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Abstract
We consider the performance of Glauber dynamics for the random cluster model with real parameter
q > 1 and temperature β > 0. Recent work by Helmuth, Jenssen and Perkins detailed the
ordered/disordered transition of the model on random ∆-regular graphs for all sufficiently large q

and obtained an efficient sampling algorithm for all temperatures β using cluster expansion methods.
Despite this major progress, the performance of natural Markov chains, including Glauber dynamics,
is not yet well understood on the random regular graph, partly because of the non-local nature of
the model (especially at low temperatures) and partly because of severe bottleneck phenomena that
emerge in a window around the ordered/disordered transition.

Nevertheless, it is widely conjectured that the bottleneck phenomena that impede mixing from
worst-case starting configurations can be avoided by initialising the chain more judiciously. Our
main result establishes this conjecture for all sufficiently large q (with respect to ∆). Specifically, we
consider the mixing time of Glauber dynamics initialised from the two extreme configurations, the
all-in and all-out, and obtain a pair of fast mixing bounds which cover all temperatures β, including
in particular the bottleneck window. Our result is inspired by the recent approach of Gheissari and
Sinclair for the Ising model who obtained a similar-flavoured mixing-time bound on the random
regular graph for sufficiently low temperatures. To cover all temperatures in the RC model, we refine
appropriately the structural results of Helmuth, Jenssen and Perkins about the ordered/disordered
transition and show spatial mixing properties “within the phase”, which are then related to the
evolution of the chain.
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1 Introduction

For real numbers q, β > 0 and a graph G = (V, E), the random cluster model on G with
parameters q and β is a probability distribution on the set Ω = ΩG of all assignments
F : E → {0, 1}; we typically refer to assignments in Ω as configurations. For a configuration
F , we say that edges mapped to 1 are in-edges, and edges mapped to 0 are out-edges. We

∗ For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this submission. All data is provided in full in the
results section of this paper.

© Andreas Galanis, Leslie Ann Goldberg, and Paulina Smolarova;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 64; pp. 64:1–64:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.64
https://arxiv.org/abs/2305.13239
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


64:2 Sampling from the Random Cluster Model via Glauber Dynamics

use In(F) to denote the set of edges e with F(e) = 1, Out(F) to denote the set of edges e

with F(e) = 0, |F| for the cardinality of In(F) and c(F) for the number of connected
components in the graph (V, In(F)). Then, the weight of F in the RC model is given by
wG(F) = qc(F)(eβ − 1)|F|.

For integer values of q, the RC model is closely connected to the (ferromagnetic) Ising/-
Potts models; q = 2 is the Ising model and q ≥ 3 is the Potts model whose configurations are
all possible assignments of q colours to the vertices of the graph where an assignment σ has
weight proportional to eβm(σ) with m(σ) being the number of monochromatic edges under σ.
The RC model is an alternative edge representation of the models (for integer q) that has
also been studied extensively in its own right due to its intricate behaviour (see, e.g., [19]).

We will be primarily interested in sampling from the so-called Gibbs distribution on Ω
induced by these weights, denoted by πG(·), where for a configuration F , πG(F) = wG(F)/ZG

where the normalising factor ZG =
∑

F ′∈ΩG
wG(F ′) is the aggregate sum of weight of all

configurations (known as the partition function). We focus on the Glauber dynamics which is
a classical Markov chain for sampling from Gibbs distributions which is a particularly useful
tool for developing approximate sampling algorithms. We will refer to Glauber dynamics for
the RC model as the RC dynamics. Roughly, the RC dynamics is a Markov chain (Xt)t≥0
initialised at some configuration X0 which evolves by iteratively updating at each step t ≥ 1
a randomly chosen edge based on whether its endpoints belong to the same component in
the graph (V, In(Xt)). The mixing time of the chain is the number of steps to get within
total variation distance ≤ 1/4 from πG, see Section 2 for details.

Our goal is to obtain a fast algorithm for the RC model using Glauber dynamics on the
random regular graph. There are two key obstacles that arise, especially at low temperatures
(large β): (i) Glauber dynamics for the RC model has a highly non-local behaviour, and
(ii) there are severe bottleneck phenomena and worst case graphs which prohibit a general
fast-convergence result, and more generally an efficient algorithm. The random regular
graph is a particularly interesting testbed in this front since it exhibits all the relevant phase
transition phenomena and has also been used as the main gadget in hardness reductions [15].

