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Abstract
We investigate algorithms for testing whether an image is connected. Given a proximity parameter
ϵ ∈ (0, 1) and query access to a black-and-white image represented by an n × n matrix of Boolean
pixel values, a (1-sided error) connectedness tester accepts if the image is connected and rejects
with probability at least 2/3 if the image is ϵ-far from connected. We show that connectedness can
be tested nonadaptively with O( 1

ϵ2 ) queries and adaptively with O( 1
ϵ3/2

√
log 1

ϵ
) queries. The best

connectedness tester to date, by Berman, Raskhodnikova, and Yaroslavtsev (STOC 2014) had query
complexity O( 1

ϵ2 log 1
ϵ
) and was adaptive. We also prove that every nonadaptive, 1-sided error tester

for connectedness must make Ω( 1
ϵ

log 1
ϵ
) queries.
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1 Introduction

Connectedness is one of the most fundamental properties of images [16]. In the context of
property testing, it was first studied two decades ago [18], but the query complexity of this
property is still unresolved. We improve the algorithms for testing this property and also
give the first lower bound on the query complexity of this task.

We focus on black-and-white images. For simplicity, we only consider square images, but
everything in this paper can be easily generalized to rectangular images. We represent an
image by an n × n binary matrix M of pixel values, where 0 denotes white and 1 denotes
black. To define connectedness, we consider the image graph GM of an image M . The vertices
of GM are {(i, j) | M [i, j] = 1}, and two vertices (i, j) and (i′, j′) are connected by an edge
if |i − i′| + |j − j′| = 1. In other words, the image graph consists of black pixels connected by
the grid lines. The image is connected if its image graph is connected.

We study connectedness in the property testing model [20, 11], first considered in the
context of images in [18]. A (1-sided error) property tester for connectedness gets query
access to the input matrix M . Given a proximity parameter ϵ ∈ (0, 1), the tester has to
accept if M is connected and reject with probability at least 2/3 if M is ϵ-far from connected.
An image is ϵ-far from connected if at least an ϵ fraction of pixels have to be changed to
make it connected. The tester is nonadaptive if it makes all its queries before receiving any
answers; otherwise, it is adaptive.
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66:2 Testing Connectedness of Images

In [18], it was shown that connectedness can be tested adaptively with O( 1
ϵ2 log2 1

ϵ )
queries. The adaptive complexity of testing connectedness was later improved to O( 1

ϵ2 log 1
ϵ )

in [8].

1.1 Our Results
1.1.1 Connectedness Testers
We give two new algorithms for testing connectedness of images: one adaptive, one nonadapt-
ive. Both improve on the best connectedness tester to date in terms of query complexity.
Previously, no nonadaptive testers for connectedness were proposed.

▶ Theorem 1.1. Given a proximity parameter ϵ ∈ (0, 1), connectedness of n × n images,
where n > ϵ−2 · 256, can be ϵ-tested adaptively and with 1-sided error with query and time
complexity O( 1

ϵ3/2

√
log 1

ϵ ).
It can be tested nonadaptively and with 1-sided error with query and time complexity

O( 1
ϵ2 ).

Previous algorithms for testing connectedness of images are modeled on the connectedness
tester for bounded-degree graphs by Goldreich and Ron [12]: they pick a uniformly random
pixel and adaptively try to find a small connected component by querying its neighbors.
As discussed in [18], even though connectedness of an image is defined in terms of the
connectedness of the corresponding (degree-4) image graph, these two properties are different
because of how the distance is defined. In the bounded-degree graph model, the (absolute)
distance between graphs is the number of edges that need to be changed to transform one
graph into the other. In contrast, the (absolute) distance between two image graphs is the
number of pixels (vertices) on which they differ; in other words, the edge structure of the
image graph is fixed, and only vertices can be added or removed to transform one graph into
another. However, previous connectedness testers in the image model did not take advantage
of the differences.

Figure 1 An image M . Figure 2 The same image with a grid.

