − 1) by scheduling j in B̂i
i , then the transition

from state S(j − 1) of the inductive hypothesis to a state S(j) when the same placement
of j as in ÔPT a(j − 1) is tried, can follow one of two possibilities: (i) If there is another
feasible state T (j − 1) with Zi

i value T smaller than Zi
i (j − 1) + pj ≤ Z̄i

i (j − 1) + pj , W i
i

value U equal to W i
i (j − 1) + wj , and all other values equal to the values of S(j − 1), then

the transition followed by the DP (bottom branch of (6)) sets S(j) = T (j − 1) (which
means that j is not scheduled in S(j)), and the claim is satisfied. (ii) If there is no such
state T (j − 1), then by the inductive hypothesis Zi

i (j − 1) ≤ Z̄i
i (j − 1) which implies that

Zi
i (j − 1) + pj ≤ Z̄i

i (j − 1) + pj . In addition, the transition of the DP for this case (top
branch of (6)) is feasible, since it was feasible for ÔPT a(j − 1), and the new state S(j) it
produces again satisfies the claim. ◁

The claim proves that there is a path of feasible states of the DP that achieves the same
total weight as ÔPT a(j) for all j, and, therefore, there is a feasible state S(n) of total weight
equal to w(ÔPT a(n)) = w(ÔPT a). ◀
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Trimming. Schedule S corresponds to scheduling in a resource-augmented set of bins
B̂i

m, m > i. Following [15], we apply trimming (cf. Appendix D.2) to each one of them with
γ := 1 + ε3, δ := ε3, ε := ε3, for a total loss of at most 2ε3ÔPT a total weight. The resulting
schedule is feasible for the original problem without speed-up, and its total weight is at least
(1 − ε)OPT , where ε ≤ 1 − (1 − ε1)(1 − 3ε2)(1 − 3ε3).

Running time. Let us focus first on the subproblem for a fixed Ri. There are C :=
O(nO(k/ε2)(log1+ε Dk)k) choices for all the large sets and the bin sizes. For each choice we
run the DP for resource-augmented bin sizes, with rounded weight values, which gives a total
of O((n2/ε2)k · C) choices for the coordinates, except for the first one, of the substate Si().
By Claim 7, for every such combination of coordinates we keep one substate. To place job
j ∈ Ri we examine O(k) transitions. Taking into account that there are k sets R1, . . . , Rk,
we obtain a total running time of O((n log Dk)O(k2/ε2)).

▶ Theorem 8. There is a PTAS for the maximum weighted throughput problem on a single
machine with a constant number of distinct due dates.

Theorem 8 is used in part (ii) of Corollary 1.

4 Constant number of distinct release dates

The ideas behind Theorem 8 can easily be applied to provide a PTAS for the case of a
constant number of release dates. Let dmax = maxj∈J dj . The role of due dates is now played
by the k different release dates 0 = r1 ≤ r2 ≤ . . . ≤ rk, that define k intervals [ri, ri+1),
i ∈ [1, k − 1], and [rk, dmax). Note that release dates are now ordered in non-decreasing order.
Let Si be the straddler of ri, i ∈ [2, k] and S1 = ∅.

After the rounding of the job weights, we consider an optimal schedule OPT where jobs
are now shifted as early as possible. Intervals Km = (fm, sm+1) between straddlers Sm, Sm+1
are defined as before, and Lemma 3 applies to show the existence of a subset of the scheduled
jobs of Km that can now be scheduled in (smaller) intervals K̂m starting also at fm and
with polynomially many possible sizes. This is ensured by Lemma 3, modified to apply to
bins straddling only due dates, and by scheduling jobs within the bins in Earliest Due Date
(EDD) order and as early as possible. When empty space is created within a bin, we shift
jobs to the left on the time axis as needed so as to eliminate idle time. The only additional
change to Lemma 4 is that now jobs within each interval are scheduled in EDD order.