To overview the phenomena that are most relevant for us, the following picture was
detailed in a remarkable development by Jenssen, Helmuth, and Perkins [22]: for ∆ ≥ 5
and all sufficiently large q, they established the ordered/disordered transition occurring at
some βc satisfying βc = (1 + oq(1)) 2 log q

∆ (see also [15] for integer q ≥ 3).1 Roughly, for
β < βc a typical configuration of the model is disordered, whereas for β > βc it is ordered:
disordered configurations resemble the all-out configuration (in that all components are of
size O(log n)) whereas ordered configurations resemble the all-in configuration (where there
is a giant component with Ω(n) vertices). The two types of configurations coexist at β = βc,
i.e., each appears with some probability bounded away from zero. The methods in [22] are
based on cluster expansion techniques which also yielded an efficient sampling algorithm at
all temperatures β > 0. This is a surprising algorithmic result given that the coexistence
causes multimodality in πG and severe bottleneck phenomena for Markov chains in a window
around βc; it was shown for instance in [22] that the RC dynamics (and the related non-local
Swendsen-Wang dynamics) have exponential mixing time, essentially because of the number
of steps needed for the chain to move from ordered to disordered (and vice versa).

These results pose a rather bleak landscape for the RC dynamics; yet, on random regular
graphs it is widely conjectured that the multimodality and the associated bottlenecks can be
circumvented by initialising the chain more judiciously, in particular at either the all-out

1 Recent results of Bencs, Borbényi, and Csikvári [1] yield the exact formula βc = log q−2
(q−1)1−2/∆−1 for all

q > 2 and ∆ ≥ 3, which was previously only known for integer q [15].



A. Galanis, L. A. Goldberg, and P. Smolarova 64:3

or the all-in configurations (depending on whether β ≤ βc). However the tools available for
analysing Markov chains are typically insensitive to the initial configuration, and even more
so when working at a critical range of the parameters.

Our main result establishes this conjecture for all ∆ ≥ 5 and q sufficiently large (conditions
which we inherit from [22]). For an integer n such that ∆n is even, let Gn,∆ denote the set
of all ∆-regular graphs with n vertices.2 Throughout, we use O(1) to denote a constant
depending on q, β, ∆ but independent of n.

▶ Theorem 1. Let ∆ ≥ 5 be an integer. There exists C = C(∆) > 0 such that, for all
sufficiently large q, the following holds for any β > 0, w.h.p. over G ∼ Gn,∆.
1. For β < βc, the mixing time of the RC dynamics starting from all-out is O(n log n).
2. For β > βc, the mixing time of the RC dynamics starting from all-in is O(nC). For

integer q, the mixing time is in fact O(n log n).
Note that Theorem 1 implies an O(n log n) sampling algorithm from the Potts model for
all β ̸= βc (and all sufficiently large q). Intuitively, and as we will see later in more detail,
Theorem 1 asserts that the RC dynamics starting from all-in mixes quickly within the set of
ordered configurations for β > βc, and similarly it mixes well within the disordered set of
configurations starting from all out when β < βc. In fact the same is true for β = βc and
hence the RC dynamics can be used to sample even at criticality, see Remark 12 for details.

Finally, let us note that the RC dynamics can be used analogously to the theorem above
to produce a sample within total variation distance ε of πG for any ε ≥ e−Θ(n), by running
it for a number of steps which is log(1/ε) times the corresponding mixing time bound.3
The lower bound on the error comes from the total variation distance between πG and the
conditional “ordered” and “disordered” configurations, see Lemma 3.

1.1 Further related work
Our approach to proving Theorem 1 is inspired from a recent paper by Gheissari and
Sinclair [16] who established similar flavoured results for the Ising model (q = 2) on the
random regular graph for large β. To obtain our results for all β, we adapt suitably their
notion of “spatial mixing within the phase”, see Section 2.2 for details.

Among the results in [16], it was established that Glauber dynamics on the random
regular graph, initialised appropriately, mixes in O(n log n) time when β is sufficiently large.4
More recently, Gheissari and Sinclair [17] obtained mixing-time bounds for the RC dynamics
on the lattice Zd under appropriate boundary conditions. They also analyse the mixing time
starting from a mixture of the all-in/all-out initialisation. Note that the phase transition on
grid lattices is qualitatively different than that of the random regular graph; there, instead of
a window/interval of temperatures, the three points βu, β∗

u and βc all coincide into a single
phase transition point. See also [6, 23] for related algorithmic results on Zd using cluster
expansion methods.

For the random regular graph, Blanca and Gheissari [4] showed for all integer ∆ ≥ 3
and real q ≥ 1 that the mixing time is O(n log n) provided that β < βu(q, ∆) where βu is
the uniqueness threshold on the tree. A sampling algorithm (not based on MCMC) for

2 We write G ∼ Gn,∆ to denote a graph in Gn,∆ chosen uniformly at random, and we say that a property
holds w.h.p. for G ∼ Gn,∆ as a shorthand for “with probability 1 − on(1) over a graph G ∈ Gn,∆ chosen
uniformly at random.

3 The standard submultiplicative argument to bootstrap the total-variation distance goes through using
the monotonicity of the RC model (to account for the constraint on the initial configuration), see
also [25].