As our starting point, we use an idea from [7] that gave an algorithm for approximating
the (relative) distance to the nearest connected image with additive error ϵ with query O( 1

ϵ4 )
and running time exp

(
O
( 1

ϵ

))
. They observed that one can modify an image in a small

number of pixels by drawing a grid on the image (as shown in Figures 1 and 2). In the
resulting image, the distance to connectedness is determined by the properties of individual
squares into which the grid lines partition the image.
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Our algorithms consider different partitions of the grid (a logarithmic number of partitions
in 1

ϵ ). For each partition, they sample random squares and try to check whether the squares
satisfy the following property called border-connectedness.

▶ Definition 1.2 (Border connectedness). A (sub)image s is border-connected if for every
black pixel (i, j) of s, the image graph Gs contains a path from (i, j) to a pixel on the border of
s. The property border connectedness, denoted C ′, is the set of all border-connected images.

Our nonadaptive algorithm reads all pixels in each sampled square. Our adaptive algorithm
further partitions each square into diamonds, as shown in Figure 4. It queries all pixels on
the diamond lattice and then adaptively tries to catch a witness (that is, a small connected
component) in one of the diamonds, using the lattice structure. (We could have partitioned
into squares again, but partitioning into diamonds makes the proof cleaner and saves a
constant factor in the analysis.)

1.1.2 The Lower Bound
We also prove the first nontrivial lower bound for testing connectedness of images. Note
that all nontrivial properties have query complexity Ω(1/ϵ), even for adaptive testers. In
particular, for connectedness, this is the number of queries needed to distinguish between the
white image and an image, where we color black a random subset of size ϵn2 of the set of
pixels with both coordinates divisible by 3. By standard arguments, it implies a lower bound
of Ω(1/ϵ). Some properties of images, such is being a halfplane, can be tested nonadaptively
(with 1-sided error) with O(1/ϵ) queries [5]. We show that it is impossible for connectedness.

▶ Theorem 1.3. Every nonadaptive (1-sided error) ϵ-tester for connectedness of images
must query Ω( 1

ϵ log 1
ϵ ) pixels (for some family of images).

Every 1-sided error tester must catch a witness of disconnectedness in order to reject.
This witness could include a connected component completely surrounded by white pixels.
The difficulty for proving hardness is that, unlike in the case of finding a witness for
disconnectedness of graphs, the algorithm does not have to read the whole connected
component. Instead, it is sufficient to find a closed white loop with a black pixel inside it
(and another black pixel outside it). As we discussed, it is sufficient for an algorithm to look
for witnesses inside relatively small squares (specifically, squares with side length O(1/ϵ)),
since adding a grid around such squares, as shown in Figure 2, would change O(ϵn2) pixels.
But no matter how you had a witness inside such a square, it can be easily captured with
O(1/ϵ) queries if the border of the square is white.

To overcome this difficulty, we consider a checkerboard-like pattern with white squares
replaced by many parallel lines, called bridges, with one white (disconnecting) pixel positioned
randomly on each bridge. See Figure 5. To catch a white border around a connected
component, a tester has to query all disconnecting pixels of at least one square. To make
this difficult, we hide the checkerboard pattern inside a randomly positioned interesting
window. The sizes of interesting windows and their positions are selected so that the tester
cannot effectively reuse queries needed to succeed in catching the disconnecting pixels in
each interesting window.

1.2 Other Related Work
In addition to [12], connectedness testing and approximating the number of connected
components in graphs in sublinear time was explored in [9, 8, 4]. Other property testing
tasks studied in the pixel model of images, the model considered in this paper, include

APPROX/RANDOM 2023



66:4 Testing Connectedness of Images

testing whether an image is a half-plane [18], convexity [18, 6, 5], and image partitioning
properties [13]. Early implementations and applications to vision were provided in [13, 14,
15, 17]. Finally, general classes of matrix properties were investigated, including matrix-poset
properties [10], earthmover resilient properties [2], hereditary properties [1], and classes of
matrices that are free of specified patterns [3].

