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Abstract
We consider spin systems on general n-vertex graphs of unbounded degree and explore the effects of
spectral independence on the rate of convergence to equilibrium of global Markov chains. Spectral
independence is a novel way of quantifying the decay of correlations in spin system models, which
has significantly advanced the study of Markov chains for spin systems. We prove that whenever
spectral independence holds, the popular Swendsen–Wang dynamics for the q-state ferromagnetic
Potts model on graphs of maximum degree ∆, where ∆ is allowed to grow with n, converges in
O((∆ log n)c) steps where c > 0 is a constant independent of ∆ and n. We also show a similar
mixing time bound for the block dynamics of general spin systems, again assuming that spectral
independence holds. Finally, for monotone spin systems such as the Ising model and the hardcore
model on bipartite graphs, we show that spectral independence implies that the mixing time of the
systematic scan dynamics is O(∆c log n) for a constant c > 0 independent of ∆ and n. Systematic
scan dynamics are widely popular but are notoriously difficult to analyze. This result implies
optimal O(log n) mixing time bounds for any systematic scan dynamics of the ferromagnetic Ising
model on general graphs up to the tree uniqueness threshold. Our main technical contribution is
an improved factorization of the entropy functional: this is the common starting point for all our
proofs. Specifically, we establish the so-called k-partite factorization of entropy with a constant that
depends polynomially on the maximum degree of the graph.
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1 Introduction

Spectral independence is a powerful new approach for quantifying the decay of correlations
in spin system models. Initially introduced in [4], this condition has revolutionized the study
of Markov chains for spin systems. In a series of important and recent contributions, spectral
independence has been shown to be instrumental in determining the convergence rate of the
Glauber dynamics, the simple single-site update Markov chain that updates the spin at a
randomly chosen vertex in each step.

The first efforts in this series (see [4, 24, 25]) showed that spectral independence implies
optimal O(n log n) mixing of the Glauber dynamics on n-vertex graphs of bounded degree
for general spin systems. The unbounded degree case was studied in [20, 19, 3, 44], while [6]
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explored the effects of this condition on the speed of convergence of global Markov chains
(i.e., Markov chains that update the spins of a large number of vertices in each step) in
the bounded degree setting. Research exploring the applications of spectral independence
is ongoing. We contribute to this line of work by investigating how spectral independence
affects the speed of convergence of global Markov chains for general spin systems on graphs
of unbounded degree.

A spin system is defined on a graph G = (V, E). There is a set S = {1, . . . , q} of spins or
colors, and configurations are assignments of spin values from S to each vertex of G. The
probability of a configuration σ ∈ SV is given by the Gibbs distribution:

µ(σ) = e−H(σ)

Z
, (1)

where the normalizing factor Z is known as the partition function, and the Hamiltonian H :
SV → R contains terms that depend on the spin values at each vertex (a “vertex potential”
or “external field”) and at each pair of adjacent vertices (an “edge potential”); see Definition
24. A widely studied spin system, and one that we will pay close attention to in this paper,
is the ferromagnetic Potts model, where for a real parameter β > 0, associated with inverse
temperature in physical applications, the Hamiltonian is given by:

H(σ) = −β
∑

{u,v}∈E

1(σu = σv).

The classical ferromagnetic Ising model corresponds to the q = 2 case. (In this variant of the
Potts model, the Hamiltonian only includes edge potentials, and there is no external field.)
We shall use µIsing and µPotts for the Gibbs distributions corresponding to the Ising and
Potts models. Other well-known, well-studied spin systems include uniform proper colorings
and the hardcore model.

Spin systems provide a robust framework for studying interacting systems of simple
elements and have a wide range of applications in computer science, statistical physics, and
other fields. In such applications, generating samples from the Gibbs distribution (1) is
a fundamental computational task and one in which Markov chain-based algorithms have
been quite successful. A long line of work dating back to the 1980s relates the speed of
convergence of Markov chains to various forms of decay of correlations in the model. Spectral
independence, defined next, captures the decay of correlations in a novel way.

Roughly speaking, spectral independence holds when the spectral norm of a “pairwise”
influence matrix is bounded. To formally define it, let us begin by introducing some notations.
Let Ω ⊆ SV be the support of µ: the set of configurations σ such that µ(σ) > 0. A
pinning τ on a subset of vertices Λ ⊆ V is a fixed partial configuration on Λ; i.e., a spin
assignment from SΛ to the vertices of Λ. For a pinning τ on Λ ⊆ V and U ⊆ V \ Λ, we let
Ωτ

U = {σU ∈ SU : µ(σU | σΛ = τ) > 0} be the set of partial configurations on U that are
consistent with the pinning τ . We write Ωτ

u = Ωτ
{u} if u is a single vertex. Let

Pτ := {(u, s) : u /∈ Λ, s ∈ Ωτ
u}

denote the set of consistent vertex-spin pairs in Ωτ
V \Λ under µ. For each Λ ⊆ V and pinning

τ on Λ, we define the signed pairwise influence matrix Ψτ
µ ∈ RPτ ×Pτ to be the matrix with

entries:

Ψτ
µ((u, a), (v, b)) = µ(σv = b | σu = a, σΛ = τ) − µ(σv = b | σΛ = τ)

for u ̸= v, and Ψτ
µ((u, a), (u, b)) = 0 otherwise.
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▶ Definition 1 (Spectral Independence). A distribution µ satisfies η-spectral independence if
for every subset of vertices Λ ⊆ V and every pinning τ ∈ ΩΛ, the largest eigenvalue of the
signed pairwise influence matrix Ψτ

µ, denoted λ1(Ψτ
µ), satisfies λ1(Ψτ

µ) ≤ η.

There are several definitions of spectral independence in the literature; we use here the one
from [22].

We show that spectral independence implies new upper bounds on the mixing time of
several well-studied global Markov chains in the case where the maximum degree ∆ of the
underlying graph G = (V, E) is unbounded; i.e., ∆ → ∞ with n. The mixing time is defined
as the number of steps required for a Markov chain to reach a distribution close in total
variation distance to its stationary distribution, assuming a worst possible starting state; a
formal definition is given in Section 2. The global Markov chains we consider include the
Swendsen–Wang dynamics for the ferromagnetic q-state Potts, the systematic scan dynamics
for monotone spin systems, and the block dynamics for general spin systems. These three
dynamics are among the most popular and well-studied global Markov chains and present
certain advantages (e.g., faster convergence and amenability to parallelization) to the Glauber
dynamics.

