
How to Make Your Approximation Algorithm
Private: A Black-Box Differentially-Private
Transformation for Tunable Approximation
Algorithms of Functions with Low Sensitivity
Jeremiah Blocki #

Purdue University, West Lafayette, IN, USA

Elena Grigorescu #

Purdue University, West Lafayette, IN, USA

Tamalika Mukherjee #

Purdue University, West Lafayette, IN, USA

Samson Zhou #

University of California Berkeley, CA, USA
Rice University, Houston, TX, USA

Abstract
We develop a framework for efficiently transforming certain approximation algorithms into differen-
tially-private variants, in a black-box manner. Specifically, our results focus on algorithms A that
output an approximation to a function f of the form (1 − α)f(x) − κ ≤ A(x) ≤ (1 + α)f(x) + κ,
where κ ∈ R≥0 denotes additive error and α ∈ [0, 1) denotes multiplicative error can be“tuned”
to small-enough values while incurring only a polynomial blowup in the running time/space. We
show that such algorithms can be made differentially private without sacrificing accuracy, as long
as the function f has small “global sensitivity”. We achieve these results by applying the “smooth
sensitivity” framework developed by Nissim, Raskhodnikova, and Smith (STOC 2007).

Our framework naturally applies to transform non-private FPRAS and FPTAS algorithms
into ε-differentially private approximation algorithms where the former case requires an additional
postprocessing step. We apply our framework in the context of sublinear-time and sublinear-space
algorithms, while preserving the nature of the algorithm in meaningful ranges of the parameters. Our
results include the first (to the best of our knowledge) ε-edge differentially-private sublinear-time
algorithm for estimating the number of triangles, the number of connected components, and the
weight of a minimum spanning tree of a graph whose accuracy holds with high probability. In
the area of streaming algorithms, our results include ε-DP algorithms for estimating Lp-norms,
distinct elements, and weighted minimum spanning tree for both insertion-only and turnstile streams.
Our transformation also provides a private version of the smooth histogram framework, which is
commonly used for converting streaming algorithms into sliding window variants, and achieves a
multiplicative approximation to many problems, such as estimating Lp-norms, distinct elements,
and the length of the longest increasing subsequence.
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1 Introduction

Approximation algorithms are often used to efficiently approximate a function f : D → R+

in settings where resource constraints prevent us from computing the function exactly. For
example, problems such as Knapsack are NP-Hard and, unless P = NP, do not admit a
polynomial time solution. However, the Knapsack problem admits a fully polynomial time
approximation scheme (FPTAS) i.e., for any α > 0 there is a deterministic algorithm, running
in time poly(n, 1/α), which outputs a solution that is guaranteed to be be nearly as good
(up to multiplicative factor 1 ± α) as the optimal solution. As a second example, even if
the problem is computationally tractable it may still be the case that the input dataset
D ∈ D is extremely large, making it infeasible to load the entire dataset into RAM, or
impractical to execute a linear time algorithm. To remedy such shortcomings, models such
as sublinear-space and sublinear-time algorithms have been proposed. For example, one
may want to estimate frequencies of elements that appear in a stream of n elements up to
a multiplicative 1 ± α factor, while using only poly

(
log n, 1

α

)
memory cells. Or, one may

want to estimate the number of connected components of a dense graph on n vertices up to
(relative) additive error κ by only inspecting poly(log n, 1

κ ) many edges.
In addition to time and space efficiency, user privacy is another important consideration

in contexts where the input to our function f is sensitive user data. Differential privacy
(DP) [20, 22] is a rigorous mathematical concept that gives provable guarantees on what
it means for an algorithm to preserve the privacy of individual information in the input
dataset. Informally, a randomized function computed on a dataset D is differentially private
if the distribution of the function’s output does not change significantly with the presence or
absence of an individual data point. Thus, a natural goal is to develop efficient differentially
private algorithms to approximate functions/queries of interest.

One general way to preserve differential privacy is to add noise scaled to the global
sensitivity ∆f of our function f , i.e., the maximum amount |f(D) − f(D′)| that the answer
could change by modifying a single record in our dataset D to obtain a new dataset
D′. This general approach yields efficient and accurate approximations for f as long
as we have an efficient algorithm to compute f exactly and the global sensitivity of f

is sufficiently small. However, in some resource-constrained settings, we may need to
use an approximation algorithm Af instead of evaluating f exactly. Unfortunately, the
mechanism that computes Af (D) and then adds noise scaled to the global sensitivity ∆f of
our function f is not necessarily differentially private. In particular, even if we are guaranteed
that |Af (D) − f(D)| ≤ αf(D) we might still have |Af (D) − Af (D′)| ≥ 2αf(D) ≫ ∆f

for neighboring datasets D and D′, e.g., suppose Af (D) = (1 + α)f(D) and Af (D′) =
(1 − α)f(D′). Thus, the global sensitivity of Af can be quite large and adding noise
proportional to ∆Af

would prevent us from providing meaningful accuracy guarantees. This
raises a natural question: Suppose that our function f admits an accurate (but not necessarily
resource-efficient) differentially private approximation algorithm and that f also admits an
efficient (but not necessarily private) approximation algorithm. Is it necessarily the case that
there is also an equally efficient differentially private approximation algorithm?

Unfortunately, a result of [36, 18] suggests that the answer to the previous question may
be no. Suppose our dataset D consists of n users x1, . . . , xn with n binary attributes i.e.,
xi ∈ {0, 1}n. Consider the function f(D) that computes all of the one-way marginals i.e.,
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f(D) = ⟨ 1
n

∑n
i=1 xi[j]⟩n

j=1 ∈ Rn. In particular, there is a non-private sublinear time algorithm
that samples O (log n) users and (with high probability) outputs a good approximation to all
n one-way marginals. However, if we require that our algorithm satisfy pure, i.e, ε-differential
privacy (resp. approximate, i.e., (ε, δ)-differential privacy) then we need to look at at least
Ω(n/ε) (resp. Ω(

√
n log(1/δ))) samples [36, 18]. In light of this, we pose the following general

questions:

What are sufficient conditions for an approximation algorithm to be made
differentially private?

Can an approximation algorithm be made differentially private in an efficient
black-box manner?

Over the years, many differentially private approximation algorithms have been developed
for problems in optimization, machine learning, and distribution testing (see for e.g., [35,
1, 30, 34]), in a somewhat ad-hoc manner. Often, these results give a differentially private
algorithm for that specific problem and do not easily generalize to give differentially private
algorithms for a large class of problems. A general framework for developing differentially
private approximation algorithms for a large class of problems is desirable as this would not
only make DP approximation algorithms more easily accessible to non-DP experts, but more
importantly, it would shed light on what kinds of algorithms are more amenable to differential
privacy. Furthermore, a framework that uses the underlying approximation algorithm as a
black-box is desirable as this avoids the need to (re)design, (re)analyze, and (re)implement
the new differentially private versions of these approximation algorithms. We emphasize that
this type of framework has been well-studied for computing functions privately by calibrating
noise proportional to their global or smooth sensitivity [23, 41] (see Section A for more
discussion).

Our work makes partial progress towards answering these general questions. In particular,
we give an efficient black-box framework for converting a non-private approximation algorithm
Af with tunable accuracy parameters into a differentially private approximation algorithm
A′

f with reasonable accuracy guarantees as long as the global sensitivity ∆f of the function
f being approximated is sufficiently low. For the case when Af is deterministic, we achieve a
pure ε-differentially private approximation algorithm via a direct transformation, and when
Af is randomized, i.e., has a small failure probability, we achieve ε-differential privacy by
first applying a transformation that gives a (ε, δ)-differentially private algorithm and then
apply a postprocessing step to achieve ε-differentially privacy. For example, suppose that for
any α > 0 our algorithm Af , taking α and our dataset D as input, provides the guarantee
that |Af (D)−f(D)| ≤ αf(D) e.g., any FPTAS algorithm would satisfy our tunable accuracy
requirement. In such a case, for any α > 0 we can transform our non-private algorithm Af into
a differentially private version with multiplicative error α and small additive error term which
(necessarily) comes from the noise that we added. Intuitively, we exploit the fact that we can
run Af with an even smaller accuracy parameter ρ ≪ α which can be tuned to ensure that
the smooth sensitivity of our algorithm is sufficiently small. Our same general framework still
applies if we allow that the approximation algorithm Af has a small additive error term i.e.,
|Af (D) − f(D)| ≤ αf(D) + κ. If Af (D) is only guaranteed to output a good approximation
(i.e., |Af (D) − f(D)| ≤ αf(D) + κ) with probability 1 − δ/2 (e.g., an FPRAS algorithm
would satisfy this requirement with additive error κ = 0) then our framework achieves
ε-differential privacy by first obtaining an approximate (ε, δ)-differential privacy algorithm
and then a postprocessing step. In cases where the approximation algorithm is not tunably
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accurate our black-box framework does not necessarily apply1. For example, the best known
approximation algorithms for vertex cover achieve the guarantee f(G) ≤ Af (G) ≤ 2f(G) i.e.,
because there is no way to control the smooth sensitivity of our approximation algorithm.

