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Abstract
We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries
in the rows and columns having full row rank. Inspired by low-density parity check codes, the family
of random matrices that we investigate is very general and encompasses both matrices over finite
fields and {0, 1}-matrices over the rationals. The proof combines statistical physics-inspired coupling
techniques with local limit arguments.
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1 Introduction

1.1 Background and motivation
While “continuous” random matrices such as, for example, a random n × n-matrix with
independent Gaussian entries have full rank almost surely for trivial reasons, the rank problem
for random combinatorial matrices with entries drawn from discrete distributions poses deep
mathematical challenges. In the 1960s Komlós, among the first to study this type of problem,
proved that a random n × n-matrix with independent ±1-entries has full rational rank with
high probability [24]. An obvious lower bound on the singularity probability is the probability
2−n+o(n) that two rows or columns coincide. The conjecture that this lower bound is tight
inspired an impressive line of work (e.g., [23, 33]), which culminated in Tikhomirov’s proof
of the conjecture [34].
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54:2 The Full Rank Condition for Sparse Random Matrices

By comparison to the case of dense random matrices, relatively little is known about the
sparse case where the average number of non-zero entries per row or column is bounded.
Moreover, techniques developed for dense random matrices such as large deviations inequalities
or Littlewood-Offord arguments do not easily carry over to the sparse case. Yet sparse random
matrices are of key interest in computer science. Prominent applications include low-density
parity check codes [32], data compression [1, 36] and hashing [16].

One of the first full rank theorems for sparse random matrices came in the guise of a
random constraint satisfaction problem. Specifically, in the random k-XORSAT problem
we form a random Boolean formula over n variables with m independent XOR-clauses of
length k. The question is for what clause densities m/n such a random formula admits
an (XOR-)satisfying assignment. Because Boolean XOR is equivalent to addition over the
field F2, this question boils down to determining the threshold m/n up to which a random
m × n-matrix over F2 with precisely k ones per row has full row rank. For the case k = 3 this
problem was solved by Dubois and Mandler [18] in 2002. Remarkably, the case of general k

was solved only more than ten years later by Pittel and Sorkin [31]. Both proofs depend on
delicate and technically demanding moment computations.

The contribution of the present paper is a sufficient condition for a sparse random
combinatorial matrix to have full row rank. We derive this sufficient condition within the
framework of a very general model of random matrices that hails from coding theory [32].
As a very special case this general result encompasses the random k-XORSAT problem. But
in addition, we obtain a range of other important special cases such as matrices in which the
number of non-zero entries per row or column follows a power law. In fact, the sufficient
condition that we obtain is essentially necessary, too. The proof of the main result is based
on a novel combination of statistical physics-inspired coupling arguments and local limit
theorem techniques. These methods are conceptually more powerful than the method of
moments as there exist concrete instances of the present random matrix model where the
matrix provably has full rank even though the method of moments fails spectacularly.

1.2 Results
The random matrix model that we investigate allows to control the number of non-zero
entries in the rows and columns. The model is identical to the type of model used to construct
low-density parity check codes [9, 32]. Specifically, let d ≥ 0, k ≥ 3 be independent integer-
valued random variables such that E[d2+η] + E

[
k2+η

]
< ∞ for an arbitrarily small η > 0.

Let (di, ki)i≥1 be independent copies of (d, k) and set d = E[d], k = E[k]. Furthermore, let
d and k be the greatest common divisors of the support of d and k, respectively. Finally, let
n > 0 be a large integer divisible by k and let m ∼ Po(dn/k) be independent of (di, ki)i≥1.
These definitions ensure that the event

n∑
i=1

di =
m∑

j=1
kj (1.1)

occurs with probability Ω(n−1/2) [9, Proposition 1.7]. Hence, assuming (1.1) occurs, let
G = Gn(d, k) be a simple random bipartite graph on a set {a1 . . . , am} of check nodes and a
set {x1, . . . , xn} of variable nodes such that the degree of ai equals ki and the degree of xj

equals dj for all i, j. Adopting coding terminology, we refer to G as the Tanner graph. We
need to assume that the second moment is bounded so that the Tanner graph is locally finite.
The random graph G naturally induces a {0, 1}-matrix, namely the m×n-biadjacency matrix
B = B(G) of the bipartite graph. Explicitly,
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Bij = 1{aixj ∈ E(G)} (1 ≤ i ≤ m, 1 ≤ i ≤ n).

Let

D(z) =
∞∑

ℓ=0
P [d = ℓ] zℓ and K(z) =

∞∑
ℓ=0

P [k = ℓ] zℓ

be the probability generating functions of d and k. Since E[d2] + E[k2] < ∞, the function

Φ : [0, 1] → R, z 7→ D (1 − K ′(z)/k) − d

k
(1 − K(z) − (1 − z)K ′(z)) (1.2)

is well-defined. The following result renders a sufficient condition for B to have full row rank.