1.1 The Swendsen–Wang dynamics
A canonical example of a global Markov chain is the Swendsen–Wang (SW) dynamics for
the ferromagnetic q-state Potts model. The SW dynamics transitions from a configuration
σt to σt+1 by:
1. For each edge e = {u, v} ∈ E, if σt(u) = σt(v), independently include e in the set At with

probability p = 1 − e−β ;
2. Then, independently for each connected component C in (V, At), draw a spin s ∈ {1, . . . , q}

uniformly at random and set σt+1(v) = s for all v ∈ C.
The SW dynamics is ergodic and reversible with respect to µPotts and thus converges to it.
This Markov chain originated in the late 1980s [53] as an alternative to the Glauber dynamics,
which mixes exponentially slowly at low temperatures (large β). The SW dynamics bypasses
key barriers that cause the slowdown of the Glauber dynamics at low temperatures. For the
Ising model (q = 2), for instance, it was recently shown to converge in poly(n) steps on any
n-vertex graph for any value of β > 0 [39]. (The conjectured mixing time is Θ(n1/4), but
we seem to be far from proving such a conjecture.) For q ≥ 3, on the other hand, the SW
dynamics can converge exponentially slowly at certain “intermediate” temperatures regimes
corresponding to first-order phase transitions; see [38, 15, 36, 37, 26].

Recently, η-spectral independence (with η = O(1)) was shown to imply that the mixing
time of the SW dynamics is O(log n) on graphs of maximum degree ∆ = O(1), i.e., bounded
degree graphs [6]. This mixing time bound is optimal since the SW dynamics requires Ω(log n)
steps to mix in some cases where η and ∆ are both O(1) [7, 9]. However, it does not extend
to the unbounded degree setting since the constant factor hidden by the big-O notation
depends exponentially on the maximum degree ∆; this is the case even when η = O(1) and
β∆ = O(1). Our first result provides a mixing time bound that depends only polynomially
on ∆.

▶ Theorem 2. Let q ≥ 2, β > 0, η > 0 and ∆ ≥ 3. Suppose G = (V, E) is an n-vertex
graph of maximum degree ∆. Let µPotts be the Gibbs distribution of the q-state ferromagnetic
Potts model on G with parameter β. If µPotts is η-spectrally independent with η = O(1) and
β∆ = O(1), then there exists a constant c > 0 such that the mixing time of the SW dynamics
satisfies Tmix(PSW ) = O

(
(∆ log n)c

)
.

APPROX/RANDOM 2023
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The constant c has a near linear dependency on η and β∆; a more precise statement of
Theorem 2 with a precise expression for c is given in Theorem 11.

Despite the expectation that the SW dynamics mixes in O(log n) steps in weakly correlated
systems (i.e., when β∆ is small), proving sub-linear upper bounds on its mixing time has
been difficult. Recently, various forms of decay of correlation (e.g., strong spatial mixing,
entropy mixing, and spectral independence) have been used to obtain O(log n) bounds for
the mixing time of the SW dynamics on cubes of the integer lattice graph Zd, regular trees,
and general graphs of bounded degree (see [7, 9, 6]). However, for graphs of large degree,
i.e., with ∆ → ∞ with n, the only sub-linear mixing time bounds known either hold for
the very distinctive mean-field model, where G is the complete graph [35, 11], or hold for
very small values of β; i.e., β ≲ 1/(3∆) [43]. Our results provide new sub-linear mixing time
bounds for graph families of sub-linear maximum degree, provided η = O(1) and β∆ = O(1).
These last two conditions go hand-in-hand: in all known cases where η = O(1), we also have
β∆ = O(1).

On graphs of degree at most ∆, η-spectral independence is supposed to hold with η = O(1)
whenever β < βu(q, ∆), where βu(q, ∆) is the threshold for the uniqueness/non-uniqueness
phase transition on ∆-regular trees. This has been confirmed for the Ising model (q = 2)
but not for the Potts model. Specifically, for the ferromagnetic Ising model, we have
βu(2, ∆) = ln ∆

∆−2 , and when β ≤ (1 − δ)βu(2, ∆) for some δ ∈ (0, 1), µIsing is η-spectrally
independent with η = O(1/δ); see [24, 25]. In contrast, for the ferromagnetic Potts model
with q ≥ 3, there is no closed-form expression for βu(q, ∆) (it is defined as the threshold
value where an equation starts to have a double root), and for graphs of unbounded degree
η-spectral independence is only known to hold when β ≤ 2(1−δ)

∆ . As a result, we obtain the
following corollary of Theorem 2.

▶ Corollary 3. Let δ ∈ (0, 1), ∆ ≥ 3. Suppose that either q = 2 and β < (1 − δ)βu(2, ∆),
or q ≥ 3 and β ≤ 2(1−δ)

∆ . Then, there exists a constant c = c(δ) > 0 such that the mixing
time of the SW dynamics for the q-state ferromagnetic Potts model on any n-vertex graph of
maximum degree ∆ satisfies Tmix(PSW ) = O

(
(∆ log n)c

)
.

We mention that other conditions known to imply spectral independence (e.g., those in [14])
are not well-suited for the unbounded degree setting since under those conditions, the best
known bound for η depends polynomially on ∆. For another application of Theorem 2, see
Section 3.3.1 where we provide a bound on the mixing of the SW dynamics on random
graphs.

We comment briefly on our proof approach for Theorem 2. A mixing time bound for
the SW dynamics can be deduced from the so-called edge-spin factorization of the entropy
functional introduced in [7]. It was noted there that this factorization, in turn, follows
from a different factorization of entropy known as k-partite factorization, or KPF. Spectral
independence is known to imply KPF but with a loss of a multiplicative constant that depends
exponentially on the maximum degree of the graph. Our proof of Theorem 2 follows this
existing framework, but pays closer attention to establishing KPF with an optimized constant
with a better dependence on the model parameters. This is done through a multi-scale
analysis of the entropy functional; in each scale, we apply spectral independence to achieve a
tighter KPF condition. Our new results for KPF not only hold for the Potts model, but also
for a general class of spin systems, and we use it to establish new mixing time bounds for
the systematic scan dynamics and block dynamics.
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1.2 The systematic scan dynamics
Our next contribution pertains the systematic scan dynamics, which is a family of Markov
chains closely related to the Glauber dynamics in the sense that updates occur at single
vertices sequentially. The key difference is that the vertex updates happen according to a
predetermined ordering ϕ of the vertices instead of at random vertices. These dynamics offer
practical advantages since there is no need to randomly select vertices at each step, thereby
reducing computation time.