1.1 Our Contributions
We introduce a generic black-box framework for converting certain approximation algorithms
for a function f : D → R+ into a differentially private approximation algorithm using smooth
sensitivity [41]. We first introduce a definition for tunable approximation algorithms used
throughout our paper, and then present our main results for the DP framework, and then
give new differentially private algorithms for a variety of approximation algorithms obtained
via this unifying framework. We refer to our full version [11] for missing details.

▶ Definition 1 ((α, κ, δ)-approximation). An algorithm Af is a (α, κ, δ)-approximation for f

if for every D ∈ D with probability at least 1 − δ, we have that (1 − α)f(D) − κ ≤ Af (D) ≤
(1 + α)f(D) + κ.

We may abuse notation and omit the failure probability δ parameter in the above
definition, if it is clear from the context. Some algorithms Af may take the approximation
parameters α, κ, δ ≥ 0 as input2.

▶ Definition 2 (tunable approximation). Af (D, α, κ, δ) provides a tunable approximation of
f if for every α, κ, δ ≥ 0 the algorithm Af (·, α, κ, δ) obtained by hardcoding α, κ and δ is a
(α, κ, δ)-approximation for f .
When the parameters α, κ, δ are clear from the context, we may abuse notation and just
write Af (D). For a tunable approximation algorithm we will use R(n, α, κ, δ) to denote the
amount of a particular resource used by the algorithm. The resources we consider in this
work include time, space and query complexity of the algorithm (depending on the model)
which we denote by T (·, ·, ·, ·), S(·, ·, ·, ·) , and Q(·, ·, ·, ·) respectively.

As a concrete example any FPTAS algorithm Af for f would be a tunable approximation
for f with running time T (n, α, κ, δ) = poly(n, 1/α) for any α > 0 and any κ, δ ≥ 0 – an
FPTAS has no additive error (κ = 0) and zero failure probability (δ = 0). Similarly a
FPRAS algorithm would be a tunable approximation with running time T (n, α, κ, δ) =
poly(n, α, log(1/δ)) for any α, δ > 0 and any κ ≥ 0 – an FPRAS also has no additive error
(κ = 0).

General Framework for Approximation Algorithms. Our main result gives a framework
for converting any existing non-DP algorithm Af that provides an (α, κ, δ)-approximation
of f into an ε-DP algorithm A′′

f in the following manner: (1) Apply Algorithm 1 to obtain
an (ε, δ)-DP algorithm A′

f that achieves an (α′, κ′, δ′)-approximation (see Theorem 3), (2)
Apply a postprocessing step on the output of A′

f outlined in Theorem 5 to achieve an ε-DP
algorithm A′′

f with the same accuracy guarantees as A′
f barring an additive error of o(1).

We emphasize that Af is a tunable approximation, in other words, Af takes the parameters
(α, κ, δ) as input.

1 One could still apply our black-box transformation. However, the accuracy guarantees would be degraded
and we would only achieve (ε, δ)-differential privacy for sufficiently large values of ε, δ > 0 which depend
on the approximation error parameter α.

2 We allow that α = κ = δ = 0 in which case Af can simply compute f exactly – whether or not this
computation is efficient.
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▶ Theorem 3 ((ε, δ)-privacy). Suppose that Af is a tunable approximation of f : D → R+.
Then for all ε > 0, δ = δ(n) > 03, α ≥ 0 and κ ≥ 0, there is an algorithm A′

f such that
(1) (Privacy) A′

f is (ε, δ′)-differentially private where δ′ = δ(1 + exp(ε/2)).
(2) (Accuracy) For all D ∈ D, and 0 < γ, with probability 1 − δ − exp(−γ),

(1 − α′)f(D) − κ′ − 2∆f

ε
· γ ≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ + 2∆f

ε
· γ

where α′ = α(ε+16γ)
12 log(4/δ) , κ′ = κ

(
2γα

3 log(4/δ) + 8γ
ε + 1

)
, and ∆f := maxD,D′∈D,D∼D′ ∥f(D)−

f(D′)∥1.

(3) (Resource) A′
f uses R

(
n, εα

log(4/δ) , κ, δ
)

resource, where R(·, ·, ·, ·) is the resource used by
Af .

We illustrate the utility of Theorem 3 with specific parameters – if we have a non-private
algorithm Af that guarantees an (α, 0, δ)-approximation, then for constant ε, δ = 1

nc and
γ = c log(n), we see that the DP algorithm Af achieves an

(
α(1 + o(1)), O

(
∆f log(n)

ε

)
, 1

nc

)
-

approximation. We typically use these parameters for δ, γ in our applications for streaming
and sublinear-time algorithms.

Our reduction in Theorem 3 is quite simple – we describe the associated Algorithm 1
below.

Algorithm 1 (ε, δ)-differentially private framework A′
f for tunable approximation algorithm Af .

Input: Input set D, accuracy parameters α ∈ (0, 1) and κ, DP parameter ε, DP failure
probability δ ∈ (0, 1), approx. algorithm Af .

1: Let xA := Af (D, ρ, τ, δ/2), where ρ :=
(

εα
12 log(4/δ)

)
, and τ := κ.

2: return xA + X where X ∼ Lap
(

2(4ρxA+4τ+∆f )
ε

)

Note that in Algorithm 1, we leave our additive parameter κ as is when running Af ,
but we still choose to define τ := κ. This is because depending on the problem, and the
accuracy/efficiency guarantees desired, we can set τ to be a tuned version of κ (for e.g., we
set τ := κ/ log(n) for the problem of estimating the number of connected components).
▶ Remark 4. We also note that, even if the failure probability δ > 0 of Af is non-negligible,
that we can always boost the success probability by running Af (D) multiple times and
computing the median over all outputs. Even if the error rate 0 < δ < 1/2 is a constant we
can always reduce the failure probability to a lower target 0 < δ′ ≪ δ while increasing the
running time by a multiplicative factor O (log(1/δ′)). In particular, we can set δ′ to be a
negligible function of n such as δ′ = n− log n whilst only incurring a O

(
log2 n

)
blowup in our

running time.
We stress that we can only apply Theorem 3 to existing non-DP algorithms Af that give

an approximation guarantee of the form (1−α)f(D)−κ ≤ Af ≤ (1+α)f(D)+κ. For example,
we cannot apply Theorem 3 to obtain an (ε, δ)-DP algorithm for estimating the minimum
vertex cover size in sublinear time. This is because the non-DP sublinear-time algorithm Avc

has an approximation guarantee of the form 2V C(G) − κn ≤ Avc ≤ 2V C(G) + κn. On the
other hand, we can use our DP framework to obtain an (ε, δ)-DP algorithm for obtaining a

3 typically we set δ = negl(n) or δ = n−c for some constant c > 0. In particular δ(n) may approach zero
as n → ∞.

APPROX/RANDOM 2023
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(0, κn, δ)-approximation of the maximum matching size in sublinear time (see full version for
details [11]). Intriguingly, both the minimum vertex cover size and the maximum matching
size algorithms use the same underlying strategy of estimating a greedy maximal matching
in a local fashion, but since they return different estimators based on the objective and we
can only use our framework as a black-box, we cannot apply our framework to the former
while we can still apply it to the latter.

Finally, by applying a post-processing step described below, we show how to obtain
an ε-DP algorithm from the (ε, δ)-DP algorithm obtained in Theorem 3. Importantly, the
accuracy guarantee of the resulting ε-DP algorithm only differs by a small additive factor
of 1/(KM), where M = maxD f(D) is the maximum possible output value, e.g., M ≤ n3

for triangle counting and K > 0. Moreover for negligible δ, the accuracy guarantee of the
resulting pure DP algorithm still holds with high probability.

▶ Theorem 5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP

algorithm with accuracy guarantee (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ holding with
probability 1 − η then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee
(1 − α)f(D) − κ − 1

KM ≤ Af (D) ≤ (1 + α)f(D) + κ + 1
KM with probability at least 1 − η − p

where p = δK(M+1)
eε−1+δK(M+1) .

Our second result is an analogous framework for converting any existing deterministic
non-DP approximation algorithm Af that provides an (α, κ, 0)-approximation of f into an
ε-DP algorithm A′

f .

▶ Theorem 6 (ε-privacy). Suppose that Af is a deterministic tunable approximation of
f : D → R+.Then for all ε > 0, α ≥ 0 and κ ≥ 0, there is an algorithm A′

f such that
(1) (Privacy) A′

f is ε-differentially private.
(2) (Accuracy) For all D ∈ D, we have that with probability ≥ 9/10,

(1 − α′)f(D) − κ′ − 7∆f

ε
≤ A′

f (D) ≤ (1 + α′)f(D) + κ′ + 7∆f

ε

where α′ := αC1(ε + C2γ), κ′ := κC3(α + C4
ε ) for some constants C1, C2, C3, C4 > 0 and

∆f := maxD,D′∈D,D∼D′ ∥f(D) − f(D′)∥1.

