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Abstract
A graph G = (V, E) is said to be (k, δ) almost colorable if there is a subset of vertices V ′ ⊆ V of
size at least (1 − δ) |V | such that the induced subgraph of G on V ′ is k-colorable. We prove that
for all k, there exists δ > 0 such for all ε > 0, given a graph G it is NP-hard (under randomized
reductions) to distinguish between:
1. Yes case: G is (3, ε) almost colorable.
2. No case: G is not (k, δ) almost colorable.

This improves upon an earlier result of Khot et al. [16], who showed a weaker result wherein in the
“yes case” the graph is (4, ε) almost colorable.
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1 Introduction

The graph coloring problem is one of the most basic combinatorial optimization problems
studied in theoretical computer science. A graph G = (V, E) is k-colorable if there exists
a vertex coloring col : V → {1, . . . , k} such that for each edge e = (u, v) ∈ E, it holds that
col(u) ̸= col(v). The chromatic number of G, denoted by χ(G), is defined to be the smallest
integer k so that G is k-colorable. What is the computational complexity of finding the
chromatic number of a graph?

It has long been known that computing the chromatic number of a graph is NP-hard [10].
Using the PCP theorem, one can improve this result and show that even approximating
the chromatic number of a graph (within any constant factor) is NP-hard [12]. Thus, the
next natural question to ask is how hard is it to find somewhat efficient coloring of a graph,
provided that a very efficient one exists. Specifically, given a k ∈ N, what is the smallest k′

such that given a k-colorable graph, one may efficiently color it using k′?
As the case of k = 2 is the 2-coloring problem which is known to be in P, the first

interesting case to consider is that of k = 3. Despite significant effort, the best unconditional
result along these lines, due to [2], asserts that such graphs are NP-hard to color using 5
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colors. In terms of conditional results, based on Khot’s 2-to-2 Games Conjecture (with
perfect completeness) [13], Dinur et al. [7] proved that it is NP-hard to C-color 4-colorable
graphs for all C > 0. This result was recently improved by Guruswami and Sandeep [8], who
showed that it is NP-hard to C-color 3-colorable graphs for any C > 0.1 The gap between
the ratios known to be hard and those known to be efficiently achievable is huge: on the
algorithmic front, the state of the art result (due to [11]) asserts that one may efficiently
find an n0.2−ε-coloring of a given 3-colorable graph, where n is the number of vertices of the
graph and ε > 0 is an absolute constant.

Due to the lack of progress towards unconditional hardness results for the graph coloring
problem, one is motivated to consider relaxations of the problem that are easier to work with
that still capture its essence. Most relevant to us is the almost coloring relaxation. Here, we
say a graph G = (V, E) is (k, δ) almost colorable if there exists a subset of vertices V ′ ⊆ V

with |V ′| ⩾ (1−δ)|V | such that the induced subgraph of G on V ′ is k-colorable. That is, that
the graph G′ = (V ′, E′), where E′ = {e = (u, v) | u, v ∈ V ′}, is k-colorable. With regards to
this notion, based on the hardness of 2-to-2 Games with imperfect completeness [15, 6, 5, 16],
one can show that almost coloring almost 4-colorable graphs is NP-hard with any constant
number of colors. More specifically, using ideas from [7], one can show that for all ε, δ > 0,
given a graph G = (V, E), it is NP-hard to distinguish between:
1. Yes case: G is (4, ε) almost colorable.
2. No case: G does not contain an independent set of fractional size δ.
In particular, it is NP-hard to (k, 1 − ε) almost color a given (4, ε) almost colorable graph.
We remark that the “independent set” conclusion in the no case is in fact stronger, and one
often manages to achieve it via the typical style of PCP reductions for coloring problems.

The distinction between 3-coloring and 4-coloring may seem minor at first glance. This
distinction hides within it a technical barrier related to the difference between Unique-Games
and 2-to-2 Games. Indeed, the only type of problems that seem to facilitate results for
3-coloring are Unique-Games [7] (which inherently lack perfect completeness) and a certain
variant of 2-to-2 games called Rich 2-to-2 Games [4, 3]. Both problems are conjectured to
be NP-hard, but the proof of this assertion seems out of reach of current techniques. Using
standard 2-to-2 Games, which are now known to be NP-hard (with imperfect completeness),
there seem to have been fundamental difficulties beyond 4-colorable graphs.

