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Abstract
We study the connection between directed isoperimetric inequalities and monotonicity testing. In
recent years, this connection has unlocked breakthroughs for testing monotonicity of functions
defined on discrete domains. Inspired the rich history of isoperimetric inequalities in continuous
settings, we propose that studying the relationship between directed isoperimetry and monotonicity
in such settings is essential for understanding the full scope of this connection.

Hence, we ask whether directed isoperimetric inequalities hold for functions f : [0, 1]n → R,
and whether this question has implications for monotonicity testing. We answer both questions
affirmatively. For Lipschitz functions f : [0, 1]n → R, we show the inequality dmono

1 (f) ≲ E
[
∥∇−f∥1

]
,

which upper bounds the L1 distance to monotonicity of f by a measure of its “directed gradient”.
A key ingredient in our proof is the monotone rearrangement of f , which generalizes the classical
“sorting operator” to continuous settings. We use this inequality to give an L1 monotonicity tester
for Lipschitz functions f : [0, 1]n → R, and this framework also implies similar results for testing
real-valued functions on the hypergrid.
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1 Introduction

In property testing, algorithms must make a decision about whether a function f : Ω → R

has some property P , or is far (under some distance metric) from having that property, using
a small number of queries to f . One of the most well-studied problems in property testing
is monotonicity testing, the hallmark case being that of testing monotonicity of Boolean
functions on the Boolean cube, f : {0, 1}n → {0, 1}. We call f monotone if f(x) ≤ f(y)
whenever x ⪯ y, i.e. xi ≤ yi for every i ∈ [n].

A striking trend emerging from this topic of research has been the connection between
monotonicity testing and isoperimetric inequalities, in particular directed analogues of
classical results such as Poincaré and Talagrand inequalities. We preview that the focus
of this work is to further explore this connection by establishing directed isoperimetric
inequalities for functions f : [0, 1]n → R with continuous domain and range, and as an
application obtain monotonicity testers in such settings. Before explaining our results, let us
briefly summarize the connection between monotonicity testing and directed isoperimetry.
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61:2 Directed Poincaré Inequalities and L1 Monotonicity Testing of Lipschitz Functions

For a function f : {0, 1}n → R, let dconst
1 (f) denote its L1 distance to any constant

function g : {0, 1}n → R, and for any point x, define its discrete gradient ∇f(x) ∈ Rn by
(∇f(x))i := f(xi→1) − f(xi→0) for each i ∈ [n], where xi→b denotes the point x with its i-th
coordinate set to b. Then the following inequality1 is usually called the Poincaré inequality
on the Boolean cube (see e.g. [31]): for every f : {0, 1}n → {0, 1},

dconst
1 (f) ≲ E [∥∇f∥1] . (1)

(Here and going forward, we write f ≲ g to denote that f ≤ cg for some universal constant c,
and similarly for f ≳ g. We write f ≈ g to denote that f ≲ g and g ≲ f .)

Now, let dmono
1 (f) denote the L1 distance from f to any monotone function g : {0, 1}n → R,

and for each point x let ∇−f(x), which we call the directed gradient of f , be given by
∇−f(x) := min{∇f(x), 0}. Then [17] were the first to notice that the main ingredient of
the work of [27], who gave a monotonicity tester for Boolean functions on the Boolean cube
with query complexity O(n/ϵ), was the following “directed analogue” of (1)2: for every
f : {0, 1}n → {0, 1},

dmono
1 (f) ≲ E

[
∥∇−f∥1

]
. (2)

The tester of [27] is the “edge tester”, which samples edges of the Boolean cube uniformly at
random and rejects if any sampled edge violates monotonicity. Inequality (2) shows that, if
f is far from monotone, then many edges are violating, so the tester stands good chance of
finding one.

In their breakthrough work, [17] gave the first monotonicity tester with o(n) query
complexity by showing a directed analogue of Margulis’s inequality. This was improved
by [20], and eventually the seminal paper of [30] resolved the problem of (nonadaptive)
monotonicity testing of Boolean functions on the Boolean cube, up to polylogarithmic factors,
by giving a tester with query complexity Õ(

√
n/ϵ2). The key ingredient was to show a

directed analogue of Talagrand’s inequality. Talagrand’s inequality gives that, for every
f : {0, 1}n → {0, 1},

dconst
1 (f) ≲ E [∥∇f∥2] .

Compared to (1), this replaces the ℓ1-norm of the gradient with its ℓ2-norm. [30] showed the
natural directed analogue3 up to polylogarithmic factors, which were later removed by [32]:
for every f : {0, 1}n → {0, 1},

dmono
1 (f) ≲ E

[
∥∇−f∥2

]
.

Since then, directed isoperimetric inequalities have also unlocked results in monotonicity
testing of Boolean functions on the hypergrid [7, 5, 16, 6] (see also [8, 28]) and real-valued
functions on the Boolean cube [9].

Our discussion so far has focused on isoperimetric (Poincaré-type) inequalities on discrete
domains. On the other hand, a rich history in geometry and functional analysis, originated
in continuous settings, has established an array of isoperimetric inequalities for functions

1 The left-hand side is usually written Var [f ] instead; for Boolean functions, the two quantities are
equivalent up to a constant factor, and writing dconst

1 (f) is more consistent with the rest of our
presentation.

2 Typically the left-hand side would be the distance to a Boolean monotone function, rather than any
real-valued monotone function, but the two quantities are equal; this may be seen via a maximum
matching of violating pairs of f , see [26].

3 In fact, they require a robust version of this inequality, but we omit that discussion for simplicity.
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defined on continuous domains, as well as an impressive range of connections to topics such
as partial differential equations [33], Markov diffusion processes [1], probability theory and
concentration of measure [12], optimal transport [15], polynomial approximation [35], among
others.