Testing connectedness has also been studied by Ron and Tsur [19] with a different input
representation suitable for testing sparse images.

2 Definitions and Notation

We use [0..n) to denote the set of integers {0, 1, . . . , n − 1} and [n] to denote {1, 2, . . . , n}.

2.1 Image Representation
We represent an image by an n × n binary matrix M of pixel values, where 0 denotes white
and 1 denotes black. The object is a subset of [0..n)2 corresponding to black pixels; namely,
{(i, j) | M [i, j] = 1}. The border of the image is the set {(i, j) ∈ [0..n)2 | i ∈ {0, n − 1} or j ∈
{0, n − 1}}.

2.2 Property Testing Definitions
A property P is a set of images. The set of connected images is denoted C. The absolute
distance from an image M to a property P, denoted Dist(M, P), is the smallest number of
pixels in M that need to be modified to get an image in P. The (relative) distance between
an n × n image M and a property P is dist(M, P) = Dist(M, P)/n2. We say that M is ϵ-far
from P if dist(M, P) ≥ ϵ; otherwise, M is ϵ-close to P.

3 Adaptive and Nonadaptive Property Testers for Connectedness

In this section, we present our testers for connectedness, proving Theorem 1.1. Both testers
use the same top-level procedure, described in Algorithm 1. First, it samples random pixels
to ensure that a black pixel is found. It will be used later to certify non-connectedness
by producing a black pixel and an isolated black component. Then Algorithm 1 considers
a logarithmic number of partitions of the image into subimages of the same size. For
each partition, it samples a carefully selected number of these subimages and tests them
for border connectedness (see Definition 1.2). This is where the two algorithms diverge.
The nonadaptive algorithm tests for border connectedness using the subroutine Exhaustive-
Square-Tester which queries all pixels in the sampled square and determines exactly if the
square is border connected. The adaptive algorithm uses subroutine Diagonal-Square-Tester
(Algorithm 2). If the top-level procedure finds a subimage that violates border connectedness
and a black pixel outside that subimage, it rejects; otherwise, it accepts.

To simplify the analysis of the algorithm, we assume1 that n − 1 and 1/ϵ are powers of 2.
Next, we define terminology used to describe the partitions considered by Algorithm 1.

1 This assumption can be made w.l.o.g. because if n ∈ (2i−1 + 1, 2i + 1) for some i , instead of the original
image M we can consider a (2i + 1) × (2i + 1) image M ′, which is equal to M on the corresponding
coordinates and has white pixels everywhere else. Let ϵ′ = ϵn2/(2i + 1)2. To ϵ-test M for connectedness,
it suffices to ϵ′-test M ′ for connectedness. The resulting tester for M has the desired query complexity
because ϵ′ = Θ(ϵ). If ϵ ∈ (1/2j , 1/2j−1) for some j, to ϵ-test a property P, it suffices to run an ϵ′′-test
for P with ϵ′′ = 1/2j < ϵ.
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Figure 3 An illustration to Definition 3.1: black lines consist of grid pixels; the 16 yellow ki × ki

squares represent squares of Si. One of the squares includes diagonal lattice pixels from Definition 3.6
that are used in Algorithm 2.

▶ Definition 3.1 (Grid pixels, squares of different levels, witnesses). For i ∈ [0..log 1
ϵ ), let

ki = 4
ϵ ·2−i −1. Call (x, y) a grid pixel of level i if (ki +1)|x or (ki +1)|y. For all coordinates

u, v, which are divisible by ki + 1, the ki × ki subimage that consists of pixels [ki]2 + (u, v) is
called a square of level i. The set of all squares of level i is denoted Si. Boundary pixels of a
square of level i are the pixels of the square which are adjacent to the grid pixels of level i. A
square of any level that violates property C ′ (see Definition 1.2) is called a witness.

Algorithm 1 ϵ-tester for connectedness.

input : parameter ϵ ∈ (0, 1) ; access to a n × n binary matrix M .