Recently, Guruswami and Sandeep [8] observed that there there are transformations from
the algebraic CSPs world [17] (which date back to [9]) that reduce the chromatic number
of a graph from 4 to 3. Using these ideas, and combining them with the reduction of [7],
Guruswami and Sandeep managed to prove the aforementioned conditional result, asserting
that assuming the d-to-d conjecture of Khot with perfect completeness, it is NP-hard to
C-color a given 3-colorable graph, for all constants C > 0. We remark that interestingly their
reduction fails to establish the stronger “independent set” type conclusion in the no case.

The main result of this paper is that while this reduction does not preserve the independent
set conclusion, it does preserve the intermediate, strictly weaker conclusion of almost coloring.
More precisely, we use these ideas to get an (unconditional) NP-hardness result regarding
almost coloring almost 3-colorable graphs with a constant number of colors. Specifically, we
prove:

▶ Theorem 1. For all k ∈ N, there exists δ > 0 such that for all ε > 0, given a graph
G = (V, E) it is NP-hard (under randomized reductions) to distinguish between:
1. Yes case: G is (3, ε) almost colorable.
2. No case: G is not (k, δ) almost colorable.

1 In fact, for the result of Guruswami et al./ it suffices to assume that the d-to-d Games Conjecture of
Khot [13] holds for some constant d ∈ N.
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Proof Idea

While the reduction of Guruswami and Sandeep [8] does not preserve the notion of almost
coloring for all graphs, it turns out that it does so for bounded degree graphs. Indeed, this is
the main insight behind the proof of Theorem 1. Thus, our proof of Theorem 1 starts with a
hard instance of 2-to-2 Games with imperfect completeness and uses the reduction of [7] to
establish hardness of almost coloring almost 4-colorable graphs for instances with certain
regularity properties. We then use random sparsification to further reduce such instances
to instances with bounded maximal degree. Finally, we use line-graph based reductions as
in [8] to reduce this problem to the problem of almost coloring almost 3-colorable graphs.

We remark that just like in the result of Guruswami and Sandeep, our result also fails to
establish the stronger “independent set” type conclusion in the no case. Indeed, strengthening
Theorem 1 in that manner would automatically improve upon the best known hardness of
approximation result for Vertex Cover, which is a long standing challenge. Currently, it is
known that it is NP-hard to approximate the size of the smallest vertex cover of a graph
within factor

√
2 − ε for all ε > 0, and an “independent-set”-type strengthening of Theorem 1

would improve this factor to 3/2 − ε, for all ε > 0. While we do not know how to prove such
strengthening, we believe it may be doable and discuss such a possibility in Section 4.

2 Preliminaries

In this section, we present a few notions that will be necessary in the proof of Theorem 1.

2.1 Induced Coloring and Constraint Satisfaction Problems
For an integer k ∈ N, the k-induced coloring of a graph G is the fractional size of the largest
induced subgraph of G which is k-colorable. More precisely:

▶ Definition 2. For a graph G = (V, E), the induced-coloring iColk(G) is the fractional size
of the largest induced subgraph that is k-colorable. That is, it is the maximum of |V ′| / |V |
among all induced sub-graphs (V ′, E′) of G that are k-colorable.

According to this notation, the fact that a graph G is (k, δ) almost colorable is equivalent to
iColk(G) ⩾ 1 − δ. Next, we define the label cover problem, followed by the definition of a
specific type of label cover instances called 2-to-2 Games.

▶ Definition 3. An instance of Label Cover Ψ = (G, Σ, Φ) consists of a graph G = (V, E), a
finite alphabet Σ and a collection of constraints Φ = {Φe}e∈E one for each edge of G. The
constraint on an edge e ∈ E specifies tuples Φe ⊆ Σ × Σ that are deemed satisfactory.

Given an instance of label cover Ψ, the goal is to find an assignment A : V → Σ satisfying
as many of the constraints as possible. Here, we say A satisfies the constraint on an edge
e = (u, v) ∈ E if (A(u), A(v)) ∈ Φe. We denote by sat(Ψ) the maximum fraction of constraints
that are satisfied in Ψ by any assignment A. We will mostly be interested in a specific type
of label cover instances, known as 2-to-2 instances, in which the constraints take a special
form.