As a motivating starting point, we note that for suitably smooth (Lipschitz) functions
f : [0, 1]n → R, an L1 Poincaré-type inequality holds [13]:

dconst
1 (f) ≲ E [∥∇f∥2] . (3)

Thus, understanding the full scope of the connection between classical isoperimetric
inequalities, their directed counterparts, and monotonicity seems to suggest the study of
the continuous setting. In this work, we ask: do directed Poincaré-type inequalities hold for
functions f with continuous domain and range? And if so, do such inequalities have any
implications for monotonicity testing? We answer both questions affirmatively: Lipschitz
functions f : [0, 1]n → R admit a directed L1 Poincaré-type inequality (Theorem 1.2), and
this inequality implies an upper bound on the query complexity of testing monotonicity of
such functions with respect to the L1 distance (Theorem 1.4). (We view L1 as the natural
distance metric for the continuous setting; see Section 1.3 for a discussion.) This framework
also yields results for L1 testing monotonicity of real-valued functions on the hypergrid
f : [m]n → R. Our testers are partial derivative testers, which naturally generalize the
classical edge testers [27, 18] to continuous domains.

We now introduce our model, and then summarize our results.

1.1 Lp-testing
Let (Ω, Σ, µ) be a probability space (typically for us, the unit cube or hypergrid with
associated uniform probability distribution). Let R ⊆ R be a range, and P a property of
functions g : Ω → R. Given a function f : Ω → R, we denote the Lp distance of f to
property P by dp(f, P) := infg∈P dp(f, g), where dp(f, g) := E

x∼µ
[|f(x) − g(x)|p]1/p. For

fixed domain Ω, we write dconst
p (f) for the Lp distance of f to the property of constant

functions, and dmono
p (f) for the Lp distance of f to the property of monotone functions.

(See Definition 2.2 for a formal definition contemplating e.g. the required measurability and
integrability assumptions.)

▶ Definition 1.1 (Lp-testers). Let p ≥ 1. For probability space (Ω, Σ, µ), range R ⊆ R,
property P ⊆ Lp(Ω, µ) of functions g : Ω → R, and proximity parameter ϵ > 0, we say that
randomized algorithm A is an Lp-tester for P with query complexity q if, given oracle access
to an unknown input function f : Ω → R ∈ Lp(Ω, µ), A makes at most q oracle queries and
1) accepts with probability at least 2/3 if f ∈ P; 2) rejects with probability at least 2/3 if
dp(f, P) > ϵ.

We say that A has one-sided error if it accepts functions f ∈ P with probability 1,
otherwise we say it has two-sided error. It is nonadaptive if it decides all of its queries in
advance (i.e. before seeing output from the oracle), and otherwise it is adaptive. We consider
two types of oracle:

Value oracle: Given point x ∈ Ω, this oracle outputs the value f(x).
Directional derivative oracle: Given point x ∈ Ω and vector v ∈ Rn, this oracle outputs the

derivative of f along v at point x, given by ∂f
∂v (x) = v ·∇f(x), as long as f is differentiable

at x. Otherwise, it outputs a special symbol ⊥.

APPROX/RANDOM 2023
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A directional derivative oracle is weaker than a full first-order oracle, which would
return the entire gradient [14], and it seems to us like a reasonable model for the high-
dimensional setting; for example, obtaining the full gradient costs n queries, rather than
a single query. This type of oracle has also been studied in optimization research, e.g.
see [21]. For our applications, only the sign of the result will matter, in which case we remark
that, for sufficiently smooth functions (say, functions with bounded second derivatives) each
directional derivative query may be simulated using two value queries on sufficiently close
together points.

Our definition (with value oracle) coincides with that of [4] when the range is R = [0, 1].
On the other hand, for general R, we keep the distance metric unmodified, whereas [4]
normalize it by the magnitude of R. Intuitively, we seek testers that are efficient even when
f may take large values as the dimension n grows; see Section 1.3.3 for more details.

1.2 Results and main ideas

1.2.1 Directed Poincaré-type inequalities
Our first result is a directed Poincaré inequality for Lipschitz functions f : [0, 1]n → R, which
may be seen as the continuous analogue of inequality (2) of [27].

▶ Theorem 1.2. Let f : [0, 1]n → R be a Lipschitz function with monotone rearrangement
f∗. Then

dmono
1 (f) ≈ E [|f − f∗|] ≲ E

[
∥∇−f∥1

]
. (4)

As hinted in the statement, a crucial tool for this result is the monotone rearrangement
f∗ of f . We construct f∗ by a sequence of axis-aligned rearrangements R1, . . . , Rn; each Ri

is the non-symmetric monotone rearrangement operator along dimension i, which naturally
generalizes the sorting operator of [27] to the continuous case. For each coordinate i ∈ [n],
the operator Ri takes f into an equimeasurable function Rif that is monotone in the i-th
coordinate, at a “cost” E [|f − Rif |] that is upper bounded by E

[
|∂−

i f |
]
, where ∂−

i f :=
(∇−f)i is the directed partial derivative along the i-th coordinate. We show that each
application Ri can only decrease the “cost” associated with further applications Rj , so that
the total cost of obtaining f∗ (i.e. the LHS of (4)) may be upper bounded, via the triangle
inequality, by the sum of all directed partial derivatives, i.e. the RHS of (4).

A technically simpler version of this argument also yields a directed Poincaré inequality
for real-valued functions on the hypergrid. We also note that Theorems 1.2 and 1.3 are both
tight up to constant factors.

▶ Theorem 1.3. Let f : [m]n → R and let f∗ be its monotone rearrangement. Then

dmono
1 (f) ≈ E [|f − f∗|] ≲ mE

[
∥∇−f∥1

]
.

Table 1 places our results in the context of existing classical and directed inequalities. In
that table and going forward, for any p, q ≥ 1 we call the inequalities

dconst
p (f)p ≲ E

[
∥∇f∥p

q

]
and dmono

p (f)p ≲ E
[
∥∇−f∥p

q

]
a classical and directed (Lp, ℓq)-Poincaré inequality, respectively. Note that the Lp notation
refers to the space in which we take norms, while ℓq refers to the geometry in which we
measure gradients. In this paper, we focus on the L1 inequalities.
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Table 1 Classical and directed Poincaré-type inequalities on discrete and continuous domains.
Cells marked with * indicate inequalities that follow from another entry in the table.

