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Abstract
Good codes over an alphabet of constant size q can approach but not surpass distance 1 − 1/q. This
makes the use of q-ary codes a necessity in some applications, and much work has been devoted to
the case of constant alphabet q. In the large distance regime, namely, distance 1 − 1/q − ε for small
ε > 0, the Gilbert–Varshamov (GV) bound asserts that rate Ωq(ε2) is achievable whereas the q-ary
MRRW bound gives a rate upper bound of Oq(ε2 log(1/ε)). In this sense, the GV bound is almost
optimal in this regime. Prior to this work there was no known explicit and efficiently decodable
q-ary codes near the GV bound, in this large distance regime, for any constant q ≥ 3.

We design an Õε,q(N) time decoder for explicit (expander based) families of linear codes
CN,q,ε ⊆ FN

q of distance (1 − 1/q)(1 − ε) and rate Ωq(ε2+o(1)), for any desired ε > 0 and any constant
prime q, namely, almost optimal in this regime. These codes are ε-balanced,i.e., for every non-zero
codeword, the frequency of each symbol lies in the interval [1/q − ε, 1/q + ε]. A key ingredient of the
q-ary decoder is a new near-linear time approximation algorithm for linear equations (k-LIN) over
Zq on expanding hypergraphs, in particular, those naturally arising in the decoding of these codes.

We also investigate k-CSPs on expanding hypergraphs in more generality. We show that special
trade-offs available for k-LIN over Zq hold for linear equations over a finite group. To handle general
finite groups, we design a new matrix version of weak regularity for expanding hypergraphs. We
also obtain a near-linear time approximation algorithm for general expanding k-CSPs over q-ary
alphabet. This later algorithm runs in time Õk,q(m + n), where m is the number of constraints
and n is the number of variables. This improves the previous best running time of O(nΘk,q(1)) by a
Sum-of-Squares based algorithm of [AJT, 2019] (in the expanding regular case).

We obtain our results by generalizing the framework of [JST, 2021] based on weak regularity
decomposition for expanding hypergraphs. This framework was originally designed for binary k-XOR
with the goal of providing near-linear time decoder for explicit binary codes, near the GV bound,
from the breakthrough work of Ta-Shma [STOC, 2017]. The explicit families of codes over prime Fq

are based on suitable instatiations of the Jalan–Moshkovitz (Abelian) generalization of Ta-Shma’s
distance amplification procedure.
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60:2 Fast Decoding and Fast Approximation of CSPs

1 Introduction

Codes over small alphabet sizes have attracted a lot of effort in coding theory [17]. There is
now a vast theory about them, but important mysteries remain. One very natural alphabet
is the binary alphabet, which has a myriad of uses and applications. However, it also comes
with an important limitation, namely, a family of good binary codes cannot1 surpass distance
1/2. By using a q-ary alphabet, a family of good codes can approach distance 1 − 1/q but
not surpass it. This makes the use of q-ary codes a necessity whenever larger distances are
needed. Working towards explicit and efficiently decodable codes with optimal trade-offs
between rate and distance has been a challenging but fruitful guiding goal in coding theory.

In the large distance case, namely, distances are of the form 1 − 1/q − ε for small values
of ε > 0, the Gilbert–Varshamov (GV) bound [13, 36] asserts that rate Ωq(ε2) is achievable
whereas the q-ary version of McEliece, Rodemich, Rumsey and Welch (MRRW) [26] gives an
impossibility upper of Oq(ε2 log(1/ε)). This means that the GV bound is nearly optimal in
this regime of constant alphabet size q and large distance. To the best of our knowledge, in
this regime, (prior to this work) no explicit and efficiently decodable families of q-ary codes
near the GV bound were known for any q ≥ 3.

Two widely used approaches in the construction of q-ary codes for small q are based on
code concatenation [11] and on algebraic geometry (AG) constructions [30, 34]. Using code
concatenation, it is possible to obtain explicit constructions achieving the suboptimal Zyablov
bound trade-off between rate and distance, which gives a rate of Ωq(ε3). Some explicit families
of AG codes are celebrated for beating the GV bound in some specific parameter regimes,
e.g., the seminal work of Tsfasman, Vlădut and Zink2 [35] or the (non-linear) construction of
Elkies [9]. This surprising phenomenon of explicit AG codes beating random codes cannot
happen in a major way in the large distance and constant alphabet regime since the GV
bound is nearly optimal. Furthermore, known explicit constructions of linear AG codes are
far from the GV bound for large distances and constant q. Another drawback of several
explicit families of good AG codes is that known decoders can take much longer than linear
time in the blocklength [27].

On a more combinatorial side, in a breakthrough work using expander graphs, Ta-
Shma [31] gave the first explicit construction of binary codes of distance 1/2 − ε and rate
Ω(ε2+o(1)), namely, near the Gilbert–Varshamov bound. A polynomial time decoder for
these binary codes was first given in [23] followed by a near-linear time decoder in [24].
Subsequently, Jalan and Moshkovitz [22] extended Ta-Shma’s analysis [31] to handle (in
particular) codes over larger alphabets3. Suitable instantiations of [22] imply explicit codes
over prime Fq of distance 1 − 1/q − ε with rate Ωq(ε2+oq(1)), namely, again near the (q-ary)
GV bound for constant q.