(3) (Resource) A′
f uses R

(
n, εα

36 , κ
)

resource, where R(·, ·, ·) is the resource used by Af .

DP Sublinear-time Results. We use Theorem 3 in conjunction with Theorem 5 in a
black-box manner to obtain pure differentially-private sublinear time algorithms for several
problems (see Table 1 for a summary).

In many models of sublinear-time computation the efficiency of the algorithm is measured
in the number of queries made to the input, rather than the time complexity of the algorithm.
It is often the case that the two are polynomially related, but there are instances in which
the actual time complexity of the algorithm may be exponentially larger than the query
complexity, in terms of the approximation factor. Nevertheless, in these instances too, the
literature uses time and query complexity interchangeably. This is because the sublinear-time
model assumes restricted or expensive access to the input, while further computation on
local machines with the answers obtained from queries is considered to be cheap. We use
query complexity for the sake of clarity.

We note that in the sublinear-time literature, the approximation parameters α, κ are
usually considered to be a constant, but the analyses for most of these theorems hold for
α = α(n), κ = κ(n) ∈ (0, 1), where n is the input size.
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Here we do not explicitly define the sublinear model (or the queries allowed) for each
problem.For a graph G we denote the number of vertices as n, the number of edges as m,
and the average degree of the graph as d̄.

Typically, the accuracy guarantees of the non-DP results are presented with probability
at least 2/3 – in order to apply our framework, we apply the median trick (see Remark 4) to
boost the probability of success to 1 − δ. For simplicity of comparing our results, for any
constant c > 0, we set δ := 1/nc in the sequel.

Table 1 Summary of Sublinear-time DP graph algorithms obtained via our black-box DP
transformation. According to our notation multiplicative error α means a multiplicative factor of
(1 ± α).

Problem Reference Privacy Mult. error Add. error Query Complexity

Number of Triangles [24] Non-Private α 0 O
(

( n

t1/3 + m3/2

t
) poly(log(n), 1

α
)
)

This Work ε-edge DP α O
(

n log(n)
ε

)
O

(
( n

t1/3 + m3/2

t
) poly(log(n), 1

αε
)
)

Connected Components [7] Non-Private 0 κn O
(

1
κ2 log

(
1
κ

)
log(n)

)
This Work ε-edge DP 0 O (κn) + O

( log(n)
ε

)
O

(
log3(n)

κ2 log
( log(n)

κ

))
Weighted MST [19] Non-Private α 0 O

(
d̄wα−2 log

(
d̄w
α

)
log(n)

)
This Work ε-edge DP α O

( log(n)
ε

)
O

(
d̄w log2(n)

α2ε2 log
(

d̄w log(n)
αε

)
log(n)

)
Average Degree

[33] Non-Private α 0 O
(

n√
m

poly
( log(n)

α

)
log(n)

)
[10] ε-edge DP α 0 O

(√
n poly

( log(n)
α

)
poly

(
1
ε

)
log(n)

)
(analysis assumes d̄ ≥ 1)

This Work ε-edge DP α 0 O
(

n√
m

poly
(

log2(n)
αε

)
log(n)

)
for d̄ = Ω( log(n)

nε
)

Maximum Matching Size [48] Non-Private 0 κn O
(

dO(1/κ2) log(n)
)

This Work ε-node DP 0 O
(

κn
ε

)
O

(
dO(1/κ2) log(n)

)
Distance to Bipartiteness [31] Non-Private 0 κn2 O

(
(1/κ3) log(n)

)
This Work ε-edge DP 0 O

(
κn2)

+ O
( log(n)

ε

)
O

(
(log4(n)/κ3)

)
We give the first (to the best of our knowledge) ε-DP sublinear time algorithm for

estimating the number of triangles, connected components, and the weight of a minimum
spanning tree whose accuracy guarantees hold with high probability.

For estimating the average degree of a graph, in recent work, [10] gave a pure ε-DP
algorithm that achieves an (α, 0)-approximation – a crucial observation is that their analysis
only holds under the assumption that the average degree is at least one i.e., d̄ ≥ 1 (see full
version [11] for details). In this work, we remove the need for this assumption in the DP
setting, by directly applying our black-box DP transformation to the original algorithm
of [33] which works substantially better whenever we have m = ω(n) edges.

For estimating the maximum matching size in a graph, although [10] gave an ε-DP
algorithm for estimating the maximum matching size that achieves a 2-multiplicative factor
and κn additive factor, they left the task of finding an (0, κn)-approximation in the DP
setting as an open problem. In this work, we partially resolve this problem by presenting
an ε-DP algorithm that gives a (0, O

(
κn
ε

)
)-approximation of the maximum matching size.

Crucially, our resulting analysis cannot guarantee that the added Laplace noise will be small
with high probability, but only guarantees this will be the case with constant probability. This
problem highlights a limitation of our black-box DP framework – if the non-DP algorithm
that we want to apply our DP transformation on has a time/space/query complexity that
has an exponential dependence on the approximation parameters then the resulting DP
algorithm that achieves a similar approximation guarantee with high probability may be
highly inefficient in terms of time/space/query complexity.

APPROX/RANDOM 2023
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We also show how to apply our DP framework to an algorithm estimating the distance
to bipartiteness in dense graphs [31, 3], which is accurate with probability 1 − o(1). The
same reduction can be similarly applied to other natural properties that enjoy the feature
that they admit distance-estimation algorithms with poly(1/κ) query complexity, where κ is
the additive (normalized) error. For example, in the fundamental results of [32] an efficient
distance approximation algorithm for the maximum k-cut problem, and thus k-colorability is
presented. [27], also based on results from [6], generalizes these properties to the notion of
“semi-homogeneous partition properties” and show efficient distance estimation algorithms
for properties such as Induced P3-freeness, induced P4-freeness, and chordality.4

DP Streaming Results. We also apply our framework given by Theorem 3 and Theorem 5
to obtain differentially-private streaming algorithms for many fundamental problems, i.e.,
see Table 2 and Table 3. We remark that while the accuracy guarantees of our resulting
algorithms may be surpassed by recent works studying these problems on an individual basis,
our applications are black-box reductions that avoid individual utility and privacy analysis
of each non-private streaming algorithm, which can be heavily involved and quite non-trivial,
e.g., [40, 9, 43, 17, 46, 13].

In the streaming model, elements of an underlying dataset arrive one-by-one and the
goal is to compute or approximate some predetermined function on the dataset using space
that is sublinear in the size of the dataset. Our reductions also have wide applications to
various archetypes of data stream models, which we now discuss. In insertion-only streams,
the updates of the stream increment the underlying dataset, such as adding edges to a graph,
adding terms to a sequence, or increasing the coordinates of a frequency vector. In turnstile
(or dynamic) streams, the updates of the stream can both increase and decrease (or insert
and delete) elements of the underlying dataset. Finally, in the sliding window model, only
the W most recent updates of the data stream define the underlying dataset. Both the
turnstile streaming model and the sliding window model are generalizations of insertion-only
streams, and our framework has implications in all three models.

We first show that our framework can be applied to existing non-private dynamic
algorithms for weighted minimum spanning tree, Lp norm estimation for p ≥ 1 (and also
Fp moment estimation for 0 < p < 1), and distinct elements estimation. Thus using our
framework, we essentially get private dynamic algorithms for these problems for free (in terms
of correctness, not optimality). Since the dynamic streaming model generalizes the insertion-
only streaming model, we also obtain private streaming algorithms in the insertion-only
model as well. We summarize these results in Table 2.

We then apply our framework in Theorem 3 to the sliding window model. To that end,
we first recall that given a (α, 0)-approximation algorithm for the insertion-only streaming
model, the smooth histogram framework [14] provides a transformation that obtains a (α, 0)-
approximation algorithm in the sliding window model for a “smooth” function. Although
there are problems that are known to not be smooth, e.g., [15, 12, 16, 25, 37], the smooth
histogram framework does provide a (α, 0)-approximation to many important problems,
such as counting, longest increasing subsequence, Lp norm estimation for p ≥ 1 (and also
Fp moment estimation for 0 < p < 1), and distinct elements estimation. We remark that

4 In general, distance estimation is closely related to tolerant testing [42], and for dense graph properties
it is known that if a property is testable with a number of queries of the form f(κ), then they admit a
distance estimator [28] with an exponential blowup in 1

κ in the query complexity. Hence, in its general
form the query complexity of estimating the distance to “hereditary” graph properties is a tower of
exponential of height poly(1/κ) [4].
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Table 2 Summary of DP algorithms in the dynamic/turnstile model obtained via our black-box
DP transformation. According to our notation multiplicative error α means a multiplicative factor
of (1 ± α).