Continuous

{0, 1}n → {0, 1} {0, 1}n → R [0, 1]n → R

dconst
1 (f) ≲ E [∥∇f∥1] * [34] * [34] * [13]

dmono
1 (f) ≲ E

[
∥∇−f∥1

]
[27] Theorem 1.3 Theorem 1.2

dconst
1 (f) ≲ E [∥∇f∥2] * [34] [34] [13]

dmono
1 (f) ≲ E

[
∥∇−f∥2

]
[30] ? Conjecture 1.8

Discrete

(L1, ℓ1)-Poincaré

(L1, ℓ2)-Poincaré

Inequality

Setting

We also note that we have ignored in our discussion the issues of robust inequalities, which
seem essential for some of the testing applications (see [30]), and the distinction between
inner and outer boundary, whereby some inequalities on Boolean f may be made stronger by
setting ∇f(x) = 0 when f(x) = 0 (see e.g. [34]). We refer the reader to the original works
for the strongest version of each inequality and a detailed treatment of these issues.

1.2.2 Testing monotonicity on the unit cube and hypergrid
Equipped with the results above, we give a monotonicity tester for Lipschitz functions
f : [0, 1]n → R, and the same technique yields a tester for functions on the hypergrid as well.
The testers are parameterized by an upper bound L on the best Lipschitz constant of f in ℓ1

geometry, which we denote Lip1(f) (see Definition 2.1 for a formal definition).
Both of our testers are partial derivative testers. These are algorithms which only have

access to a directional derivative oracle and, moreover, their queries are promised to be
axis-aligned vectors. In the discrete case, these are usually called edge testers [27, 18].

▶ Theorem 1.4. There is a nonadaptive partial derivative L1 monotonicity tester for Lipschitz
functions f : [0, 1]n → R satisfying Lip1(f) ≤ L with query complexity O

(
nL
ϵ

)
and one-sided

error.
Similarly, there is a nonadaptive partial derivative L1 monotonicity tester for functions

f : [m]n satisfying Lip1(f) ≤ L with query complexity O
(

nmL
ϵ

)
and one-sided error.

The testers work by sampling points x and coordinates i ∈ [n] uniformly at random, and
using directional derivative queries to reject if ∂−

i f(x) < 0. Their correctness is shown using
Theorems 1.2 and 1.3, which imply that, when f is ϵ-far from monotone in L1-distance, the
total magnitude of its negative partial derivatives must be large – and since each partial
derivative is at most L by assumption, the values ∂−

i f(x) must be strictly negative in a
set of large measure, which the tester stands good chance of hitting with the given query
complexity.

1.2.3 Testing monotonicity on the line
The results above, linking a Poincaré-type inequality with a monotonicity tester that uses
partial derivative queries and has linear dependence on n, seem to suggest a close parallel
with the case of the edge tester on the Boolean cube [27, 18]. On the other hand, we also show
a strong separation between Hamming and L1 testing. Focusing on the simpler problem of
monotonicity testing on the line, we show that the tight query complexity of L1 monotonicity
testing Lipschitz functions grows with the square root of the size of the (continuous or
discrete) domain:

APPROX/RANDOM 2023
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▶ Theorem 1.5. There exist nonadaptive L1 monotonicity testers for Lipschitz functions
f : [0, m] → R and f : [m] → R satisfying Lip1(f) ≤ L with query complexity Õ

(√
mL/ϵ

)
.

The testers use value queries and have one-sided error.

This result (along with the near-tight lower bounds in Section 1.2.4) is in contrast with
the case of Hamming testing functions f : [m] → R, which has sample complexity Θ(log m)
[23, 25, 11, 2]. Intuitively, this difference arises because a Lipschitz function may violate
monotonicity with rate of change L, so the area under the curve may grow quadratically
on violating regions. The proof is in fact a reduction to the Hamming case, using the
Lipschitz assumption to establish a connection between the L1 and Hamming distances to
monotonicity.

1.2.4 Lower bounds

We give two types of lower bounds: under no assumptions about the tester and for constant
n, we show that the dependence of Theorem 1.4 on L/ϵ is close to optimal4. We give stronger
bounds for the special case of partial derivative testers (such as the ones from Theorem 1.4),
essentially showing that our analysis of the partial derivative tester is tight.

▶ Theorem 1.6. Let n be a constant. Any L1 monotonicity tester (with two-sided error,
and adaptive value and directional derivative queries) for Lipschitz functions f : [0, 1]n → R
satisfying Lip1(f) ≤ L requires at least Ω

(
(L/ϵ)

n
n+1

)
queries.

Similarly, any L1 monotonicity tester (with two-sided error and adaptive queries) for
functions f : [m]n → R satisfying Lip1(f) ≤ L requires at least Ω

(
min

{
(mL/ϵ)

n
n+1 , mn

})
queries.

Notice that the bounds above cannot be improved beyond logarithmic factors, due to
the upper bounds for the line in Theorem 1.5. It also follows that adaptivity (essentially)
does not help with L1 monotonicity testing on the line, matching the situation for Hamming
testing [25, 19, 2].

Theorem 1.6 is obtained via a “hole” construction, which hides a non-monotone region of
f inside an ℓ1-ball B of radius r. We choose r such the violations of monotonicity inside B

are large enough to make f ϵ-far from monotone, but at the same time, the ball B is hard to
find using few queries. However, this construction has poor dependence on n.

To lower bound the query complexity of partial derivative testers with better dependence
on n, we employ a simpler “step” construction, which essentially chooses a coordinate i

and hides a small negative-slope region on every line along coordinate i. These functions
are far from monotone, but a partial derivative tester must correctly guess both i and the
negative-slope region to detect them. We conclude that Theorem 1.4 is optimal for partial
derivative testers on the unit cube, and optimal for edge testers on the hypergrid for constant
ϵ and L:

▶ Theorem 1.7. Any partial derivative L1 monotonicity tester for Lipschitz functions
f : [0, 1]n → R satisfying Lip1(f) ≤ L (with two-sided error and adaptive queries) requires at
least Ω(nL/ϵ) queries.

4 Note that one may always multiply the input values by 1/L to reduce the problem to the case with
Lipschitz constant 1 and proximity parameter ϵ/L, so this is the right ratio to look at.
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Table 2 Query complexity bounds for testing monotonicity on the unit cube and hypergrid.
Upper bounds are for nonadaptive (n.a.) algorithms with one-sided error (1-s.), and lower bounds
are for adaptive algorithms with two-sided error, unless stated otherwise. For L1-testing, the upper
bounds derived from prior works (*) are specialized to the Lipschitz case by us; see the full version of
the paper for details. Our lower bounds hold either for constant (const.) n, or for partial derivative
testers (p.d.t.).

