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Abstract
We present an explicit construction of a sequence of rate 1/2 Wozencraft ensemble codes (over
any fixed finite field Fq) that achieve minimum distance Ω(

√
k) where k is the message length.

The coefficients of the Wozencraft ensemble codes are constructed using Sidon Sets and the cyclic
structure of Fqk where k + 1 is prime with q a primitive root modulo k + 1. Assuming Artin’s
conjecture, there are infinitely many such k for any prime power q.
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1 Introduction

The explicit construction of binary error-correcting codes with a rate vs. distance trade-off
approaching that of random constructions, i.e., the so-called Gilbert-Varshamov (GV) bound,
remains an outstanding challenge in coding theory and combinatorics.

For large n, a random binary linear code of rate R ∈ (0, 1), defined for example as the
column span of a random matrix G ∈ Fn×Rn

2 , has relative distance h−1(1 − R) with high
probability, where h−1(·) is the inverse of the binary entropy function. There is a similar GV
bound h−1

q (1 − R), involving the q-ary entropy function, for codes over other finite fields Fq.
While explicit constructions meeting the GV bound remain elusive1, there are known

derandomizations showing that codes drawn randomly from much smaller, structured en-
sembles can also achieve the GV bound. One of the most classical and famous such ensemble
is the Wozencraft ensemble, which consists of codes Cα

WE = {(x, αx) : x ∈ Fqk } as α varies
over nonzero elements of the field Fqk , and one uses some fixed basis to express elements of
Fqk as length k vectors over Fq. Note that each code Cα

WE has rate 1/2. The construction of
Wozencraft ensemble codes Cα

WE first appeared in a paper by Massey [13], who attributed
the discovery of these codes to John M. Wozencraft.

1 Ta-Shma [19] recently constructed explicit binary codes near the GV bound for low rates. The codes
have distance 1−ϵ

2 and rate Ω(ϵ2+o(1)) which is asymptotically close to the rate Ω(ϵ2) guaranteed by
the GV bound.
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50:2 Deterministic Wozencraft Ensemble Code

It is a standard exercise to show that for most choices of α, the code Cα
WE has distance

close to h−1
q (1/2) and thus achieves the GV bound. Puncturing the Wozencraft ensemble

gives codes of higher rates that also meet the GV bound. The property of the Wozencraft
ensemble and its punctured variants behind this phenomenon is that every nonzero word
appears as a codeword in an equal number of codes in the ensemble (if it appears in any
code of the ensemble at all).

Using this property, Justesen [10] in 1972 gave the first strongly explicit asymptotically
good binary linear codes, by concatenating an outer Reed–Solomon code with different inner
codes drawn from the Wozencraft ensemble for different positions of the Reed-Solomon code.
The Justesen construction achieves a trade-off between rate vs. distance called the Zyablov
bound for rates at least 0.3. There are variants of Wozencraft codes which give Zyablov-
bound-achieving codes for lower rates as well (see Section 5). In recent years, Wozencraft
ensemble codes have also found other varied uses, for example in constructing covering codes
of small block length [14] and write-once-memory codes [16, 17].

Given that for most α, the code Cα
WE meets the GV bound, it is a natural question

whether one can find an explicit α for which the code has good distance (even if it doesn’t
quite meet the GV bound). Gaborit and Zemor [8] showed that it suffices to consider random
α in a subset of size ≈ qk/k and used it to show the existence of linear codes which are a
factor k larger in terms of size than the Gilbert-Varshamov bound (such a result was shown
earlier for general codes in [9]).

However, it remains an outstanding challenge to find some α in deterministic poly(k)
time for which Cα

WE has distance Ω(k). This question is relatively well-known, eg. it received
mention in a blog post by Dick Lipton [12], but has resisted progress. To the best of our
knowledge, even an explicit α for which Cα

WE has distance kΩ(1) was not known.
For certain structured fields Fqk (of which there are an infinite family under Artin’s

conjecture), we give an explicit construction of α ∈ Fqk for which Cα
WE has distance Ω(

√
k).

We also give an explicit puncturing of these codes to achieve any desired rate r < 1, and
Ωr(

√
k) distance (the constant in the Ω() depends on r). Our theorems are informally stated

below.