▶ Definition 4. A label cover instance (G = (V, E), Φ, 2R) is called a 2-to-2 Games instance
if for every edge e = (u, v) ∈ E, the constraint Φe is of the form ∪R

i=1Ai × Bi, where {Ai}R
i=1

and {Bi}R
i=1 are two partitions of Σ into sets of size 2. Equivalently, the constraint Φe takes

the form{
(i, j) ∈ {1, . . . , 2R}

∣∣ (π−1(i), σ−1(j)) ∈ {(2k, 2k), (2k, 2k + 1), (2k + 1, 2k), (2k + 1, 2k + 1)}
}

for some permutations π, σ : [2R] → [2R].

APPROX/RANDOM 2023
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Typically, given a 2-to-2 Games instances Ψ, the goal is to find an assignment to the
vertices satisfying as many of the constraints as possible. For our purposes, it will be useful
for define a variation of this parameter denoted by iSat(Ψ).

▶ Definition 5. For an integer m ∈ N and a 2-to-2 Games instance Ψ = (G = (V, E), Σ, Φ),
we define iSat(Ψ) to be the fractional size of the largest V ′ ⊆ V for which there is an
assignment A : V ′ → Σ satisfying all of the constraints of Ψ inside V ′.

2.2 Fourier Analysis
Our reduction requires a few basic notions from discrete Fourier analysis which we present
next. We refer the reader to [19] for a more thorough presentation.

2.2.1 The Fourier Decomposition over Product Spaces
Let q ∈ N be an integer, and denote [q] = {0, 1, . . . , q − 1}. We will consider the product
space L2([q]n, µ) where µ is the uniform measure over [q]n and the inner product between
f, g : [q]n → R is defined as

⟨f, g⟩ = E
x∼µ

[f(x)g(x)].

We may pick an orthonormal basis α0, . . . , αq−1 : [q] → R of L2([q], µ) so that α0 ≡ 1, and
we do so canonically. Given this basis, we may tensorize it to get an orthonormal basis of
L2([q]n, µ) as {αj1,...,jn

}j1,...,jn∈[q] where αj1,...,jn
is defined as

αj1,...,jn
(x1, . . . , xn) =

n∏
i=1

αji
(xi).

Given the orthonormal basis {αj⃗}j⃗∈[q]n , we may decompose any f : [q]n → R as a linear
combination of the basis functions, and the coefficients in this linear combination are given
by the Fourier coefficients:

▶ Definition 6. For f : [q]n → R and j⃗ ∈ [q]n, we define f̂ (⃗j) def=
〈

f, αj⃗

〉
.

Also, given j⃗ ∈ [q]n, we define the degree of j⃗, deg(⃗j), to be the number of indices i = 1, . . . , n

such that ji ̸= 0. We define the action of a permutation on a function:

▶ Definition 7. For a permutation π : [n] → [n] and a function f : [q]n → R, we define
fπ : [q]n → R by fπ(x1, . . . , xn) def= f(xπ(1), . . . , xπ(n)) = f(xπ).

2.2.2 Low Degree Influences and a Corollary of the Invariance Principle
Our analysis requires the notion of low degree influences, which is defined in terms of the
Fourier coefficients of a function f in the following way:

▶ Definition 8. For a function f : [q]n → R, a coordinate i = 1, . . . , n and an integer d, the
degree d influence of i on f is defined as

I⩽d
i [f ] def=

∑
j⃗∈[q]n

j⃗i ̸=0,deg(⃗j)⩽d

f̂2(⃗j).
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The following well known fact asserts that the number of coordinates with significant low
degree influence is relatively small.

▶ Fact 9. For a function f : [q]n → R with ∥f∥2 ⩽ 1 and τ > 0, the number of coordinates
i = 1, . . . , n with I⩽d

i [f ] ⩾ τ is at most d
τ .