Domain

Õ
(

n2L
ϵ

)
(*) [4] O

(
nL
ϵ

)
p.d.t.

–

Hamming testing
f : Ω → R

L1-testing (prior works)
f : Ω → R, Lip1(f) ≤ L

L1-testing (this work)
f : Ω → R, Lip1(f) ≤ L

Ω = [0, 1]n Infeasible Ω
((

L
ϵ

) n
n+1

)
const. n

Ω
(

nL
ϵ

)
p.d.t.

Ω = [m]n
O

(
n log m

ϵ

)
[18] Õ

(
n2mL

ϵ

)
(*) [4] O

(
nmL

ϵ

)
p.d.t.

Ω
(

n log(m)−log(1/ϵ)
ϵ

)
[19]

Ω̃
(

L
ϵ

)
n.a. 1-s. [4]

Ω(n log m) n.a. [11]

Ω
((

mL
ϵ

) n
n+1

)
const. n

Ω(nm) p.d.t.

For sufficiently small constant ϵ and constant L, any partial derivative L1 monotonicity
tester for functions f : [m]n → R satisfying Lip1(f) ≤ L (with two-sided error and adaptive
queries) requires at least Ω(nm) queries.

Table 2 summarizes our upper and lower bounds for testing monotonicity on the unit
cube and hypergrid, along with the analogous Hamming testing results for intuition and
bounds for L1 testing from prior works. See Section 1.3.3 and the full version of the paper
for a discussion and details of how prior works imply the results in that table, since to our
knowledge the problem of L1 monotonicity testing parameterized by the Lipschitz constant
has not been explicitly studied before.

1.3 Discussion and open questions
1.3.1 Stronger directed Poincaré inequalities?
Classical Poincaré inequalities are usually of the ℓ2 form, which seems natural e.g. due to
basis independence. On the other hand, in the directed setting, the weaker ℓ1 inequalities
(as in [27] and Theorems 1.2 and 1.3) have more straightforward proofs than ℓ2 counterparts
such as [30]. A perhaps related observation is that monotonicity is not a basis-independent
concept, since it is defined in terms of the standard basis. It is not obvious whether directed
ℓ2 inequalities ought to hold in every (real-valued, continuous) setting. Nevertheless, in light
of the parallels and context established thus far, we are hopeful that such an equality does
hold. Otherwise, we believe that the reason should be illuminating. For now, we conjecture:

▶ Conjecture 1.8. For every Lipschitz function f : [0, 1]n → R, it holds that

dmono
1 (f) ≲ E

[
∥∇−f∥2

]
.

Accordingly, we also ask whether an L1 tester with O(
√

n) complexity exists, presumably
with a dependence on the Lip2(f) constant rather than Lip1(f) since ℓ2 is the relevant
geometry above.

APPROX/RANDOM 2023
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1.3.2 Query complexity bounds
Our lower bounds either have weak dependence on n, or only apply to a specific family of
algorithms (partial derivative testers). Previous works have established tester-independent
lower bounds with strong dependence on n by using reductions from communication com-
plexity [10, 11], whose translation to the continuous setting is not obvious5, by reduction to
comparison-based testers [19], whose connection to L1 testing setting seems less immediate,
or directly via a careful construction [2]. We believe that finding strong tester-independent
lower bounds for L1 testing Lipschitz functions on the unit cube is an interesting direction
for further study.

We also remark that even a tight lower bound matching Theorem 1.4 may not rule out
testers with better dependence on n if, for example, such a tester were parameterized by
Lip2(f), which can be a factor of

√
n larger than Lip1(f). We view the possibility of better

testers on the unit cube, or otherwise a conceptual separation with [30], as an exciting
direction for future work.

1.3.3 Relation to prior work on Lp-testing
[4] initiated the systematic study of Lp-testing and, most relevant to the present work,
established the first (and, to our knowledge, only) results on Lp testing of the monotonicity
property, on the hypergrid and on the discrete line. While our models are broadly compatible,
a subtle but crucial distinction must be explained.

[4] focused their exposition on the case of functions f : Ω → [0, 1], and in this regime, L1

testing can only be easier than Hamming testing, which they show via a reduction based
on Boolean threshold functions. On the other hand, for functions with other ranges, say
f : Ω → [a, b], their definition normalizes the notion of distance by a factor of 1

b−a . In our
terminology, letting r := b − a and g := f/r, it follows that d1(g) = d1(f)/r, so testing f

with proximity parameter ϵ reduces to testing g with proximity parameter ϵ/r. For Hamming
testers with query complexity that depends linearly on 1/ϵ, this amounts to paying a factor
of r in the reduction to the Boolean case6. This loss is indeed necessary, because by the
same reasoning, testing g with proximity parameter ϵ reduces to testing f with proximity
parameter rϵ. Therefore the problems of testing f with proximity parameter ϵ and testing
f/r with proximity parameter ϵ/r have the same query complexity.

In this work, we do not normalize the distance metric by r; we would like to handle
functions f that may take large values as the dimension n grows, as long as f satisfies a
Lipschitz assumption, and our goal is to beat the query complexity afforded by the reduction
to the Boolean case. We derive these benchmarks by assuming that the input f is Lipschitz,
and inferring an upper bound on r based on the Lipschitz constant and the size of the domain.
Combined with the hypergrid tester of [4] and a discretization argument for the unit cube
inspired by [8, 28], we establish benchmarks for our testing problem. See the full version of
the paper for further details.

With the discussion above in mind, it is instructive to return to Table 2. We note
that our upper bounds have polynomially smaller dependence on n than the benchmarks,
suggesting that our use of the Lipschitz assumption – via the directed Poincaré inequalities

5 Note that there is no obvious reduction from testing on the hypergrid to testing on the unit cube –
one idea is to simulate the unit cube tester on a multilinear interpolation of the function defined on
the hypergrid, but the challenge is that simulating each query to the unit cube naively requires an
exponential number of queries to the hypergrid.