4 Note that, for q = 2, an O(n10) upper bound for the RC dynamics on any graph G was previously
known at all temperatures β by Guo and Jerrum [20] (see also [13]).

APPROX/RANDOM 2023
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β < βc(q, ∆) and q, ∆ ≥ 3 was designed by Efthymiou [12] (see also [3]), albeit achieving
weaker approximation guarantees. Coja-Oghlan et al. [10] showed that, for all integer q, ∆ ≥ 3
and β ∈ (βu, β′

u) the mixing time is eΩ(n) where β′
u = log(1 + q

∆−2 ) > βu is (conjectured to
be) another uniqueness threshold on the tree (see [21, 24]). More generally, for integer q ≥ 3,
the hardness results/techniques of [18, 15] yield that for any β > βc, there are graphs G where
the mixing time of the RC dynamics is exp(nΩ(1)) and the problem of appoximately sampling
on graphs of max-degree ∆ becomes #BIS-hard; on the other hand, for β ≤ (1 − oq,∆(1))βc

it has been shown in [11, 7] that the cluster-expansion technique of [22] yields a sampling
algorithm on any max-degree ∆ graph.

As a final note, another model of interest where analogous mixing results for Glauber
dynamics (initialised appropriately) should be obtainable is for sampling independent sets
on random bipartite regular graphs. However, in contrast to the RC/Potts models, the
phase transition there is analogous to that of the Ising model, and hence, establishing the
relevant spatial mixing properties close to the criticality threshold is likely to require different
techniques, see, e.g., [9] for more discussion.

1.2 Independent results of Blanca and Gheissari
In an independent and simultaneous work, Blanca and Gheissari [5] obtain related (but
incomparable) results. For ∆ ≥ 3, q ≥ 1 and arbitrarily small τ > 0, they show for sufficiently
large β a mixing time bound of O(n1+τ ) for the RC dynamics on the random regular graph
starting from an arbitrary configuration (and obtain an analogous result for the grid and
the Swendsen-Wang dynamics). Our result instead applies to all β for the random regular
graph (even the critical window) by taking into consideration the initial configuration; the
two papers have different approaches to obtain the main ingredients.

2 Proof of Theorem 1

We start with the formal description of the RC dynamics. Given a graph G = (V, E) and
an initial configuration X0 : E → {0, 1}, the RC dynamics on G is a Markov chain (Xt)t≥0
on the set of configurations ΩG. Let p := 1 − e−β and p̂ := p

(1−p)q+p (note that for q > 1 it
holds that p̂ ∈ (p/q, p)). For t ≥ 0, to obtain Xt+1 from Xt:
1. Choose u.a.r. an edge e ∈ E. If e is a cut-edge in the graph (V, In(Xt) ∪ {e}), set

Xt+1(e) = 1 with probability p̂ (and Xt+1(e) = 0 otherwise). Else, set Xt+1(e) = 1 with
probability p, and Xt+1(e) = 0 otherwise.

2. Set Xt+1(f) = Xt(f) for all f ∈ E\{e}.
It is a standard fact that the distribution of Xt converges to the RC distribution πG. Let
Tmix(G; X0) = mint≥0{t | distTV(Xt, πG) ≤ 1/4} be the number of steps needed to get within
total-variation distance ≤ 1/4 from πG starting from X0, and Tmix(G) = maxX0 Tmix(G; X0)
be the mixing time from the worst starting state.

2.1 The ordered and disordered phases on random regular graphs
We review in more detail the ordered/disordered transition, following [22].

▶ Definition 2. For ∆ ≥ 3, let η = η(∆) ∈ (0, 1/2) be a small constant (see Definition 17).
For G ∈ Gn,∆, the ordered phase is the set of configurations Ωord := {F ∈ Ω : | In(F)| ≥
(1 − η)|E|}, whereas the disordered phase is the set Ωdis := {F ∈ Ω : | In(F)| ≤ η|E|}. For
q, β > 0, let πord

G , πdis
G be the conditional distributions of πG on Ωord, Ωdis, respectively.
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We will use the following result of Helmuth, Jenssen and Perkins [22, Lemma 9].

▶ Lemma 3 ([22, Theorem 1]). Let ∆ ≥ 5 be an integer. Then, for all sufficiently large q,
there exists βc > 0 satisfying βc = (1 + oq(1)) 2 log q

∆ such that the following holds for any
β > 0 w.h.p. for G ∼ Gn,∆.

if β < βc, then
∥∥πG − πdis

G

∥∥
TV = e−Ω(n); if β > βc, then

∥∥πG − πord
G

∥∥
TV = e−Ω(n). (1)

Moreover, there exists ζ = ζ(∆) > 0 with ζ < η such that

for β ≤ βc, πdis
G

(
| In(F)| ≥ ζ|E|

)
= e−Ω(n), and

for β ≥ βc, πord
G

(
| In(F)| ≤ (1 − ζ)|E|

)
= e−Ω(n).