In the reduction from 2-to-2 Games to 4-coloring we will have functions operating on the
space [q2]n, and we will want to sometimes view it as [q]2n. To do so, we will use the natural
identification between [q]2 and [q2] and thus define an identification between the spaces [q2]n
and [q]2n in the following way:

▶ Definition 10. For x = (x1, . . . , x2n) ∈ [q]2n, we denote x
def= ((x1, x2), . . . , (x2n−1, x2n)) ∈

[q2]n.

Thus, given a function f : [q]2n → R, one may consider the function f : [q2]n → R defined by
the natural identification above as:

f((x1, x2), . . . , (x2n−1, x2n)) = f(x1, . . . , x2n).

The following facts from [7] will be used in the analysis of our reduction. The first claim
related low-degree influences of f and of f :

▷ Claim 11. For a function f : [q]2n → R, a coordinate 1 ⩽ i ⩽ n and a degree parameter d,
we have that

I⩽d
i [f ] ⩽ I⩽2d

2i−1[f ] + I⩽2d
2i [f ].

Next, we need a corollary of the invariance principle which is also used in [7], and towards
this end, we define the parameter Γρ(µ, τ):

▶ Definition 12. Let Φ be the cumulative distribution function of N (0, 1). We denote

Γρ(µ, τ) def= Pr
[
X ⩽ Φ−1(µ) ∧ Y ⩾ Φ−1(1 − τ)

]
,

where (X, Y ) are ρ-correlated Gaussian random variables. If µ = τ , we write Γρ(µ), we also
omit ρ when clear from context.

Asymptotics for the value Γρ(µ, τ) exist (and are not too hard to establish), however, we
will only require the fact that Γρ(ε) is a positive constant for all ρ < 1 and ε > 0. With the
parameter Γρ(µ, τ) in hand, we now state the corollary of the invariance principle necessary
for our analysis which can also be found in [7].

▶ Theorem 13. Let q ∈ N be an integer and let T be a connected symmetric Markov chain
on [q], with eigenvalues λ0 = 1 ⩾ . . . ⩾ λq−1. If ρ := max(|λ1|, |λq−1|) < 1, then for any
µ, τ > 0 there exist δ > 0 and d ∈ N, for which the following holds. For all functions
f, g : [q]n → [0, 1], if E[f ] ⩾ µ,E[g] ⩾ τ , and ⟨f, T ⊗ng⟩ ⩽ 1

2Γρ(µ, τ), then there exists a
coordinate i = 1, . . . , n such that I⩽d

i [f ], I⩽d
i [g] ⩾ δ.

2.2.3 A Markov Chain on [4]2

We end this section with the following claim due to [7] establishing the existence of a Markov
chain on [4]2 with certain properties:

▷ Claim 14. There exists a connected symmetric Markov chain T on {0, 1, 2, 3}2 with
max(|λ1|, |λq−1|) < 1, such that if T ((x1, x2) ↔ (y1, y2)) > 0 then {x1, x2} ∩ {y1, y2} = ∅.

APPROX/RANDOM 2023
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3 Hardness of Almost Coloring Almost 3-Colorable Graphs

3.1 The Starting Point: 2-to-2 Games
The starting point of our reduction is the hardness of 2-to-2 Games with imperfect com-
pleteness [15, 6, 5, 16] (see [18, 14] for an exposition). Specifically, we will use the following
formulation:

▶ Theorem 15. For all s, η > 0, given a 2-to-2 Games instance Ψ, it is NP-hard to distinguish
between:

YES case: iSat(Ψ) ⩾ 1 − η.
NO case: sat(Ψ) ⩽ s.

Additionally, in both the Yes and No cases, the graph G underlying Ψ satisfies the following
regularity property: for all ε ⩽ β ⩽ 1, any set S ⊆ V of fractional size β contains at least
Ω(β2) fraction of the edges of G.

3.2 A Reduction from 2-to-2 Games to Almost 4-Coloring
In this section, we apply the reduction of [7] on instances from Theorem 15 to get the
following hardness result for almost 4-coloring:

▶ Theorem 16. For all ε, η > 0, given an edge weighted graph G = (V, E, w), it is NP-hard
to distinguish between:

Yes case: iCol4(G) ⩾ 1 − η

No case: any set S ⊆ V of fractional size at least ε contains edges of total weight of at
least Ω

(
ε2Γρ(ε/2)

)
, where ρ ∈ (0, 1) is an absolute constant.