▶ Theorem 1 (Informal). Fix a field Fq and consider an integer k such that k + 1 is prime
and q is a primitive root modulo k + 1. There exist α∗ ∈ Fqk which can be constructed in
deterministic poly(k) time such that:

Cα∗

WE has distance Ω(
√

k).
For any r > 1

2 , there is an explicit puncturing of Cα∗

WE with rate at least r and distance
Ωr(

√
k).

Please refer to Theorem 7 and Theorem 17 for construction of α∗ and choice of puncturing.

2 Preliminaries

Throughout this paper, we will assume the alphabet has size q, where q is a prime power.
Furthermore, we will assume k′ is a prime such that q is a primitive root modulo k′.
Assuming Artin’s conjecture, such k′ exists infinitely often at sufficiently high density and
can be efficiently found in deterministic poly(k′) time.

Denote k = k′ −1 for ease of notation. Let p(x) = 1+x+x2 +. . .+xk′−1 be the cyclotomic
polynomial which is irreducible over Fq (see Proposition 3). Note that Fq[x]/(p(x)) ∼= Fqk

for the extension field Fq[x]/(p(x)) and we will fix the representation of Fqk as polynomials
in x of degree less than k, with operations performed modulo p(x). We will fix the Fq-linear
isomorphism φ : Fqk → Fk

q that maps a polynomial of degree less than k to its coefficient
vector. That is, φ(

∑k−1
i=0 aix

i) = (a0, a1, . . . , ak−1). For α ∈ Fqk , define wt(α) to be the
Hamming weight of φ(α).
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The Wozencraft ensemble is a classic family of codes defined as follows.

▶ Definition 2. For α ∈ Fqk , the Wozencraft ensemble code Cα
WE parameterized by α is

given by

Cα
WE = {(φ(x), φ(αx)) : x ∈ Fqk } .

Note that Cα
WE is an Fq-linear code of rate 1/2.

▶ Proposition 3. If k′ is a prime such that q is a primitive root modulo k′, then p(x) =∑k′−1
i=0 xi is an irreducible polynomial of degree k′ − 1 in Fq[x].

Proof. Since q is a primitive root modulo k′, d = k′ − 1 is the smallest integer satisfying
qd ≡ 1 mod k′. Note that a field extension Fqd of Fq contains a primitive k′-th root of unity
ζ if and only if k′|qd − 1, i.e., qd ≡ 1 mod k′. So Fqk′−1 is the smallest field extension of
Fq containing ζ and the mimimal polynomial of ζ has degree k′ − 1. Since p =

∑k′−1
i=0 xi is

a degree k′ − 1 polynomial such that p(ζ) = 0, p is the minimal polynomial of ζ and thus
irreducible. ◀

We will use Sidon sets [18, 1] to construct the parameter α for Cα
WE.

▶ Definition 4. A Sidon set is a set of integers A = {a1, . . . , ad} where a1 < a2 < . . . < ad

such that for all i, j, k, l ∈ [d] with i ̸= j and k ̸= l,

ai − aj = ak − al ⇐⇒ i = k and j = l.

A Sidon set modulo n is a Sidon set such that for all i, j, k, l ∈ [d] with i ≠ j and k ̸= l,

ai − aj ≡ ak − al (mod n) ⇐⇒ i = k and j = l.

Size d of the Sidon set A is referred to as its order and ad − a1 as its length.

▶ Remark 5. For any Sidon set with order d and length m, the
(

d
2
)

distances between
each pair of points need to be distinct. So m ≥

(
d
2
)

and this gives a trivial upper bound
d ≤

√
2m. This upper bound on d can be improved to d ≤

√
m + O(m1/4) [7] and

further to d ≤
√

m + m1/4 + 1 [11]. On the other hand, the maximal d given m satisfies
d ≥

√
m − O(m5/16) [7] but it is believed that we can have d >

√
m [6].

We will introduce the Bose-Chowla construction of Sidon sets [4, 3].

▶ Theorem 6 (Bose-Chowla, [4]). Let p be a power of a prime, g be a primitive root in Fp2 .
Then the sequence of p integers

A = {i ∈ [p2 − 2] : gi + gpi = 1}

forms a Sidon set modulo p2 − 1.