Motivated by the above situation, we design a near-linear time decoder for explicit families
of q-ary codes of distance (1 − 1/q)(1 − ε) and rate Ω(ε2+oq(1)) for any constant prime q,
namely, near the GV bound in the large distance regime. More precisely, our main result is
as follows (answering a question from [22]).

1 This is a consequence of the Plotkin bound.
2 More precisely, the TVZ bound [35] establishes a rate of r ≥ 1 − δ − 1/(√q − 1) with respect to the

relative distance δ.
3 More precisely, [22] analyzed the (scalar) Abelian case of Ta-Shma’s amplification.
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▶ Theorem 1 (Main I – Near-linear Time Unique Decoding over Fq). Let q be a prime. For
every ε > 0 sufficiently small, there are explicit linear Ta-Shma codes CN,q,ε ⊆ FN

q for
infinitely many values N ∈ N with

(i) distance at least (1 − 1/q)(1 − ε) (actually ε-balanced),
(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and
(iii) an r(q/ε) · Õ(N) time randomized unique decoding algorithm that decodes within radius

((1 − 1/q)(1 − ε))/2,
where r(x) = exp(exp(poly(x))).

In fact, we actually prove the following stronger list decoding result.

▶ Theorem 2 (Near-linear time List Decoding over Fq). Let q be a prime. For every ε > 0
sufficiently small, there are explicit binary linear Ta-Shma codes CN,q,ε ⊆ FN

q for infinitely
many values N ∈ N with

(i) distance at least (1 − 1/q)(1 − ε) (actually ε-balanced),
(ii) rate Ωq(ε2+α) where α = O(1/(log2(1/ε))1/6), and
(iii) an r(q/ε) · Õ(N) time randomized list decoding algorithm that decodes within radius

1 − 1/q − 2−Θq((log2(1/ε))1/6) and works with high probability,
where r(x) = exp(exp(poly(x))).

We obtain our results by building on and extending the binary decoding framework in [24].
This framework is based on a generalization of the weak regularity decomposition to (sparse)
expanding hypergraphs that generalizes the seminal work of Frieze and Kannan [12]. The weak
regularity decomposition of [24] was then used to approximate expanding k-XOR instances
naturally arising in the decoding of binary Ta-Shma’s codes [31]. Similarly, constraint
satisfaction problems (CSPs) will play a key role in our decoder. Here, we also take the
opportunity to investigate expanding CSPs more broadly.

An instance of a k-CSP is given by a k-uniform (ordered) constraint hypergraph W ⊆ [n]k,
where each vertex is associated with a variable taking values in an alphabet of size q and
each edge is associated with a constraint involving the variables of its vertices. While even
approximating a CSP is NP-hard in general, suitable notions of expansion of the constraint
hypergraph allow for efficient approximation algorithms as in [24]. One such notion is
splittability [2]. Roughly speaking, a τ -splittable collection of tuples for some τ ∈ (0, 1] is the
higher-order analogue of the second largest singular value of the normalized adjacency matrix
of a graph (the smaller the τ the more expanding is the collection). Approximating expanding
k-CSPs is at the core of some decoding algorithms for expander based constructions of codes
[8, 1, 23, 24, 6].

As mentioned above, approximating expanding k-CSPs will be again at the core of our
extension of [24] to more general constraints over larger alphabets. Our new q-ary decoder
will need to handle instances of linear equations over the alphabet Zq, where each equation
involves a sum of k variables. This kind of k-CSP is commonly denoted k-LIN over alphabet
Zq. We will see that the special algebraic structure of these linear constraints will allow to
obtain some improved parameter trade-offs, which will be explored in the decoding application.
More precisely, the expansion (splittability) parameter τ will have no dependence on alphabet
size q and only a polynomial dependence on the arity4 k, and this allows us to obtain better
approximation guarantees. Our second result follows.

4 In the binary case of [24], it was also possible to have a polynomial dependence on the arity k.

APPROX/RANDOM 2023
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▶ Theorem 3 (Main II). Let I be an instance of MAX k-LINq on n variables with alphabet
Zq and constraints supported on a regular5 collection of tuples W ⊆ [n]k. If W is τ -splittable
with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT − δ in
time r(q/τ0) · Õ(|W | + n), where r(x) = exp(exp(poly(x))).

We show that this phenomenon of no dependence of the expansion on the alphabet
size q and only polynomial dependence on arity k also occurs for linear equations over a
general finite groups G. Similarly, this leads to better approximation guarantees. To actually
implement and obtain this advantage, we will design a new matrix version of the weak
regularity decomposition for expanding hypergraphs. Our third result follows.

▶ Theorem 4 (Main III). Let I be an instance of MAX k-LING on n variables with alphabet
a finite group G and constraints supported on a regular collection of tuples W ⊆ [n]k. If W

is τ -splittable with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying
OPT − δ in time O|G|,k,δ(1) · poly(|W | + n).

▶ Remark 5. In Theorem 4, we did not attempt to make the running time near-linear in the
number of constraints and variables, but it is plausible that it can be done.

We find intriguing this interplay between the type of constraint used in the CSP and the
expansion requirement for a given approximation. A natural question is to investigate this
interplay for more general constraint types.

In this work, we also investigate how fast we can approximate expanding k-CSPs over
q-ary alphabet without making any assumptions on the constraints. We show that k-CSPs
can be approximated in near-linear time in the number of constraints and variables, assuming
k and q are constants, and provided the constraint hypergraph is sufficiently expanding
(splittable). An important caveat of this general case is that the expansion requirements
will now depend on both the alphabet size q and arity k in an exponential way (of the form
q−O(k)).