1 Query 4
ϵ pixels uniformly at random with replacement.

2 For i = 0 to log 1
ϵ

(a) Sample 2i+3 uniformly random squares of level i (see Definition 3.1) with replacement.
(b) For every sampled square s from Step 2a, let [ki]2 + (u, v) be the set of its pixels.

Run the border-connectedness subroutine with inputs i, u, v: if the tester is nonadaptive,
use Exhaustive-Square-Tester ; otherwise use Diagonal-Square-Tester (Algorithm 2).
If the subroutine rejects and Step 1 detected a black pixel outside s, reject.

3 Accept.

3.1 Effective Local Cost and the Structural Lemma
In this section, we prove our main structural lemma (Lemma 3.5) used in the analysis of
Algorithm 1. It relates the distance to connectedness to the properties of individual squares,
defined next.

▶ Definition 3.2 (Local cost and effective local cost). For a level i, consider a square
s ∈ Si. The local cost of s is lc(s) = Dist(s, C ′). The effective local cost of s is elc(s) =
min(2ki, lc(s)).

Next we state and prove two claims used in the proof of Lemma 3.5.

APPROX/RANDOM 2023
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▷ Claim 3.3. For any square s of level i ∈ [0..log 1
ϵ − 1), let ch(s) denote the set of its 4

children (i.e., squares of level i + 1 inside it). Then lc(s) ≤ elc(s) +
∑

q∈ch(s) lc(q).

Proof. If lc(s) ≤ 2ki then elc(s) = lc(s). Since all costs are nonnegative, the inequality in
Claim 3.3 becomes trivial.

Now assume that lc(s) > 2ki. Then elc(s) = 2ki. We can modify
∑

q∈ch(s) lc(q) pixels
in s so that all its children satisfy the property C ′. (Note that here C ′ is the set of ki × ki

(sub)images.) Then we can make black all pixels of s that partition it into its children, i.e.,
pixels {(x, y) | x = ki+1

2 or y = ki+1
2 }. There are at most 2ki such pixels, and after this

modification s will satisfy C ′. Hence, lc(s) ≤ elc(s) +
∑

q∈ch(s) lc(q). ◁

▷ Claim 3.4 (Distance to Border Connectedness). Let s be a k × k image. Then

Dist(s, C ′) ≤ k2

4 .

Proof. If s contains at most k2

4 black pixels, we can make all of them white, i.e., modify at
most k2

4 pixels and obtain an image that satisfies C ′. Now consider an image s with more
than k2

4 black pixels, i.e., with less than 3k2

4 white pixels. Partition all pixels of s into 3
groups such that group i ∈ {0, 1, 2} contains all pixels (x, y), where y ≡ i (mod 3). Making
all pixels of one group black produces an image that satisfies C ′. By averaging, at least one
group has less than k2

4 white pixels. Making all these white pixels black results in an image
that satisfies C ′. This completes the proof. ◁

▶ Lemma 3.5 (Structural Lemma). Let M be an n × n image that is ϵ-far from C. Then the
sum of effective local costs of all squares of all levels inside M is at least ϵn2

2 .

Proof. To obtain a connected image, we can make all the ϵn2

2 grid pixels of level 0 black and
modify pixels inside every square of S0 to ensure it satisfies the property C ′. Thus,

∑
s∈S0

lc(s) ≥ Dist(M, C) − ϵn2

2 ≥ ϵn2

2 .

Consequently, it suffices to show that
∑log 1

ϵ −1
i=0

∑
s∈Si

elc(s) ≥
∑

s∈S0
lc(s).

Let s be a square of level i. We use desc(s, j) to denote the set of all squares of level
j ≥ i inside s. (In particular, desc(s, i) contains only s.) We will prove by induction that for
any integer j ∈ [i, log 1

ϵ − 1),

lc(s) ≤
j∑

h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,j+1)
lc(q). (1)

For j = i (base case), the inequality in (1) holds since it is equivalent to the statement in
Claim 3.3. Assume that (1) holds for j = m, that is,

lc(s) ≤
m∑

h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,m+1)
lc(q).