This construction of Sidon set has order d = p and length at most m(d) = p2 − 2. They are
asymptotically optimal in the sense that limd→∞

√
m(d)/d = 1. Given p, such construction

can be done in O(p2) time by fixing s = 1 and finding a primitive root g via naive search.
We will later define our parameter α to be

∑
a∈A xa where A is a Sidon set and show that

Cα
WE has good distance.

APPROX/RANDOM 2023
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3 Rate 1/2 Construction

In this section, we will give explicit construction of rate 1/2 Wozencraft ensemble codes with
minimum distance Ω(

√
k) using Sidon sets. To begin, we provide an intuitive explanation for

the natural occurrence of Sidon sets in this specific context. Subsequently, we proceed with
the analysis of the minimum distance of our construction.

3.1 Motivation
Fix a set of indices A ⊆ [k] and an element α =

∑
a∈A xa ∈ Fqk with coefficients either 0

or 1. Take any y =
∑

s∈S bsxs where S is the set of non-zero indices of the coefficients of
y, so bs ̸= 0 for all s ∈ S. To establish a lower bound on ∆(Cα

WE), we would like show a
lower bound on the weight of the product αy ∈ Fqk for any y. To simplify the analysis, we
consider a ring extension of Fqk (described in Section 3.2), in which the coefficient cj in
front of xj of the product αy can be expressed as cj =

∑
a∈A,s∈S 1{a + s ≡ j (mod k′)}bs.

We would like to establish a lower bound on the number of non-zero coefficients cj ̸= 0,
which would transform into a lower bound on the weight of αy in Fqk . It is sufficient to
demonstrate the existence of numerous choices of j satisfying j ≡ a + s (mod k′) for a unique
combination of a and s. In this case, cj corresponds to the sum of one non-zero element
and is therefore non-zero. To ensure there are an abundance of such choices for j with this
uniqueness property, it is desirable to minimize collisions of the form a + s ≡ a′ + s′ (mod k′)
where a, a′ ∈ A and s, s′ ∈ S. Since S can be selected adversarially with respect to A, it is
advantageous to have (a − a′) mod k′ be unique, which is exactly the property of Sidon sets
modulo k′. The result of this construction is stated formally as follows, where the proof is
propounded to Section 3.2:

▶ Theorem 7. Let d be the largest prime smaller than
√

k and let A = {a1, . . . , ad} be a Bose-
Chowla Sidon set with order d. Define α∗ =

∑
a∈A xa ∈ Fqk . Then ∆(Cα∗

WE) ≥ d = Ω(
√

k).

▶ Remark 8. Since there exists a prime between [ 1
2
√

k,
√

k] by Bertrand–Chebyshev the-
orem [5], d can be found efficiently via naive search and d ≥ 1

2
√

k. Moreover, Baker, Harman
and Pintz [2] showed that there exists a prime in the interval [

√
k−k0.27,

√
k, ] for k sufficiently

large. So d = (1 − o(1))
√

k and the constructed code Cα∗

WE has distance asymptotically
∆(Cα∗

WE) ≥ (1 − o(1))
√

k as k → ∞.

It is also worthwhile to note that when a + s ≡ j (mod k′) holds for more than one pair
of (a, s), cj may still be non-zero as it is a sum of multiple non-zero elements. In fact, for α

with large weight, it is common that αy has substantial weight yet few choices of j satisfy
the uniqueness property. One possible approach to improving the construction of A involves
analyzing scenarios where j ≡ a + s (mod k′) for multiple pairs of (a, s).

3.2 Proof of Theorem 7
To analyze the minimum distance of Cα

WE, it is helpful to define the ring R = Fq[x]/(xk′ − 1),
which consists of polynomials of degree less than k′ = k + 1. We can identify Fqk

∼= R/(p)
by the map sending f ∈ R to (f mod p) ∈ Fqk . In addition, we can consider Fqk ⊆ R and
extend φ to the Fq-linear map φ̃ : R → Fk′

q mapping polynomials of degree less than k′ to
its coefficient vector. Define w̃t(f) to be the Hamming weight of φ̃(f) for any f ∈ R. The
following lemma gives the relationship between w̃t(f) and wt(f mod p).