▶ Theorem 6. Let I be an instance of MAX k-CSP on n variables with alphabet [q] and
constraints supported on a regular collection of tuples W ⊆ [n]k. If W is τ -splittable with
τ ≤ τ0(k, q, δ) := poly(δ/(kqk)), then we can compute an assignment satisfying OPT − δ in
time r(kq/δ) · Õ(|W | + n), where r(x) = exp(exp(exp(poly(x)))).

We obtain the above result via a reduction to the “binary” weak regularity in [24] in a
somewhat similar fashion to [10]. Even though it is not hard to make this connection, we
think it is worth stating it since this result may be more broadly applicable. Moreover, for
fixed arity k and alphabet size q, this improves the running time in the expanding regime of
the Sum-of-Squares based algorithm in [2] and also the expanding regime6 of earlier results
2-CSPs [5, 18, 19, 28].

For comparison, we recall the expanding regime7 of [2] below.

▶ Theorem 7 (Sum-of-Squares [2]). Let I be an instance of MAX k-CSP on n variables with
alphabet [q] and constraints supported W ⊆ [n]k. If W is τ -splittable with τ ≤ τ0(k, q, δ) :=
poly(δ/k) · q−k, then we can compute an assignment satisfying OPT − δ in time npoly(1/τ0).

▶ Remark 8. In the new theorem above, we do not attempt to optimize the function r(x).

5 This is an analog to tuples of a graph being d-vertex regular.
6 We point out these approaches also consider when the expansion is defective (low threshold rank case).

Since we are interested in near-linear running time, we need to focus on the expanding case.
7 Using the improved analysis of swap walks by Dikstein and Dinur [7].



F. G. Jeronimo 60:5

Related Work. As we mentioned above, our work is an extension of the binary framework
of [24]. This framework was designed for approximating expanding k-XOR and to give a
near-liner time decoding algorithm for the explicit binary codes of Ta-Shma [31], near the
GV bound. The first polynomial time decoder for these codes was given in [23] using the
Sum-of-Squares semi-definite programming hierarchy and its running time, albeit polynomial,
is very far from near-linear in the blocklength.

AG codes are widely used in the study of explicit constructions over constant q-ary
alphabets. Some of these constructions achieve very competitive parameter trade-offs (e.g.,
rate versus distance) if not the best known in several cases. However, explicit and efficiently
decodable codes near GV bound for large distances,i.e., 1 − 1/q − ε, and constant alphabet
size were not known prior to this work. In fact, the first explicit construction only appeared
in the breakthrough work of [31] for binary codes using more combinatorial expander based
techniques. This absence of explicit construction near the GV bound in this regime means
that much is yet to be discovered about this case. We view our near-linear time decoder
of prime q-ary codes in this regime as not only reaching previously unattained parameter
regimes with an explicit construction, but also offering a more combinatorial perspective
among a wealthy of algebraic techniques.

For non-explicit families of codes approaching the GV bound, much more is known.
Random linear codes achieve this bound, but their decoding is believed to be computationally
hard. It is possible to construct more structured ensembles of random codes that allow for
efficient decoding in this regime. We have the non-explicit classical Goppa codes. Another
important technique is based on Thommesen’s [32] technique of concatenation with random
inner codes. These Thommesen based ensembles can sometimes approach the GV bound and
also allow for efficient decoding [16, 14, 21, 25] and even near-linear time decoding [21, 25].

More recently, Blanc and Doron [6] used the framework in [24] to decode explicit binary
codes near the GV bound with improved parameters, where they obtain a polynomial
improvement on the o(1) error term of the rate Ω(ε2+o(1)) (the α in Theorem 1) and also
put forward some interesting conjectures towards further improving the rate. It is plausible
that their improvement also applies here for q-ary alphabets.

In the constant alphabet case, a different parameter regime that has received much
attention is the near-capacity regime [15, 20, 21, 25] of list decoding from radius 1 − r − ε

with rate r for small values of ε > 0. This regime can only occur when the alphabet size
q is a function of ε. Note that our near GV bound regime is the opposite, we have a fixed
constant q and we can take ε arbitrarily small (smaller than some function of q).

Due to space constraints, most of our proofs only appear in the full version of this paper.

2 Proof Strategy

We will now describe our contributions in more detail. Our algorithmic results will be
based on extensions of the binary weak regularity framework of [24]. Roughly speaking, this
framework being a “low level” framework gives fine control over its components leading to a
near-linear time decoder for Ta-Shma’s codes [31] over F2. This same low level structure
means that extensions may require suitable generalizations in several of these components as
well technical work to implement them. The extensions to handle codes over prime q-ary
alphabet and a matrix version of weak regularity will be no exception.

First, we will recall the weak regularity decomposition of Frieze and Kannan [10] in a
more analytic form [33]. We will also first consider its existential form and later discuss its
algorithmic form. Our setup will be as follows. Let W ⊆ [n]k be a collection of tuples endowed

APPROX/RANDOM 2023
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with the uniform probability measure µk. Suppose that we have a function g : W → C that
we want to approximate using a simpler approximating function, which will be made precise
below. Further suppose that the quality of approximation will be measured with respect to
correlations with a class of test functions F . Given some desired approximation error δ > 0,
the goal will be to find a “simple” approximator h ≈ g such that

max
f∈F

∣∣∣⟨g − h, f⟩µk

∣∣∣ ≤ δ .