We will prove (1) holds for j = m + 1. By Claim 3.3,

lc(q) ≤ elc(q) +
∑

f∈ch(q)
lc(f).
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Thus,∑
q∈desc(s,m+1)

lc(q) ≤
∑

q∈desc(s,m+1)
elc(q) +

∑
q∈desc(s,m+2)

lc(q)

and

lc(s) ≤
m∑

h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,m+1)
lc(q)

≤
m+1∑
h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,m+2)
lc(q),

completing the inductive argument.
By (1) applied with j = log 1

ϵ − 2, we get that for every square s of level i,

lc(s) ≤
log 1

ϵ −2∑
h=i

∑
q∈desc(s,h)

elc(q) +
∑

q∈desc(s,log 1
ϵ −1)

lc(q)

=
log 1

ϵ −1∑
h=i

∑
q∈desc(s,h)

elc(q), (2)

where the final equality holds because in every square of level i = log 1
ϵ − 1, we have ki = 7,

and consequently, by Claim 3.4, the local cost is at most 72

4 < 2 · 7, i.e., it is equal to the
effective local cost of that square.

Summing up (2) for all squares in S0, we get∑
s∈S0

lc(s) ≤
∑

s∈S0

∑log 1
ϵ −1

h=i

∑
q∈desc(s,h)

elc(q) =
∑log 1

ϵ −1

h=i

∑
s∈Si

elc(s),

where the last equality is obtained by switching the order of summations and rearranging
the second summation in terms of levels. ◀

3.2 Testing Border-Connectedness
In this section, we state and analyze our adaptive border connectedness subroutine after
defining the concepts used in it. We state the guarantees of both border connectedness
subroutines in Lemma 3.7.

For the adaptive subroutine, we partition the square into diamonds and fences surrounding
them, as described in Definition 3.6. The subroutine queries all pixels on the fences and
categorizes diamonds into those whose black pixels are potentially connected to the border
(set B in Algorithm 2) and those whose black pixels are definitely not (set A in Algorithm 2).
Then it tries to find a black pixel in a diamond from set A or (using BFS) an isolated black
component in diamonds from set B. Observe that either of the two provides evidence that
the square is not border-connected.

▶ Definition 3.6 (Diagonal lattice pixels, diamonds and fences). For a fixed value of i, consider
a square s in Si. Let mi be the largest odd integer less than or equal to ⌈

√
ki/ log ki⌉.

Diagonal lattice pixels of the square is the set of pixels L = {(x, y) ∈ s | mi|(x + y) or
mi|(x − y)}. Let D be a ki × ki image whose pixels with coordinates from [ki]2 − L are black
and the remaining pixels are white. A set of pixels of the square whose corresponding pixels
in D form a connected component is called a diamond of the square. A set of all diagonal
lattice pixels that have some neighbouring pixel(s) from a particular diamond is called the
fence of that diamond.

APPROX/RANDOM 2023
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Figure 4 An example of execution of Algorithm 2. Black lines represent lattice pixels. The blue
diamonds are included in B because they are adjacent to the border of the square. The purple dots
represent black pixels in the lattice. The green diamonds are added to B during the BFS because
their fences contain black pixels. The white diamonds remain in A.

Note that lattice pixels are not part of any diamond. Moreover, some diamonds are partial
(those that have pixels from the border of the square.)

Algorithm 2 Border-connectedness subroutine Diagonal-Square-Tester.

input : parameters i, u and v; access to an n × n matrix M .

Let s be a square of level i that consists of pixels [ki]2 + (u, v) and mi be the largest odd
integer less than or equal to ⌈

√
ki/ log ki⌉.

1 Query all the diagonal lattice pixels of s (see Definition 3.6).
2 Initialize B to be the set of all diamonds of s that contain a border pixel of s. Initialize

A to be the set of the remaining diamonds of s.