(2)

Proof. The claims about the total variation distance are shown in [22, Theorem 1, Items (2),
(3), (8)]. Equation (2) shows a bit of slack in the definitions of Ωdis and Ωord that will be
useful later; it follows essentially from the same theorem, we defer the details to Lemma 25
of the full version [14]. ◀

2.2 Main ingredient: Weak spatial mixing within a phase
Let G = (V, E) be a graph. For v ∈ V and r ≥ 0, let Br(v) denote the set of all vertices
in V whose distance from v is at most r. Let π = πG be the RC distribution on G and
let πB+

r (v) be the conditional distribution of π where all edges in E\E(Br(v)) are “in”. We
define analogously πB−

r (v) by conditioning the edges in E\E(Br(v)) to be “out”.

▶ Definition 4. Let G be a graph with m edges. Let q, β > 0 be reals and r ≥ 1 be an integer.
We say that the graph G has WSM within the ordered phase at radius r if for every v ∈ V (G)
and every edge e incident to v, ∥πB+

r (v)(e 7→ ·) − πord
G (e 7→ ·)∥TV ≤ 1

100m . Analogously, we
say that G has WSM within the disordered phase at radius r if for every v ∈ V (G) and
every edge e incident to v, ∥πB−

r (v)(e 7→ ·) − πdis
G (e 7→ ·)∥TV ≤ 1

100m .

The bulk of our arguments consists of showing the following two theorems.

▶ Theorem 5. Let ∆ ≥ 5 be an integer. There exists M = M(∆) > 0 such that for all q

sufficiently large, the following holds for any β ≥ βc. W.h.p. over G ∼ Gn,∆, G has WSM
within the ordered phase at a radius r which satisfies r ≤ M

β log n.

The upper bound on the radius r in terms of 1/β ensures that we can remove the
dependence on β of the mixing time in Theorem 1 (caused by a loose bound on the mixing
time on the tree, see Lemma 9 below). For the disordered phase, we have

▶ Theorem 6. For all integer ∆ ≥ 5, for all q sufficiently large and any β ≤ βc, w.h.p.
over G ∼ Gn,∆, G has WSM within the disordered phase at a radius r which satisfies
r ≤ 1

3 log∆−1 n.

2.3 Second ingredient: Local mixing on tree-like neighbourhoods
We first define a local version of RC dynamics where we perform only updates in a small ball
around a vertex. Here, we need to consider the extreme boundary conditions that all vertices
outside of the ball belong in distinct components (“free boundary”) and where they belong
to the same component (“wired boundary”); we will refer to these two chains as the free
and wired RC dynamics, respectively. For the random regular graph, these “local-mixing”
considerations are strongly connnected to the ∆-regular tree.

APPROX/RANDOM 2023



64:6 Sampling from the Random Cluster Model via Glauber Dynamics

Formally, given a graph G = (V, E) and a subset U ⊆ V , let G[U ] be the induced subgraph
of G on U . The tree-excess of a connected graph G is given by |E| − |V | + 1. For a vertex
v in G and integer r ≥ 0, let Br(v) denote the set of vertices at distance at most r from v

and Sr(v) those at distance exactly r from v. For K > 0, a max-degree ∆ graph G is locally
K-treelike if for every v ∈ V and r ≤ 1

3 log∆−1 |V |, the graph G[Br(v)] has tree excess ≤ K.

▶ Lemma 7 (see, e.g., [16, Lemma 5.8]). For any integer ∆ ≥ 3, there is K > 0 such that
w.h.p. G ∼ Gn,∆ is locally K-treelike.

For a graph G, a vertex ρ in G and an integer r ≥ 1, the free RC dynamics on Br(ρ) is
the RC dynamics where all edges outside of Br(ρ) are conditioned to be out and only edges
of G with both endpoints in Br(ρ) are updated.

▶ Lemma 8 ([4, Lemma 6.5]). Let ∆ ≥ 3 be an integer, and q, K > 1, β > 0 be reals. There
exists C > 0 such that the following holds for any ∆-regular graph G and integer r ≥ 1.

Suppose that ρ ∈ V is such that G[Br(ρ)] is K-treelike. Then, with n = |Br(ρ)|, the
mixing time of the free RC dynamics on Br(ρ) is ≤ Cn log n.