Problem Reference Privacy Mult. error Add. error Space Complexity

Weighted Minimum Spanning Tree [2] Non-Private α 0 O
(

1
α

n log4 n
)

This Work ε-DP α O
(

M log m
ε

)
O

(
1

αε
n log5 n

)
Lp-norm, p > 2 [29] Non-Private α 0 O

(
1

α2 n
1− 2

p log2 n + 1
α4/p n

1− 2
p log2/p n log2 n

)
This Work ε-DP α O

( log m
ε

)
O

(
p

α2ε2 n1−2/p
)

· poly
(
log n, log 1

αε

)
Lp-norm, p = 2 [5] Non-Private α 0 O

(
1

α2 log2 n
)

This Work ε-DP α O
( log m

ε

)
O

(
1

α2ε2 log4 n
)

Lp-norm, p ∈ (0, 2) [38] Non-Private α 0 O
(

1
α2 log2 n

)
This Work ε-DP α O

( log m
ε

)
O

(
1

α2ε2 log4 n
)

Lp-norm, p = 0 [39] Non-Private α 0 O
(

1
α2 log2 n log 1

α

)
This Work ε-DP α O

( log m
ε

)
Õ

(
1

α2ε2 log4 n
)

if we tried to apply the non-private smooth histogram framework to a DP insertion-only
streaming algorithm, this might preserve privacy by post-processing, but may significantly
increase the error in terms of accuracy. On the other hand, our framework avoids these
issues and achieves private analogs of these algorithms in the sliding window model without
compromising utility. We summarize our results for the sliding window model in Table 3.
We note that in recent work, [26] give a generalized smooth histogram approach to convert a
DP continual release streaming algorithm into a sliding window algorithm in the continual
release setting. We focus on the one-shot streaming setting in our work.

Table 3 Summary of DP algorithms in the sliding window model obtained via our black-box DP
transformation. According to our notation multiplicative error α means a multiplicative factor of
(1 ± α).

Problem Reference Privacy Mult. error Add. error Space Complexity

Longest Increasing Subsequence [44] Non-Private α 0 O
(

k2

α
log2 n

)
This Work ε-DP α O

( log m
ε

)
O

(
k2

αε
log4 n

)
Distinct Elements [8] Non-Private α 0 O

(
1

α3 log2 n
)

This Work ε-DP α O
( log m

ε

)
O

(
1

α3ε3 log5 n
)

Lp-norm, p = 2 [47] Non-Private α 0 O
(

1
α2 log3 n log3 1

α

)
This Work ε-DP α O

( log m
ε

)
Õ

(
1

α2ε2 log5 n log3 1
αε

)
Lp-norm, p ∈ (0, 2) [47] Non-Private α 0 O

(
1

α2 log3 n(log log n)2 log3 1
α

)
This Work ε-DP α O

( log m
ε

)
Õ

(
1

α2ε2 log5 n
)

1.2 Our Techniques
Given a tunable (α, κ, δ)-approximation algorithm Af for the function f : D → R+, our
goal is to obtain a differentially private approximation algorithm that achieves a target
(α′, κ′, δ′)-approximation of f where α′, κ′ are in terms of α, κ.

Warm-up: When Af is deterministic and only has multiplicative error. For simplicity, let
us first consider an (α, 0, 0)-approximation algorithm Af , in other words, Af always outputs a
value such that (1−α)f(D) ≤ Af (D) ≤ (1+α)f(D). Since we want to make Af differentially
private, intuitively, we need to add noise to the output of Af . The local sensitivity of Af at
D (i.e., LSAf

(D) = maxD′∼D |Af (D) − Af (D′)|) is upper bounded by 2αf(D) + ∆f . Since
∆f is small and we can tune α to be arbitrarily small, it is tempting to think that we can just
add noise proportional to 2αf(D) + ∆f . Unfortunately, scaling noise proportional to local
sensitivity is not necessarily private. On the other hand we could ensure privacy by scaling
noise proportional to the global sensitivity (i.e., maxD∈D LSAf

(D) ≤ maxD∈D 2αf(D) + ∆f )

APPROX/RANDOM 2023
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but noise will likely be too large to obtain meaningful accuracy guarantees. We adopt
the strategy of adding noise proportional to the smooth sensitivity [41] of Af instead. In
particular, [41] observed that if we can find a “sufficiently smooth” function Sf (D) ≥ LSAf

(D)
upper bounding the local sensitivity of Af then we can preserve privacy by computing Af (D)
and adding noise scaled according to Sf (D).

We can show that the function Sf (D) = 4αAf (D) + ∆f is a β-smooth upper bound
on the local sensitivity of Af for β = 6α where Sf is β-smooth if Sf (D) ≤ eβSf (D′) for
all pairs of neighboring datasets D ∼ D′. To achieve privacy using the smooth sensitivity
framework we need to ensure that β is sufficiently small relative to our privacy parameters ε

and δ (if applicable). For example, we can achieve
(
ε, δ

(
1 + exp

(
ε
2
)))

-differential privacy
by adding Laplace Noise scaled by 2Sf (D)

ε , but only if Sf is β-smooth for β ≤ ε
2 ln(2/δ) . For

pure differential privacy we require that β < ε
2(λ+1) where λ is a parameter of the noise

distribution – smaller λ implies higher variance.
If we want to ensure that the output is accurate, we also need to ensure that the

calibrated noise with Sf (D) is small e.g., o(f(D)) + O (∆f ). Note that by definition since
Sf (D) = 4αAf (D) + ∆f , and we add noise proportional Sf (D), we expect that the noise
added may be > αf(D). Thus, in order to address this challenge, our basic strategy is to
run the original (non-private) approximation algorithm Af with tuned error factors e.g.,
we decrease α by a multiplicative factor of ε

ln(n) , let ρ := εα
ln(n) . Since we are now running

Af (D, ρ, 0, 0), we have that the function Sf (D) = 4ρAf (D) + ∆f is a β-smooth upper bound
on the local sensitivity of the algorithm Af (·, ρ, 0, 0). Assuming the global sensitivity ∆f

is small, we can now show that w.h.p. the noise sampled proportional to Sf (D) is at most
αf(D) + O (∆f /ε) thus resulting in an ε-differentially private algorithm with reasonable
accuracy.

By tuning the parameter α we actually accomplish two useful properties (1. accuracy)
we decrease both the local sensitivity and our smooth upper bound Sf (D) which reduces
the magnitude of the noise that we add, and (2. privacy) we achieve β-smoothness for
increasingly small values of β so that the required condition β ≤ ε

2 ln(2/δ) (or β < ε
2(λ+1) ) can

be satisfied if we want to scale noise according to Sf (D).

Extending to deterministic Af with multiplicative and additive error. More generally, if
we have an (α, κ, 0)-approximation algorithm Af then we can show that Sf (D) = 4αAf (D) +
∆f +4τ is a β-smooth upper bound on the local sensitivity of Af with β = 6α (see Lemma 14).
In particular, note that the additive error term κ does not adversely impact smoothness.
Thus, we can achieve pure differentially privacy by tuning α such that 6α < β < ε

2(λ+1) and
scaling our noise according to Sf (D) (see Lemma 15). We can also obtain stronger accuracy
guarantees by relaxing the requirement for pure DP and tuning α such that 6α ≤ β ≤ ε

2 ln(2/δ)
so that we can sample our noise from the Laplace distribution which has strong concentration
guarantees.

When Af is randomized. The remaining challenge is to handle randomized approximation
algorithms Af which are only guaranteed to output a good approximation with high probab-
ility i.e., with non-zero probability δ > 0 the algorithm is allowed to output an arbitrarily bad
approximation. In particular, let us consider an (α, κ, δ)-approximation algorithm Af . For
any possible input D we are always guaranteed that with probability ≥ 1 − δ the algorithm
Af (D) outputs a good approximation (1 − α)f(D) ≤ Af (D) ≤ (1 + α)f(D). Unfortunately,
the function Sf (D) = 4αAf (D) + ∆f + 4κ is no longer guaranteed to be a β-smooth upper
bound on the local sensitivity of Af since Af may sometimes output a value outside the
specified approximation bounds.
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In order to address this challenge, we define a function gf (D) that matches Af (D) with
probability at least 1 − δ/2 and is always guaranteed to output a good approximation.
We emphasize that gf (D) may not be efficiently computable, but it is well-defined and
only used for the purpose of analysis. More specifically, we set gf (D) = Af (D) as long
as (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ. If Af (D) > (1 + α)f(D), then we
define gf (D) := (1 + α)f(D), similarly, if Af (D) < (1 − α)f(D), then we define gf (D) :=
(1 − α)f(D) + κ. Observe that we are always guaranteed that (1 − α)f(D) − κ ≤ gf (D) ≤
(1 + α)f(D) + κ. Thus, Sf (D) = 4αgf (D) + ∆f + 4τ is a β = 6α-smooth upper bound on
the local sensitivity of gf (see Lemma 8). As long as 6α ≤ β ≤ ε