As an existential result, it is well-known that an h of the form h =
∑p

ℓ=1 cℓ · fℓ always exists,
where cℓ’s are scalars and the fℓ’s are functions belonging to F . Furthermore, the number
of test functions p is small being at most8 O(1/δ2). This means that h is indeed “simple”
since it is the sum of a small number of test functions, so h is almost as complex as the test
functions it needs to fool.

To motivate the generalizations in the weak regularity framework, we will start the
discussion of the important case of linear equations over Zq as a motivating example. As
mentioned above, approximating k-LIN over Zq will be crucial in the near-linear time decoding
algorithm for prime q-ary alphabets. For us, an instance I of k-LIN is given by a system of
linear equations9

xi1 + · · · + xik
≡ rw (mod q) ∀ w = (i1, . . . , ik) ∈ W, (1)

where (rw)w∈W ∈ ZW
q are given RHS coefficients. We will need to model this problem in a

way that is amenable to the weak regularity approach. We will also take advantage of the
algebraic structure of the constraints to avoid any dependence of the alphabet size q and
to have only a mild dependence on the arity k in the expansion the framework will require
from W .

“Global” Approximation of Dirac Delta Functions. An elementary property of Fourier ana-
lysis over Zq is that the Dirac delta function x 7→ 1[x=y] admits a simple but extremely handy
Fourier decomposition which we now recall. Let ω = exp(2π

√
−1/q). Using orthogonality of

characters, we have

1[x=y] = E
a∈Zq

[
ωa(x−y)

]
.

Suppose we have an assignment b ∈ Zn
q to the variables of our system of linear equations I.

Then, the fraction of satisfied constraints, which we denote by val(I, b) and refer as the value
of this assignment, can be expressed as

val(I, b) := E
w=(i1,...,ik)∼µk

[
1[bi1 +···+bik

≡rw]
]

= E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1 +···+bik

−rw)
]]

.

This suggests defining q functions one for each a ∈ Zq of the form ga : W → C as ga(w) :=
ωa·bw , the “harmonic” components. We also endow the space CW with the inner product
defined by the measure µk on W . We will need some additional notation. For b ∈ Zn

q , we
define the function χb,a on [n] as χb,a(i) = ωa·bi . We can now rexpress val(I, b) in terms of
its harmonic components as

8 The ℓ1-norm of the coefficients is “small”, i.e.,
∑p

ℓ=1 |cℓ|.
9 The coefficients of the variables are always taken to be 1 here.
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val(I, b) = E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1 +···+bik

−rw)
]]

= E
a∈Zq

[
E

w=(i1,...,ik)∼µk

[
ω−a·rw · ωa(bi1 +···+bik

)
]]

= E
a∈Zq

〈
ga, χb,a ⊗ · · · ⊗ χb,a︸ ︷︷ ︸

k

〉
µk


= E

a∈Zq

[〈
ga, (χb,a)⊗k

〉
µk

]
.

We can now try to further approximate each ga using a simpler function ha that behaves
similarly to ga with respect to functions of the form fb,a = χb,a ⊗ · · · ⊗ χb,a as in the inner
product above. We can view functions of form fb,a as tests with respect to which ga and its
simpler approximator have similar correlations. This means that we can model the problem
in way amenable to the existential weak regularity framework. For each a, we will consider a
(slightly) more general class of test functions CUT⊗k

ω,q,a defined as follows

CUT⊗k
ω,q,a := {χb(1),a ⊗ · · · ⊗ χb(k),a | b(1), . . . , b(k) ⊆ Zn

q } .

A simple yet useful remark is that if we can find a decomposition fooling a larger class of
test functions, this would suffice since, in particular, it fools the initial class of test.

Suppose that for some δ ∈ (0, 1) we can find a δ-approximation ha =
∑pa

ℓ=1 ca,ℓ ·χb(a,ℓ,1),a ⊗
· · · ⊗ χb(a,ℓ,k),a to ga with respect to a class of test functions, i.e.,

max
f∈CUT⊗k

ω,q,a

∣∣∣⟨ga − ha, f⟩µk

∣∣∣ ≤ δ .

By replacing ga with ha in the computation of val(I, b) above, we obtain10

val(I, b) = E
a∈Zq

[〈
ga, (χb,a)⊗k

〉]
= E

a∈Zq

[〈
ha, (χb,a)⊗k

〉]
± δ.

We will explain how to algorithmically find ha in near-linear time later. Now, we will
argue why having access to weak regularity decomposition greatly simplifies our task of
approximating val(I, b) and also later while decoding q-ary codes.

We can simplify the above equation for val(I, b) even further using the assumed expansion
(splittability) of W . A suitable version of the expander mixing lemma allows us to pass from
the measure µk to the product measure µ⊗k

1 , where µ1 is the uniform measure on [n]. More
precisely, we can show that if W is sufficiently expanding (depending on δ), then

val(I, b) = E
a∈Zq

[〈
ha, (χb,a)⊗k

〉
µk

]
± δ = E

a∈Zq

[〈
ha, (χb,a)⊗k

〉
µ⊗k

1

]
± 2δ

= E
a∈Zq

 pa∑
ℓ=1

ca,ℓ ·
k∏

j=1

〈
χb(a,ℓ,1),a, χb,a

〉
µ1

 ± 2δ .