To define the wired RC dynamics, for a graph G, a vertex ρ in G and an integer r ≥ 1,
let H be the graph obtained by removing all vertices and edges outside of Br(ρ), and adding
a new vertex v∞ connected to all vertices in Sr(ρ). The wired RC dynamics on Br(ρ) is the
RC dynamics on H where the edges adjacent to v∞ are conditioned to be in and only edges
of G with both endpoints in Br(ρ) are updated. Denote by π̂Br(ρ) the stationary distribution
of the wired RC dynamics. Note that when the graph outside of Br(ρ) is connected, π̂Br(ρ)
induces the same distribution as πB+

r (ρ).5

▶ Lemma 9. Let ∆ ≥ 3 be an integer, and q, K > 1, β > 0 be reals. There exists Ĉ > 0
such that the following holds for every ∆-regular graph G = (V, E) and any integer r ≥ 1.

Suppose that ρ ∈ V is such that G[Br(ρ)] is K-treelike. Then, with n = |Br(ρ)|, the
mixing time of the wired RC dynamics on Br(ρ) is ≤ Ĉn3(q4eβ)∆r.

▶ Remark 10. For integer q > 1, the mixing time bound in Lemma 9 can be improved to
O(n log n) using results of [2], see Appendix A.2. in the full version [14] for details.

2.4 Proof of Theorem 1
In this section, we will prove the β > βc part of Theorem 1, given below as Theorem 11
for convenience. The proof of the β < βc part of Theorem 1 is in Appendix A of the full
version [14].

▶ Theorem 11. Let ∆ ≥ 5 be an integer. Then, for all sufficiently large q, there exists
C = C(q, ∆) such that the following holds w.h.p. for G ∼ Gn,∆. For β > βc, the mixing time
of the RC dynamics starting from all-in is O(nC). For integer q, the mixing time is in fact
O(n log n).

Proof of Theorem 11 (Theorem 1(b)). The argument resembles that of [16], a bit of care
is required to combine the pieces. Consider G = (V, E) ∼ Gn,∆ with n = |V | and m = |E|.
Let q be sufficiently large so that both Lemma 3 and Theorem 5 apply; assume also that
Lemma 7 applies so that G is locally K-treelike.

5 More precisely, the weight of a configuration F : E(Br(ρ)) → {0, 1} in π̂Br(ρ) is proportional to
qĉ(F)(eβ − 1)|F| where ĉ(F) denotes the number of components in the graph (Br(ρ), In(F )) that do
not include any of the vertices in Sr(ρ) (since all of these belong to the same component in the wired
dynamics and hence contribute just a single extra factor of q).
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Consider arbitrary β > βc and set β0 := log(q1.9/∆ + 1). Since βc = (1 + oq(1)) 2 log q
∆ ,

we have that β ≥ β0 for all sufficiently large q. By Lemma 3, a graph G = (V, E) ∼ Gn,∆
satisfies w.h.p.

∥∥πG − πord
G

∥∥
TV = e−Ω(n) and πord

G

(
| In(F)| ≤ (1−ζ)|E|

)
= e−Ω(n). Moreover,

by Theorem 5, G has WSM within the ordered phase at radius r for some r ≤ M
β log n,

where M = M(∆) > 0 is a constant independent of β. Note that by taking q large, we can
ensure that β0 and hence β are at least M so that r ≤ 1

3 log∆−1 n. Theorem 11 will follow by
showing that the mixing time is bounded by T = O(n2+log W ), where W = ∆2M/β0eM∆(∆+1)

is independent of q, β; for integer q we will show the stronger upper bound T̃ = O(n log n).
Consider the RC dynamics (Xt)t≥0 with X0 being the all-in configuration on the edges.

Consider also the “ordered” RC dynamics X̂t with X̂0 ∼ πord
G where we reject moves that

lead to configurations outside of Ωord; note that X̂t ∼ πord
G for all t ≥ 0. For t ≥ 0, let Et be

the event that In(X̂t) ≥ (1 − ζ)|E| and let E<t :=
⋂

t′=0,...,t−1 Et′ . From Lemma 3 we have
that πord

G (Et) ≥ 1 − e−Ω(n) and hence by a union bound πord
G (E<t) ≥ 1 − te−Ω(n) as well.

We couple the evolution of Xt and X̂t using the monotone coupling, i.e., at every step
of the two chains choose the same edge et to update and use the same uniform number
Ut ∈ [0, 1] to decide whether to include et in each of Xt+1, X̂t+1. Using the monotonicity
of the model for q ≥ 1 (and in particular that p > p̂), under the monotone coupling, for all
t ≥ 0 such that E<t holds (and hence no reject move has happened in X̂t so far), we have
that X̂t ≤ Xt (i.e., In(X̂t) ⊆ In(Xt)). To complete the proof, it therefore suffices to show
that

Pr(XT ̸= X̂T ) ≤ 1/4. (3)

Consider an arbitrary time t ≥ 0. By a union bound, we have that

Pr
(
Xt ̸= X̂t

)
≤

∑
e

Pr
(
Xt(e) ̸= X̂t(e)