6 This factor can also be tracked explicitly in the characterization of the L1 distance to monotonicity of
[4]: it arises in Lemmas 2.1 and 2.2, where an integral from 0 to 1 must be changed to an integral from
a to b, so the best threshold function is only guaranteed to be ϵ/r-far from monotone.
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in Theorems 1.2 and 1.3 – exploits useful structure underlying the monotonicity testing
problem (whereas the benchmark testers must work for every function with bounded range,
not only the Lipschitz ones). Our lower bounds introduce an almost-linear dependence on
the hypergrid length m; intuitively, this dependence is not implied by the previous bounds in
[4, 11] because those construct the violations of monotonicity via Boolean functions, whereas
our constructions exploit the fact that a Lipschitz function can “keep growing” along a
given direction, which exacerbates the L1 distance to monotonicity in the region where
that happens. Our lower bounds for partial derivative testers show that the analysis of our
algorithms is essentially tight, so new (upper or lower bound) ideas are required to establish
the optimal query complexity for arbitrary testers.

On the choice of L1 distance and Lipschitz assumption

We briefly motivate our choice of distance metric and Lipschitz assumption. For continuous
range and domain, well-known counterexamples rule out testing with respect to Hamming
distance: given any tester with finite query complexity, a monotone function may be made
far from monotone by arbitrarily small, hard to detect perturbations. Testing against L1

distance is then a natural choice, since this metric takes into account the magnitude of the
change required to make a function monotone ([4] also discuss connections with learning
and approximation theory). However, an arbitrarily small region of the input may still have
disproportionate effect on the L1 distance if the function is arbitrary, so again testing is
infeasible. Lipschitz continuity seems like a natural enough assumption which, combined with
the choice of L1 distance, makes the problem tractable. Another benefit is that Lipschitz
functions are differentiable almost everywhere by Rademacher’s theorem, so the gradient is
well-defined almost everywhere, which enables the connection with Poincaré-type inequalities.

Organization

Section 2 introduces definitions and notation. In Section 3 we prove our directed Poincaré
inequality on the unit cube, and in Section 4 we give our L1 monotonicity tester for this
domain. The analogous versions for the discrete case of the hypergrid, as well as the proofs
of our results for testing on the line (Section 1.2.3) and lower bounds (Section 1.2.4) may be
found in the full version of the paper.

2 Preliminaries

For integer m ≥ 1, we write [m] to denote the set {i ∈ Z : 1 ≤ i ≤ m}. For any c ∈ R, we
write c+ for max{0, c} and c− for − min{0, c}. We denote the closure of an open set B ⊂ Rn

by B.
For a measure space (Ω, Σ, ν) and measurable function f : Ω → R, we write

∫
Ω f dν for

the Lebesgue integral of f over this space. Then for p ≥ 1, the space Lp(Ω, ν) is the set of
measurable functions f such that |f |p is Lebesgue integrable, i.e.

∫
Ω|f |p dν < ∞, and we

write the Lp norm of such functions as ∥f∥Lp = ∥f∥Lp(ν) =
(∫

Ω|f |p dν
)1/p. We will write

ν to denote the Lebesgue measure on Rn (the dimension n being clear from context), and
simply write Lp(Ω) for Lp(Ω, ν); we will reserve µ for the special case of probability measures.

2.1 Lipschitz functions and Lp distance
We first define Lipschitz functions with respect to a choice of ℓp geometry.
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▶ Definition 2.1. Let p ≥ 1. We say that f : Ω → R is (ℓp, L)-Lipschitz if, for every x, y ∈ Ω,
|f(x) − f(y)| ≤ L∥x − y∥p. We say that f is Lipschitz if it is (ℓp, L)-Lipschitz for any L (in
which case this also holds for any other choice of ℓq), and in this case we denote by Lipp(f)
the best possible Lipschitz constant:

Lipp(f) := inf
L

{f is (ℓp, L)-Lipschitz} .

It follows that Lipp(f) ≤ Lipq(f) for p ≤ q.

We now formally define Lp distances, completing the definition of Lp-testers from Sec-
tion 1.1.

▶ Definition 2.2 (Lp-distance). Let p ≥ 1, let R ⊆ R, and let (Ω, Σ, µ) be a probability space.
For a property P ⊆ Lp(Ω, µ) of functions g : Ω → R and function f : Ω → R ∈ Lp(Ω, µ), we
define the distance from f to P as dp(f, P) := infg∈P dp(f, g), where

dp(f, g) := ∥f − g∥Lp(µ) = E
x∼µ

[|f(x) − g(x)|p]1/p
.

For p = 0, we slightly abuse notation and, taking 00 = 0, write d0(f, g) for the Hamming
distance between f and g weighted by µ (and P may be any set of measurable functions on
(Ω, Σ, µ)).

In our applications, we will always take µ to be the uniform distribution over Ω7. As a
shorthand, when (Ω, Σ, µ) is understood from the context and R = R, we will write
1. dconst

p (f) := dp(f, Pconst) where Pconst := {f : Ω → R ∈ Lp(Ω, µ) : f = c, c ∈ R}; and
2. dmono

p (f) := dp(f, Pmono) where Pmono := {f : Ω → R ∈ Lp(Ω, µ) : f is monotone}.

Going forward, we will also use the shorthand dp(f) := dmono
p (f).

2.2 Directed partial derivatives and gradients
Let B be an open subset of Rn, and let f : B → R be Lipschitz. Then by Rademacher’s
theorem f is differentiable almost everywhere in B. For each x ∈ B where f is differentiable,
let ∇f(x) = (∂1f(x), . . . , ∂nf(x)) denote its gradient, where ∂if(x) is the partial derivative
of f along the i-th coordinate at x. Then, let ∂−

i := min{0, ∂i}, i.e. for every x where f

is differentiable we have ∂−
i f(x) = − (∂if(x))−. We call ∂−

i the directed partial derivative
operator in direction i. Then we define the directed gradient operator by ∇− := (∂−

1 , . . . , ∂−
n ),

again defined on every point x where f is differentiable.

3 Directed Poincaré inequalities for Lipschitz functions

In this section, we establish Theorem 1.2. We start with the one-dimensional case, i.e.
functions on the line, and then generalize to higher dimensions. See the full version of the
paper for the discrete case of the hypergrid.