There is a folklore belief that the mixing time of the systematic scan dynamics (properly
scaled) is closely related to that of the Glauber dynamics. However, analyzing this type
of dynamics has proven very challenging (see, e.g., [28, 41, 30, 29, 49, 40, 8]), and the best
general condition under which the systematic scan dynamics is known to be optimally mixing
is a Dobrushin-type condition due to Dyer, Goldberg, and Jerrum [30]. The new developments
on Markov chain mixing stemming from spectral independence have not yet provided new
results for this dynamics, even for the bounded degree case where much progress has already
been made. We show that spectral independence implies optimal mixing of the systematic
scan dynamics for monotone spin systems with bounded marginals; we define both of these
notions next.

▶ Definition 4 (Monotone spin system). In a monotone system, there is a linear ordering
of the spins at each vertex which induces a partial order ⪯q over the state space. A spin
system is monotone with respect to the partial order ⪯q if for every Λ ⊆ V and every pair
of pinnings τ1 ⪰q τ2 on V \ Λ, the conditional distribution µ(· | σΛ = τ1) stochastically
dominates µ(· | σΛ = τ2).

Canonical examples of monotone spin systems include the ferromagnetic Ising model and the
hardcore model on bipartite graphs. As in earlier work (see [24, 25, 6]), our bounds on the
mixing time will depend on a lower bound on the marginal probability of any vertex-spin
pair. This is formalized as follows.

▶ Definition 5 (Bounded marginals). The distribution µ is said to be b-marginally bounded if
for every Λ ⊆ V and pinning τ ∈ ΩΛ, and each (v, s) ∈ Pτ , we have µ(σv = s | σΛ = τ) ≥ b.

Before stating our result for the systematic scan dynamics of b-marginally bounded
monotone spin systems, we note that this Markov chain updates in a single step each vertex
once in the order prescribed by ϕ. Under a minimal assumption on the spin system (the
same one required to ensure the ergodicity of the Glauber dynamics), the systematic scan
dynamics is ergodic. Specifically, when the spin system is totally-connected (see Definition 25),
the systematic scan dynamics is ergodic. Moreover, the systematic scan dynamics is not
necessarily reversible with respect to µ, so, as in earlier works, we work with the symmetrized
version of the dynamics in which, in each step, the vertices are updated according to ϕ first,
and subsequently in the reverse order of ϕ. The resulting dynamics, which we denote by
Pϕ, is reversible with respect to µ. Our main result for the systematic scan dynamics is the
following.

▶ Theorem 6. Let b > 0, η > 0, and ∆ ≥ 3. Suppose G = (V, E) is an n-vertex graph of
maximum degree ∆. Let µ be the distribution of a totally-connected monotone spin system
on G. If µ is η-spectrally independent and b-marginally bounded, then for any ordering ϕ,

Tmix(Pϕ) =
(e2∆

b

)9+4⌈ 2η
b ⌉

· O(log n).

APPROX/RANDOM 2023
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The bound in this theorem is tight: for a particular ordering ϕ, we prove an Ω(log n) mixing
time lower bound that applies to settings where ∆, b and η are all Θ(1); see Lemma 26.

We present next several interesting consequences of Theorem 6. First, we obtain the
following corollary using the known results about spectral independence for the ferromagnetic
Ising model.

▶ Corollary 7. Let δ ∈ (0, 1), ∆ ≥ 3 and 0 < β < (1 − δ)βu(2, ∆). Suppose G = (V, E) is an
n-vertex graph of maximum degree ∆. For any ordering ϕ of the vertices of G, the mixing
time of Pϕ for the Ising model on G with parameter β satisfies Tmix(Pϕ) = O(log n).

The constant hidden by the big-O notation is an absolute constant that depends only on
the constant δ, even when ∆ depends on n. This result, compared to the earlier conditions
in [28, 41, 30], extends the parameter regime where the O(log n) mixing time bound applies;
in fact, the parameter regime in Corollary 7 is tight, as the systematic scan dynamics
undergoes an exponential slowdown when β > βu(2, ∆) [49]. We also derive analogous results
for the hardcore model on bipartite graphs; see Section 4.1.

Our next application concerns the specific but relevant case where the underlying graph
is an n-vertex cube of the integer lattice graph Zd. In this context, it was proved in [8]
that all systematic scan dynamics converge in O(log n(log log n)2) steps whenever a well-
known condition known as strong spatial mixing (SSM) holds. A pertinent open question is
whether SSM implies spectral independence. In fact, spectral independence is often proved
by adapting earlier arguments for establishing SSM (see, e.g., [4, 24]). Recently, it was proved
in [23] that SSM on trees implies spectral independence on large-girth graphs. We show that
for general spin systems on Zd, SSM implies η-spectral independence with η = O(1).

▶ Lemma 8. For a spin system on a d-dimensional cube V ⊆ Zd, SSM implies η-spectral
independence, where η = O(1).

The formal definition of SSM is given later in Section 4. Lemma 8 does not assume
monotonicity for the spin system and could be of independent interest. An interesting
consequence of this lemma, when combined with Theorem 6 is the following.

▶ Corollary 9. Let d ≥ 2. For a b-marginally bounded monotone spin system on a d-
dimensional cube V ⊆ Zd, SSM implies that the mixing time of any systematic scan Pϕ is
O(log n).

For the ferromagnetic Ising model on Z2, SSM is known to hold for all β < βc(2) = ln(1+
√

2)
(see [17, 45, 2, 5]), so by Corollary 9 we deduce that when β < βc(2), the mixing time of any
systematic scan Pϕ on an n-vertex square box of Z2 is O(log n); note that βc(2) > βu(2, 2d),
the corresponding tree uniqueness threshold.

We comment briefly on the techniques used to establish our results for the systematic
scan dynamics. Our starting point is again the k-partite factorization of entropy (KPF).
Our improved bounds for KPF imply that a global Markov chain that updates a random
independent set of vertices in each step is rapidly mixing. We then use the censoring technique
from [34, 10] to relate the mixing time of this Markov chain to that of the systematic scan
dynamics. To establish Lemma 8, we use SSM to construct a contractive coupling for a
particular Markov chain. Our Markov chain is similar to the one from [31], but modified
to update rectangles instead of balls, and thus match the variant of SSM that holds up to
the critical threshold for the Ising model on Z2. This contractive coupling is then used to
establish spectral independence using the machinery from [6].
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1.3 The block dynamics
Our final result concerns a family of Markov chains known as the block dynamics. They are
a natural generalization of the Glauber dynamics where a random subset of vertices (instead
of a random vertex) is updated in each step. More precisely, let B := {B1, . . . , BK} be a
collection of subsets of vertices (called blocks) such that V = ∪K

i=1Bi. Let α be a distribution
over B. The (heat-bath) block dynamics with respect to (B, α) is the Markov chain that,
in each step, given a spin configuration σt, selects Bi ∈ B according to the distribution α

and updates the configuration on Bi with a sample from the µ(· | σt(V \ Bi)); that is, from
the conditional distribution on Bi given the spins of σt in V \ Bi. We denote this Markov
chain (and its transition matrix) by PB,α. When the Bi’s are each single vertices, and α is a
uniform distribution over the blocks in B, we obtain the Glauber dynamics. Our result for
the mixing time of the block dynamics is the following.