3 While ∃d1 ∈ B and ∃d2 ∈ A such that d1 and d2 have a black pixel in the common
portion of their fences, move d2 from A to B.

4 Query kimi pixels in s uniformly at random with replacement.
(a) If a black pixel from a diamond in A or its fence is discovered, reject.
(b) If a black pixel from a diamond in B is discovered, pick a natural number x ∈ [k2

i ] from
the distribution with the probability mass function f(j) = 1

j(j+1) for all j ∈ [k2
i − 1]

and f(j) = 1
j for j = k2

i . (Observe that Pr(x ≥ j) = 1
j for all j ∈ [k2

i ].) Starting from
the black pixel, perform a BFS of its connected component. If the search halted after
discovering at most x black pixels, none of which are on the border of s, reject. Else (if
x + 1 black pixels were found for this component or a black pixel on the border of
square s is reached) stop the search and proceed with the remaining queried pixels.

5 Accept.

Recall from Definition 3.1 that a witness is a square of one of the levels that violates
border-connectedness.

▶ Lemma 3.7. Fix level i ∈ [0..log 1
ϵ ). Let s ∈ Si be a witness that consists of pixels

[ki]2 + (u, v). A border-connectedness subroutine of Algorithm 1 rejects s with probability
at least elc(s)·α

2ki
, where α = 1 for Exhaustive-Square-Tester and α = 1 − e−1 for Diagonal-

Square-Tester.

Proof. Exhaustive-Square-Tester determines that s is a witness with probability 1 ≥ elc(s)
2ki

· 1.
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Now we prove the statement for Diagonal-Square-Tester. Let A and B be defined as in
Algorithm 2 after Step 3. Let a be the number of black pixels in all the diamonds of the
set A and on the fences of those diamonds. Let b be the number of connected components
of the image graph that are formed by black pixels in all the diamonds in the set B and in
their fences and that contain no pixels on the border of s.

Next, we prove that

bmi + a ≥ lc(s) ≥ elc(s). (3)

We claim that we can connect all b connected components to each other and to the border
of the square by modifying at most bmi pixels. To see this, notice that any two black pixels
in the same diamond can be connected to each other by changing less than mi pixels (by
taking any Manhattan-distance shortest path between the two pixels and making it all black).
To prove the claim, we can connect the b connected components to the border of the square
in the order their diamonds were added to B by the algorithm. The initial diamonds placed
in B have at least one pixel on the border of the square, so their connected components
can be directly connected to the border (using at most mi pixels per connected component).
Now assume that we already connected to the border all components that have pixels in the
diamonds added to B so far. When the algorithm moves some diamond d2 from A to B, it
is done because there is already a diamond d1 in B such that d1 and d2 have a black pixel β

in the common portion of their fences. Then β must be already connected to the border. If
there are any connected components in d2 that are not connected to the border yet, we can
fix that by connecting them to β (using at most mi pixels per connected component). We
proceed like this until all b connected components of the diamonds that were added to B by
the algorithm are connected to the border of the square. At this point, we have changed at
most bmi pixels.

Recall that we have a black pixels in all the diamonds of the set A and on the fences of
those diamonds. We make all of them white. After these at most bmi + a modifications, the
square s satisfies C ′. Thus, Equation (3) holds.

Observe that for x ∈ [0, 1],

x ≥ 1 − e−x ≥ x(1 − e−1) > x/2. (4)

By (4), the probability that a specific pixel from s is selected by Algorithm 2 in Item b is

1 − (1 − 1/k2
i )kimi ≥ 1 − e

− kimi
k2

i >
mi

2ki
.