3.1 One-dimensional case
Let m > 0, let I := (0, m), and let f : I → R be a measurable function. We wish to show that
∥f − f∗∥L1 ≲ m ∥∂−f∥L1 , where f∗ is the monotone rearrangement of f . We first introduce
the monotone rearrangement, and then show this inequality using an elementary calculus
argument.

7 More precisely: when Ω = [0, 1]n, µ will be the Lebesgue measure on Ω (with associated σ-algebra Σ).
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3.1.1 Monotone rearrangement

Here, we introduce the (non-symmetric, non-decreasing) monotone rearrangement of a one-
dimensional function. We follow the definition of [29], with the slight modification that we
are interested in the non-decreasing rearrangement, whereas most of the literature usually
favours the non-increasing rearrangement. The difference is purely syntactic, and our choice
more conveniently matches the convention in the monotonicity testing literature. Up to this
choice, our definition also agrees with that of [3, Chapter 2], and we refer the reader to these
two texts for a comprehensive treatment.

We define the (lower) level sets of f : I → R as the sets

Ic :=
{

x ∈ I : f(x) ≤ c
}

for all c ∈ R. For nonempty measurable S ⊂ R of finite measure, the rearrangement of S is
the set

S∗ := [0, ν(S)]

(recall that ν stands for the Lebesgue measure here), and we define ∅∗ := ∅. For a level set
Ic, we write I

∗
c to mean

(
Ic

)∗.

▶ Definition 3.1. The monotone rearrangement of f is the function f∗ : I → R given by

f∗(x) := inf
{

c ∈ R : x ∈ I
∗
c

}
. (5)

Note that f∗ is always a non-decreasing function.
We note two well-known properties of the monotone rearrangement: equimeasurability

and order preservation. Two functions f, g are called equimeasurable if ν{f ≥ c} = ν{g ≥ c}
for every c ∈ R. A mapping u 7→ u∗ is called order preserving if f(x) ≤ g(x) for all x ∈ I

implies f∗(x) ≤ g∗(x) for all x ∈ I. See [3, Chapter 2, Proposition 1.7] for a proof of the
following:

▶ Fact 3.2. Let f : I → R be a measurable function. Then f and f∗ are equimeasurable.

▶ Fact 3.3. The mapping f 7→ f∗ is order preserving.

3.1.2 Absolutely continuous functions and the one-dimensional Poincaré
inequality

Let f : I → R be absolutely continuous. It follows that f has a derivative ∂f almost
everywhere (i.e. outside a set of measure zero), ∂f ∈ L1(I) (i.e. its derivative is Lebesgue
integrable), and

f(x) = f(0) +
∫ x

0
∂f(t) dt

for all x ∈ I. It also follows that ∂−f ∈ L1(I).
We may now show our one-dimensional inequality:

▶ Lemma 3.4. Let f : I → R be absolutely continuous. Then ∥f − f∗∥L1 ≤ 2m ∥∂−f∥L1 .
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Proof. Let S :=
{

x ∈ I : f∗(x) > f(x)
}

, and note that S is a measurable set because f, f∗ are
measurable functions (the latter by Fact 3.2). Moreover, since f and f∗ are equimeasurable
(by the same result), we have

∫
f dν =

∫
f∗ dν and therefore

∥f − f∗∥L1 =
∫

I

|f − f∗| dν =
∫

S

(f∗ − f) dν +
∫

I\S

(f − f∗) dν

=
∫

S

(f∗ − f) dν +
(∫

I

(f − f∗) dν −
∫

S

(f − f∗) dν

)
= 2

∫
S

(f∗ − f) dν .

Hence our goal is to show that∫
S

(f∗ − f) dν ≤ m
∥∥∂−f

∥∥
L1 .

Let x ∈ I. We claim that there exists x′ ∈ [0, x] such that f(x′) ≥ f∗(x). Suppose this is not
the case. Then since f is continuous on [0, x], by the extreme value theorem it attains its
maximum and therefore there exists c < f∗(x) such that f(y) ≤ c for all y ∈ [0, x]. Thus
[0, x] ⊆ Ic, so ν

(
Ic

)
≥ x and hence x ∈ I

∗
c . Then, by Definition 3.1, f∗(x) ≤ c < f∗(x), a

contradiction. Thus the claim is proved.
Now, let x ∈ S and fix some x′ ∈ [0, x] such that f(x′) ≥ f∗(x). Since f is absolutely

continuous, we have

f∗(x) − f(x) ≤ f(x′) − f(x) = −
∫ x

x′
∂f(t) dt ≤ −

∫ m

0
∂−f(t) dt =

∥∥∂−f
∥∥

L1 .

The result follows by applying this estimate to all x:∫
S

(f∗ − f) dν ≤
∫

S

∥∥∂−f
∥∥

L1 dν = ν(S)
∥∥∂−f

∥∥
L1 ≤ m

∥∥∂−f
∥∥

L1 . ◀

3.2 Multidimensional case

Although we ultimately only require an inequality on the unit cube [0, 1]n, we will first work
in slightly more generality and consider functions defined on a box in Rn, defined below.
This approach makes some of the steps more transparent, and also gives intuition for the
discrete case of the hypergrid.

▶ Definition 3.5. Let a ∈ Rn
>0. The box of size a is the closure B ⊂ Rn of B = (0, a1) ×

· · · × (0, an).

Going forward, B ⊂ Rn will always denote such a box.

Notation

For x ∈ Rn, y ∈ R and i ∈ [n], we will use the notation x−i to denote the vector in R[n]\{i}

obtained by removing the i-th coordinate from x (note that the indexing is not changed),
and we will write (x−i, y) as a shorthand for the vector (x1, . . . , xi−1, y, xi+1, . . . , xn) ∈ Rn.
We will also write x−i directly to denote any vector in R[n]\{i}. For function f : B → R
and x−i ∈ R[n]\{i}, we will write fx−i for the function given by fx−i(y) = f(x−i, y) for all
(x−i, y) ∈ B. For any set D ∈ Rn, we will denote by D−i the projection {x−i : x ∈ D}, and
extend this notation in the natural way to more indices, e.g. D−i−j .
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▶ Definition 3.6 (Rearrangement in direction i). Let f : B → R be a measurable function and
let i ∈ [n]. The rearrangement of f in direction i is the function Rif : B → R given by

(Rif)x−i := (fx−i)∗ (6)

for all x−i ∈
(
B

)−i. We call each Ri the rearrangement operator in direction i.