The low complexity of the approximator ha will allow us to simplify the search for an
approximately optimal assignment b ∈ Zn

q . The expression above reveals that we only need
to know the values of

10 For scalars x, y (real or complex) and real δ ∈ R+, we use the notation x = y ± δ if |x − y| ≤ δ.

APPROX/RANDOM 2023



60:8 Fast Decoding and Fast Approximation of CSPs

{〈
χb(a,ℓ,j),a, χb,a

〉
µ1

}
a∈Zq,ℓ∈[pa],j∈[k]

.

Luckily, algorithmically, there will be only O(qk3/δ2) such numbers (no dependence on n and
only slightly more than the O(qk/δ2) from the existential result). Using brute-force search,
it is possible to find sufficiently fine and (close to valid) approximations for these numbers.

To make the entire process efficient and near-linear time we still need to say how to find
the functions ha’s in near-linear time. As in [24], we will reduce the problem of finding a
weak regularity decomposition with respect to a class of k-tensors, in this case the class
CUT⊗k

ω,q,a, to multiple applications of the 2-tensor case (in a sparse regime). To execute this
process in near-linear, we will again use the expansion of W to conveniently move to easier to
handle product measures (as above). This involves finding a constant factor approximation
for the following expression

max
x,y∈Zn

q

∣∣∣∣∣∣
n∑

i,j=1
Ai,j · ωa·xi · ωa·yj

∣∣∣∣∣∣ , (2)

This kind of optimization is known as the Grothendieck problem and, in this case, it is for
roots of unity going beyond the ±1 case of Alon and Naor [3]. In [29], So, Zhang and Ye
considered a more restricted version of this problem (with positive semi-definite matrices)
known as the little Grothendieck problem. We will extend their analysis to the Grothendieck
problem building on some ingredients present in their proof. In our application, the matrices
A will be sparse with m ≈ n non-zero entries and to achieve a near-linear time we will need to
find an (additive) approximation to the Grothendieck problem in time Õ(m) of Equation (2).
This can be done using the fast SDP solver of Arora and Kale [4].

We now explain how the above weak regularity decomposition can be used in decoding
of the expander based construction of Ta-Shma’s codes [31]. We will see that the decoding
problem can be naturally phrased as a k-LIN instance over Zq, which is a natural q-ary
extension of the k-XOR over Z2 from [1, 23, 24]. First, we briefly describe Ta-Shma’s code
construction over alphabet Fq, with q prime, as analyzed11 in [22]. The idea is to start with
a good base code C0 ⊆ Fn

q and to use a carefully constructed collection of tuples W ⊆ [n]k to
amplify its distance via the direct-sum encoding. For any z ∈ Fn

q , recall that its direct-sum
encoding is a new word denoted y = dsumW (z) in FW

q and defined as

y(i1,...,ik) = zi1 + · · · + zik
(mod q) ∀ (i1, . . . , ik) ∈ W .

The direct-sum code C = dsumW (C0) is defined as C = {dsumW (z) | z ∈ C0}. Note
the similarity of the above equation and the system of linear equations from Equation (1).
In the decoding task, we are given a (possibly) corrupted version of ỹ of some codeword
y = dsumW (z) ∈ C, with z ∈ C0. We can view ỹ as defining the RHS coefficients of an
instance of k-LIN, namely, rW = ỹw.

Having an instance of k-LIN over Zq, we can now use weak regularity as described above.
For each a ∈ Zq, let ga be the harmonic component associated with RHS vector ỹ (as above).
Similarly, we find a weak regularity approximation ha for each function ga.

11 In [22], they considered the more general (scalar) Abelian case.
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If the distance ∆(ỹ, dsumW (z)) ≤ (1 − 1/q)(1 − β) is not too large, we will be able to
deduce that some harmonic function ha “captures” the structure of the codeword z in the
following sense. Set R = {ωa·a′ | a′ ∈ Zq} and let f1, . . . , fr : [n] → R be the functions
appearing in the decomposition of ha. For each tuple (y1, . . . , yr) ∈ Rr, we can consider the
set

{x ∈ [n] | f1(x) = y1, . . . , fr(x) = yr}.

These sets partition12 the space [n], and we can show that z is approximately constant in
most of these parts. In this sense, the low complexity structure of ha captures the structure
of the codeword z. In this last argument, we use that assumption that q is prime13.

The case of k-LIN over a finite group will also allow for a weak regularity decomposition
in a similar spirit as above, where scalar Fourier characters are replaced by larger dimensional
representations and “global” approximation of Dirac delta functions are performed. Extending
the weak regularity framework to this case will require considering matrix valued functions.
The way we model this case is done in the full version and it uses very elementary properties
of representation theory. This case again exhibits an interesting interplay between the type
of constraints and the requirement on expansion. (The reader who is only interested in
decoding can safely ignore this extension and focus on the Zq case.)

3 Constraint Types and Alphabets

We explore the role of different types of constraints and corresponding alphabets going
beyond the binary k-XOR considered in [24]. For the special case of linear equations over Zq

or over an arbitrary finite group G, we will explore the special structure of the constraints
and obtain results with improved parameters.

3.1 General CSPs via the Binary Regularity
We will prove our first result for approximating a general expanding k-CSPs over a q-ary
alphabet in near-linear time. We obtain this result using the binary near-linear time weak
regularity decomposition from [24] in a similar way that Frieze and Kannan modeled k-
CSPs [10] using regularity. We formalize this (relatively simple) connection since we believe
this result may be of independent interest and may find applications elsewhere. Moreover, it
also improves the running time of [2] to near-linear time, for fixed k and q, while offering a
different approach to approximating general expanding k-CSPs which could be simpler than
their Sum-of-Squares based algorithm. We now restate and proceed to prove this result.