2 ln(2/δ) we could preserve(
ε, δ

(
1 + exp

(
ε
2
)))

-differential privacy by outputting gf (D) plus Laplace Noise scaled by
8αgf (D)+∆f +8τ

ε i.e., scaled according to our β-smooth upper bound on the local sensitivity of
gf . Unfortunately, the function gf may not be efficiently computable. Thus, we substitute
gf for Af and instead output Af (D) plus Laplace noise scaled according to 8αAf (D)+∆f +8τ

ε .
While 4αAf (D) + ∆f + 4τ is not necessarily a β-smooth upper bound on the local sensitivity
of A, the key point is that the latter (efficiently computable) procedure is equivalent to
the former (differentially private) procedure as long as gf (D) = Af (D) which happens
as long as Af outputs a good approximation i.e., except with probability δ/2. Thus, we
can apply a hybrid argument to argue that the final efficiently computable algorithm is(
ε, δ

2 + δ
(
1 + exp

(
ε
2
)))

-differential privacy (see Lemma 10). In order to ensure accuracy, we
use the same strategy as before, i.e., we run Af (D, ρ, τ, δ/2), where ρ ≤ εα

log(1/δ) . Sampling
noise proportional to Sf (D) (where Sf (D) is now defined in terms of ρ), and absorbing
the failure probability of algorithm Af into the DP failure probability term δ, results in
an approximate differentially private algorithm. Finally applying the postprocessing step
results in a pure differentially private algorithm. We refer to the full proofs ( Section 2) for
additional details.

Applications. We give some intuition on how we apply Theorem 3 to various applications by
choosing appropriate parameters. Recall that with probability 1 − δ − exp(−γ), A′

f outputs
(1 − α′)f(D) − κ′ − 2∆f

ε · γ ≤ A′
f (D) ≤ (1 + α′)f(D) + κ′ + 2∆f

ε · γ, where α′ = α(ε+16γ)
12 log(4/δ) , and

κ′ = κ
(

2γα
3 log(4/δ) + 8γ

ε + 1
)

with a time/space/query complexity blow-up incurred by running
the original algorithm Af with multiplicative accuracy parameter ρ = εα

log(4/δ) . First, observe
that if the original algorithm Af has time/space/query complexity with a dependence on
poly( 1

α ), then the resulting time/space/query complexities for A′
f will still have a polynomial

dependence, i.e., poly( log(4/δ)
α ) – this naturally leads to FPRAS or FPTAS applications,

as well as other classes of approximation algorithms like sublinear time or space. On the
otherhand, if the time/space/query complexity of Af has a non-polynomial dependence
on 1/α, e.g., exp( 1

α ), then since δ is typically negl(n) or 1
nc for c > 0, the resulting DP

algorithm A′
f could have much worse time/space/query-guarantees with respect to n, e.g.,

in an extreme case if we set δ = 2− poly(n) then ρ = Ω(poly(n)/α) and we could incur a
exp( poly(n)

α ) multiplicative overhead in the running time. It is worth noting that one could
optionally reduce the additive error term κ′ for A′

f by reducing the error term κ for A.
We further emphasize this trade-off between obtaining small failure probability bounds

and the accuracy or resource guarantees. Consider the following two examples – (Example 1)
if we set the probability of failure, i.e., exp(−γ) = δ = 1

nc for any c > 0, then the resulting
approximation parameters are roughly α′ = α(1 + o(1)), and κ′ = κ(α + log(n)

ε + 1)5, and

5 In the applications we consider the original (non-private) approximation algorithm typically has only
multiplicative or only additive error and not both. In particular, we typically either have α > 0 and
κ = 0 or κ > 0 and α = 0, but not the case where α > 0 and κ > 0. Considering the case when κ ̸= 0,
and α = 0, we (roughly) have κ′ = κ( log(n)

ε + 1).
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the additional error term depending on global sensitivity is roughly ∆f log(n)
ε . We incur a

time/space overhead by running Af with multiplicative accuracy parameter ρ = Ω(εα/ log n)
instead of α. (Example 2) if we set the probability of failure, i.e., exp(−γ) = δ = 1

nlog log(n) −
negl(n), then α′ remains the same as before, and now κ′ = κ(α + log(n) log log(n)

ε + 1), but the
additional error term depending on global sensitivity becomes ∆f log(n) log log(n)

ε . In this latter
case we incur time or space overhead by running Af with multiplicative accuracy parameter
ρ = Ω

(
εα

log n log log n

)
– to reduce the κ′ log n log log n error term it could be useful to run Af

with additive error parameter κ
log n log log n which may incur additional time or space overhead.

Thus these two examples illustrate how, as we decrease the failure probability, the accuracy
and resource (time/space in this case) guarantees become worse. See full version [11] for
applications to sublinear time and streaming algorithms.

2 General Transformation for Approximation Algorithms

In this section, we formally define our black-box differentially private transformation for
(randomized) approximation algorithms. Given a tunable approximation (see Definition 2)
algorithm of f , call it Af , that outputs an (α, κ, δ)-approximation, our framework for
randomized algorithms involves two steps – (1) Apply Algorithm 1 to Af to obtain an (ε, δ)-
DP algorithm A′

f with accuracy guarantees outlined in Theorem 3 (2) Apply postprocessing
step to the output of A′

f to obtain an ε-DP algorithm (see Theorem 5).
We first prove Theorem 3 that provides theoretical guarantees for algorithm A′

f (Al-
gorithm 1). This is our main contribution as the postprocessing step to obtain pure DP
applies a folkore result.

Observe that even for the case when the original algorithm Af gives an (α, 0, δ)-
approximation of f (i.e., κ = 0), the resulting DP algorithm A′

f will still have an additive
error, this additive error is inherent due to the requirement of adding Laplace noise to
preserve DP. We emphasize that the Laplace noise added to the output of algorithm Af

depends on the global sensitivity of the function f , therefore, we can only get meaningful DP
approximation algorithms using this transformation for functions with low global sensitivity.

Proof of Theorem 3. A′
f is defined in Algorithm 1 – it first runs Af (D, ρ, κ, δ/2) where

ρ := εα
12 log(4/δ) and then adds Laplace Noise. Thus, the resource used by A′

f is R (n, ρ, κ, δ).
The privacy guarantee follows from Lemma 10, and the accuracy guarantee follows from
Lemma 12. ◀

▶ Remark 7. When Af is a PRAS, by definition, the output of Af is an (α, 0, δ)-approximation
of f running in time T (n, α, 0, δ) = poly(n, 1/α, log(1/δ)). Applying Theorem 3 with negli-
gible δ = n− log n and γ = log2 n for any α′ > 0 we obtain a private

(
α′, O

(
∆f

ε log2 n

)
, 2n− log n

)
-

approximation with polynomial running time poly(n, 1/ε, 1/α′).

▶ Lemma 8. Let 0 < ρ < 1/2. Suppose that Af outputs a (ρ, τ, δ)-approximation of a
function f : D → R+ with global sensitivity ∆f . Let Af,R denote a deterministic run of A
using a fixed set of random coins R. Define function gf,R by

gf,R(D) =


Af,R(D) if (1 − ρ)f(D) − τ ≤ Af,R(D) ≤ (1 + ρ)f(D) + τ

(1 − ρ)f(D) − τ if Af,R(D) < (1 − ρ)f(D) − τ

(1 + ρ)f(D) + τ if Af,R(D) > (1 + ρ)f(D) + τ

Then the function Sf (D) = 4ρgf,R(D) + 4τ + ∆f is a β-smooth upper bound for gf,R where
β ≥ 6ρ.
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Proof. Fix an arbitrary set of random coin tosses R. We frequently use the fact that
(1 − ρ)f(D) − τ ≤ gf,R(D) ≤ (1 + ρ)f(D) + τ . We also note that since 0 ≤ ρ < 1/2, we have
that 1

2 f(D) − τ ≤ gf,R(D) ≤ 2f(D) + τ .
First, we show that Condition 1 of Definition 24 holds. Without loss of generality, we

assume f(D) ≥ f(D′), where D′ is any neighboring input. Then:

LSgf,R
(D) = max

D′:D∼D′
∥gf,R(D) − gf,R(D′)∥

≤ ∥(1 + ρ)f(D) + τ − (1 − ρ)f(D′) + τ∥
≤ ρ∥f(D) + f(D′)∥ + 2τ + ∆f

≤ 2ρf(D) + 2τ + ∆f

≤ 4ρgf,R(D) + 2ρτ + 2τ + ∆f as 1
2f(D) − τ ≤ gf,R(D)

≤ 4ρgf,R(D) + 4τ + ∆f

= Sf (D)

Next, we show that Condition 2 of Definition 24 holds below. We have:

Sf (D) = 4ρgf,R(D) + 4τ + ∆f

≤ 4ρ (1 + ρ) f(D) + 4ρτ + 4τ + ∆f by def of gf,R

≤ 4ρ (1 + ρ) (∆f + f(D′)) + 4ρτ + 4τ + ∆f since D ∼ D′

≤ 4ρ(1 + ρ)f(D′) + (4ρ(1 + ρ) + 1)∆f + 4ρτ + 4τ

≤ 4ρ
(1 + ρ)
1 − ρ

(gf,R(D′) + τ) + (1 + 6ρ)∆f + 4ρτ + 4τ by def of gf,R

≤ 4ρ(1 + ρ)(1 + 2ρ)(gf,R(D′) + τ) + (1 + 6ρ)∆f + 4ρτ + 4τ

≤ 4ρ(1 + ρ)(1 + 2ρ)gf,R(D′) + 12ρτ + (1 + 6ρ)∆f + 4ρτ + 4τ

≤ 4ρ(1 + ρ)(1 + 2ρ)gf,R(D′) + (1 + 6ρ)(∆f + 4τ)
≤ 4ρ(1 + 4ρ)gf,R(D′) + (1 + 6ρ)(∆f + 4τ)
≤ (1 + 6ρ)(4ρgf,R(D′) + ∆f + 4τ)
≤ e6ρ · (4ρgf,R(D′) + ∆f + 4τ) = eβSf (D′),

where β ≥ 6ρ. ◀

▶ Remark 9. As a special case if we have a (0, κ, 0)-approximation algorithm Af (i.e., no
multiplicative error, zero failure probability) then applying Lemma 8 yields the smooth upper
bound Sf (D) = 4τ + ∆f . We observe that this smooth upper bound is independent of D

and, therefore, Sf is just an upper bound on the global sensitivity of gf . Furthermore, in this
special case we are guaranteed that Af (D) = gf (D) with probability 1. Thus, in this special
case, we can achieve pure ε-DP by computing Af (D) and adding Laplace noise proportional
to Sf .
If we have a (0, κ, δ)-approximation algorithm for δ ̸= 0 then we still have Sf (D) = 4τ + ∆f

which means that Sf (D) is an upper bound on the global sensitivity of gf . However,
computing Af (D) and adding Laplace noise proportional to Sf does not necessarily yield a
pure DP algorithm since we may have ∆f (D) ̸= Af (D) with non-zero probability δ. If we
have (α, κ, 0)-approximation algorithm Af , and α ̸= 0, since Sf (D) = 4ρAf (D) + 4τ + ∆f

still depends on the input D. However, we can still achieve DP using Theorem 6.
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Applying Lemma 8 to the theorem calibrating noise to smooth bounds on the smooth
sensitivity [41] we show that the Algorithm 1 preserves privacy below.

▶ Lemma 10 (Privacy). Algorithm 1 is (ε, δ′)-differentially private where δ′ = δ(1+exp(ε/2)).

Proof. Consider a modification of Algorithm 1, call it Algorithm 1’ where instead of com-
puting Af (D, ρ, τ, δ/2) we instead sample the random coins R that Af would have used
and replace the value Af (D, ρ, τ, δ/2; R) (which we denote as Af,R(D) in the sequel) with
gf,R(D).The function gf,R may not be efficiently computable, but we only use Algorithm 1’
for the purpose of analysis. We first observe that by Lemma 8, for any β ≥ 6ρ the function
Sf (D) = 4ρgf,R(D) + 4τ + ∆f is a β-smooth upper bound on the sensitivity of gf,R. Thus,
by Theorem 25, it is sufficient to set ρ := εα

12 log(4/δ) for 6ρ ≤ β ≤ ε

2 ln( 4
δ ) and add noise

proportional to Lap
(

2Sf (D)
ε

)
= Lap

(
2(4ρgf,R(D)+4τ+∆f )

ε

)
to preserve (ε, δ/2)-privacy of

Algorithm 1’.
Since gf,R(D) is Af,R(D) except with probability δ/2, Algorithm 1 is identical to Al-

gorithm 1’ except with probability δ/2. Thus, this shows that Algorithm 1 is (ε, δ)-private. ◀

▶ Fact 11. If Y ∼ Lap(b), then Pr[|Y | ≥ ℓ · b] = exp(−ℓ).

▶ Lemma 12 (Accuracy). For all γ > 0, with probability 1 − exp(−γ) − δ,(
1 − ρ(1 + 16γ

ε
)
)
f(D) − τ

(8γρ

ε
+ 8γ

ε
+ 1

)
− 2∆f γ

ε
≤ A′(D) ≤

(
1 + ρ(1 + 16γ

ε
)
)
f(D)

+ τ
(8γρ

ε
+ 8γ

ε
+ 1

)
+ 2∆f γ

ε
.

Proof. First, using Fact 11, for any γ > 0, we have that,

Pr
[
|X| ≥ 2(4ρA(D) + 4τ + ∆f )

ε
· γ

]
= exp(−γ)

Af is a (ρ, τ, δ/2)-approximation of f so for any D ∈ D, we have that Af (D) ≤ (1+ρ)f(D)+τ

with probability 1 − δ/2. Since 0 < ρ < 1/2 we have (1 + ρ)f(D) + τ ≤ 2f(D) + τ . Therefore,
by a union bound,

Pr
[(

Af (D) > (1 + ρ)f(D) + τ
)

∨
(
Af (D) < (1 − ρ)f(D) − τ

)
∨

(
|X|

≥ 2(4ρAf (D) + 4τ + ∆f )
ε

· γ
)]

≤ δ/2 + exp(−γ)

Thus, with probability 1 − exp(−γ) − δ/2, we have that

(1 − ρ)f(D) − τ ≤ Af (D) ≤ (1 + ρ)f(D) + τ ≤ 2f(D) + τ (1)

and

|X| <
2(4ρAf (D) + 4τ + ∆f )

ε
· γ (2)

By plugging in Eq. 1 into Eq. 2, we have that with probability 1 − exp(−γ) − δ/2,

|X| <
2(4ρ(2f(D) + τ) + 4τ + ∆f )

ε
· γ

Overall, this means that with probability 1 − exp(−γ) − δ/2,

(1 − ρ)f(D) − τ − 2(4ρ(2f(D) + τ) + 4τ + ∆f )
ε

· γ ≤ A′
f (D)

≤ (1 + ρ)f(D) + τ + 2(4ρ(2f(D) + τ) + 4τ + ∆f )
ε

· γ

Grouping the like terms together gives the theorem statement. ◀
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▶ Theorem 5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP

algorithm with accuracy guarantee (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ holding with
probability 1 − η then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee
(1 − α)f(D) − κ − 1

KM ≤ Af (D) ≤ (1 + α)f(D) + κ + 1
KM with probability at least 1 − η − p

where p = δK(M+1)
eε−1+δK(M+1) .

The proof of Theorem 5 is in Appendix D. At a high level our idea is to define A′
f (D) =

⌈KAf (D)⌉
KM . The rounding step introduces a small additive error term ≤ 1

KM and ensures
that A′

f (D) now has bounded range |R| ≤ (M + 1)K. Since A′
f has bounded range we can

apply a folklore result (see Theorem 19) to transform this (ε, δ)-DP algorithm into an ε-DP
algorithm.

2.1 Achieving Pure DP for Approximation Algorithms with Zero Failure
Probability

In this section we show how one can achieve pure differential privacy (δ = 0) when we have
a tunable (α, κ, 0)-approximation algorithm. The basic framework is the same except that
we use the Cauchy distribution instead of Laplace when applying the Smooth Sensitivity
framework – see Theorem 25. Since we assume δ = 0 in this section we will sometimes simplify
notation and write T (n, α, κ) (resp. S(n, α, κ)) instead of T (n, α, κ, 0) (resp. S(n, α, κ, 0)).
We move the proofs in this section to Appendix C.

Algorithm 2 ε-differentially private framework for tunable deterministic approximation algorithms.

Input: Input set D, accuracy parameter α ∈ (0, 1), differential privacy parameter ε, approx.
algorithm Af .

1: Let xA := Af (D, ρ, τ, 0) where ρ := εα
36 and τ := κ.

2: return xA + X where X ∼ C
(

6(4ρxA+∆f )
ε

)

▶ Remark 13. When Af is a PTAS, by definition, the output of Af is an (α, 0, 0)-approximation
of f running in time T (n, α, 0) = poly(n, 1/α). Applying Theorem 6 with for any α >

0 we obtain a private
(

α, O
(

∆f

ε

)
, 9/10

)
-approximation with polynomial running time

poly(n, 1/ε, 1/α).

▶ Lemma 14. Suppose that Af outputs a (ρ, τ, 0)-approximation where 0 < ρ < 1/2 of a
function f : D → R+ with global sensitivity ∆f . Then the function Sf (D) = 4ρAf (D) + 4τ +
∆f is a β-smooth upper bound for Af where β ≥ 6ρ.