▶ Theorem 10. Let b > 0, η > 0 and ∆ ≥ 3. Suppose G = (V, E) is an n-vertex graph
of maximum degree ∆. Let µ be a Gibbs distribution of a totally-connected spin system on
G. Let B := {B1, . . . , BK} be any collection of blocks such that V = ∪K

i=1Bi, and let α be a
distribution over B. If µ is η-spectrally independent and b-marginally bounded, then there
exists a constant C > 0 such that the mixing time of block dynamics PB,α satisfies:

Tmix(PB,α) = O
(

α−1
min ·

(C∆ log n log log n

b7

)2+⌈ 2η
b ⌉)

,

where αmin = minv∈V

∑
B∈B αB.

Previous results for the block dynamics only apply to the bounded degree case [9, 17, 6], so
Theorem 10 provides the first bounds for its mixing time in the unbounded degree setting.

Organization. The rest of the paper is organized as follows. In Section 2, we provide a
number of definitions and background results. In Sections 3 and 4, we provide proof sketches
for our results for the SW dynamics and the systematic scan dynamics; that is, Theorems 2
and 6, respectively. Some of our proofs are deferred to the full version of the paper [12].

2 Mixing times and modified log-Sobolev inequalities

Let P be an irreducible and aperiodic (i.e., ergodic) Markov chain with state space Ω and
stationary distribution µ. Let us assume that P is reversible with respect to µ, and let

d(t) := max
x∈Ω

∥P t(x, ·) − µ∥T V := max
x∈Ω

max
A⊆Ω

|P t(x, A) − µ(A)|,

where P t(x, ·) denotes the distribution of the chain at time t assuming x ∈ Ω as the starting
state; ∥ · ∥T V denotes the total variation distance. Note that with a slight abuse of notation
we use P for both the Markov chain and its transition matrix. For ε > 0, let

Tmix(P, ε) := min{t > 0 : d(t) ≤ ε},

and the mixing time of P is defined as Tmix(P ) = Tmix(P, 1/4).
For functions f, g : Ω → R, the Dirichlet form of a reversible Markov chain P with

stationary distribution µ is defined as

EP (f, g) = ⟨f, (I − P )g⟩µ = 1
2

∑
x,y∈Ω

µ(x)P (x, y)(f(x) − f(y))(g(x) − g(y)),

where ⟨f, g⟩µ :=
∑

x∈Ω f(x)g(x)µ(x).

APPROX/RANDOM 2023
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The spectrum of the ergodic and reversible Markov chain P is real, and we let 1 = λ1 >

λ2 ≥ · · · ≥ λ|Ω| ≥ −1 denote its eigenvalues. The (absolute) spectral gap of P is defined by
GAP(P ) = 1 − max{|λ2|, |λ|Ω||}. When P is positive semidefinite, we have

GAP(P ) = 1 − λ2 = inf
{

EP (f, f)
⟨f, f⟩µ

| f : Ω → R, ⟨f, f⟩µ ̸= 0
}

.

For P reversible and ergodic, we have the following standard comparison between the spectral
gap and the mixing time

Tmix(P, ε) = 1
GAP(P ) · log

( 1
εµmin

)
, (2)

where µmin := minx∈Ω µ(x).
The expected value of a function f : Ω → R≥0 with respect to µ is defined as Eµ[f ] =∑

x∈Ω f(x)µ(x). Similarly, the entropy of the function with respect to µ is given by

Entµ(f) := Eµ

[
f log f

Eµ[f ]

]
= Eµ[f log f ] − Eµ[f log(Eµ[f ])].

We say that the Markov chain P satisfies a modified log-Sobolev inequality (MLSI) with
constant ρ if for every function f : Ω → R≥0,

ρ · Entµ(f) ≤ EP (f, log f).

The smallest ρ satisfying the inequality above is called the modified log-Sobolev constant of
P and is denoted by ρ(P ). A well-known general relationship (see [27, 13]) shows that

1 − 2µmin

log(1/µmin − 1)GAP(P ) ≤ ρ(P ) ≤ 2GAP(P ). (3)

For distributions µ and ν over Ω, the relative entropy of ν with respect to µ, denoted as
H(ν | µ), is defined as H(ν | µ) :=

∑
x∈Ω ν(x) log ν(x)

µ(x) . A Markov chain P with stationary
distribution µ is said to satisfy discrete relative entropy decay with rate r > 0 if for all
distributions ν:

H(νP | µ) ≤ (1 − r)H(ν | µ). (4)

It is a standard fact (see, e.g., Lemma 2.4 in [7]) that when (4) holds, then ρ(P ) ≥ r, and

Tmix(P, ε) ≤ 1
r

·
(

log log
( 1

µmin

)
+ log

( 1
2ε

))
. (5)

3 Swendsen-Wang dynamics on general graphs

In this section, we consider the SW dynamics for the q-state ferromagnetic Potts models
on general graphs. In particular, we establish Theorem 2 from the introduction, which is a
direct corollary of the following more general result.

▶ Theorem 11. Let q ≥ 2, β > 0, η > 0, b > 0, ∆ ≥ 3, and χ ≥ 2. Suppose G = (V, E) is
an n-vertex graph of maximum degree ∆ and chromatic number χ. Let µPotts be the Gibbs
distribution of the q-state ferromagnetic Potts model on G with parameter β. If µPotts is
η-spectrally independent and b-marginally bounded, then there exists a universal constant
C > 1 such that the modified log-Sobolev constant of the SW dynamics satisfies:
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ρ(PSW ) = Ω
(

b7+6κ

χ · (C∆ log n)κ · (log log n)κ+1

)
,

where κ = 1 + ⌈ 2η
b ⌉, and

Tmix(PSW ) = O
(
b−(7+6κ) · χ · (C∆ log n)κ(log log n)κ+1 · log n

)
.

Theorem 2 follows from this theorem by noting that χ ≤ ∆ and that under the assumptions
η = O(1) and β∆ = O(1), we have b = O(1) and κ = O(1).
▶ Remark 12. When ∆ is small, i.e., ∆ = o(log n), we can obtain slightly better bounds
on ρ(PSW ) and Tmix(PSW ) and replace the (C∆ log n · log log n)κ factor by a factor of
(C∆)6+4⌈ 2η

b ⌉. This result is included in the full version of this paper [12].
Before proving Theorem 11, we provide a number of definitions and required background
results in Section 3.1. We then sketch the proof of Theorem 11 in Sections 3.2 and include
some applications of this result in Section 3.3.