We may put (6) in words as follows: on each line in direction i determined by point x−i,
the restriction of Rif to that line is the monotone rearrangement of the restriction of f to
that line.

▶ Proposition 3.7. Let B be the box of size a ∈ Rn, and let f : B → R be Lipschitz
continuous. Then for each i ∈ [n],

∥f − Rif∥L1 ≤ 2ai

∥∥∂−
i f

∥∥
L1 .

Proof. Since f is Lipschitz continuous, each fx−i : [0, ai] → R is Lipschitz continuous and a
fortiori absolutely continuous. The result follows from Lemma 3.4, using Tonelli’s theorem
to choose the order of integration. ◀

A key ingredient in our multidimensional argument is that the rearrangement operator
preserves Lipschitz continuity:

▶ Lemma 3.8 ([29, Lemma 2.12]). If f : B → R is Lipschitz continuous (with Lipschitz
constant L), then Rif is Lipschitz continuous (with Lipschitz constant 2L).

We are now ready to define the (multidimensional) monotone rearrangement f∗:

▶ Definition 3.9. Let f : B → R be a measurable function. The monotone rearrangement of
f is the function

f∗ := RnRn−1 · · · R1f .

We first show that f∗ is indeed a monotone function:

▶ Proposition 3.10. Let f : B → R be Lipschitz continuous. Then f∗ is monotone.

Proof. Say that g : B → R is monotone in direction i if gx−i is non-decreasing for all
x−i ∈

(
B

)−i. Then g is monotone if and only if it is monotone in direction i for every
i ∈ [n]. Note that Rif is monotone in direction i by definition of monotone rearrangement.
Therefore, it suffices to prove that if f is monotone in direction j, then Rif is also monotone
in direction j.

Suppose f is monotone in direction j, and suppose i < j without loss of generality. Let a ∈
Rn be the size of B. Let x−j ∈

(
B

)−j and 0 ≤ y1 < y2 ≤ aj , so that (x−j , y1), (x−j , y2) ∈ B.
We need to show that (Rif)(x−j , y1) ≤ (Rif)(x−j , y2). Let Ii := [0, ai]. For each k ∈ {1, 2},
let gk : Ii → R be given by

gk(z) := f(x1, . . . , xi−1, z, xi+1, . . . , xj−1, yk, xj+1, . . . , xn) .

Note that

g∗
k(z) = (Rif)(x1, . . . , xi−1, z, xi+1, . . . , xj−1, yk, xj+1, . . . , xn)

for every z ∈ Ii, and therefore our goal is to show that g∗
1(xi) ≤ g∗

2(xi). But f being
monotone in direction j means that g1(z) ≤ g2(z) for all z ∈ Ii, so by the order preserving
property (Fact 3.3) of the monotone rearrangement we get that g∗

1(xi) ≤ g∗
2(xi), concluding

the proof. ◀
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It is well-known that the monotone rearrangement is a non-expansive operator. Actually
a stronger fact holds, as we note below.

▶ Proposition 3.11 ([22]). Let m > 0 and let f, g ∈ L1[0, m]. Then f∗, g∗ satisfy∫
[0,m]

(f∗ − g∗)− dν ≤
∫

[0,m]
(f − g)− dν

and∫
[0,m]

|f∗ − g∗| dν ≤
∫

[0,m]
|f − g| dν .

The result above is stated for functions on the interval. Taking the integral over the
box B and repeating for each operator Ri yields the non-expansiveness of our monotone
rearrangement operator, as also noted by [29]:

▶ Corollary 3.12. Let f, g ∈ L1(B). Then ∥f∗ − g∗∥L1 ≤ ∥f − g∥L1 .

We show that the rearrangement operator can only make the norm of the directed partial
derivatives smaller, i.e. decrease the violations of monotonicity, which is the key step in this
proof.

▶ Proposition 3.13. Let f : B → R be Lipschitz continuous and let i, j ∈ [n]. Then∥∥∂−
j (Rif)

∥∥
L1 ≤

∥∥∂−
j f

∥∥
L1 .

Proof. We may assume that i ̸= j, since otherwise the LHS is zero. We will use the following
convention for variables names: w ∈ Rn will denote points in B; z ∈ R[n]\{i,j} will denote
points in B−i−j ; x ∈ R will denote points in (0, ai) (indexing the i-th dimension); and y ∈ R
will denote points in (0, aj) (indexing the j-th dimension). For each i ∈ [n], let ei denote the
i-th basis vector.

Since f is Lipschitz, so is Rif by Lemma 3.8. By Rademacher’s theorem, these functions
are differentiable almost everywhere. Therefore, let D ⊆ B be a measurable set such that f

and Rif are differentiable in D and ν(D) = ν(B). We have

∥∥∂−
j (Rif)

∥∥
L1 =

∫
D

∣∣∂−
j (Rif)

∣∣ dν =
∫

D

[
lim
h→0

(
(Rif)(w + hej) − (Rif)(w)

h

)−
]

dν(w)

(BC1)= lim
h→0

∫
D

(
(Rif)(w + hej) − (Rif)(w)

h

)−

dν(w)

(D1)= lim
h→0

∫
B

(
(Rif)(w + hej) − (Rif)(w)

h

)−

dν(w)

(T 1)= lim
h→0

∫
B−i−j

∫
(0,aj)

∫
(0,ai)

(
(Rif)(z, y + h, x) − (Rif)(z, y, x)

h

)−

dν(x) dν(y) dν(z)

≤ lim
h→0

∫
B−i−j

∫
(0,aj)

∫
(0,ai)

(
f(z, y + h, x) − f(z, y, x)

h

)−

dν(x) dν(y) dν(z)

(T 2)= lim
h→0

∫
B

(
f(w + hej) − f(w)

h

)−

dν(w)

(D2)= lim
h→0

∫
D

(
f(w + hej) − f(w)

h

)−

dν(w)