Consider one of the b connected components defined above. Let p be the number of pixels in
it. Diagonal-Square-Tester finds this component completely if in Step 4b of the subroutine,
one of the p pixels from the component is selected and x ≥ p is chosen. This happens with
probability at least 1

p · mi

2ki
· p = mi

2ki
. The subroutine determines that s is a witness if it finds

one of the b connected components or one of the a black pixels considered above. Thus, by
(3) and (4), the probability that Algorithm 2 determines that square s is a witness is at least

1 −
(

1 − mi

2ki

)a+b

≥ 1 − e
− mi(a+b)

2ki ≥ 1 − e
− bmi+a

2ki ≥ 1 − e
− elc(s)

2ki ≥ elc(s)(1 − e−1)
2ki

,

completing the proof of Lemma 3.7. ◀

APPROX/RANDOM 2023
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3.3 Proof of Theorem 1.1
In this section, we use Lemmas 3.5 and 3.7 to complete the analysis of our connectedness
tester and the proof of Theorem 1.1.

Algorithm 1 always accepts connected images, since it sees no violation of C ′ in Step 2b.
Consider an image M that is ϵ-far from connectedness. For every i ∈ [0..log 1

ϵ ), there are
n2

k2
i

squares in Si. Let Wi be the set of all witnesses in Si. Let s be a square in Wi. The
probability that Algorithm 1 chooses s in Step 2a is

1 −
(

1 − k2
i

n2

)2i+3

≥ 1 − e
k2

i
·2i+3

n2 >
k2

i · 2i+2

n2 ,

where the inequalities follow from (4). By Lemma 3.7, the probability that the algorithm
rejects s after choosing it is at least α · elc(s)/2ki. Thus, the probability that the algorithm
samples s in Step 2a and then rejects in Step 2b is at least

2i+2ki · α · elc(s)
2n2 ≥ 6α · elc(s)

ϵn2 .

Thus, the probability that Algorithm 1 does not catch s ∈ Wi as a witness is at most
1 − 6α·elc(s)

ϵn2 ≤ e− 6α·elc(s)
ϵn2 . The probability that the algorithm does not catch any witness of

Wi is at most

Pi = e
− 6α

ϵn2 ·
∑

s∈Wi
elc(s)

.

Observe that elc(s) = 0, for s ∈ Si − Wi. Thus, by Lemma 3.5,

∑
s∈Wi

elc(s) =
∑
s∈Si

elc(s) ≥ ϵn2

2 .

By a union bound over all levels, the probability that Algorithm 1 fails to catch any witness
is at most∑

i∈{0}∪[log(1/ϵ)]
Pi ≤ e− 6α

ϵn2 · ϵn2
2 = e−3α.

Therefore, the probability that the algorithm detects at least one witness is at least 1 − e−3α.
Since at least an ϵ fraction of pixels in M are black and every square of every level contains
at most 16

ϵ2 < ϵn2

2 pixels, the probability that Algorithm 1 detects a black pixel outside of
that witness in Step 1 is at least 1 − (1 − ϵ

2 ) 4
ϵ > 1 − e−2. Thus, for both values of α, the

probability that Algorithm 1 rejects M is at least

(1 − e−2)(1 − e−3α) ≥ 2/3.

3.3.1 Query Complexity
We prove that Algorithm 1 has query complexity O( 1

ϵ2 ) if it uses Exhaustive-Square-Tester
as a subroutine. Algorithm 1 samples 2i+1 squares of level i ∈ {0} ∪ [log 1

ϵ ] and, for each
sampled square, it calls Exhaustive-Square-Tester which makes ( 4

ϵ ·2−i −1)( 4
ϵ ·2−i −1) < 16

ϵ222i

queries in each sampled square of level i. Thus, the query complexity of Algorithm 1 is∑log 1
ϵ

i=0
2i+1 · 16

ϵ222i
<
∑log 1

ϵ

i=0

32
ϵ22i

= O

(
1
ϵ2

)
.
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When Algorithm 1 uses Diagonal-Square-Tester, it queries at most 2k2
i

mi
diagonal lattice pixels

inside each square of level i (in Step 1 of the subroutine). After that, in Step 4 of the subroutine,
it selects kimi pixels and a number x ∈ [k2

i ] from the specified distribution and then makes at
most 4x queries for each selected pixel. Observe that E(x) = O(log ki). Thus, the expected
number of queries inside a square of level i is at most 2k2

i

mi
+kimi ·4·O(log ki) = O(k3/2

i

√
log ki).