3.1 Factorization of entropy
We present next several factorizations of the entropy functional Entµ(f), which are in-
strumental in establishing the decay of the relative entropy for the SW dynamics. We
introduce some useful notations first. For a pinning τ in V \ Λ (i.e., τ ∈ ΩV \Λ), we let
µτ

Λ(·) := µ(· | σV \Λ = τ). Given a function f : Ω → R≥0, subsets of vertices B ⊆ Λ ⊂ V , and
τ ∈ ΩV \Λ, the function fτ

B : Ωτ
B → R≥0 is defined by:

fτ
B(σ) = Eξ∼µτ

Λ\B
[f(τ ∪ ξ ∪ σ)].

If B = Λ, we often write fτ for fτ
B, and if τ = ∅, then we use fB for fτ

B. We use Entτ
B(fτ )

to denote Entµτ
B

(fτ ), and if the pinning τ on V \ B is from a distribution π over ΩV \B , we
use Eτ∼π[Entτ

B(fτ )] to denote the expected value of the function f on S over the random
pinning τ .

Various forms of entropy factorization arise from bounding Entµ(f) by different (weighted)
sums of restricted entropies of the function f . The first one we introduced, is the so-called
ℓ-uniform block factorization of entropy of ℓ-UBF. For an integer ℓ ≤ n, ℓ-UBF holds for µ

with constant CUBF if for all functions f : Ω → R≥0,

ℓ

n
· Entµ(f) ≤ CUBF · 1(

n
ℓ

) ∑
S∈(V

ℓ )
Eτ∼µV \S

[Entτ
S(fτ )] , (6)

where
(

V
ℓ

)
denotes the collection of all subsets of V of size ℓ. An important special case is

when ℓ = 1, in which case (6) is called approximate tensorization of entropy (AT); this special
case has been quite useful for establishing optimal mixing time bounds for the Glauber
dynamics in various settings (see, e.g., [47, 16, 18, 46]). The following result will be useful
for us.

▶ Theorem 13 ([25, 6]). Let b and η be fixed. For θ ∈ (0, 1) and n ≥ 2
θ ( 4η

b2 + 1), the following
holds. If the Gibbs distribution µ of a spin system on an n-vertex graph is η-spectrally
independent and b-marginally bounded, then ⌈θn⌉-UBF holds with CUBF = (e/θ)⌈ 2η

b ⌉. In
addition, if θ < b2/(12∆), then:

Entµ(f) ≤ CUBF · 18
b5θ

n∑
i=1

Eτ∼µV \{i} [Entτ
i (fτ )] .
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Note that the inequality in the theorem corresponds to AT with constant CAT = CUBF · 18
b5θ .

Another useful notion is k-partite factorization of entropy or KPF. Let U1, . . . , Uk be k

disjoint independent sets of V such that
⋃k

i=1 Ui = V . We say µ satisfies KPF with constant
CKPF if for all functions f : Ω → R≥0,

Entµ(f) ≤ CKPF

k∑
i=1

Eτ∼µV \Ui

[
Entτ

Ui
(fτ )

]
.

KPF was introduced in [6], where it was used to analyze global Markov chains. The interplay
between KPF and UBF is intriguing and is further explored in this paper.

3.2 Proof of main result for the SW dynamics: Theorem 11
The main technical contribution in the proof of Theorem 11 is establishing KPF with a
better (i.e., smaller) constant CKPF. As in [6], KPF is then used to derive an improved
“edge-spin” factorization of entropy which is known to imply the desired bounds on the
modified log-Sobolev constant and on the mixing time of the SW dynamics.

▶ Theorem 14. For a b-marginally bounded Gibbs distribution µ that satisfies η-spectral
independence on an n-vertex graph G = (V, E) of maximum degree ∆, if b and η are constants
independent of ∆ and n, and ∆ ∈ [3, b4n

10e(4η+b2) ], then there exists an absolute constant c > 0
such that k-partite factorization of entropy holds for µ with constant CKPF = (∆ log n)c.
Specifically, for a set of k disjoint independent sets V1, . . . , Vk such that

⋃k
j=1 Vj = V ,

Entµ(f) ≤ 54 · e13κ

b5+6κ
· (∆ log n)κ · (log log n)1+κ

k∑
j=1

Eτ∼µV \Vj
[Entτ

Vj
(fτ )], (7)

where κ = 1 + ⌈ 2η
b ⌉. Moreover, if ∆2 ≤ b4n

10e(4η+b2) , then the following also holds

Entµ(f) ≤ 72 · e8κ

b5+4κ
· ∆2+4κ

k∑
j=1

Eτ∼µV \Vj
[Entτ

Vj
(fτ )]. (8)

This Theorem is proved in the full version [12].
▶ Remark 15. Let B = {B1, . . . , Bk} be a collection of disjoint independent sets such that
V =

⋃k
i=1 Bi. The independent set dynamics PB is a heat-bath block dynamics w.r.t. B and

a uniform distribution over B. If µ satisfies k-partite factorization of entropy with CKPF,
then PB satisfies a relative entropy decay with rate r ≥ 1/(k · CKPF).

As mentioned, KPF was first studied in [6]; the constant proved there was

CKPF = bO(∆) · (b∆)O(η/b),

so our new bound improves the dependence on ∆ from exponential to polynomial.
With KPF on hand, the next step in the proof of Theorem 11 relies on the so-called

edge-spin factorization of entropy. Let ΩJ := Ω × {0, 1}E be the set of joint configurations
(σ, A) corresponding to pairs of a spin configuration σ ∈ Ω and an edge configuration (a subset
of edges in a graph) A ⊆ E. For a q-state Potts model µPotts with parameter p = 1 − e−β ,
we use ν to denote the Edwards-Sokal measure on ΩJ given by

ν(σ, A) := 1
ZJ

(1 − p)|E|−|A|p|A|1(σ ∼ A),
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where σ ∼ A is the event that every edge in A has its two endpoints with the same spin in σ,
and ZJ :=

∑
(A,σ)∈ΩJ

(1 − p)|E|−|A|p|A|1(σ ∼ A) is a normalizing constant. Let ν(· | σ) and
ν(· | A) denote the conditional measures obtained from ν by fixing the spin configuration
to be σ or fixing the edge configuration to be A respectively. For a function f : ΩJ → R≥0,
let fσ : {0, 1}|E| → R≥0 be the function given by fσ(A) = f(σ ∪ A), and let fA : Ω → R≥0
be the function given by fA(σ) = f(σ ∪ A). We say that edge-spin factorization of entropy
holds with constant CES if for all functions f : ΩJ → R≥0,

Entν(f) ≤ CES
(
E(σ,A)∼ν

[
EntA∼ν(·|σ)(fσ)

]
+ E(σ,A)∼ν

[
Entσ∼ν(·|A)(fA)

])
. (9)

The following result from [6] will be useful for us.