▶ Lemma 9. For any f ∈ R, wt(f mod p) ≥ min{w̃t(f), k − w̃t(f)}.
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Proof. For any f ∈ R, let us write f =
∑k

i=0 bix
i. Then

f mod p = f − bkp =
k−1∑
i=0

(bi − bk)xi.

If bk = 0, then wt(f mod p) = w̃t(f); if bk ̸= 0, then

wt(f mod p) = |{i : bi ̸= bk}| ≥ k − w̃t(f).

So wt(f mod p) ≥ min{w̃t(f), k − w̃t(f)}. ◀

▶ Lemma 10. Given α ∈ Fqk ⊆ R, suppose that for every y ∈ R with w̃t(y) ≤ c(k) the
condition

c(k) − w̃t(y) ≤ w̃t(αy) ≤ k −
(

c(k) − w̃t(y)
)

holds, where the product αy is taken in R. Then ∆(Cα
WE) ≥ c(k), where ∆(Cα

WE) denotes
the distance of the code Cα

WE.

Proof. Take any non-zero y ∈ Fqk ⊆ R. Its corresponding codeword Cα
WE(y) = (φ(y),

φ(αy mod p)) has Hamming weight wt(y) + wt(αy mod p). By Lemma 9, the above
condition implies

wt(y) + wt(αy mod p) ≥ w̃t(y) + min{w̃t(αy), k − w̃t(αy)} ≥ c(k).

Since Cα
WE is a linear code, ∆(Cα

WE) ≥ c(k). ◀

We can now prove Theorem 7 by showing that α∗ satisfies the condition of Lemma 10
with c(k) = d.

Proof of Theorem 7. Note that α is an element of Fqk since it has degree at most k − 2 by
construction. Let us check that the condition of Lemma 10 indeed holds for α∗ =

∑
a∈A xa

and c(k) = d. For any y ∈ R with w̃t(y) = w, we can write y =
∑w

i=1 bsi
xsi where bsi ≠ 0 for

all 1 ≤ i ≤ w. We will denote S = {s1, . . . , sw} ⊆ [k′] the set non-zero coefficient indices of y,
where we define [k′] = {0, . . . , k′ − 1 = k}. The coefficients of the product α∗y =

∑k
j=0 cjxj

are given by

cj =
∑
a∈A
s∈S

1{a + s ≡ j (mod k′)}bs.

This motivates us to define the shifted set

(j − A)k = {(j − a1) mod k′, . . . , (j − ad) mod k′}

which gives us

cj =
∑

s∈(j−A)k∩S

bs.

We will denote by

Jm = {j ∈ [k′] : |(j − A)k ∩ S| = m}

APPROX/RANDOM 2023



50:6 Deterministic Wozencraft Ensemble Code

the indices j such that |(j − A)k ∩ S| has size m. It is evident that if (j − A)k ∩ S = ∅ then
cj = 0, and if |(j − A)k ∩ S| = 1 then cj ̸= 0. So

|J1| ≤ w̃t(α∗y) ≤ k − |J0|.

Looking at the conditions of Lemma 10, it would be sufficient to take c(k) such that

c(k) − w ≤ min{|J0|, |J1|}

for all w. We make the following claims on lower bounds of |J0| and |J1| which will be proven
in Section 3.3.

▷ Claim 11. J1 has size at least wd − w(w − 1).

▷ Claim 12. J0 has size at least k − wd.

Assuming the claims, it suffices to take c(k) such that

c(k) ≤ min
1≤w≤c(k)

wd − w(w − 1) + w = min{d + 1, (d − c(k) + 2)c(k)},

c(k) ≤ min
1≤w≤c(k)

k − wd + w = k − (d − 1)c(k).

Solving the two inequalities, it suffices to take c(k) ≤ d. So α∗ =
∑

a∈A xa, c(k) = d satisfy
the condition of Lemma 10. ◀

3.3 Proofs of Claim 11 and Claim 12
To show a lower bound on |J1|, it is desired that the sets J2, .., Jw are small. The following
lemma gives an upper bound on the sizes of J2, .., Jw:

▶ Lemma 13. The sets J2, . . . , Jw defined in the proof of Theorem 7 satisfy:
w∑

m=2
(m − 1)|Jm| ≤

w∑
m=2

(
m

2

)
|Jm| ≤ 2

(
w

2

)
= w(w − 1).