(BC2)=
∫

D

[
lim
h→0

(
f(w + hej) − f(w)

h

)−
]

dν(w) =
∫

D

∣∣∂−
j f

∣∣ dν =
∥∥∂−

j f
∥∥

L1 .
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Equalities (BC1) and (BC2) hold by the bounded convergence theorem, which applies
because the difference quotients are uniformly bounded by the Lipschitz constants of Rif

and f (respectively), and because Rif and f are differentiable in D (which gives pointwise
convergence of the limits). Equalities (D1) and (D2) hold again by the uniform boundedness
of the difference quotients, along with the fact that ν(B \ D) = 0. Equalities (T1) and
(T2) hold by Tonelli’s theorem. Finally, the inequality holds by Proposition 3.11, since
(Rif)(z, y + h, ·) is the monotone rearrangement of f(z, y + h, ·) and (Rif)(z, y, ·) is the
monotone rearrangement of f(z, y, ·). ◀

We are now ready to prove our directed (L1, ℓ1)-Poincaré inequality.

▶ Theorem 3.14. Let B be the box of size a ∈ Rn and let f : B → R be Lipschitz continuous.
Then

∥f − f∗∥L1 ≤ 2
n∑

i=1
ai

∥∥∂−
i f

∥∥
L1 .

Proof. We have

∥f − f∗∥L1 ≤
n∑

i=1
∥Ri−1 · · · R1f − Ri · · · R1f∥L1 (Triangle inequality)

≤ 2
n∑

i=1
ai

∥∥∂−
i (Ri−1 · · · R1f)

∥∥
L1 (Lemma 3.8 and Proposition 3.7)

≤ 2
n∑

i=1
ai

∥∥∂−
i f

∥∥
L1 (Lemma 3.8 and Proposition 3.13) .

◀

Setting B = (0, 1)n yields the inequality portion of Theorem 1.2:

▶ Corollary 3.15. Let B = (0, 1)n and let f : B → R be Lipschitz continuous. Then

E [|f − f∗|] = ∥f − f∗∥L1 ≤ 2
∫

B

∥∇−f∥1 dν = 2E
[
∥∇−f∥1

]
.

To complete the proof of Theorem 1.2, we need to show that d1(f) ≈ E [|f − f∗|], i.e.
that the monotone rearrangement is “essentially optimal” as a target monotone function
for f . The inequality d1(f) ≤ E [|f − f∗|] is clear from the fact that f∗ is monotone. The
inequality in the other direction follows from the non-expansiveness of the rearrangement
operator, with essentially the same proof as that of [30] for the Boolean cube:

▶ Proposition 3.16. Let f : [0, 1]n → R be Lipschitz continuous. Then E [|f − f∗|] ≤ 2d1(f).

Proof. Let g ∈ L1([0, 1]n) be any monotone function. It follows that g∗ = g. By Co-
rollary 3.12, we have that ∥f∗ − g∗∥L1 ≤ ∥f − g∥L1 . Using the triangle inequality, we
obtain

∥f − f∗∥L1 ≤ ∥f − g∥L1 + ∥g − f∗∥L1 = ∥f − g∥L1 + ∥f∗ − g∗∥L1 ≤ 2 ∥f − g∥L1 .

The claim follows by taking the infimum over the choice of g. ◀

To check that Corollary 3.15 is tight up to constant factors, it suffices to take the linear
function f : [0, 1]n → R given by f(x) = 1 − x1 for all x ∈ [0, 1]n. Then f∗ is given by
f∗(x) = x1, so E [f − f∗] = 1/2 while E [∥∇−f∥1] = 1, as needed.
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Algorithm 1 L1 monotonicity tester for Lipschitz functions using partial derivative queries.
Input: Partial derivative oracle access to Lipschitz function f : [0, 1]n → R.
Output: Accept if f is monotone, reject if d1(f) > ϵ.
Requirement: Lip1(f) ≤ L.

procedure PartialDerivativeTester(f, L, ϵ)
repeat Θ (nL/ϵ) times

Sample x ∈ [0, 1]n uniformly at random.
Sample i ∈ [n] uniformly at random.
Reject if ∂if(x) < 0.

end repeat
Accept.

4 Application to monotonicity testing

In this section, we use the directed Poincaré inequality on the unit cube to show that the
natural partial derivative tester attains the upper bound from Theorem 1.4. As noted in the
introduction, we refer to the full version of the paper for the case of the hypergrid.

The tester is given in Algorithm 1. It is clear that this algorithm is a nonadaptive partial
derivative tester, and that it always accepts monotone functions. It suffices to show that it
rejects with good probability when d1(f) > ϵ.

▶ Lemma 4.1. Let f : [0, 1]n → R be a Lipschitz function satisfying Lip1(f) ≤ L. Suppose
d1(f) > ϵ. Then Algorithm 1 rejects with probability at least 2/3.

Proof. Let D ⊆ [0, 1]n be a measurable set such that f is differentiable on D and µ(D) = 1,
which exists by Rademacher’s theorem. For each i ∈ [n], let Si := {x ∈ D : ∂if(x) < 0}. A
standard argument gives that each Si ⊂ Rn is a measurable set. We claim that

n∑
i=1

µ(Si) >
ϵ

2L
.

Suppose this is not the case. By the Lipschitz continuity of f , we have that |∂if(x)| ≤ L for
every x ∈ D and i ∈ [n], and therefore

2
n∑

i=1
E

[∣∣∂−
i f

∣∣] ≤ 2L

n∑
i=1

µ(Si) ≤ ϵ .

On the other hand, the assumption that d1(f) > ϵ and Corollary 3.15 yield

ϵ < E [|f − f∗|] ≤ 2E
[
∥∇−f∥1

]
= 2

n∑
i=1

E
[∣∣∂−

i f
∣∣] ,

a contradiction. Therefore the claim holds.
Now, the probability that one iteration of the tester rejects is the probability that x ∈ Si

when x and i are sampled uniformly at random. This probability is

P [Iteration rejects] =
n∑

j=1
P
i

[i = j]P
x

[x ∈ Sj ] =
n∑

j=1

1
n

· µ(Sj) >
ϵ

2nL
.

Thus Θ
(

nL
ϵ

)
iterations suffice to reject with high constant probability. ◀
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