The proof remains the same as in Lemma 8. Applying Lemma 14 to the theorem calibrating
noise to smooth bounds on the smooth sensitivity [41] we show that the Algorithm 2 preserves
privacy below.

▶ Lemma 15. Algorithm 2 is ε-differentially private.

▶ Lemma 16. For all γ > 6.5, with probability at least 9/10,(
1 − ρ

(
1 + 48γ

ε

))
f(D) − 24(ρ + 1)γτ

ε
− 6∆f

ε
· γ ≤ A′

f (D)

≤
(

1 + ρ

(
1 + 48γ

ε

))
f(D) + 24(ρ + 1)γτ

ε
+ 6∆f

ε
· γ
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▶ Remark 17. For simplicity, we have chosen to sample from the standard cauchy distribution
λ = 2, more generally, if we sample noise with density h(z) ∝ 1

1+|z|λ , where λ = c, then with
probability 1 − δ, γ = 1

δ1/c in Lemma 16.

Application to the Knapsack Problem. As a fun example we consider the knapsack problem.
The knapsack problem is well known to be NP-Hard, but also admits an FPTAS. To define an
instance of the knapsack problem we have a maximum weight capacity W for the knapsack
and n items each with a value vmax ≥ vi ≥ 0 and a weight wi ≥ 0. The goal is to find a
subset S ⊆ [n] of items to put in the knapsack maximizing the total value v(S) =

∑
i∈S vi

subject to the constraint that the total weight w(S) =
∑

i∈S wi does not exceed our capacity
i.e., w(S) ≤ W .

For the purpose of this illustration let’s fix the capacity W and weights w1, . . . , wn and let
f(v1, . . . , vn) denote the value of the optimal knapsack solution given values v1, . . . , vn. Let’s
say that two knapsack instances (W, v1, . . . , vn, w1, . . . , wn) and (W, v′

1, . . . , v′
n, w1, . . . , wn)

are neighbors if
∑

i ∥vi − v′
i| ≤ 1. Thus, we are viewing the exact value of each item as

sensitive and the goal of differential privacy is to prevent an attacker from inferring these
sensitive values exactly. Observe that the global sensitivity of f is upper bounded by
∆f ≤ maxv∼v′ maxS⊆[n] |v(S) − v′(S)| ≤ 16.

Since there is an FPTAS algorithm for Knapsack we can find a non-private approximation
algorithm Af (v⃗, α, κ = 0) running in time T (n, α) = poly(n, 1/α). If we apply Theorem 6
then for any target α′ our ε-DP algorithm A′

f runs in time poly(n, 1/ε, 1/α) and solves
Knapsack with additive error O (1/ε) and multiplicative error α′ with probability at least
9/10. If we don’t require pure DP then we can also apply Theorem 3 then for any target α′ our
algorithm A′

f runs in time poly(n, 1/ε, 1/α, log(1/δ)) and solves Knapsack with probability
at least 1 − δ − exp(−γ) with additive error at most O (γ/ε) and multiplicative error α′.

3 Conclusion and Open Questions

In this work, we introduce a general framework for transforming a non-private approximation
algorithm into a differentially private approximation algorithm. We show specific applications
of our framework for sublinear time and sublinear space algorithms. Although our framework
applies to a large variety of problems and settings, it does incur a small penalty in both
runtime and space for achieving differential privacy. A natural question is whether these
losses are necessary for a general black-box framework and what are sufficient conditions for
achieving a black-box reduction.

It also seems possible that our framework could provide a method for achieving differen-
tially private algorithms when the important resource is not runtime, number of queries, or
space. For example, in distributed algorithms, it is often desired to achieve sublinear commu-
nication while in learning/testing, it is often desired to achieve sublinear query complexity.
We believe that exploring the limits and capabilities of our framework in those settings would
be a natural future direction of work.

6 We could also define neighboring knapsack instances such that we can completely replace the value of
any item i.e., v and v′ are neighbors if there exists some index i ∈ [n] such that vi ̸= v′

i and vj = v′
j for

all j ≠ i. However, in this case we can we would have large global sensitivity ∆f = vmax. Thus, we
won’t be able to design an accurate differentially private approximation even if we are willing to solve
the NP-Hard knapsack problem exactly.
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A Related Work

One of the first differentially private frameworks for computing general functions was
introduced by [23] which released functions with additive noise, where the noise is calibrated
according to the global sensitivity of the function f . This framework was generalized by [41],
to handle functions which might have a high global sensitivity but are usually less sensitive
in practice. The framework allows the release of functions with instance-specific noise, where
the noise that is added is not just determined by f but by the input dataset as well. The
noise magnitude calibrated is according to the smooth sensitivity of f on the input dataset
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which is a smooth upper bound on the local sensitivity of f on an input dataset. The
smooth sensitivity of a function may be hard to compute, therefore in the same work, [41]
give a generic method called the sample and aggregate method that bypasses the explicit
computation of the smooth sensitivity of the function and works even when the function
is given as a black-box. [21] suggested a framework called Propose-Test-Release to release
statistical estimators with additive noise where the noise is calibrated according to the local
sensitivity of the estimator. Note that adding noise proportional to the local sensitivity of a
function with respect to an input set usually does not preserve privacy, but their approach
first proposes a bound on the local sensitivity and privately tests whether this bound holds
for the specific input set, and then releases the noisy response to the query.

In the context of developing differentially private frameworks for approximation algorithms,
[10] formally introduced the notion of coupled global sensitivity of a randomized algorithm,
which gives an analogous framework as that of the global sensitivity framework [23], but for
randomized approximation algorithms instead of deterministic functions. In this framework,
one can run a non-private randomized approximation algorithm Af (D) on the dataset, and
privacy is obtained by adding noise proportional to the coupled global sensitivity of Af .
More formally, the coupled global sensitivity measures the worst-case L1-sensitivity of the
outputs of a randomized algorithm Af on neighboring inputs over a minimum coupling of
the internal coin tosses of Af .

In independent work, Tetek [45] also explores the problem of transforming randomized
approximation algorithms into (pure) differentially private approximation algorithms. In
contrast to our results Tetek’s transformation [45] assumes that the error of the original
approximation algorithm either has small subexponential diameter or bounded mean error –
assumptions that would not apply generically to every (tunable) approximation algorithm.
Assuming subexponential error their work shows that it is possible to achieve ε-DP by
adding Laplace Noise yielding accuracy guarantees that hold with high probability. However,
the assumption of the error being subexponential is quite strong and does not often hold
for many randomized approximation algorithms. While assuming bounded mean error
is a weaker assumption on the error of the non-private randomized algorithm, however
the DP noise is sampled from the Pareto distribution, which has polynomial tail bounds.
This leads to accuracy guarantees which only hold with constant probability. Note that
applying the median trick commonly used to amplify success probability in the non-private
literature adversely affects the privacy budget and is thus not desirable. In contrast, our
transformation applies generically to any (tunably) accurate approximation algorithm and we
achieve accuracy guarantees that hold with high probability for the same problems studied
in their paper. Finally, we correct an outdated claim7 from the comparison to our work
detailed in [45] that says that we only achieve approximate privacy. We can achieve pure DP
algorithms by applying a postprocessing step to the output of our transformation as outlined
in Theorem 5.

B Preliminaries

We use the notation Õ (f(n)) to mean f(n) · polylog(f(n)). We define datasets D and D′

as neighboring, denoted as D ∼ D′, if removing or adding one point in D results in D′;
alternatively, if changing one data point in D results in D′.

7 A prior version of the paper achieved pure DP, but that transformation (Theorem 1.5) only applied to
deterministic tunable approximation algorithms
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▶ Definition 18 (Differential privacy). [22] An algorithm A is (ε, δ)-DP if for every pair of
neighboring datasets D ∼ D′, and for all sets S of possible outputs, we have that Pr[A(D) ∈
S] ≤ eε Pr[A(D′) ∈ S] + δ. When δ = 0 we simply say that the algorithm is ε-DP.

Given an (ε, δ)-DP algorithm, one can obtain an ε-DP algorithm under certain conditions
outlined below. We include the proof for completeness in Appendix D.

▶ Theorem 19 (Approximate DP to Pure DP). Let A : D → R. If A is an (ε, δ)-DP algorithm
such that δ ≤ (eε−1)p

|R|(1−p) then there is an algorithm A′ such that A′ is ε-DP defined in the
following manner.

A′(D) =
{

A(D) with probability 1 − p

random(R) with probability p

where R is the range of Af .

We define the distributions we will use to sample additive noise from below.

▶ Definition 20 (Laplace distribution). We say a random variable X is drawn from a Laplace
distribution with mean µ and scale b > 0 if the probability density function of X at x is
1
2b exp

(
− |x−µ|

b

)
. We use the notation X ∼ Lap(b) to denote that X is drawn from the

Laplace distribution with scale b and mean µ = 0.