The PTAS description is virtually the same, with the role of Ri played by Di, the set
of jobs with due dates in [ri, ri+1). Bins B̂i

m, i ∈ [m, k], of K̂m are defined similarly to
Section 3.3, where B̂i

m contains jobs scheduled in K̂m with due date in K̂i. These bins appear
from left to right in K̂m, i.e., in order of increasing i. The DP transitions are also defined
similarly, to always respect (i) the due dates, (ii) the bin capacities, and (iii) the invariant
that the jobs from Di that are scheduled in B̂i

i occupy the minimum processing time, given
the processing time target for bins B̂i

m, m ∈ [1, i), and the total weight targets for bins B̂i
m,

m ∈ [1, i]. By the latter invariant, Lemma 6 applies also to this case. Hence we have:

▶ Theorem 9. There is a PTAS for the maximum weighted throughput problem on a single
machine with a constant number of distinct release dates.

Theorem 9 is used in part (ii) of Corollary 1.
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A Technical details for the proof of Theorem 2

We explain how the dependent rounding method of [21, 9] is used in the proof of Theorem 2.
The details in this section are a simple application of the work of Srinivasan [21] (see
also [9]) and we provide them here for the sake of completeness. Let x∗ be a (ρ − δ)-
approximate (fractional) solution of (CLP). Without loss of generality we can assume that∑

C∈C(i) x∗
C = 1, ∀i ∈ M.

Let C̄(i) be the configurations in C(i) with nonzero value in x∗. We define x(i) to be the
projection of the x∗ vector to the coordinates that correspond to configurations in C̄(i).
Denote |C̄(i)| by ti. Srinivasan [21] defines a distribution D(ti, x(i)) over vectors in {0, 1}ti

such that any vector X sampled from the distribution satisfies the following three properties:
(A1) (probability preservation) ∀C ∈ C̄(i), Pr[XC = 1] = x∗

C .

(A2) (degree preservation) Pr[|{C ∈ C̄(i) : XC = 1}| = 1] = 1.

(A3) (negative correlation) For all S ⊆ C̄(i) we have Pr[(
∧

C∈S(XC = 0)] ≤
∏

C∈S Pr[XC =
0] and Pr[(

∧
C∈S(XC = 1)] ≤

∏
C∈S Pr[XC = 1].

The existence of the distribution is established algorithmically:

▶ Theorem 10 ([21]). Given the vector x(i) there is a linear-time algorithm that generates a
sample from distribution D(ti, x(i)).

The rounding algorithm follows. It takes as input the vector x∗.

Algorithm 1 DependentRounding.

For all i ∈ M, do independently:

1. Using the algorithm of Theorem 10, sample from D(ti; x(i)) to obtain vector
X(i) ∈ {0, 1}ti . By Property (A2), X(i) has a unique entry equal to 1.
2. Assign the configuration C that corresponds to the nonzero entry of X(i) to
machine i.

For every i ∈ M and C ∈ C(i) s.t. X(i) = 1, we set x̂C = 1. The remaining entries of
x̂ are set to zero. The rest of the proof simply adapts the analysis of [21] for Maximum-
Coverage-type problems. Since the sets C̄(i) are pairwise disjoint we slightly abuse notation
and omit the machine superscript from the vectors X(i). For j ∈ J , let zj be the random
variable that takes value 1 if job j is assigned by Algorithm DependentRounding to at
least one machine and 0 otherwise. Let C denote

⋃
i∈M C(i).

Pr[zj = 1] =1 − Pr[
∧

C∈C:C∋j

(XC = 0)]

≥1 −
∏

C∈C:C∋j

Pr[XC = 0] (7)

=1 −
∏

C∈C:C∋j

(1 − x∗
C) (8)

Inequality (7) follows from the negative correlation property (A3), and equality (8) from
property (A1). Define z∗

j :=
∑

C∈C:C∋j x∗
C . This is the fractional amount by which job j

is scheduled, and the objective value of the solution x∗ is equal to
∑

j∈J wjz∗
j . Observe

that for every j, z∗
j ≤ 1. Using calculus we obtain that the expression in (8) is greater than

(1 − 1/e) · z∗
j .



G. Karakostas and S. G. Kolliopoulos 5:15

B Scheduling with job types

In this section we show how the proofs in Section 2 can be extended to accommodate job
types. Only jobs with certain types can be scheduled together on each machine and the
actual combination of types affects the job characteristics.