Proof. It is evident that the first inequality holds. Let us now show that for any two distinct
s, s′ ∈ S, we have {s, s′} ⊆ (j − A)k for at most two choices of j. Take any distinct pair
s, s′ ∈ S. Without loss of generality, assume s < s′. Suppose {s, s′} ⊆ (j − A)k, then we can
write s ≡ j − al (mod k′) and s′ ≡ j − al′ (mod k′) for some l, l′ ∈ [d]. Then al − al′ ≡ s′ − s

(mod k′). So

al − al′ =
{

s′ − s if l > l′,

s′ − s − k′ if l < l′.

In both cases, by definition of Sidon sets, l, l′ are uniquely determined. Thus j ≡ al + s is
also uniquely determined.

For any jm ∈ Jm, |(jm − A) ∩ S| = m so there are
(

m
2
)

distinct pairs {s, s′} ⊆ (jm − A)k.
So the total count of such distinct pairs for all j ∈ ∪w

m=2Jm is
∑w

m=2
(

m
2
)
|Jm|, which must

not exceed 2
(

w
2
)

since each pair can only occur in (j − A)k for two choices of j. This gives

w∑
m=2

(
m

2

)
|Jm| ≤ 2

(
w

2

)
= w(w − 1)

which completes the proof. ◀
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We can now obtain a lower bound on the size of J1.

▷ Claim. J1 has size at least wd − w(w − 1).

Proof. For each s ∈ S, there are |A| = d number of j such that s ∈ (j − A)k. When w = 1,
the lemma holds as |J1| = d. When w ≥ 2, |J1| equals |S|d = wd minus the times we
overcount:

|J1| = wd −
w∑

m=2
(m − 1)|Jm|.

The proof is complete via the bound of Lemma 13:

|J1| = wd −
w∑

m=2
(m − 1)|Jm| ≥ wd − w(w − 1). ◁

▷ Claim. J0 has size at least k − wd.

Proof. For any s ∈ S, there are |A| = d values of j ∈ [k′] such that s ∈ (j − A)k. So there
are at most |S|d = wd indices j such that |(j − A)k ∩ S| > 0. ◁

4 Higher Rate Construction

In the last section, we gave an explicit construction of rate 1/2 Wozencraft ensemble code
Cα∗

WE achieving minimum distance Ω(
√

k). In this section, we will show that appropriate
puncturing of Cα∗

WE will give us codes of rates r ∈ (1/2, 1) and minimum distance at least
Ω

((
1 −

√
2 − 1

r

) √
k
)

.

▶ Definition 14. Let Cα,r
WE be the rate r punctured code given by removing the last (2 − 1

r )k
message bits of each codeword in Cα

WE.

Let φr denote the map sending any polynomial f to the first ( 1
r − 1)k least significant

coefficients. Let wtr(f) denote the Hamming weight of φr(f).

▶ Lemma 15. For any f ∈ R, wtr(f mod p) ≥ min{wtr(f), ( 1
r − 1)k − wtr(f)}.

Proof. Writing f =
∑k

i=0 bix
i, we have

f mod p = f − bkp =
k−1∑
i=0

(bi − bk)xi.

If bk = 0, then wtr(f mod p) = wtr(f); if bk ̸= 0, then

wtr(f mod p) =
∣∣∣{i ∈ [(1

r
− 1)k] | bi ̸= bk

}∣∣∣ ≥ (1
r

− 1)k − wtr(f).

So wtr(f mod p) ≥ min{wtr(f), ( 1
r − 1)k − wtr(f)}. ◀

▶ Lemma 16. Let α ∈ Fqk ⊆ R. Suppose for every y ∈ R with w̃t(y) ≤ c(k) the condition

c(k) − w̃t(y) ≤ wtr(αy) ≤ (1
r

− 1)k −
(

c(k) − w̃t(y)
)

holds, where the product αy is taken in R. Then ∆(Cα,r
WE) ≥ c(k).

APPROX/RANDOM 2023
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Proof. Take any non-zero y ∈ Fqk ⊆ R. Its corresponding codeword Cα,r
WE(y) = (φ(y),

φr(αy mod p)) has hamming weight wt(y) + wtr(αy mod p). By Lemma 15, the above
condition implies

wt(y) + wt(αy mod p) ≥ w̃t(y) + min{wtr(αy), (1
r

− 1)k − wtr(αy)} ≥ c(k).