▶ Lemma 16 (Theorem 6.1 [6]). Suppose the q-state ferromagnetic Potts model with parameter
β on a graph G of maximum degree is ∆ ≥ 3 satisfies KPF with constant CKPF. Then, the
edge-spin factorization of entropy holds with constant CES = O(β∆keβ∆) · CKPF.

The final ingredient in the proof of Theorem 11 is the following.

▶ Lemma 17 (Lemma 1.8 [7]). Suppose edge-spin factorization of entropy holds with constant
CES. Then, the SW dynamics PSW satisfies the relative entropy decay with rate Ω

(
1

CES

)
.

We are now ready to prove Theorem 11. Since Theorem 14 requires an upper bound on
the maximum degree ∆, when ∆ = Ω(n) we use a crude comparison argument to obtain
a polynomial bound for the modified log-Sobolev constant and mixing time of the SW
dynamics.

Proof of Theorem 11. First, we assume ∆ ∈ [3, b4n
10e(4η+b2) ]. By Theorem 14, µPotts satisfies

χ-partite factorization of entropy with constant

CKPF = (∆ log n)κ(log log n)1+κ · O

(
e13κ

b5+6κ

)
.

It follows from Lemma 16 and Lemma 17 that the SW dynamics satisfies (4) with

r = Ω
(

b5+6κ

χβ∆eβ∆ · (∆ log n)κ(log log n)1+κ · e13κ

)
.

Note that b ≤ q−1e−β∆, and so β∆eβ∆ ≤ e2β∆ ≤ b−2. Therefore, the mixing time bound
follows from (5).

Next, let us consider the case when ∆ = Ω(n). In this case, it suffices to provide a
1/poly(n) lower bound on the modified log-Sobolev constant of the SW dynamics, which
can be obtained in a straightforward manner using the known bounds for the Potts Glauber
dynamics and the comparison technology from [8].

Recall that PB is the independent set dynamics; that is, the block dynamics with respect
to a collection of disjoint independent sets {B1, . . . , Bk}; see Remark 15. From Theorem 3.2 in
[32], we know that GAP(PGD) ≥ n−(2η+1), where PGD denotes the Potts Glauber dynamics.
Since EPGD

(f, f) ≤ EPB (f, f) for any function f , it follows that GAP(PB) ≥ n−(2η+1). In
addition, the comparison inequalities from [8] imply that

GAP(PSW ) ≥ GAP(PB) · min
i=1,...,k

min
τ∈ΩV \Bi

min
v∈Bi

GAP(P τ
v ),

where P τ
v is the transition matrix for the update at vertex v, with τ as the fixed boundary

condition, that adds each monochromatic edge between v and its neighbors independently with
probability p := 1−e−β , and assigns a new random spin to v only if no edge is added. From a
simple coupling argument it follows that for any v ∈ Bi, GAP(P τ

v ) ≥ (1 − p)∆ = e−β∆ ≥ qb.
Thus, GAP(PSW ) ≥ n−(2η+1)qb, and ρ(PSW ) = Ω(n−(2η+2)b) by (3). The mixing time
bound follows from (2). ◀
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3.3 Applications of Theorem 11
In this section, we prove Corollary 3 from the introduction and present another application
of Theorem 11 concerning the SW dynamics on a random graph generated from the classical
Erdős-Rényi G(n, p) model. For this, we first define Dobrushin’s influence matrix.

▶ Definition 18. The Dobrushin influence matrix A ∈ Rn×n is defined by A(u, u) = 0 and
for u ̸= v,

A(u, v) = max
(σ,τ)∈Su,v

dT V (µv(· | σ), µv(· | τ)),

where Su,v contains the set of all pairs of partial configurations (σ, τ) in ΩV \{v} that can
only disagree at u, namely, σw = τw if w ̸= u.

It is known that an upper bound on the spectral norm of A implies spectral independence.
In particular, we have the following result from [6].

▶ Proposition 19 (Theorem 1.13, [6]). If the Dobrushin influence matrix A of a distribution
µ satisfies ∥A∥ ≤ 1 − ε for some ε > 0, then µ is spectral independent with constant η = 2/ε.

For the ferromagnetic Ising model, βu(∆) := ln ∆
∆−2 corresponds to the threshold value

of the parameter β for the uniqueness/non-uniqueness phase transition on the ∆-regular tree.
For the anti-ferromagnetic Ising model, the phase transition occurs at β̄u(∆) := − ln ∆

∆−2 . If
β̄u(∆)(1 − δ) < β < βu(∆)(1 − δ), we say the Ising model satisfies the δ-uniqueness condition.
On a bounded degree graph, ∥A∥ ≤ 1 − δ for the Ising model is a strictly stronger condition
than δ-uniqueness condition. However, due to the observation made in [3], if ∆ → ∞, the
two conditions are roughly equivalent.

▶ Proposition 20. The Ising model with parameter β̄u(∆)(1 − δ) < β < βu(∆)(1 − δ) and
∆ → ∞ satisfies ∥A∥ ≤ 1 − δ/2.

This proposition is proved in the full version [12]; we show next that Corollary 3 follows
from Theorem 11. For this, we first restate the corollary in a more precise manner.

▶ Corollary 21. Let δ ∈ (0, 1) and ∆ ≥ 3. For the ferromagnetic Ising model with β ≤
(1 − δ)βu(∆) on any graph G of maximum degree ∆ and chromatic number χ, or for the
ferromagnetic q-state Potts model with q ≥ 3 and β ≤ 2(1−δ)

∆ on the same graph, the mixing
time of the SW dynamics satisfies

Tmix(PSW ) = O
(
χ · ∆κ · (log n log log n)1+κ

)
,

where κ = 1 + ⌈ 4qe2

δ ⌉.

Proof. If ∆ = O(1), then the corollary was proved in a stronger form in [6]. Thus, we assume
∆ → ∞.