▶ Theorem 6. Let I be an instance of MAX k-CSP on n variables with alphabet [q] and
constraints supported on a regular collection of tuples W ⊆ [n]k. If W is τ -splittable with
τ ≤ τ0(k, q, δ) := poly(δ/(kqk)), then we can compute an assignment satisfying OPT − δ in
time r(kq/δ) · Õ(|W | + n), where r(x) = exp(exp(exp(poly(x)))).

We will find a weak regularity decomposition with respect to 0/1 valued test functions
F = CUT⊗k where

CUT⊗k := {±1S1 ⊗ · · · ⊗ 1Sk
| S1, . . . , Sk ⊆ [n]} .

The near-linear weak regularity decomposition of [24], which we recall below, can handle
this class of functions.

12 Possibly with empty parts.
13 So that all non-trivial roots of unity are primitive roots. It is plausible that this restriction is not

necessary.
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▶ Theorem 9 (Efficient Weak Regularity from [24]). Let W ⊆ [n]k be a τ -splittable collection
of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± . Let R be the domain of the functions
in F , when k = 1. Let g ∈ RW [1]k be supported on W with ∥g∥µk

≤ 1. For every δ > 0,
if τ ≤ δ2/(k3 · 220), then we can find h =

∑p
ℓ=1 cℓ · fℓ with p = O(k2/δ2), c1, . . . , cp ∈ R

and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1

≤ 2,
∑p

ℓ=1 |cℓ| = O(k/δ) and h is a good
approximator to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g −
(

d

n

)k−1
h, f

〉∣∣∣∣∣ ≤ δ · |W | ,

where the inner product is over the counting measure on W [1]k. Furthermore, h can be found

in Õ(22Õ(k2/δ2) · |W |) time.

Having access to a weak regularity decomposition as above makes the task of approximating
the value of a CSP instance relatively simple, as we now describe. This is a common feature
of weak regularity based arguments,e.g., [10, 28]. Here, we consider both arbitrary arity k

and arbitrary alphabet size q.
We will first need some notation. Let α ∈ [q]k and define Wα = {w ∈ W | Pw(α) = 1}

to be the set of tuples whose predicates Pw are satisfied by on the input α. Let A(I) = {α ∈
[q]k | Wα ̸= ∅} be the set of satisfying inputs of at least one predicate of I.

We will use the following claim which relates the value of an assignment to the structure
of the weak regularity decomposition.

▷ Claim 10. Suppose that for every α ∈ [q]k, we have a weak regularity decomposition hα,
from Theorem 9, of the indicator 1W (α) with error parameter δ > 0 and with respect to
the test class CUT⊗k. Let b ∈ [q]n (viewed as an assignment), which induces a partition
T1 ⊔ · · · ⊔ Tq of [n]. Then,

val(I, b) =
∑
α∈A

pα∑
ℓ=1

cα,ℓ

∣∣∣Sα,ℓ
1 ∩ Tα1

∣∣∣
n

· · ·

∣∣∣Sα,ℓ
k ∩ Tαk

∣∣∣
n

± δ · |A(I)| .

Proof. Let A = A(I). The value of this assignment is

val(I, b) =
∑
α∈A

〈
1Wα , 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
µk

= 1
|W |

∑
α∈A

〈(
d

n

)k−1
hα, 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

= 1
|W |

∑
α∈A

〈(
d

n

)k−1 pα∑
ℓ=1

cα,ℓ · 1
S

α,ℓ
1

⊗ · · · ⊗ 1
S

α,ℓ
k

, 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

= 1
nk

∑
α∈A

pα∑
ℓ=1

cα,ℓ ·
〈

1
S

α,ℓ
1

⊗ · · · ⊗ 1
S

α,ℓ
k

, 1Tα1 ⊗ · · · ⊗ 1Tαk

〉
± δ · |A|

=
∑
α∈A

pα∑
ℓ=1

cα,ℓ ·
〈

1
S

α,ℓ
1

, 1Tα1

〉
µ1

· · ·
〈

1
S

α,ℓ
k

, 1Tαk

〉
µ1

± δ · |A|

=
∑
α∈A

pα∑
ℓ=1

cα,ℓ

∣∣Sα,ℓ
1 ∩ Tα1

∣∣
n

· · ·

∣∣Sα,ℓ
k ∩ Tαk

∣∣
n

± δ · |A| ,

concluding the proof. ◁
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Proof of Theorem 6. Let I be an instance of a k-CSP over alphabet [q] supported on a
collection of tuples W ⊆ [n]k and with predicates (Pw : [q]k → {0, 1})w∈W .