▶ Theorem 1. If

Φ(z) < Φ(0) for all 0 < z ≤ 1, (1.3)

then B has full rational row rank w.h.p.

Theorem 1 is a direct consequence of a significantly stronger result on matrices over
finite fields. Specifically, suppose that q ≥ 2 is a prime power, let Fq signify the field with q

elements and let χ be a random variable that takes values in F∗
q = Fq \ {0}. Let (χi,j)i,j≥1

be independent copies of χ. Finally, let A = An(d, k, χ) be the m × n-matrix with entries

Ai,j = 1 {aixj ∈ E(G)} · χi,j ∈ Fq.

Hence, the i-th row of A contains ki non-zero entries and the j-th column contains dj

non-zero entries.

▶ Theorem 2. If q and d are coprime and (1.3) is satisfied, then A has full row rank over
Fq w.h.p.

Theorem 1 follows from Theorem 2 and a few lines of linear algebra.
The sufficient condition (1.3) is quite close to being necessary, too. Indeed, the normalised

rank of A (and B) can be expressed in terms of the function Φ as follows [9, Theorem 1.1]:

rk(A)
n

n → ∞−→ 1 − max
z∈[0,1]

Φ(z) in probability. (1.4)

Since k ≥ 3, the definition (1.2) ensures that Φ(0) = 1 − d/k and thus nΦ(0) ∼ n − m w.h.p.
Hence, (1.4) implies that rk(A) ≤ m − Ω(n) w.h.p. unless Φ(z) attains its maximum at
z = 0. In other words, A has full row rank only if Φ(z) ≤ Φ(0) for all 0 < z ≤ 1. Indeed,
in Section 1.3 we will discover examples that require a strict inequality as in (1.3). The
condition that q and d be coprime is generally necessary as well, as we will see in Example 8
below.

▶ Remark 3. We emphasise that (1.4) does not guarantee that A has full row rank w.h.p.
even if (1.3) is satisfied. In fact, due to the normalisation on the l.h.s., (1.4) only implies
that rk(A) = m − o(n) w.h.p., rather than the far stronger statement that rk(A) = m w.h.p.
delivered by Theorem 2.

APPROX/RANDOM 2023
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Figure 1 From left to right: the shape of Φ for Examples 4–7.

1.3 Examples
To illustrate the power of Theorems 1 and 2 we consider a few instructive special cases of
distributions d, k, χ.

▶ Example 4 (random k-XORSAT). In random k-XORSAT we are handed a number of
independent random constraints ci of the type ci = yi1 XOR · · · XOR yik where each literal
yij is either one of n available Boolean variables x1, . . . , xn or a negation ¬x1, . . . , ¬xn. The
goal to determine the maximum number of random constraints can be satisfied simultaneously
w.h.p. Because Boolean XOR comes down to addition over F2 and since the clauses are drawn
independently, XOR-satisfiability can be rephrased as the full rank problem for the random
matrix A over Fq with q = 2, k = k fixed to a deterministic value and d ∼ Po(d) a Poisson
variable. Hence, the generating functions of d, k read D(z) = exp(d(z − 1)) and K(z) = zk

and Φd,k(z) = exp(−dzk−1) − d
k

(
1 − kzk−1 + (k − 1)zk

)
. Thus, Theorem 2 implies that for

a given k ≥ 3 the threshold of d up to which random k-XORSAT is satisfiable w.h.p. equals
the largest d such that

Φd,k(z) < Φd,k(0) = 1 − d/k for all 0 < z ≤ 1. (1.5)

A few lines of calculus verify that (1.5) matches the formulas for the k-XORSAT threshold
derived by combinatorial methods tailored to this specific case [18, 31]. Theorem 2 also
encompasses the generalisations of XORSAT to other finite fields Fq from [5, 21].

▶ Example 5 (identical distributions). An interesting scenario arises when d, k are identically
distributed. For example, suppose that P[d = 3] = P[d = 4] = P[k = 3] = P[k = 4] = 1/2.
Thus, D(z) = K(z) = (z3 + z4)/2. The resulting Φ(z) attains two identical maxima, namely
Φ(0) = Φ(1) = 0. Since ki, di are chosen independently subject only to (1.1), the probability
that A has more rows than columns works out to be 1/2 + o(1). As a consequence, A cannot
have full row rank w.h.p. This shows that the condition that 0 be the unique maximiser of
Φ(x) is generally necessary.