)
≤ m Pr

(
E<t

)
+

∑
e

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
. (4)

Fix an arbitrary edge e incident to some vertex v, and let (Xv
t ) be the wired RC dynamics on

G[Br(v)]. We couple the evolution of (Xv
t ) with that of (Xt) and (X̂t) using the monotone

coupling analogously to above, where in Xv
t we ignore updates of edges outside the ball

G[Br(v)]). We have Xv
t ≥ Xt for all t ≥ 0, and hence, conditioned on E<t, we have that

Xv
t ≥ Xt ≥ X̂t. It follows that

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
= Pr(Xt(e) = 1 | E<t) − Pr(X̂t(e) = 1 | E<t)

≤ | Pr(Xv
t (e) = 1 | E<t) − Pr(X̂t(e) = 1 | E<t)|.

For any two events A, B, we have | Pr(A) − Pr(A | B)| ≤ 2 Pr(B), so using this for B = E<t

and A the events {Xv
t (e) = 1}, {X̂t(e) = 1}, the triangle inequality gives

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
≤ 4 Pr

(
E<t

)
+ | Pr(Xv

t (e) = 1) − Pr(X̂t(e) = 1)|

Note that Pr(X̂t(e) = 1) = πord
G (e 7→ 1), so another application of triangle inequality gives

Pr
(
Xt(e) ̸= X̂t(e) | E<t

)
≤ 4 Pr

(
E<t

)
+

∣∣ Pr(Xv
t (e) = 1) − πB+

r (v)(e 7→ 1)
∣∣

+
∣∣πB+

r (v)(e 7→ 1) − πord
G (e 7→ 1)

∣∣. (5)

Since G has WSM within the ordered phase at radius r, we have that∣∣πB+
r (v)(e 7→ 1) − πord

G (e 7→ 1)
∣∣ ≤ 1/(100m). (6)

APPROX/RANDOM 2023



64:8 Sampling from the Random Cluster Model via Glauber Dynamics

Moreover, let Tv be the mixing time of the wired RC dynamics on G[Br(v)] and let Nv =
|E(Br(v))| ≤ ∆r+1. Since r ≤ 1

3 log∆−1 n, G[Br(v)] is K-treelike, so from Lemma 9, with
Ĉ = O(1) denoting the constant there (and absorbing a couple of factors of ∆ into it),

Tv ≤ Ĉ(Nv)3(q4eβ)∆r ≤ ĈNv∆2rq4∆reβ∆r = ĈNv

(
∆2M/βq4∆M/βeM∆

)log n

≤ ĈNvW log n,

where in the last inequality we used that β > β0, β0 > 1
∆ log q and W = ∆2M/β0eM∆(∆+1).

For T = Θ(n2+log W ), we have T ≥ 40Tv
m
Nv

log m, so by Chernoff bounds, with probability
1 − exp(−nΩ(1)), we have at least 10Tv log m updates inside Br(v) among t = 1, . . . , T . For
integer k ≥ 1 the distance from stationarity after kTv steps is at most (1/4)k, we obtain∣∣ Pr(Xv

T (e) = 1) − πB+
r (v)(e 7→ 1)

∣∣ ≤ exp(−nΩ(1)) + e−4 log m ≤ 1/m3. (7)

Plugging (6) and (7) into (5) for t = T , and then back into (4), we obtain using Pr(E<T ) ≤
T e−Ω(n) that Pr(XT ̸= X̂T ) ≤ 5mT e−Ω(n) + m/m3 + 1/100 ≤ 1/4, as needed.

For integer q, to get the improved mixing time bound O(n log n) in Theorem 11 the
reasoning is similar. The main difference is that for integer q, we have that for any vertex v

the mixing time Tv is bounded by Tv = O(Nv log Nv) (cf. Remark 10), and therefore the
above argument yields a mixing time upper bound of O(n(log n)2). With a bit more care,
for T̃ = Θ(n log n), we show in Appendix A.3 in the full version [14] using a log-Sobolev
inequality that∣∣ Pr(Xv

T̃
(e) = 1) − πB+

r (v)(e 7→ 1)
∣∣ ≤ 1/m3, (8)

which analogously to above yields Pr(XT̃ ̸= X̂T̃ ) ≤ 1/4, and hence the desired mixing time
bound of O(n log n) for integer q. ◀

▶ Remark 12. All the ingredients to show the coupling of the RC dynamics starting from
all-in with πord

G (i.e., (3)) work even at criticality, i.e., for β = βc; a similar observation
applies at β = βc for πdis

G when starting the RC dynamics from all-out. The difference at
criticality is that πG is a mixture of πord

G and πdis
G , i.e., to obtain a sample for πG, one should

output a sample for πord
G with some probability Q and otherwise a sample from πdis

G . The
value of Q can be computed in time Õ(n2) by approximating the corresponding partition
functions, by using, e.g., the algorithms in [22, 8] (or even the RC dynamics itself). See also
[22, Theorems 2 & 3] for precise results characterising the distribution of Q; it is shown for
example that Q converges to 1/(q + 1) as q grows large.