For each α ∈ A(I), we apply the weak regularity decomposition of Theorem 9 to the
function 1Wα with error parameter δ > 0 and test class F = CUT⊗k. This gives an
approximation hα =

∑pα

ℓ=1 cα,ℓ · 1Sα,ℓ
1

⊗ · · · ⊗ 1Sα,ℓ
k

.
A crucial property is that instead of having to know an assignment b ∈ [q]n, represented

as a partition T1 ⊔ · · · ⊔ Tq = [n], it is enough to know the values of the following inner
products{〈

1Sα,ℓ
j

, 1Tαj

〉
µ1

}
α∈A(I),ℓ∈[pα],j∈[k]

The decomposition is low complexity, in the sense that there are only a few of these values.
However, we cannot take arbitrary values for these inner products since they may be far from
realizable, i.e., no true assignment b ∈ [q]n can give rise to these values even approximately.
From the inner products above, we can extract the following class of functions

F ′ =
{

1Sα,ℓ
j

}
α∈A(I),ℓ∈[pα],j∈[k]

,

whose size r = |F ′| = O(|A(I)| k3/δ2) is independent from n.
Using Claim 10, to be able to approximate val(I, b) within error δ′ > 0 we need to choose

the error of the weak regularity decomposition14 to be δ = δ′/(2 |A(I)|) In this case, we have
r = O(|A(I)|2 k3/(δ′)2) = O(q2kk3/(δ′)2) and the τ -splittability parameter of W needs to
satisfy τ ≤ poly(δ′/(kqk)).

For convenience, label the functions of F ′ as f1, . . . , fr. Their range is the (simple) binary
set R = {0, 1}. We will consider the factor B defined by the collection F ′, which, roughly
speaking, is a partition of [n] according to the values of these functions. More precisely, for
every tuple (y1, . . . , yr) ∈ Rr we have a (possibly empty) part (or atom) of the form

{x ∈ [n] | f1(x) = y1, . . . , fr(x) = yr} .

In this case, we have at most Rr = 2r atoms in the factor. By definition the functions F ′ are
constant in each of them. An assignment b gives rise to a distribution on [q] in each atom
of the factor. Conversely, any approximate distribution on [q] in each atom approximately
corresponds to a realizable assignment b.

Let L =
∑

α∈A(I),ℓ∈[pα] |cα,ℓ| ≤ |A(I)| O(k/δ). Set η = δ/(k ·L·q). We can η-approximate
these distributions in ℓ1-norm on each atom15. The number of approximate distributions
can be (crudely) bounded as

(1/(ηq))Rr

≤ exp(exp(exp(poly(qk/δ′)))) .

With this fine enough discretization of the distributions on each atom, when computing the
expression

val(I, b) =
∑
α∈A

pα∑
ℓ=1

cα,ℓ

∣∣∣Sα,ℓ
1 ∩ Tα1

∣∣∣
n

· · ·

∣∣∣Sα,ℓ
k ∩ Tαk

∣∣∣
n

± δ · |A|

we incur an additional error of δ′/2. By our choice of δ, the total approximation error is at
most δ′. ◀

14 We can assume without loss of generality that A(I) ̸= ∅ since otherwise the value of the CSP is always
zero.

15 If the atom is too smaller than 1/(ηq), then we can consider all the possible exact distribution.
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3.2 Stating the Extended Weak Regularity Framework
We now show how to obtain our main results for linear equations k-LIN over Zq in Theorem 3
and over a finite group G in Theorem 4.

In the full version, we see that to approximate k-LIN over Zq it suffices to find a good
weak regularity decomposition with respect to the test functions F = CUT⊗k

ω,q,a defined as
follows

CUT⊗k
ω,q,a := {χb1,a ⊗ · · · ⊗ χbk,a | b1, . . . , bk ⊆ Zn

q } .

In the full version, we will see that to approximate k-LIN over a finite group, it suffices to
find a good weak regularity decomposition with respect to the matrix valued test functions
F defined as follows

CUT⊗k
ρ := {ρb1 ⊗ · · · ⊗ ρbk

| b1, . . . , bk ∈ Gn} .

It will be more convenient to enlarge the test class F to unitary valued functions as follows

CUT⊗k
Us,k,δ

:= {f1 ⊗ · · · ⊗ fk | f1, . . . , fk : [n] → Us,k,δ} ,

where Us,k,δ will be a fine enough discretization of the matrices16 Ms(C) of operator norm
at most 1.

We will extend the framework to additionally handle the classes of functions CUT⊗k
ω,q,a

and CUT⊗k
Us,k,δ

. This is proven in the full version. Let K be the underlying field which is
either R or C. Our extended framework gives the following efficient algorithmic result.

▶ Theorem 11 (Efficient Weak Regularity (Extension of [24])). Let W ⊆ [n]k be a τ -splittable
collection of tuples. Suppose F is one of CUT⊗k, CUT⊗k

± , CUT⊗k
ω,q,a, for q ≥ 3, or CUT⊗k

Us,k,δ
.

Let R be the domain of the functions in F , when k = 1. Let g ∈ RW [1]k be supported on W

with ∥g∥µk
≤ 1. For every δ > 0, if τ ≤ δ2/(k3 · 220), then we can find h =

∑p
ℓ=1 cℓ · fℓ with

p = O(k2/δ2), scalars c1, . . . , cp ∈ K and functions f1, . . . , fp ∈ F , such that ∥h∥µ⊗k
1

≤ 2,∑p
ℓ=1 |cℓ| = O(k/δ) and h is a good approximator to g in the following sense

max
f∈F

∣∣∣∣∣
〈

g −
(

d

n

)k−1
h, f

〉∣∣∣∣∣ ≤ δ · |W | ,

where the inner product is over the counting measure on W [1]k. Furthermore, h can be

found in Õ(2|R|Õ(k2/δ2) · |W |) time in the scalar valued case and in time Õs,k,δ(poly(|W |)),
otherwise.

3.3 Improved Case: k-LIN over Zq

The goal of this section is to prove Theorem 3 (restated below) assuming the new extended
efficient regularity algorithm from Theorem 11.