▶ Example 6 (fixed d, k). Suppose that both d = d, k = k ≥ 3 are constants rather than
genuinely random. Then Φ(z) = (1 − zk−1)d − d

k (1 − kzk−1 + (k − 1)zk). Clearly, A cannot
have full row rank unless d ≤ k, while Theorem 2 implies that A has full row rank w.h.p. if
d < k. This result was previously established via the second moment method [30]. But in
the critical case d = k the function Φ(z) attains its identical maxima at z = 0 and z = 1.
Specifically, 0 = Φ(0) = Φ(1) > Φ(z) for all 0 < z < 1. Hence, Theorem 2 does not cover this
special case. Nonetheless, Huang [22] and Mészáros [29] proved that the random {0, 1}-matrix
B has full rational rank w.h.p. The proof is based on a delicate moment computation in
combination with a precise local expansion via the Laplace method. However, numerical
evidence indicates that the corresponding “d-regular” random matrix A over a finite field
fails to have full rank w.h.p.
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▶ Example 7 (power laws). Let P(d = ℓ) ∝ ℓ−α for some α > 3 and k = k ≥ 3. Thus,

D(z) = 1
ζ(α)

∞∑
ℓ=1

zℓ

ℓα
, K(z) = zk,

Φ(z) = D
(
1 − zk−1)− ζ−1(α)ζ(α − 1)

k

(
1 − kzk−1 + (k − 1)zk

)
and it can be verified that Φ′(z) < 0 for all z ∈ (0, 1). Hence, (1.3) is always satisfied and
Theorems 1 and 2 show that A,B have full row rank.

▶ Example 8 (zero row sums). Theorem 2 requires the assumption that q and the g.c.d. d of
the support of d be coprime. This assumption is indeed necessary. To see this, consider the
case that q = 2, χ = 1, d = 4 and k = 8 deterministically. Then the rows of A always sum
to zero. Hence, A cannot have full row rank.

2 Proof Strategy

The proof of the main theorem (Theorem 2) substantially extends the techniques behind
the asymptotic rank formula (1.4) from [9]. As one key additional ingredient we require
a new method to count “equitable” vectors in the kernel of A, i.e., vectors in which each
element of Fq occurs with frequency 1/q + o(1). This part of the proof, which involves the
asymptotic enumeration of lattice points that satisfy certain arithmetic conditions, hinges
on local limit techniques and algebraic arguments, specifically the identification of suitable
bases of Z-modules generate by lattice points. This argument generalises techniques that
were also used in the study of adjacency matrices of random d-regular graphs [22, 29].

To motivate the proof strategy we first go down the “classical” path of the method of
moments. We will discover where this proof strategy gets stuck and then work our way
around the obstacle by means of physics-inspired coupling arguments. In statistical physics
jargon, the moment calculation amounts to an “annealed” analysis. In a nutshell, the issue
with such analyses is that unlikely events can render outsized contributions to moments of
exponentially large random variables such as the number of vectors in the kernel of A. Once
we see where such large deviations hazards lurk, we will be able to replace the “annealed”
strategy by a “quenched” approach that sidesteps these large deviations effects.

2.1 The method of moments
By extension of random k-XORSAT from Example 4, the full rank problem for the random
matrix A over Fq can be viewed as a random constraint satisfaction problem. Specifically,
choose a vector y ∈ Fm

q uniformly independently of A. Then a solution to our random CSP
is just a solution x ∈ Fn

q to the linear system Ax = y. Thus, together with the corresponding
entry of y each of the m rows of A induces a constraint.
Since the early 2000s the default method for approaching random CSPs has been the second
moment method [2, 3]. Indeed, one of the first contributions to this line of work was the
aforementioned work of Dubois and Mandler on random 3-XORSAT [18], which corresponds
to the special case q = 2, k = 3, d = Po(d). A natural first stab at the full rank problem
therefore appears to be to run the second moment routine on the number Z = Z(A, y) of
solutions to Ax = y. But clearly, to have any chance of success we need to condition on
the degrees of the variable and check nodes, and a few more innocent pieces of information.
Formally, let A be the σ-algebra generated by m, (ki)i≥1, (di)i≥1 and by the numbers
m(χ1, . . . , χℓ) of rows with non-zero entries χ1, . . . , χℓ ∈ F∗

q . Let us write PA = P [ · | A] and
EA = E [ · | A] for the conditional probability and expectation given A.

APPROX/RANDOM 2023
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Figure 2 Left: the r.h.s. of (2.6) for d = 2.5 (blue) and d = 2.7 (red) in the interval [0, 1
2 ]. Middle:

the function Φ(z) from Example 9. Right: numerical lower bound on the moment formula from
Example 9.

Since y is independent of A, for any fixed x ∈ Fn
q the event Ax = y has probability q−m.