The extended problem is defined as follows. Every job j has a type tj from a finite set
T of types. For every machine i, we are given a set Ei ⊆ 2T that specifies the allowed
combinations of types that may be processed on i in a feasible schedule. We assume
from now that

∑
i∈M |Ei| is bounded by a polynomial in n and m. For machine i, let

Ei = {ei(1), . . . , ei(ki)} be the set of allowed combinations. In a feasible schedule, the set Ji

assigned to machine i must meet the following two additional constraints. C(i): all jobs in
Ji must have a type in ei(l) for some ei(l) ∈ Ei. We call this type combination ei(l) active
for machine i. C(ii): The jobs in Ji have processing times, release dates, and due dates that
depend on the active type ei(l), and are denoted pl

ij , rl
ij , dl

ij respectively.
We denote by R| rij , dij , types |

∑
j wjŪj the problem of maximizing weighted through-

put on unrelated machines under the additional constraints C(i) and C(ii). Using a ρ-
approximate oracle for 1| rj , β|

∑
wjŪj we show how to obtain a ((1 − 1/e)ρ − ε) guarantee

for R| rij , dij , β, types |
∑

j wjŪj . We outline only the necessary modifications in the proofs
of Section 2.

The definition of a configuration is now as follows. A configuration C ∈ C(i) is a schedule
of a subset J ⊆ J of jobs on machine i such that (i) all jobs in J have types from some set
ei(l) ∈ Ei (ii) job j in J has processing pl

ij and it must be scheduled in the interval [rl
ij , dl

ij ]
on i (iii) there is no unnecessary idle time (iv) the β-constraints are met.

In the proof of Lemma 1 instead of a single instance Ii for machine i we define ki

instances, one for every element of Ei. Instance Ii(l) is defined on job set Ji(l) = {j ∈ J |
j has type in ei(l)}. Job j in Ji(l) has processing time, release date, and due date pl

ij , rl
ij , dl

ij

respectively. Running algorithm Aβ on each instance Ii(l), l = 1, . . . , ki, will detect whether
there is a configuration C in C(i) with total value more than yi/ρ.

The rounding algorithm in the proof of Theorem 2 will return on every machine a
configuration C s.t. all jobs in C have a type from a set ei(l) ∈ Ei. The rest of the proof
holds as before, including the analogous extensions of Corollaries 1 and 2 to the setting with
types.

C FPTAS for similarly ordered release and due dates [17]

When release and due dates are similarly ordered, Lawler ([17], Section 6) observed that
there is a non-preemptive EDD (Earliest Due Date) optimal schedule, that can be computed
by the following DP:

Cj(w) = min{Cj−1(w), max{rj , Cj−1(w − wj)} + pj}, (9)

where Cj(w) is the minimum total scheduling time needed to achieve total weight at least
w, by a feasible schedule of the first j jobs in an EDD order. If the right-hand side of (9)
violates any di, then Cj(w) = ∞. While the running time of this DP is O(n2wmax), it can be
transformed into a FPTAS for maximum weighted throughput by rounding the job weights
as in the classic knapsack problem.

The FPTAS can be adapted to work with the setting of Section 3, since there is also
an optimal schedule that has all its jobs shifted as late as possible such that within each
contiguous block of jobs that does not contain a due date, jobs appear in earliest release date
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order. The correctness of the algorithm is not affected if we construct the optimal schedule in
a “towards the past” direction, starting at dmax, and examining the jobs in a Latest Release
Date (LRD) order.

For the setting of a constant number of distinct release dates (due dates), we exploit the
fact that the algorithm of [17] computes the optimal solution when all jobs have a common
due date (common release date).

D PTAS for GAP with a constant number of bins [15]

In the Generalized Assignment Problem (GAP), we are given m bins (machines in the
terminology of [15]), with bin i having volume capacity Bi, and n jobs with weight wj for
job j, as well as processing time pij when scheduled in bin i (note that if job j cannot go to
machine i, pij = ∞); the goal is to maximize the total weight of scheduled jobs. There are
no release or due dates.

Khan et al. [15] presented a PTAS for the case of constant m. They split the jobs into
“big” and small according to their processing times, by proving the following structural
theorem for any feasible GAP solution:

▶ Theorem 11 (Theorem 3 in [15]). Let S be a feasible solution to GAP, and let Si ⊆ S

be the jobs assigned to the i-th bin. Then for all ε > 0, there exist sets X and Y such that
|X| ≤ m/ε2 and w(Y ) ≤ εw(S) and

pij ≤ ε

Bi −
∑

j∈X∩Si

pij

 , ∀i, ∀j ∈ Si − X − Y.