3 Proof outline of the WSM within the ordered phase

3.1 Locally tree-like expanders
Analogously to [22], we work a bit more generally with ∆-regular expanders, which are also
tree-like. The expansion profile of an n-vertex graph G = (V, E) for ε > 0 is given by

ϕG(ε) := min
S⊆V ; 0<|S|≤εn

|E(S, V \S)|
∆|S|

.

Then the classes G∆,δ and G∆,δ,K are as follows.

▶ Definition 13. Let ∆ ≥ 5 be an integer, and δ ∈ (0, 1/2), K > 0 be reals. G∆,δ is the class
of ∆-regular graphs such that ϕG(1/2) ≥ 1/10 and ϕG(δ) ≥ 5/9. G∆,δ,K is the class of all
locally K-treelike graphs G ∈ G∆,δ.
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We use the following lemma.

▶ Lemma 14 ([22, Proposition 37]). Fix ∆ ≥ 5. There is a constant δ ∈ (0, 1/2) such that
w.h.p. a uniformly random ∆-regular graph belongs to G∆,δ.

Lemma 14 and Lemma 7 show that there is also a positive integer K such that, w.h.p,
G ∈ G∆,δ,K . Next we state an important property of expanders from [26].

▶ Lemma 15 ([26, Lemma 2.3]). Let G = (V, E) be a regular graph and consider E′ ⊆ E

with |E′| ≤ θ|E| for some θ ∈ (0, ϕG(1/2)). Then (V, E\E′) has a component of size at least(
1 − θ

2ϕG(1/2)
)
|V |.

We use Lemma 15 to establish the existence of a giant component.

▶ Definition 16. The size of a component of a graph is the number of vertices in the
component. A giant component in an n-vertex graph is a component whose size is greater
than n/2. Given a graph G = (V, E) and a subset F ⊆ E, G[F ] denotes the graph (V, F ).

▶ Definition 17. Fix ∆ ≥ 5. Fix δ ∈ (0, 1/2) satisfying Lemma 14. Let η = min(δ/5, 1/100).

▶ Corollary 18. Fix integers ∆ ≥ 5 and K ≥ 0 and a real number δ ∈ (0, 1/2). Let G

be a graph in G∆,δ,K and let F be a configuration in Ωord or a partial configuration with
| In(F)| ≥ (1 − η)|E|. Then there is a giant component in G[In(F)] whose size is at least
(1 − δ)|V |.

Proof. Apply Lemma 15 with E′ = Out(F) and θ = η = min(δ/5, 1/100). Note | Out(F)| ≤
η|E| and ϕG(1/2) ≥ 1/10. Thus the lemma say that G[In(F)] has a component of size at
least

(
1 − δ/5

2·1/10

)
|V | = (1 − δ)|V | > |V |/2. ◀

3.2 Sketch of proof of Theorem 5
Let ∆ ≥ 5 be an integer. Consider any sufficiently large q and any β ≥ βc. For sufficiently
large n, choose a “radius” r ≈ 1

β log n and let G = (V, E) ∼ Gn,∆. Fix a vertex v ∈ V

and an edge e incident to v. We wish to show, with sufficiently high probability, that
∥πB+

r (v)(e 7→ ·) − πord
G (e 7→ ·)∥TV ≤ 1/(100|E|).

Our goal is essentially to construct a coupling of F+ ∼ πB+
r (v) and Ford ∼ πord, such

that Pr(F+(e) ̸= Ford(e)) is sufficiently small. In order to construct the coupling, we take
advantage of the fact that G[Br(v)] is locally tree-like. In fact, we identify a suitable subgraph
of G[Br(v)] without cycles and restrict the coupling to this subgraph.

Consider a breadth-first search from v in G[Br(v)]. Let T0 be the rooted tree consisting
of all forward edges in this breadth-first search. All other edges in Br(v) are called “excess
edges”. W.h.p., since G ∼ Gn,∆, there are at most K excess edges in Br(v) for some absolute
constant K > 0. In particular, since G is locally tree-like, we can identify integers r1 and
r2 satisfying r ≥ r1 > r2 ≥ 0 such that E(Br1(v)) \ E(Br2(v)) contains no excess edges and
r1 − r2 ≥ r/(2K) = Ω(r). The fact that r1 − r2 = Ω(r) ensures that Br1(v) \ Br2(v) is a
sufficiently large subgraph of G, and the coupling focuses on this subgraph.