As there are qn choices of x, linearity of expectation yields

EA[Z] = qn−m. (2.1)

For the second moment method to succeed we need to verify that EA[Z2] ∼ EA[Z]2.
Then Chebyshev’s inequality yields Z ∼ EA[Z] w.h.p., and thus Ax = y has a solution
w.h.p., provided that n ≤ m. This fact, in turn, would imply that A has full row rank w.h.p.;
for if it were the case that rkA < m, then the linear system Ax = y would fail to have a
solution with probability at least 1/q.

Concerning the computation of EA[Z2], because the set of solutions is either empty or a
translation of the kernel, we obtain

EA[Z2] =
∑

σ,τ∈Fn
q

PA [Aσ = Aτ = y] =
∑

σ,τ∈Fn
q

PA [Aσ = y]PA [σ − τ ∈ kerA] (2.2)

= EA [Z]EA [| kerA|] .

Hence, we are left to calculate EA [| kerA|].
Unlike in the case (2.1) of the first moment of Z, the probability of belonging to the

kernel of A is not the same for all x ∈ Fn
q . Indeed, as an extreme example, the zero vector

always belongs to the kernel. By contrast, depending on d, k and q there may be vectors
that cannot possibly belong to the kernel for divisibility reasons; e.g., if k = 3 and q = 2,
then the all-ones vector cannot lie in kerA.

Hence, we need to tread carefully. In order to calculate the expected size of the kernel we
need to discriminate vectors x according to the number nℓ(s) of variable nodes of a given
degree ℓ that take a specific value s ∈ Fq. Further, given the nℓ(s) we need to know the
numbers mχ1,...,χℓ

(s1, . . . , sℓ) of rows with non-zero entries χ1, . . . , χℓ whose neighbouring
variable nodes in G receive values s1, . . . , sℓ. Since given A the matching of the variable
and check nodes remains random given their degrees, the ensuing contribution to the first
moment works out to be

Ξ(nℓ(s), mχ1,...,χℓ
(s1, . . . , sℓ))ℓ,s,s1,...,sℓ

=
∑
s∈Fq

E
[
(d − 1)nd(s) log nd(s)

n

]
(2.3)

− d

k
E

 ∑
σ1,...,σk∈Fq

1 {χ ⊥ σ} mχ1,1,...,χ1,k
(σ1, . . . , σk) log

mχ1,1,...,χ1,k
(σ1, . . . , σk)

m

 .

Then

EA| kerA| = exp
[

max
nℓ(s),mχ1,...,χℓ

(s1,...,sℓ)
Ξ(nℓ(s), mχ1,...,χℓ

(s1, . . . , sℓ)) + o(n)
]

. (2.4)
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Hence, in order to compute the expected kernel size we should maximise the fairly impressive
formula (2.3) over a potentially very large range of parameters nℓ(s), mχ1,...,χℓ

(s1, . . . , sℓ).
The choice of these parameters is subject to the constraint that for every value s ∈ Fq the
number of occurrences of s counted from the side of the check nodes must equal the number
of occurrences viewd from the variable side. This leads to the equations

E[dnd(s)] = E

 ∑
σ1,...,σk∈Fq

k1 {σ1 = s}1 {χ ⊥ σ} mχ1,1,...,χ1,k
(σ1, . . . , σk)

 ∀s ∈ Fq.

Taking these constraints into account, we can transform (2.4) into a Lagrangian optimisation
problem whose only variables are the nℓ(s), s ∈ Fq, ℓ ∈ suppd. A somewhat delicate
application of the Laplace method then shows that EA[| kerA|] = O(qn−m), i.e., that the
second moment method “nearly works”, if and only if the maximum of (2.3) is attained at
the “equitable” solution

nℓ(s) ∼ nP [d = ℓ] /q for all s ∈ Fq, ℓ ∈ suppd. (2.5)

Unfortunately, we have no idea how to solve the optimisation problem (2.4) in any
generality. Worse, even if we knew how to tackle this optimisation task, that would still
not suffice to prove Theorem 2. Indeed, the plain moment calculation fails even for random
3-XORSAT, i.e., the case q = 2, k = 3 constant and d = Po(d). In this case the second
moment calculation reduces to the one-dimensional optimisation problem

log EA| kerA| ∼ n · max
z∈[0,1]

−z log z − (1 − z) log(1 − z) + m

n
log 1 + (1 − 2z)3

2 (cf. [18]).

(2.6)

At z = 1/2 the r.h.s. of (2.6) simplifies to (n − m) log 2, and thus EA| kerA| = 2n−m

matches the first moment (2.1). But if the maximum (2.6) is attained at z ̸= 1/2, then
EA| kerA| ≫ 2n−m and the second moment method fails. Figure 2 displays (2.6) for d = 2.5
and d = 2.7. While for d = 2.5 the function takes its maximum at z = 1/2, for d = 2.7 the
maximum is attained at z ≈ 0.085. However, the actual random 3-XORSAT threshold is
d ≈ 2.75 [18]. Thus, method of moments fails short of the real threshold.