Since Cα,r
WE is a linear code, ∆(Cα,r

WE) ≥ c(k). ◀

The following theorem establishes a lower bound on the minimum distance of the punctured
code Cα∗,r

WE with α∗ constructed using Sidon sets as outlined in Theorem 7.

▶ Theorem 17. For any rate r > 1/2, using the construction of α∗ by Theorem 7, the
condition of Lemma 16 is satisfied with c(k) = Ω

((
1 −

√
2 − 1

r

) √
k
)

. Thus the punctured

code Cα∗,r
WE has minimum distance at least Ω

((
1 −

√
2 − 1

r

) √
k
)

.

The proof is omitted2 since it follows a similar outline as the proof of Theorem 7. We present
two claims similar to Claim 11 and Claim 12 that substantiate this argument. For any
y =

∑
s∈S bsxs with weight |S| = w, denote Jr

m = {j ∈ [( 1
r − 1)k] : |(j − A)k ∩ S| = m} the

non-punctured indices j such that |(j − A)k ∩ S| has size m, where A is the Sidon set in the
construction of α∗. Then analogous to Claim 11 and Claim 12, we can lower bound the size
of Jr

1 and Jr
2 :

▷ Claim 18. Jr
1 has size at least w

((
1 −

√
(2 − 1

r ) − o(1)
) √

k − (2 − 1
r ) 1

4 k
1
4 − 1

)
− w2.

▷ Claim 19. Jr
0 has size at least ( 1

r − 1)k − w
(√

( 1
r − 1)k + ( 1

r − 1) 1
4 k

1
4 + 1

)
.

To justify the claims, we will require the following theorem by Lindström [11] which bounds
the order of any Sidon set via its length.

▶ Theorem 20 (Lindström [11]). For any Sidon set with length m, the order is at most√
m + m1/4 + 1.

The key observation is that for any s ∈ S, the shifted set (s + A)k is a Sidon set. Moreover,
it is partitioned into two parts after puncturing: the remaining part (s + A)k ∩ [( 1

r − 1)k] and
the removed part (s + A)k ∩ ([k′] \ [( 1

r − 1)k]), where each part is itself a Sidon set. Applying
Theorem 20 to the two parts and recalling that |A| = (1 − o(1))

√
k by Remark 8, we can

then obtain the results described in Claim 18 and Claim 19.

5 Open Questions

It is well known that Wozencraft ensemble codes Cα
WE satisfy the Gilbert-Varshamov bound

for most α. Concretely,

lim
k→∞

Pr
α∈S

[∆(Cα
WE) ≥ d(k)] = 1,

where S = F∗
qk , d(k) =

(
h−1

q ( 1
2 ) − ϵ

)
· 2k with hq the q-ary entropy function and ϵ > 0

chosen arbitrarily. In this paper, we have proposed a construction of S = {α∗} such that the
equation above holds with d(k) = Ω(

√
k). It is of natural interest to reduce the size of the

2 The proof appears in detail in the full version of the paper posted at https://arxiv.org/abs/2305.02484.

https://arxiv.org/abs/2305.02484
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ensemble and find S, d(k) satisfying the equation above with |S| small and d(k) large. For
example, can one construct S such that the equation above is satisfied via |S| = O(2o(k))
and d(k) = Ω(k), or |S| = poly(k) and d(k) = Ω(kc) with c > 1

2 ? In addition, are there any
barriers to such constructions, as in, would such constructions imply progress on some other
explicit construction challenge?

In 1973, Weldon [20] proposed an ensemble of codes, a code that generalizes Wozencraft
ensemble codes. The Weldon ensemble was used by him, and later Shen [15], to construct
explicit concatenated codes achieving the Zyablov bound for rates less than 0.3, thus improving
upon Justesen codes [10] for low rates. Weldon codes3 of rate 1/(t + 1) are indexed by
α1, α2, . . . , αt ∈ Fqk and defined as

Cα1,...,αt

WE = (φ(x), φ(α1x), . . . , φ(αtx)).

For some fixed t > 2, can one find explicit αi’s where the distance of Cα1,...,αt

WE is asymptotically
larger than

√
k?
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