▶ Theorem 3 (Main II). Let I be an instance of MAX k-LINq on n variables with alphabet Zq

and constraints supported on a regular17 collection of tuples W ⊆ [n]k. If W is τ -splittable
with τ ≤ τ0(k, δ) := poly(δ/k), then we can compute an assignment satisfying OPT − δ in
time r(q/τ0) · Õ(|W | + n), where r(x) = exp(exp(poly(x))).

16 We use Ms(C) for the set of s × s matrices over C.
17 This is an analog to tuples of a graph being d-vertex regular.
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For k-LIN over alphabet Zq, we are given a collection of equations (each variable appearing
with coefficient one) specified as collection of tuples W ⊆ [n]k and we are given a collection
of corresponding RHS (rw)w∈W ∈ ZW

q . The system of linear equations can be written as
follows

xi1 + · · · + xik
= rw (mod q) ∀ w = (i1, . . . , ik) ∈ W.

Orthogonality of Fourier characters will be crucially used here.

▶ Fact 12 (Character Orthogonality). Let ω be a non-trivial q-th root of unit. Then,

E
a∈Zq

[ωa] = 0 .

Orthogonality allows for a convenient way of implementing the Dirac delta function on
(the alphabet) Zq.

▶ Fact 13. Fix y ∈ Zq. The indicator function x 7→ 1[x=y] on Zq can be expressed as

E
a∈Zq

[
ωa(x−y)

]
.

We now make precise the argument sketched in the proof strategy of Section 2.

Proof of Theorem 3. Let I be an instance of k-LIN over Zq with constraints supported on
W ⊆ [n]k and RHS values {rw}w∈W . For every a ∈ Zq, we define ga : W → C as the map
w ∈ W 7→ ωa·rw , where ω = exp(2π

√
−1/q).

Apply the efficient weak regularity decomposition of Theorem 11 to each ga using
error parameter δ > 0 and test functions F = CUT⊗k

ω,q,a. Note that this requires the
splittability (expansion) parameter τ of W to satisfy τ ≤ O(δ2/k3). We obtain a function
ha =

∑pa

ℓ=1 ca,ℓ · χb(a,ℓ,1),a ⊗ · · · ⊗ χb(a,ℓ,k),a, where b(a,ℓ,1),. . .,b(a,ℓ,k) ∈ Zn
q , for every a ∈ Zq

and every ℓ ∈ [pa]. Let b ∈ Zn
q be an assignment to the variables of the system of linear

equations. The value of this CSP on input b can be computed as

val(I, b) = E
a∈Zq

[
⟨ga, χb,a ⊗ · · · ⊗ χb,a⟩µk

]
= E

a∈Zq

[
E

w=(i1,...,ik)∼µk

[
ω−a·rw ωa(bi1 +···+bik

)
]]

= E
w=(i1,...,ik)∼µk

[
E

a∈Zq

[
ωa(bi1 +···+bik

−rw)
]]

= E
w=(i1,...,ik)∼µk

[
1[bi1 +···+bik

=rw]
]

.

Using the weak regularity decomposition ha of each ga, we obtain

val(I, b) = E
a∈Zq

[
⟨ga, χb,a ⊗ · · · ⊗ χb,a⟩µk

]
= 1

|W |
E

a∈Zq

[〈(
d

n

)k−1
ha, χb,a ⊗ · · · ⊗ χb,a

〉]
± δ

= 1
nk

E
a∈Zq

[
pa∑

ℓ=1
ca,ℓ ·

〈
χb(a,ℓ,1),a ⊗ · · · ⊗ χb(a,ℓ,k),a, χb,a ⊗ · · · ⊗ χb,a

〉]
± δ

= E
a∈Zq

[
pa∑

ℓ=1
ca,ℓ ·

〈
χb(a,ℓ,1),a, χb,a

〉
µ1

· · ·
〈
χb(a,ℓ,k),a, χb,a

〉
µ1

]
± δ ,

concluding the proof.
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Now it suffices to approximate the following values{〈
χb(a,ℓ,j),a, χb,a

〉
µ1

}
a∈Zq,ℓ∈[pa],j∈[k]

,

so that there is always a true assignment b ∈ [q]n which gives these values.
To this end, we first define the following collection F ′ of functions

F ′ =
{

χb(a,ℓ,j),a

}
a∈Zq,ℓ∈[pa],j∈[k] .

Note that r = |F ′| = O(qk3/δ2). The functions above have range R = {ωa′ | a′ ∈ Zq}.
They form a factor B with at most |R|r atoms. By the definition of a factor, the functions
F ′ are constant in each one of them, so to compute

〈
χb(a,ℓ,j),a, χb,a

〉
µ1

it suffices to know the
distribution of symbols of b in each atom.

Let L =
∑

a∈Zq,ℓ∈[pa] |ca,ℓ| = O(qk/δ) and set η = δ/(k · L · q). The total number of
η-approximate distributions in ℓ1-norm on each atom can be (crudely) bounded as

(1/ηq)|R|r

≤ exp(exp(poly(qk/δ))).

Using these distributions, we can approximate

val(I, b) = E
a∈Zq

[
pa∑

ℓ=1
ca,ℓ ·

〈
χb(a,ℓ,1),a, χb,a

〉
µ1

· · ·
〈
χb(a,ℓ,k),a, χb,a

〉
µ1

]
± δ ,

incurring an additional error of δ. ◀
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