The reason for this is that rare events are apt to boost the expected number of vectors in
the kernel. This is precisely what happens in random k-XORSAT. The rare event in question
is a fluctuation of the density of the 2-core G(2) of the Tanner graph, which is obtained by
iteratively removing any variable nodes of degree at most one along with their unique adjacent
check node if the variable degree equals one. Dubois and Mandler therefore pinpointed the
3-XORSAT threshold by applying the second moment method to the minor A(2) induced
by G(2) while conditioning on the 2-core having its typical size and density. However, even
in random k-XORSAT with k > 3 the ensuing optimisation problem (2.3) is anything but
straightforward, as witnessed by the work of Pittel and Sorkin [31]. Furthermore, increasing
the size of the field to q > 2 boosts the number of variables involved, which adds further
significant challenges to the optimisation problem; even the case q = 3 turns out to be
essentially intractable [21]. Finally, for general d, k and q it is far from clear what the
“relevant” variables would be that are responsible for any large deviations effects. Inspecting
a few examples of degree distributions d, k reveals that conditioning on the size and density
of the 2-core will not generally suffice.

The upshot is that the second moment method hardly seems like a promising path
towards Theorem 2. But we learned that we basically need to get a handle on the typical
size of the kernel of A. Specifically, if we could prove that typical vectors in the kernel are
nearly equitable in the sense that all elements s ∈ Fq occur about n/q times, then we could
conceivably derive the desired bound | kerA| ≤ qn−m w.h.p.

APPROX/RANDOM 2023



54:8 The Full Rank Condition for Sparse Random Matrices

▶ Example 9 (failure of the moment method). To underscore the issue with the method of
moments, consider the random variables d, k with generating functions D(z) = 0.889z3 +
0.111z21 and K(z) = z5 and set q = 101. The resulting function Φ(z) (just barely) attains its
unique maximum at z = 1. Hence, Theorem 2 shows that A has full row rank w.h.p. However,
the moment formula (2.4) fails to attain its global maximum at the uniform solution; hence,
the method of moments provably fails on this example, even though the 2-core G(2) coincides
with the entire original Tanner graph G. Indeed, Figure 2 displays Φ(z) (middle) along with
a numerical lower bound on the moment formula (right). The parameter on the horizontal
axis of the right plot corresponds to the fraction variable occurrences set to zero. Hence, a
necessary condition for the method of moments to succeed is that the maximum value be
attained at 1/q, which clearly is not the case.

2.2 Quenched analysis
Informed by this discussion, we are thus going to seize upon a different set of techniques to show
that typical kernel vectors are essentially equitable. To be precise, let xA = (xA,i)i∈[n] ∈ Fn

q

be a random vector from the kernel of A. We would like to show that for a given random
matrix A, such a random vector xA ∈ kerA is equitable w.h.p. In physics jargon, such a
direct investigation of random solutions to a typical random combinatorial problem instance
(in contrast to a moment calculation) is termed a quenched analysis. The fundamental merit
of such a conditional (or quenched) analysis is that we may condition on the matrix A being
typical; hence, we do not need to take very unlikely outcomes of A into consideration. By
contrast, in the moment computations that we sketched in Section 2.1 we average over all
possible outcomes of A, including pathological cases that for some reason possess excessively
large kernels.

The cornerstone of the quenched analysis will be to prove that w.h.p. over the choice of
A the event

O =

 ∑
σ,τ∈Fq

n∑
i,j=1

∣∣P [xA,i = σ, xA,j = τ | A] − q−2∣∣ = o(n2)

 (2.7)

occurs. In words, O asks that for any two field elements σ, τ ∈ Fq for most pairs 1 ≤ i, j ≤
n the probability that the i-th entry xA,i of a random kernel vector xA equals σ while
the j-th entry xA,j equals τ is about q−2. Thus, for most choices of the indices i, j the
pair (xA,i, xA,j) ∈ F2

q is approximately uniformly distributed. Together with Chebyshev’s
inequality, this implies that a random vector xA ∈ kerA is equitable w.h.p. In fact, if O
occurs then even the degree-weighted empirical distribution of the entries of a typical xA is
asymptotically uniform w.h.p., i.e., w.h.p. over the choice of xA we have

n∑
i=1

di1{xA = τ} ∼ q−1
n∑

i=1
di for all τ ∈ Fq. (2.8)

Thus, the thrust behind considering the event O is to accomplish just what we failed to
accomplish via the moment computation: to show that the dominant contribution to the
kernel comes from approximately equitable vectors.