In order to describe the coupling process we need a small amount of notation. A partial
configuration F is a map from the edges of G to the set {0, 1, ∗}. In-edges and out-edges
(those that are mapped to 1 or to 0) are “revealed” and edges that are mapped to ∗ are
“unrevealed”. A refinement of a partial configuration is obtained by revealing more edges.
We use F ⊆ F ′ to denote the fact that F ′ refines F .

APPROX/RANDOM 2023
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In the coupling, we generate a sequence of edge subsets F0 ⊆ F1 ⊆ · · · ⊆ E such that,
after iteration i, the edges in Fi are revealed. We also construct two sequences of partial
configurations F+

0 ⊆ F+
1 ⊆ · · · ⊆ F+ and Ford

0 ⊆ Ford
1 ⊆ · · · ⊆ Ford, maintaining the

invariant that the revealed edges in Ford
i and F+

i are exactly the edges in Fi. The coupling
will have the crucial property that Ford ∼ πord and F+ ∼ πB+

r1 (v)

The process starts with iteration i = 0. The initial set F0 of revealed edges is all edges
except those in E(Br1(v)). In Ford

0 these revealed edges are sampled from the projection
πord

F0
of πord onto F0. It is likely that the configuration Ford

0 has at least (1 − η)|E|
in-edges. If not, then the coupling terminates (unsuccessfully), generating Ford and
F+ from the right distributions. We will show that the probability of this unsuccessful
termination is low. On the other hand, if Ford

0 has a least (1 − η)|E| in-edges, then we
are off to a good start. All configurations refining Ford

0 are in Ωord, so the projection
of π and πord onto subsequent edges that get revealed are the same (making it easier to
continue the coupling). At this point F+

0 is taken to be the configuration with revealed
edges F0 where all revealed edges are in-edges.
After iteration i = 0, iterations continue with i = 1, 2, . . . until an edge is revealed whose
distance from v is at most r2 or until the in-edges in Ford

i induce a giant component,
and this giant component contains all vertices on the boundary of Fi. We will show that
it is very unlikely that an edge at distance at most r2 from v is reached. So it is likely
the giant component in Ford

i contains all vertices on the boundary of Fi. This is a good
situation because the conditional distribution of π, conditioned on refining Ford

i and the
conditional distribution of F+, conditioned on refining F+

i induce the same distribution
on edges incident to v, which enables us to show that Pr(F+(e) ̸= Ford(e)) is sufficiently
small.
The process at iteration i + 1 is as follows. Wi is taken to be the set of all vertices on the
boundary of Fi whose components (induced by the in-edges in Ford

i ) are all small. By
“boundary” we mean that vertices in Wi are adjacent to revealed edges, and to unrevealed
edges. If Wi is empty, then the coupling finishes. Otherwise, a vertex wi ∈ Wi is chosen
to be as far from v as possible. The edges in the subtree of T0 below the parent of wi are
revealed in Fi+1.

The main remaining ingredient in the proof is showing that the unsuccessful terminations
of the coupling are unlikely. To do this, we use the polymer framework of [22]. (Ordered)
polymers are defined using an inductive definition. For a set of edges A ⊆ E, let B0(A) = A,
and inductively for j = 0, 1, 2, . . . define Bj+1(A) to be the set of all edges such that they
are either in Bj(A) or edges that are incident to a vertex that has at least 5∆/9 incident
edges in Bj(A). Let B∞(A) =

⋃
j∈N Bj(A). An ordered polymer of a configuration F is a

connected component of B∞(Out(F)). The bulk of the work is to prove the following lemma,
which is repeated in the appendix of the full version [14] (with more detail) as Lemma 44.

▶ Lemma 19. Fix ∆ ≥ 5 and K, M > 0. Suppose that β ≥ 3M . Suppose that n is sufficiently
large so that r := M

β log∆−1 n > K and |Br(v)| ≤ 9∆n/200. Define r1 as above. Let Ford

and F+ be generated by the process. Then at least one of the following conditions holds.
1. Ford and F+ agree on the edges that are incident to v.
2. | In(Ford) \ E(Br1(v))| < (1 − η)|E|.
3. Ford contains a polymer of size at least r

400∆(1+K) − 1.

To complete the proof of Theorem 5, we show that items 2 and 3 are unlikely. The proof
that item 2 is unlikely, Lemma 45 in the full version [14], follows from the slack specified
in Equation (2) of Lemma 3. The proof that item 3 is unlikely, Lemma 29 in the full
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version [14], follows from an analysis on the size of polymers by adapting appropriately the
cluster expansion techniques of [22] (a bit of extra work is needed there to capture the 1/β

dependence in the size of the polymer, see [14, Lemma 29] for details).
The proof of WSM for the disordered phase (Theorem 6) follows a similar strategy, the

details are given in Appendix D of the full version [14].
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