We first show spectral independence. Let q = 2. Under the δ-uniqueness condition
0 < β < (1 − δ)βu(∆), by Proposition 20 and Proposition 19, the Ising model µIsing satisfies
(4/δ)-spectral independence. For the q-state Potts model with q ≥ 3, the Dobrushin influence
matrix corresponding to µPotts satisfies ∥A∥ ≤ 1

2 β∆; see proof of Theorem 2.13 in [54].
Thus, if β ≤ 2(1−δ)

∆ , then ∥A∥ ≤ 1 − δ, and by Proposition 19, µPotts satisfies (2/δ)-spectral
independence.
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Letting N(v) denote the neighborhood of v, and noting that for any configuration η on
N(v) we have µ(σv = c | σN(v) = η) ≥ 1/(qe2), we deduce that µPotts and µIsing are both
(1/(qe2))-marginally bounded. Therefore, by noting that κ = 1 + ⌈ 4qe2

δ ⌉ is a constant that
only depends on δ, the mixing time bound follows from Theorem 11

Tmix(PSW ) = O
(
b−(7+6κ) · χ · (C∆ log n)κ(log log n)κ+1 · log n

)
= O

(
χ · ∆κ · (log n log log n)1+κ

)
,

as desired. ◀

3.3.1 The SW dynamics on random graphs
As another application of Theorem 11, we consider the SW dynamics on a random graph
generated from the classical G(n, d

n ) model in which each edge is included independently
with probability p = d/n; we consider the case where d is a constant independent of n. In
this setting, while a typical graph has Õ(n) edges, its maximum degree is of order Θ( log n

log log n )
with high probability. Our results imply that the SW dynamics has polylogarithmic mixing
on this type of graph provided β is small enough.

▶ Corollary 22. Let δ ∈ (0, 1) and d ∈ R≥0 be constants independent of n. Suppose that
G ∼ G(n, d/n) and G has maximum degree ∆. For the ferromagnetic Ising model with
parameter β < (1 − δ)βu(∆) on G or the ferromagnetic q-Potts model with q ≥ 2 and
β ≤ 2(1−δ)

∆ on the same graph, the SW dynamics has (log n)3+2⌈ 4qe2
δ ⌉ · O(log log n) mixing

time, with high probability over the choice of the random graph G.

Corollary 22 is established using Corollary 21 and the following fact about random graphs.
The full proof is provided in the full version [12].

▶ Proposition 23 ([1]). Let G ∼ G(n, d
n ) for a fixed d ∈ R≥0, and let χ be the chromatic

number of G. With high probability over the choice of G, χ = kd or χ = kd + 1, where kd is
the smallest integer k such that d < 2k log k.

4 Systematic scan dynamics

In this section, we study the systematic scan dynamics for general spin systems, which we
define next.

▶ Definition 24 (Spin system). Let G = (V, E) be a graph and S = {1, . . . , q} a set of spins.
Let Ω ⊆ SV be the set of possible spin configurations on G. We write σv for the spin assigned
to v by σ. Given a configuration σ ∈ Ω and a subset Λ of V , we write σΛ ∈ SΛ for the
configuration of σ restricted to Λ. For a subset of vertices Λ ⊆ V , a boundary condition τ is
an assignment of spins to (some) vertices in outer vertex boundary ∂Λ ⊆ V \ Λ of Λ; namely,
τ : (∂Λ)τ → S, with (∂Λ)τ ⊆ ∂Λ. Note that a boundary condition is simply a pinning of
a subset of vertices identified as being in the boundary of G. Given a boundary condition
τ : (∂V )τ → S, the Hamiltonian H : Ω → R of a spin system is defined as

H(σ) = −
∑

{v,u}∈E

K(σv, σu) −
∑

{v,u}∈E:u∈V,v∈(∂V )τ

K(σv, τv) −
∑
v∈V

U(σv), (10)

where K : S × S → R and U : S → R are respectively the symmetric edge interaction
potential function and the spin potential function of the system. The Gibbs distribution of a
spin system with Hamiltonian H is defined as

µ(σ) = 1
ZH

e−H(σ),

where ZH :=
∑

σ∈Ω e−H(σ). We use Ω for the set of configurations σ satisfying µ(σ) > 0.
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The Potts model, as defined in the introduction, corresponds to the spin system with q ≥ 2,
K(x, y) = β · 1(x = y), and U(σv) = 0 for all v ∈ V . In this section, we focus on the
ferromagnetic Ising model where β > 0 and S = {−1, +1}. Another important spin system
is the hardcore model that can be defined by setting S = {1, 0}, K(x, y) = ∞ if x = y = 1
and K(x, y) = 0 otherwise, and U(x) = 1(x = 1) · ln λ, where λ > 0 is referred to as the
fugacity parameter of the model.

We restrict attention to totally-connected spin systems, as this ensures that the Glauber
dynamics, the systematic scan dynamics, and the block dynamics are all irreducible Markov
chains (and thus ergodic).

▶ Definition 25. For a subset CU of partial configurations on U ⊆ V , let H[CU ] = (CU , E[CU ])
be the induced subgraph where E[CU ] consists of all pairs of configurations on CU that differ
at exactly one vertex. We say that CU is connected when H[CU ] is connected. For a pinning
τ on Λ ⊆ V , we say Ωτ

V \Λ is connected if H[Ωτ
V \Λ] is connected. A distribution µ over SV

is totally-connected if for every Λ ⊆ V and every pinning τ on Λ, Ωτ
V \Λ is connected.

Given an ordering ϕ = [v1, . . . , vn] of the vertices, a systematic scan dynamics performs
heat-bath updates on v1, . . . , vn sequentially in this order. Recall that a heat-bath update
on vi simply means the replacement of the spin on vi by a new spin assignment generated
according to the conditional distribution in vi given the configuration in V \ {vi}. Let
Pi ∈ R|Ω|×|Ω| be the transition matrix corresponding to a heat-bath update on the vertex vi.
The transition matrix of the systematic scan dynamics for the ordering ϕ can be written
as Sϕ := Pn . . . P1. In general, Sϕ is not reversible, so as in earlier works we work with the
symmetrized version of the scan dynamics that updates the spins in the order ϕ and in
addition updates the spins in the reverse order of ϕ [33, 48]. The transition matrix of the
symmetrized systematic scan dynamics can then be written as

Pϕ :=
n∏

i=1
Pi

n−1∏
i=0

Pn−i.

Henceforth, we only consider the symmetrized version of the dynamics. Since Pϕ is a
symmetrized product of reversible transition matrices, one can straightforwardly verify its
reversibility with respect to µ; its ergodicity follows from the assumption that the spin system
is totally-connected (see Definition 25).