Having guessed the set X together with the assignment of its jobs to bins, [15] turn to
the scheduling of the rest of the jobs that are small in the sense of Theorem 11. In order to
recover total weight at least (1−ε)w(S −X), the authors in [15] apply resource augmentation
for processing times (Section D.1), followed by a DP-based PTAS for scheduling the jobs
with their rounded processing times, and, lastly, trimming (Section D.2) is used in order to
remove a lengthy enough set of cheap jobs so as to restore the bin volume capacities to their
original values. We proceed to outline how resource augmentation and trimming are defined
in [15] and under what conditions they can be used for the throughput problem.

D.1 Resource augmentation

For every bin i, define a scaling factor µi := εBi/n. Also, define new bin volume capacity
B′

i := ⌊Bi/µi⌋ + n and new job processing times p′
ij := ⌈pij/µi⌉. Then there is an optimal

solution to maximum throughput that can be calculated by a PTAS, and the bin capacities
used are B′

j ≤ (1 + ε)Bj . Obviously, this optimal solution is at least as good as the optimal
solution that can be obtained with the original bin capacities. Khan et al. [15] show that if
the items (jobs) have size at most εBi after trimming the solution as in Section D.2 the bin
capacities can be restored to their original values while losing only an ε-fraction of weight
(profit).

Resource augmentation can be applied on a maximum throughput instance restricted to
an interval I on the time axis only when there are no release or due dates contained in I.
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D.2 Trimming
Khan et al. [15] designed the trimming method that follows for a knapsack instance. Suppose
that in bin i, there is a schedule of a set Si of jobs, without due dates or relase dates, s.t.
p(Si) = γBi, with γ ≤ 1 + δ and with total weight w(Si). Moreover, pij ∈ (0, εBi] for j ∈ Si.

Then for parameters δ, ε with δ ≤ ε, [15] show how to create empty space of length at least
δBi, without losing more than ((δ + ε)/(γ − ε))w(Sj) weight, and the scheduling of the
remaining jobs takes no more than Bi processing time.

This trimming technique of [15] can be extended to apply to a maximum throughput
schedule with different release dates and a common due date (different due dates and a
common release date). In this case, all jobs can be shifted as late (as early) as possible, to
create a new schedule ending at the due date (starting at the release date) with no idle time.
This can be achieved without violating any release (due) dates. We provide the details for
the case of the common due date in our Lemma 3.

D.3 Proof of Lemma 3
We provide the missing details for the existence of set R. We adjust the trimming method
of [15] in order to account for the existence in our setting of release dates and achieve the
parameters we need in the statement of the lemma. In particular let σ′ be the feasible
schedule of the set X ∪ J ′ in the interval I where for every j ∈ J ′, pj ≤ ε(|I| − p(X)). Let
B = |I| − p(X). We consider the set S of the subintervals of I that contain idle time or jobs
from J ′. Their length may vary and they may not be consecutive on the time axis as they
may be intermingled with the jobs of X. Clearly the total length of these subintervals equals
B. Let k = ⌊(1 − ε)/(2ε)⌋. Put a blue marker to the leftmost endpoint of a subinterval in S.

Moving to the right, sweep along the time axis within the subintervals of S only and put a
red marker after length εB, a blue marker after the next length εB and so on. Therefore the
markers alternate between red and blue. Proceed until you have placed k + 1 red markers
and k + 1 blue markers. The last marker will be red. Since

(k + 1)εB + kεB = (ε + 2ε⌊(1 − ε)/(2ε)⌋)B ≤ B

this is always possible. Number the markers from 0 to 2k + 1 from left to right. Consider
the set of jobs Si, i ∈ {0, 1, . . . , k} that are scheduled to a non-zero extent after blue marker
2i and up to red marker 2i + 1. These sets are pairwise disjoint. Let S∗

i = arg mink
i=0 w(Si).

It follows that w(Si∗) ≤ 1
k+1

∑k
i=0 w(Si) ≤ (2ε)/(1 − ε)w(J ′). Removing R := Si∗ will leave

empty space of εB. We have that p(J ′ − R) ≤ (1 − ε)B. Define the integer β ≥ 0 such that
(1 + ε)β ≤ B < (1 + ε)β+1. Then p(J ′ − R) ≤ (1 − ε2)(1 + ε)β .
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