Apart from showing that A ∈ O w.h.p., the following proposition also shows that the
first moment formula (2.1) remains true on O.

▶ Proposition 10. Under the assumptions of Theorem 2 we have P [A ∈ O] ∼ 1 and

EA [Z · 1 {A ∈ O}] ∼ EA [Z] ∼ qn−m. (2.9)
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Before we elaborate on the proof of Proposition 10 in Section 2.3, we remark that the
second moment method “works” once we condition on the event O. Indeed, the estimate
(2.8), which is valid on O w.h.p., demonstrates that once we condition on O, the dominant
contribution to (2.3) comes from approximately uniform choices of nd(s) as in (2.5). Due
to the concavity of the entropy function, (2.5) implies that the optimal choices of the check
variables mχ1,...,χℓ

are asymptotically uniform as well, subject to the obvious linear constraint.
Explicitly, the optimal mχ1,...,χℓ

read

mχ1,...,χℓ
(s1, . . . , sℓ) ∼ 1{s1χ1 + · · · + sℓχℓ = 0}q1−ℓmP [k = ℓ]

ℓ∏
i=1

P [χ = χi] . (2.10)

Expanding (2.3) around (2.5) and (2.10), one could derive the bound EA

[
Z2 · 1 {A ∈ O}

]
=

O(EA [Z])2 via a routine application of the Laplace method. However, to prove Theorem 2
we actually require the following more precise estimate.

▶ Proposition 11. Under the assumptions of Theorem 2 we have

EA

[
Z2 · 1 {A ∈ O}

]
∼ EA [Z]2 . (2.11)

The key challenge towards the proof the (2.11) is to obtain asymptotic equality, rather
than the weaker bound EA

[
Z2 · 1 {A ∈ O}

]
= O(EA [Z]2). This requires a meticulous

expansion of the second moment around the equitable solution, which involves the detailed
analysis of the lattices generated by integer vectors that encode conceivable values of the
variables from (2.3). We are going to outline this analysis in Section 2.4. But first let us
observe that Theorem 2 follows from Propositions 10 and 11 easily.

Proof of Theorem 2. The assumption (1.3) implies that 1 − d/k = Φ(0) > Φ(1) = 0.
Since m = Po(dn/k), we thus obtain n − m = Ω(n) w.h.p. Therefore, (2.9) implies that
EA [Z · 1 {A ∈ O}] ∼ qn−m = qΩ(n) w.h.p. Hence, (2.11) implies together with Chebyshev’s
inequality that Z ≥ Z1{A ∈ O} = qΩ(n) w.h.p. Consequently, the random linear system
Ax = y has a solution w.h.p., which implies that rkA = m w.h.p. ◀

2.3 Proof of Proposition 10: typical kernel vectors
The asymptotic rank formula (1.4) provides our point of departure toward the proof of
Proposition 10. The basic idea is to show that (1.4) could not possibly be correct unless
A ∈ O w.h.p. However, at closer inspection it turns out we cannot just apply (1.4) as is.
Instead, we need to derive the analogue of (1.4) for a slightly enhanced random matrix from
scratch.

Specifically, for an integer t ≥ 0 obtain A[t] from A by adding t more rows that each
contain precisely three non-zero entries. The positions of these non-zero entries are chosen
uniformly, mutually independently and independently of A. The non-zero entries themselves
are independent copies of χ. For this enhanced matrix we derive the following upper bound
on its asymptotic rank.

▶ Proposition 12. If (1.3) is satisfied then there exists δ0 = δ0(d, k) > 0 such that for all
0 < δ < δ0 we have

lim sup
n→∞

1
n
E[nulA[⌊δn⌋]] ≤ 1 − d

k
− δ. (2.12)
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The proof of Proposition 12 relies on the so-called “Aizenman-Sims-Starr scheme” [4],
a coupling argument inspired by spin glass theory that also constituted the cornerstone of
the derivation of (1.4) in [9]. That said, a subtle modification of this argument is necessary
to accommodate the additional ternary equations. A vital assumption towards the proof of
Proposition 12 is that the function Φ from (1.2) attains its unique global max at z = 0. In
fact, the proof of Proposition 12 is the only place where the uniqueness of the maximiser is
required.

How does Proposition 10 follow from Proposition 12? Assuming (1.3), we obtain from
(1.4) that

1
n

nulA ∼ 1 − d

k
w.h.p. (2.13)

Now suppose that we add ⌊δn⌋ extra ternary rows to A to obtain A[⌊δn⌋]. Comparing (2.12)
and (2.13), we conclude that all but o(n) of these extra rows decrease the nullity by one.
Indeed, adding a single row cannot decrease the nullity by more than one, and routine
arguments show that nulA[⌊δn⌋] concentrates about its expectation.