We show tight mixing time bounds for Pϕ for monotone spin systems (see Definition 4).
Our main result for the systematic scan dynamics is Theorem 6 from the introduction; its
proof is included in the full version of this paper [12]. We complement Theorem 6 with a
lower bound for the mixing time of systematic scan dynamics for a particular ordering ϕ.
Specifically, on a bipartite graph G = (VE ∪ VO, E), an even-odd scan dynamics PEOE is a
systematic scan dynamics with respect to an ordering ϕ such that ve appears before vo in ϕ

for all ve ∈ VE and vo ∈ VO. In other words,

Pϕ =
∏

i:vi∈VE

Pi

∏
i:vi∈VO

Pi

∏
i:vi∈VO

Pi

∏
i:vi∈VE

Pi.

The above expression is well-defined without specifying the ordering in which the vertices in
VE and VO are updated since the updates commute.

▶ Lemma 26. Let ∆ be a constant and let G be an n-vertex connected bipartite graph with
maximum degree ∆. The even-odd scan dynamics PEOE for the ferromagnetic Ising model
on G has mixing time Tmix(PEOE) = Ω(log n).
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The lower bound in Lemma 26 is proved in the full version of this paper [12] using
the machinery from [42] and the fact that even-odd scan dynamics does not propagate
disagreements quickly (under a standard coupling). Our proof can thus be extended to other
scan orderings that propagate disagreements slowly; however, there are orderings that do
propagate disagreements quickly (think of a box in Z2 with the vertices sorted in a “spiral”
from the boundary of the box to its center). For this type of ordering, the technique does
not provide the Ω(log n) lower bound. In addition, while we focus on the ferromagnetic Ising
model to ensure clarity in the proof, the established lower bound is expected to apply to a
broader class of spin systems.

4.1 Applications of Theorem 6
We discuss next some applications of Theorem 6. As a first application, we can establish
optimal mixing for the systematic scan dynamics on the ferromagnetic Ising model under the
δ-uniqueness condition, improving the best known results that hold under the Dobrushin-type
conditions [51, 28, 41]. This result was stated in Corollary 7 in the introduction and is
proved next. For this, we recall that under δ-uniqueness condition, the Ising distribution
µIsing satisfies spectral independence and the bounded marginals condition.

▶ Proposition 27 ([24, 25]). The ferromagnetic Ising model with parameter β such that
β̄u(∆)(1 − δ) < β < βu(∆)(1 − δ) is O(1/δ)-spectrally independent and b-marginally bounded
with b = O(1).

Proof of Corollary 7. We fix δ ∈ (0, 1) and first assume that ∆ is a constant. By Proposi-
tion 27, the ferromagnetic Ising model with parameter β < (1 − δ)βu(∆) satisfies η-spectral
independence and b-bounded marginals, where η = O(1/δ) and b is a constant. Since the fer-
romagnetic Ising model is a monotone system, it follows from Theorem 6 that Tmix = O(log n)
for any ordering ϕ.

Now, when ∆ → ∞ as n → ∞, by Proposition 20, the Dobrushin’s influence matrix A of
ferromagnetic Ising model satisfies that ∥A∥ ≤ 1 − δ/2. Under this assumption, it is known
that Tmix = O(log n) for any ordering ϕ; see [41]. ◀

We can similarly show mixing time bound for the systematic scan dynamics of the
hardcore model on bipartite graphs under δ-uniqueness condition.

▶ Corollary 28. Let δ ∈ (0, 1) be a constant. Suppose G is an n-vertex bipartite graph of
maximum degree ∆ ≥ 3. For the hardcore model on G with fugacity λ such that 0 < λ <

(1 − δ)λu(∆), where λu(∆) = (∆−1)∆−1

(∆−2)∆ is the tree uniqueness threshold on the ∆-regular
tree, the systematic scan with respect to any ordering ϕ satisfies

Tmix(Pϕ) = ∆O(1/δ) · O(log n).

Proof of Corollary 28. The hardcore model on a bipartite graph (V1 ∪ V2, E) with fugacity
0 < λ < (1 − δ)λu(∆) is monotone, and [25, 3, 21] show that it satisfies O(1/δ)-spectral
independence and the O(λ)-bounded marginals condition. Theorem 6 then implies ∆O(1/δ) ·
O(log n) mixing of systematic scan for any ordering. ◀

We consider next the application of Theorem 6 to the special case where the underlying
graph is a cube of the d-dimensional lattice graph Zd. We show that strong spatial mixing
implies optimal O(log n) mixing of any systematic scan dynamics. Previously, under the same
type of condition, [8] gave an O(log n(log log n)2) mixing time bound for arbitrary orderings,
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and an O(log n) mixing time bound for a special class of scans that (deterministically)
propagate disagreements slowly under the standard identity coupling. We first provide the
definition of our SSM condition.

▶ Definition 29. We say a spin system µ on Zd satisfies the strong spatial mixing (SSM)
condition if there exist constants α, γ, L > 0 such that for every d-dimensional rectangle
Λ ⊂ Zd of side length between L and 2L and every subset B ⊂ Λ, with any pair (τ, τ ′) of
boundary configurations on ∂Λ that only differ at a vertex u, we have

∥µτ
B(·) − µτ ′

B (·)∥T V ≤ γ · exp(−α · dist(u, B)),

where dist(·, ·) denotes graph distance.

The definition above differs from other variants of SSM in the literature (e.g., [31, 8, 45]) in
that Λ has been restricted to “regular enough” rectangles. In particular, our variant of SSM
is easier to satisfy than those in [31, 45] but more restricting than the one in [8] (that only
considers squares). Nevertheless, it follows from [17, 45, 2, 5] that for the ferromagnetic Ising
model, this form of SSM holds up to a critical threshold temperature β < βc(2) = ln(1 +

√
2)

on Z2.
Corollary 9 from the introduction states that for b-marginally bounded monotone spin

system on d-dimensional cubes V ⊆ Zd, SSM implies that the mixing time of any systematic
scan Pϕ is O(log n). As mentioned there, this result in turn implies that any systematic scan
dynamics for the ferromagnetic Ising model is mixing in O(log n) steps on boxes of Z2 when
β < βc(2). Another interesting consequence of Corollary 9 is that we obtain O(log n) mixing
time for any systematic scan dynamics Pϕ for the hardcore model on Z2 when λ < 2.538,
which is the best known condition for ensuring SSM [52, 50].

Our proof of Corollary 9 relies on Lemma 8 that is restated below. The proof of Lemma 8
is provided in the full version of this paper [12]. Remarkably, Lemma 8 generalizes beyond
monotone systems and may be of independent interests.

▶ Lemma 8. For a spin system on a d-dimensional cube V ⊆ Zd, SSM implies η-spectral
independence, where η = O(1).

Proof of Corollary 9. Assume a monotone spin system satisfies SSM condition. Then the
spin system satisfies η-spectral independence, where η = O(1) by Lemma 8. By noting that
∆ = 2d the corollary follows from Theorem 6. ◀
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