Proof. Let Ψ = (G = (V, E), Σ, Φ) be a 2-to-2 Games instances from Theorem 15 with
completeness 1 − η and soundness s > 0, and let T be the Markov chain from Claim 14.
Without loss of generality, we assume that the alphabet Σ is [2R], where 2R = |Σ|. Below,
when we write Γ, we mean Γ = Γρ where ρ is the absolute constant from Claim 14.

We construct a graph G = (V ′, E′) by replacing each vertex u ∈ V by a block of vertices
{u} × {0, 1, 2, 3}2R, denoted by B[u]. Thus, V ′ =

⋃
u∈V B[u]. As for the edges of H, for an

edge {u, v} ∈ E in G with a 2-to-2 constraint described by the permutations π, σ ∈ S2R, we
add an edge between (u, x) and (v, y) if T ⊗R(xπ ↔ yσ) > 0, in which case we assign the
edge the weight 1

|E| T
⊗R(xπ ↔ yσ).

Completeness. If iSat(Ψ) ⩾ 1 − η, then there is S ⊆ V of fractional size 1 − η and a
assignment c : S → [2R], satisfying all constraints within S. For each u ∈ S we assign the
block B[u] by A(u, x) = xc(u), and note that this assignment forms a 4-coloring of

⋃
u∈S B[u].

Thus, iCol4(G′) ⩾ 1 − η.

Soundness. Assume towards contradiction that there is a set of vertices S′ ⊆ V ′ of fractional
size ε that contains less than cε2Γ(ε/2) of the edges (weighted), where c > 0 is an absolute
constant to be determined. Define

S
def=

{
v ∈ V

∣∣∣ |B[v] ∩ S′| ⩾ ε

2 |B[v]|
}

.

By an averaging argument we have that |S| ⩾ ε
2 |V |, and for each v ∈ S we define

fv : {0, 1, 2, 3}2R → {0, 1} by fv(x) = 1(v,x)∈S . Thus, E[fv] = |B[v]∩S′|
|B[v]| ⩾ ε

2 for all v ∈ S.
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By the regularity condition on Ψ, the set S contains at least αε2 fraction of the edges of
Ψ, where α > 0 is an absolute constant. Fix u, v ∈ S between which there is an edge and
let π, σ be the permutations defining the constraint on it. Note that the weight of edges
between the block of u and the block of v is proportional to ⟨fπ−1

u , T ⊗Rfσ−1
v ⟩. Thus, as the

total weight edges covered by S′ is at most cε2Γ(ε/2), it follows that for at least half of the
edges (u, v) inside S we have that

⟨fπ−1
u , T ⊗Rfσ−1

v ⟩ ⩽ 2cε2Γ(ε/2)
αε2 <

1
2Γ(ε/2)

where we used the fact that c is sufficiently small. We refer to such edges (u, v) as good.
Fix a good edge (u, v). Applying Theorem 13 we find d ∈ N and δ > 0 depending only on

ε, such that there is i ∈ {1, . . . , R} for which I⩽d
i [fπ−1

u ] ⩾ δ, I⩽d
i [fσ−1

v ] ⩾ δ. Using Claim 11
we conclude that

I⩽2d
π(2i−1)[fu] + I⩽2d

π(2i)[fu] = I⩽2d
2i−1[fπ−1

u ] + I⩽2d
2i [fπ−1

u ] ⩾ I⩽d
i [fπ−1

u ] ⩾ δ,

I⩽2d
σ(2i−1)[fv] + I⩽2d

σ(2i)[fv] = I⩽2d
2i−1[fσ−1

v ] + I⩽2d
2i [fσ−1

v ] ⩾ I⩽d
i [fσ−1

v ] ⩾ δ.