But a drop in nullity of δn + o(n) w.h.p. is conceivable only if A ∈ O w.h.p. To see this,
let us contemplate the kernel of a general M × N matrix A over Fq for a brief moment.
Draw xA = (xA,i)i∈[N ] ∈ ker A uniformly at random. For any given coordinate xA,i, i ∈ [N ]
there are two possible scenarios: either xA,i = 0 with probability one, or xA,i is uniformly
distributed over Fq. To see this, consider a basis ζ1, . . . , ζh of the kernel of A. Then we
can sample xA by just multiplying each ζj with a random scalar zj ∈ Fq and summing up:
xA = z1ζ1 + · · ·+zhζh. If the i-th coordinate of all ζj is zero, then xA,i = 0 deterministically;
otherwise xA,i is a sum of uniformly random elements of Fq, and thus uniformly random
itself. It therefore makes sense to call coordinate i frozen if xi = 0 for all x ∈ ker A, and
unfrozen otherwise. Let F(A) be the set of frozen coordinates.

If A had many frozen coordinates then adding an extra random row with three non-zero
entries could hardly decrease the nullity w.h.p. For if all three non-zero coordinates fall into the
frozen set, then we get the new equation “for free”, i.e., nulA[1] = nulA. Thus, Proposition 12
implies that |F(A)| = o(n) w.h.p. We conclude that xA,i is uniformly distributed over Fq

for all but o(n) coordinates i ∈ [n]. However, this does not yet imply that xA,i, xA,j are
independent for most i, j, as required by O. Yet a slightly more careful deliberation based
on linear algebra and the “pinning lemma” [9, Proposition 2.4] shows that A ∈ O w.h.p.

2.4 Proof of Proposition 11: expansion around the equitable solution
We prove Proposition 11 by way of expanding (2.3) carefully around the uniform distribution
(2.5). Recall that once the nℓ(s) are set to the equitable solution (2.5), the optimal check
variables mχ1,...,χℓ

(s1, . . . , sℓ) are given by (2.10). This observation by itself now suffices to
conclude without (much) further ado that

EA[Z2 · 1{A ∈ O}] = O
(
EA[Z · 1{A ∈ O}]2

)
. (2.14)

The challenge is to sharpen this estimate so as to obtain the asymptotic equality claimed
in (2.11). In his work on adjacency matrices of random regular graphs, Huang [22] actually
faced a similar issue (with d = k constant and q a prime number). To prove Proposition 11
we need to cope with the (significantly) more general situation of arbitrary d, k and prime
powers q. This improvement actually constitutes one of the main technical obstacles that we
need to surmount toward the proof of Theorem 2.



A. Coja-Oghlan, J. Gao, M. Hahn-Klimroth, J. Lee, N. Müller, and M. Rolvien 54:11

The issue is that in order to eliminate the constant factor hidden in the O( · ) in (2.14)
we need to carefully consider divisibility properties that make it possible or impossible for
a vector x ∈ Fn

q to belong to the kernel. These questions depend not only on the degree
distributions d, k but also on q and the distribution χ of the non-zero entries. Hence, to
estimate the kernel size precisely we need to crystallise the conceivable frequencies of field
elements that may lead to solutions. Specifically, for an integer ℓ ≥ 3 and χ1, . . . , χℓ ∈ Fq \{0}
let

Sq(χ1, . . . , χℓ) =
{

σ ∈ Fℓ
q :

ℓ∑
i=1

χiσi = 0
}

(2.15)

comprise all solutions to a linear equation with coefficients χ1, . . . , χk0 ∈ Fq. Furthermore,
for each σ ∈ Sq(χ1, . . . , χℓ) we define the vector

σ̂ =
(

ℓ∑
i=1

1 {σi = s}

)
s∈Fq\{0}

∈ ZFq\{0} (2.16)

to track the frequencies with which the various non-zero field elements appear. Moreover, let

Mq(χ1, . . . , χℓ) ⊆ ZFq\{0}

be the Z-module generated by the frequency vectors σ̂ for σ ∈ Sq(χ1, . . . , χℓ). Thus,
Mq(χ1, . . . , χℓ) ⊆ ZFq\{0} captures all conceivable frequency vectors of solutions σ to∑ℓ

i=1 χiσi.
Depending on the coefficients χ1, . . . , χℓ, the module Mq(χ1, . . . , χℓ) may be a proper sub-

module of the integer lattice ZFq\{0}. For example, in the case q = ℓ = 3 and χ1 = χ2 = χ3 = 1
the module M3(1, 1, 1) constitutes the sub-lattice spanned by

(1
1
)

and
(0

3
)
, which is a proper

sub-lattice of Z2. The following proposition characterises the lattice spanned by the frequency
vectors for general χ1, . . . , χℓ. The determinant formula that the proposition provides shows
that Mq(χ1, . . . , χℓ) is a proper sub-module iff all the coefficients χ1, . . . , χℓ coincide.