▶ Definition 21 (Cauchy distribution). We say a random variable X is drawn from a Cauchy
distribution with location parameter x0 and scale b > 0 if the probability density function of
X at x is 1

πb

(
b2

(x−x0)2+b2

)
. We use the notation X ∼ C(b) to denote that X is drawn from

the Cauchy distribution with scale b and location parameter x0 = 0.

We formally define the concept of global sensitivity which is a worst-case notion of
sensitivity for deterministic functions below.

▶ Definition 22 (Global sensitivity). The global sensitivity of a function f : D → Rd is defined
by

∆f = max
D,D′∈D,D∼D′

∥f(D) − f(D′)∥1.

We define the notion of local sensitivity for a fixed input, which can be much smaller
than the global sensitivity, but in general, adding noise calibrated according to the local
sensitivity does not preserve DP.

▶ Definition 23 (Local sensitivity). For f : D → R and D ∈ D, the local sensitivity of f at
D is defined as

LSf (D) = max
D′:D∼D′

∥f(D) − f(D′)∥1.

Note: if f : D × R → R is a randomized function which, in addition to a dataset D ∈ D
takes random coins r ∈ R as input we simply define LSf (D) = maxr∈R LSfr

where fr(D) .=
f(D; r).

In order to add instance-specific noise, we define the notions of β-smooth upper bound
which is a smooth upper bound on the local sensitivity.

APPROX/RANDOM 2023
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▶ Definition 24 (Smooth upper bound on local sensitivity). For β > 0, a function S : D → R
is a β-smooth upper bound on the local sensitivity of f : D → R if
(1) For all D ∈ D, we have S(D) ≥ LSf (D).
(2) For all D, D′ ∈ D with ∥D − D′∥1 = 1, we have S(D) ≤ eβ · S(D′).
Finally, although one cannot add noise calibrated with local sensitivity, one can add noise
proportional to a β-smooth upper bound on the local sensitivity as follows.

▶ Theorem 25 (Corollary 2.4 in [41]). Let f : D → R and S : D → R be a β-smooth upper
bound on the local sensitivity of f .
(1) If β ≤ ε

2(λ+1) and λ > 1, the algorithm D → f(D) + 2(λ+1)S(D)
ε · η, where η is sampled

from the distribution with density h(z) ∝ 1
1+|z|λ , is ε-differentially private.

(2) If β ≤ ε
2 ln(2/δ) and δ ∈ (0, 1), then the algorithm D → f(D) + 2S(D)

ε · η where η ∼ Lap(1)
is (ε, δ′)-differentially private for δ′ = δ

(
1 + exp

(
ε
2
))8.

C Proofs of Section 2.1

Proof of Theorem 6.

Proof. A′
f is defined in Algorithm 2 – we first run Af (D, ρ, κ) where ρ := εα

36 and then we
add noise proportional to the standard Cauchy distribution. Thus, the resource used will be
R(n, ρ, κ).

The privacy guarantee follows from Lemma 15, and the accuracy guarantee follows from
Lemma 16. ◀

Proof of Lemma 15

Proof. We first observe that by Lemma 14, Sf (D) = 4Af (D) + 4τ + ∆f is a β-smooth upper
bound for Af . Recall that ρ := εα

36 , thus we can apply Theorem 25 (with λ = 2) where
6ρ ≤ β ≤ ε

6 and conclude that it is sufficient to add noise proportional to C
(

2(2+1)Sf (x)
ε

)
=

C
(

6(4ρAf (D)+4τ+∆f )
ε

)
to preserve ε-privacy.

◀

▶ Fact 26. If Y ∼ C(x; 0, b), then Pr[|Y | ≥ ℓb] = 1 − 2 tan−1(ℓ)
π .

Proof of Lemma 16.

Proof. First, we invoke Fact 26 below,

Pr
[
|X| ≥ 6(4ρAf (D) + 4τ + ∆f )

ε
· γ

]
= 1 − 2 tan−1(γ)

π
≤ 1

10

where the final inequality comes from using the fact that γ > 6.5. In other words, with
probability ≥ 9/10,

|X| ≤ 6(4ρAf (D) + 4τ + ∆f )
ε

· γ (3)

Af is a (ρ, τ, 0)-approximation of f so for any D ∈ D, we have that Af (D) ≤ (1+ρ)f(D)+ τ .
Since 0 < ρ < 1/2 we have (1 + ρ)f(D) + τ ≤ 2f(D) + τ .

8 These bounds differ slightly from those listed in the original paper (Corollary 2.4 in [41]). We confirmed
with the authors in private communication that δ should be multiplied by (1 + exp(ε/2)).
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By plugging in the relation Af (D) ≤ 2f(D) + τ into Eq. 3, we have that with probability
at least 9/10,

|X| ≤ 6(8ρf(D) + 4ρτ + 4τ + ∆f )
ε

· γ

Thus with probability at least 9/10,

(1 − ρ)f(D) − τ − 6(8ρf(D) + 4ρτ + 4τ + ∆f )
ε

· γ ≤ A′
f (D)

≤ (1 + ρ)f(D) + τ + 6(8ρf(D) + 4ρτ + 4τ + ∆f )
ε

· γ

Rearranging the like terms together in the above expression completes the proof. ◀

D Proof of Approximate DP to Pure DP transformation

▶ Theorem 5. Let M = maxD f(D) and let parameter K > 0. If A′
f (D) is (ε, δ)-DP

algorithm with accuracy guarantee (1 − α)f(D) − κ ≤ Af (D) ≤ (1 + α)f(D) + κ holding with
probability 1 − η then there exists an algorithm A′′

f (D) which is ε-DP with accuracy guarantee
(1 − α)f(D) − κ − 1

KM ≤ Af (D) ≤ (1 + α)f(D) + κ + 1
KM with probability at least 1 − η − p

where p = δK(M+1)
eε−1+δK(M+1) .

Proof. Note that WLOG we can assume that Af (D) outputs a value between 0 and M

since we can always truncate the output to this range – this operation preserves privacy by
postprocessing and does not adversely affect accuracy. For some K > 0, define algorithm
A′′

f (D) as outputting ⌈KAf (D)⌉
KM . Observe that A′′

f is (ε, δ)-DP by postprocessing and the
accuracy guarantee of A′′

f is almost identical to that of Af since by definition |A′′
f (D) −

Af (D)| < 1
KM . By post-processing we can ensure that the range R of A′′

f (D) is small
|R| = (M +1)K since R = { i

KM : 0 ≤ i ≤ KM}. Thus, we can pick p such that δ ≤ (eε−1)p
|R|(1−p)

and apply a folklore theorem (see Theorem 19) to transform our (ε, δ)-DP algorithm A′′
f (D)

to an ε-DP algorithm A′
f (D) in the following manner:

A′
f (D) =

{
A′′

f (D) with probability 1 − p

random(R) with probability p

By combining the accuracy guarantees of Af and A′′
f we see that with probability 1−η−p, we

have that (1−α)f(D)−κ− 1
KM ≤ Af (D) ≤ (1+α)f(D)+κ+ 1

KM where p = δK(M+1)
eε−1+δK(M+1)

as claimed. ◀

▶ Theorem 19 (Approximate DP to Pure DP). Let A : D → R. If A is an (ε, δ)-DP algorithm
such that δ ≤ (eε−1)p

|R|(1−p) then there is an algorithm A′ such that A′ is ε-DP defined in the
following manner.

A′(D) =
{

A(D) with probability 1 − p

random(R) with probability p

where R is the range of Af .

Proof. Recall that we define A′ as follows:

A′(D) =
{

A(D) with probability 1 − p

random(R) with probability p

APPROX/RANDOM 2023
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Let D, D′ ∈ D be neighboring databases and fix output y ∈ R. We first give a general
claim regarding the probability of A′(D) = y in terms of the Pr[A(D) = y].

▷ Claim 27. For D ∈ D,

Pr[A′(D) = y] = Pr[A(D) = y] (1 − p) + p

|R|

Now we need to show that Pr[A′(D) = y] ≤ eε Pr[A′(D′) = y].

Pr[A′(D) = y]

= Pr[A(D) = y] (1 − p) + p

|R|

≤ (1 − p) (eε Pr[A(D′) = y] + δ) + p

|R|

≤ eε Pr[A(D′) = y] (1 − p) + δ (1 − p) + p

|R|
(4)

= eε(Pr[A′(D′) = y] − p

|R|
) + δ (1 − p) + p

|R|
(5)

≤ eε Pr[A′(D′) = y] + δ (1 − p) + p

|R|
(1 − eε)

≤ eε Pr[A′(D′) = y] (6)

The transition 4 to 5 follows from the observation that Pr[A′(D′) = y] = (1 − p) Pr[A(D′) =
y] + p

|R| and therefore, (1 − p) Pr[A(D′) = y] = Pr[A′(D′) = y] − p
|R| . The last equation 6

follows because δ ≤ (eε−1)p
|R|(1−p) and thus

δ (1 − p) + p

|R|
(1 − eε) ≤ 0 . ◀
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