Taking List[u] =
{

i ∈ {1, . . . , R}
∣∣∣ I⩽2d

i [fu] ⩾ δ
2

}
, we conclude that for each good edge

(u, v) it holds that the lists List[u] and List[v] contain a pair of assignments satisfying the
constraint on (u, v). Also, by Fact 9 the size of each one of these lists is at most 4d

δ . Thus, if
we choose for each u ∈ S a label from List[u] uniformly at random, then we get an assignment
that satisfies at least δ

4d of the good edges in expectation. Therefore, in expectation, it
satisfies at least Ω(ε2δ/d) of the constraints of Ψ. In particular, there exists an assignment
to Ψ satisfying at least Ω(ε2δ/d) of the constraints in it, and this is a contradiction provided
that the soundness parameter s is sufficiently small. ◀

3.3 Sparsification: Hardness of Almost 4-coloring on Bounded Degree
Graphs

In this section, we start with instances produced from Theorem 16, and reduce them to
unweighted graph instances in which the maximal degree is bounded. To do so, we apply the
random sparsification technique from [1]. More precisely, we show the following result:

▶ Theorem 17. For all ε, η > 0, given a graph G = (V, E) it is NP-hard under randomized
reductions to distinguish between:

Yes case: iCol4(G) ⩾ 1 − η

No case: G has no independent set of size ε |V |.
Moreover, the maximal degree of a vertex in G is at most O

(
1

ε2Γ(ε/2))

)
.

Proof. Let (G = (V, E), w) be a weighted graph as in Theorem 16, and construct a graph
G′ = (V ′, E′) in the following way:

Step 1: reduce the average degree and remove weight. Let d−1 = C−1 · ε2Γ(ε/2) for
a large absolute constant C > 0 to be determined. Independently sample dn edges from
G (allowing repetitions), with probabilities proportional to the weights and include them,
unweighted, in the graph G′.

Completeness. It is clear that iCol4(G′) ⩾ iCol4(G) as G′ is a subgraph of G.

APPROX/RANDOM 2023
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Soundness. Let S ⊆ V be a set of fractional size ε, and recall that it contained at least
cε2Γ(ε/2) of the total weight, for some c > 0. Thus, the probability that S is an independent
set in G′ is at most(

1 − cε2Γ(ε/2)
)dn

⩽ e−cε2Γ(ε/2)dn ⩽ e−ncC ⩽ 2−2n

for sufficiently large C > 0. As there are at most 2n distinct such sets S, it follows from
the union bound that the probability at least one of them is an independent set is at most
2n · 2−2n ⩽ 2−n.

Step 2: Average to maximal degree. After step 1 the average degree is at most 2d. We
remove from G′ vertices with degree higher than 4d. By Markov’s inequality, at most half of
the vertices are removed. Consequently, if an almost coloring for 1 − η of the vertices existed,
the same coloring colors at least 1 − 2η of the vertices. Similarly, if the largest independent
set had fractional size at most ε, after removing vertices, no independent set has a fractional
size larger than 2ε. ◀

3.4 Decreasing the Chromatic number
The final step in our proof is to apply a transformation on instances from Theorem 17 that
reduces the almost coloring number in the “yes case” to 3, while keeping the soundness
in the form of almost coloring. Toward this end, we use the directed line graph. The line
graph was shown by [9, 20] to reduce the chromatic number (to be roughly logarithmic in
the chromatic number of the original graph). This fact was used in [17, 8] to get hardness
results for 3-colorable graphs. We also use this property of the line graph. For our purposes
though, we show that a stronger guarantee can be made so long as the original graph has a
bounded degree.

▶ Definition 18. For a digraph G = (V, E), the directed line graph of G, denoted by
δ(G) = (V ′, E′), is defined in the following way:

The vertices are V ′ = E(G), the (directed) edges of the original graph G.
The edges are any pair of edges of G that shares a vertex, namely:

E′ = {((u, v), (v, w)) | (u, v), (v, w) ∈ E(G)}.

Applying the line-graph twice is denoted by δ2(G) def= δ(δ(G)).

We use the following properties of the line graph. The first two lemmas address the
completeness of the reduction.

▶ Lemma 19. If G is 4-colorable, then χ(δ2(G)) ⩽ 3.

Proof. Given a 4-coloring c : V → {0, 1, 2, 3} of G, we can color δ2(G) in the following way:
for every vertex ((i, j), (j, k)), if c(j) ∈ {0, 1, 2} we will assign the color c(j). Otherwise, we
will assign any color in {0, 1, 2} \ {c(i), c(k)}. ◀

Next, we show that if G has bounded degree and a large induced subgraph which is
4-colorable, then δ2(G) is almost 3-colorable.