▶ Proposition 13. Let q ≥ 2 be a prime power, ℓ ≥ 3 and let χ1, . . . , χℓ ∈ Fq \ {0}. Then
Mq(χ1, . . . , χℓ) has a basis b1, . . . , bq−1 of non-negative integer vectors with ∥bi∥1 ≤ 3 for
all 1 ≤ i ≤ q − 1 such that

det (b1 · · · bq−1) = q1{χ1=···=χℓ}.

A vital feature of Proposition 13 is that the module basis consists of non-negative integer
vectors with small ℓ1-norm. In effect, the basis vectors are “combinatorially meaningful”
towards our purpose of counting solutions. Perhaps surprisingly, the proof of Proposition 13
turns out to be rather delicate, with details depending on whether q is a prime or a prime
power, among other things.

In addition to the subgrid constraints imposed by the linear equations themselves, we
need to take another divisibility condition into account. Indeed, for any assignment σ ∈ Fn

q

of values to variables the frequencies of the various field elements s ∈ Fq are divisible by the
g.c.d. d of supp(d), i.e.

d |
n∑

i=1
di1 {σi = s} for all s ∈ Fq. (2.17)

Thus, to compute the expected kernel size we need to study the intersection of the sub-
grid (2.17) with the grid spanned by the frequency vectors σ̂ for σ ∈ Sq(χ1,1, . . . , χ1,k).
Specifically, in order to derive Proposition 11 from Proposition 13 we need to estimate
the number of vectors σ ∈ Fn

q represented by each grid point and calculate the ensuing
satisfiability probability. This argument combines the Laplace method with local limit
techniques.
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3 Discussion

While there is a substantial body of work on dense random matrices where the average
number of non-zero entries per row/column diverges or even is linear in the size of the matrix
(e.g., [6, 7, 14, 15, 23, 24, 33, 34]), far less is known about sparse random matrices. The aim
of this paper has been to determine sufficient (as well as necessary) conditions for a sparse
random matrix to have full row rank. To this end we drew upon some of the elements of
prior work on the asymptotic rank of random matrices [5, 9], specifically the formula (1.4). In
particular, the proof of Proposition 12 adapts and extends the Aizenman-Sims-Starr scheme
from [9]. Additionally, the expansion around the centre employs some of the techniques
developed in the study of satisfiability thresholds, particularly the extensive use of local
limit theorems [12, 11]. These also played a role in prior work on the adjacency matrices of
random d-regular graphs [22, 29].

A principal new proof ingredient is the asymptotically precise analysis of the moment
formula (2.3) for general d, k, q around the equitable solution by means of the study of the
sub-grids of the integer lattice induced by the constraints. This issue that was absent in the
prior literature on variations on random k-XORSAT [5, 9, 13] and on other random constraint
satisfaction problems [12, 11]. That said, in the study of the random regular matrix from
Example 6 Huang [22] faced a similar issue in the special case d = k constant and χ = 1
deterministically. Proposition 13, whose proof is based on a combinatorial investigation of
lattices in the general case, constitutes a considerable generalisation of this case. A further
new feature of the proof of Proposition 13 is the explicit ℓ1-bound on the basis vectors, which
greatly facilitates the proof of Theorem 2.

Satisfiability thresholds of random constraint satisfaction problems have been studied
extensively in the statistical physics literature via a non-rigorous technique called the “cavity
method”. The cavity method comes in two installments: the simpler “replica symmetric
ansatz” associated with the Belief Propagation message passing scheme, and the more
intricate “replica symmetry breaking ansatz”. The proof of Theorem 2 demonstrates that
the former renders the correct prediction as to the satisfiability threshold of random linear
equations. By contrast, in quite a few problems, notoriously random k-SAT, replica symmetry
breaking occurs [10, 17], requiring a substantially different proof strategy.

A natural question is whether the methods presented in this work can be extended to
the adjacency matrices of random graphs. Apart from the aforementioned works regarding
the regular case [22, 29] and the work of Bordenave, Lelarge and Salez [8], an exciting
recent contribution by Glasgow, Kwan, Sah and Sawhney deals with the precise connection
between the matching number and the rank [20]. By contrast to the present work, these
contributions rely on local weak convergence and/or Littlewood-Offord techniques; see
also [19]. Furthermore, recently the methods from [9] were extended to obtain a rank formula
for the adjacency matrices of Erdös-Rényi graphs over arbitrary fields [35]. In fact, the
consideration of general fields reveals new phenomena, as was already discovered in some of
the earlier literature [6, 7, 25, 26, 27, 28].
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