▶ Lemma 20. For a directed graph G = (V, E) with bounded degree d, if iCol4(G) ⩾ 1 − η,
then iCol3(δ2(G)) ⩾ 1 − 6d2η.
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Proof. Since iCol4(G) ⩾ 1 − η, there exists an induced subgraph H of G, where |V (H)| ⩾
(1 − η) |V (G)| and χ(H) ⩽ 4. By Lemma 19 we get that δ2(H) is 3-colorable. Therefore, it
suffices to bound the fractional number of vertices of δ2(G) that are not vertices of δ2(H).

The set V (δ2(G))\V (δ2(H)) contains vertices of the form ((u, v), (v, w)) when {u, v, w} ̸⊆
V (H). The fractional size of V (G)\V (H) in V (G) is at most η, and for each vertex v ∈ V (G),
there exists at most 3d2 vertices in V (δ2(G)) that include v. Therefore, at most |V (G)| 3d2η

of the vertices are not inside V (δ2(H)), which implies that
∣∣V (δ2H)

∣∣ ⩾ (1 − 6d2)
∣∣V (δ2G)

∣∣
and so iCol3(δ2(G)) ⩾ 1 − 6d2η. ◀

The next lemma addresses the soundness of the reduction:

▶ Lemma 21. Let G = (V, E) be a directed graph with a maximal degree of at most d. Then

iCol⌊log(Q)⌋(δ(G)) ⩽ d − 1
d

+ iColQ(G)
d

.

Proof. For S ⊆ V (δG) = E(G) and a partial t = ⌊log(Q)⌋ coloring c : S → [t], we can
construct the following partial coloring of G. Let H ⊆ V (G) be the set of vertices u such
that (u, v) ∈ S for all neighbours v of u in G. Define f : H → P ([t]) by

f(u) = {c((u, v)) | (u, v) ∈ E(G)}.

The function above is indeed a valid partial coloring, since for each (u, v) ∈ E(G), such that
u, v are both colored, c((u, v)) ∈ f(u) and c((u, v)) ̸∈ f(v). This partial coloring has at most
Q colors, since |P([t])| = 2t ⩽ 2log(Q) = Q.

Finally, by definition, we must have that |H| ⩽ iColQ(G) |V |. On the other hand, if the
size of S is denoted by 1 − η, then we have that H contains at least (1 − dη) |V | vertices. It
follows that 1 − dη ⩽ iColQ(G), and so η ⩾ 1−iColQ(G)

d . ◀

We are now ready to complete the proof of Theorem 1, restated below:

▶ Theorem 22. For all k ∈ N there is δ = δ(k) < 1 such that the following holds for all
η > 0. Given an undirected graph G = (V, E), it is NP-hard (under randomized reductions)
to distinguish between:

Yes case: iCol3(G) ⩾ 1 − η

No case: iColk(G) ⩽ 1 − δ

Moreover, the problem is NP-hard on instances with bounded degrees (depending only on k).

Proof. We start with a graph G from Theorem 17 with sufficiently small parameters, construct
δ2(G), and replace the directed edges with undirected ones. Let d be the bound on the
maximal degree of G.

Completeness. If iCol4(G) ⩾ 1 − η, then by Lemma 20 iCol3(δ2(G)) ⩾ 1 − 6d2η, which is
at least 1 − √

η provided η is small enough (recall that d only depends on the soundness
parameter ε in Theorem 17).

Soundness. Suppose that the largest independent set in G has fractional size at most 1/Q.
By Lemma 21 we get that iCol⌊log(Q/2)⌋(δG) ⩽ 2d−1

2d + 1
4d . Note that the maximum degree

in δ(G) is at most 4d, so applying Lemma 21 on δ(G) we get that

iCol⌊log(⌊log(Q/2)⌋)⌋(δ2(G)) ⩽ 4d − 1
4d

+ 4d − 1
16d2 = 1 − 1

16d2 . ◀
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4 Discussion

As discussed in the introduction, we believe that it may be possible to improve Theorem 1
so that in the “no case”, the graph does not contain an independent set of fractional size ε.
More precisely, we believe that the following conjecture should hold:

▶ Conjecture 23. For all ε, η > 0, given an undirected graph G = (V, E), it is NP-hard to
distinguish between:

Yes case: iCol3(G) ⩾ 1 − η

No case: G does not contain an independent size of fractional size ε.
If true, Conjecture 23 would be a significant result in our opinion. To start with, it immediately
implies an improvement on the best known hardness of approximation result for Vertex
Cover (to factor 3/2 − ε for all ε > 0, where the state of the art NP-hardness result stands at√

2 − ε). Below, we show that a strong enough form of Theorem 1 in which δ is a sufficiently
large function of k (more specifically, δ ⩾ 2−o(k)) implies that Conjecture 23 holds. We
remark that unfortunately, in our proof δ = 22−kO(1)

, which is quantitatively not strong
enough to conclude Conjecture 23.

▶ Definition 24. Given a graph G = (V, E) and t ∈ N, define G[t] = (V [t], E[t]) as:
The vertices are (a1, . . . , at) ∈ V t.
There is an edge between A = (a1, . . . , at) and B = (b1, . . . , bt), if we can move from A to
B by replacing one vertex with one of his neighbors.

(b1, . . . , bt) = (a1, . . . , ai−1, u, ai+1 . . . , at).

The following claim shows that the transformation from G to G[t] has an amplification-type
effect:

▷ Claim 25. If iColQ(G) ⩽ 1 − (1 − c)Q, then for all ε > 0, there exists t = t(Q, ε) such that
G[t] has no independent set of size c + ε.

Proof. Fix t. For an independent set I ⊆ V [t] we define

estI(v) := |{(a1, . . . , at−1, v) ∈ V [t]} ∩ I|
|{(a1, . . . , at−1, v) ∈ V [t]}|

For any independent set I and v ∈ V , it holds that estI(v) ⩽ IS(G[t−1]), where IS(G) denotes
the fractional size of the largest IS in G. This holds since {(a1, . . . , at−1) | (a1, . . . , at−1, v) ∈
I} is an IS in G[t − 1]. It also follows that IS(G[1]) ⩾ IS(G[2]) ⩾ IS(G[3]) ⩾ . . . (as
Ev [est(v)] = |I|/|V [t]|).

Let ρ > 0 be a parameter. Since IS(G[1]) ⩾ IS(G[2]) ⩾ IS(G[3]) ⩾ . . ., there exists
t ⩽ ⌈1/ρ2⌉ + 1, for which IS(G[t − 1]) − IS(G[t]) ⩽ ρ2. Fixing a maximal independent
I ⊆ V [t], it holds that estI(v) ⩽ IS(G[t]) + ρ2 for all v ∈ V . By Markov’s inequality,
for at most ρ|V | vertices of G, estI(v) < IS(G[t]) − ρ. We say a vertex v ∈ V is good if
estI(v) ⩾ IS(G[t]) − ρ.

Sampling a1, . . . , at−1 ∈ V uniformly and taking {u | (a1, . . . , at−1, u) ∈ I} Q times, we
get Q independent sets, which is a partial Q-coloring. For a good vertex v, the probability
that it is included in one of the Q samples is at least

1 − (1 − estI(v))Q ⩾ 1 − (1 − IS(G[t]) + ρ)Q,
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so the expected fractional size of such Q coloring is at least:

(1 − ρ)
(

1 − (1 − IS(G[t]) + ρ)Q
)

|V | .

As this must be smaller than iColQ(G) ⩽ 1 − (1 − c)Q, it follows that IS(G[t]) ⩽ c + O(ρ),
and the proof is concluded for small enough ρ. ◁

▶ Corollary 26. If δ(Q) > 1
2o(Q) in Theorem 22, then Conjecture 23 holds.

Proof. Start with a graph G = (V, E) from Theorem 22 and take G[t] for sufficiently large t.
If iCol3(G) ⩾ 1 − η and S ⊆ V is a set of fractional size at least 1 − η such that the induced
subgraph on S is 3-colorable, then we may color St by (a1, . . . , at) →

∑t
i=1 c(ai) (mod 3),

when c : S → {0, 1, 2} is a 3-coloring of S.
The soundness follows from Claim 25. ◀
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