The expected total number of queries is
∑log(1/ϵ)

i=0 O(k3/2
i

√
log ki) · 2i+1 = O(ϵ−3/2

√
log 1

ϵ ).
By standard arguments, the adaptive version of Algorithm 1 can be converted to an

algorithm that makes asymptotically the same number of queries in the worst case, and has
the same accuracy guarantee and running time.

3.3.2 Running Time

The time complexity of Step 1a and Step 2 of Algorithm 1 is O( 1
ϵ ). Therefore, the total time

complexity of Algorithm 1 is O( 1
ϵ )+time complexity of Step 1b. In Step 1b, Algorithm 1

uses either Exhaustive-Square-Tester or Diagonal-Square-Tester. Both of them perform a
breadth first search within each sampled square. Breadth first search is linear in the sum of
the number of edges and the number of nodes of the graph. Every pixel of a sampled square
has at most 4 neighboring pixels. Thus, the number of edges in the image graph of every
sampled square is linear in the number of pixels inside it and the time complexity of Step 1b
is linear in the number of all queried pixels, i.e., O( 1

ϵ2 ) for Exhaustive-Square-Tester and
O(ϵ−3/2

√
log(1/ϵ)) for Diagonal-Square-Tester. This completes the proof of the theorem.

4 Lower Bound for Testing Connectedness

In this section, we give a lower bound on the query complexity of testing connectedness,
proving Theorem 1.3. We use the standard set up of constructing a distribution N on ϵ-far
inputs such that every deterministic nonadaptive algorithm that makes q ≤ c

ϵ log 1
ϵ queries

(for some constant c) has probability of error greater than 1/3. By Yao’s Principle [21], it is
sufficient to prove Theorem 1.3.

4.1 Construction of N

Figure 5 Our construction of N : an interesting window together with a column of black pixels
immediately to the right of it. All other pixels in the constructed image are white.
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The construction is parameterized by n and the proximity parameter ϵ. It gives a
distribution supported on (n + 1) × (n + 1) images that are ϵ-far from connectedness. We
assume that ϵ is sufficiently small and that n > 1

16 ( 1
ϵ )5/8. We also assume that n is a power

of 2 and 1/ϵ is an even power of 2 and that both of them are sufficiently large, so that all
indices in our construction are integer. (See also Footnote 1 for the discussion of integrality
issues.) Our construction starts by selecting a level. The indices of the levels range from
the low index ℓ = 1

8 log 1
ϵ to the high index h = 1

4 log 1
ϵ . For all i ∈ {ℓ, ℓ + 1, . . . , h}, define

ai = 2i and ni = 16 ·
√

ϵ · n · ai =
√

ϵ · n · 2i+4. First, we pick a uniformly random integer
i ∈ {ℓ, ℓ + 1, . . . , h}. Consider the n × n image resulting from removing the last row and
the last column of the (n + 1) × (n + 1) image. We partition this n × n image into ( n

ni
)2

squares with side length ni called windows of level i; that is, each window of level i is an
ni × ni subimage. We pick one of the windows of level i uniformly at random and call it
an interesting window. We make the ni pixels immediately to the right of the interesting
window black, representing a vertical black line segment, and all other pixels outside of the
interesting window white.

Now we describe how to color the interesting window. See Figure 5 for an illustration. We
fill the interesting window with a checkerboard pattern of squares of size ai × ai pixels. Inside
each white checkerboard square that is not in the first column, number the rows starting
from 0 and make every odd row, excluding the last, fully black, except for one randomly
selected pixel for each row. The resulting ai

2 − 1 black lines, each containing one white pixel,
are called bridges. The white pixels on the bridges are called disconnecting pixels. We refer
to each checkerboard square with the bridges as a bridge square.

The intuition behind the construction is the following. Each black checkerboard square
is in its own connected component. However, to “catch” this connected component as a
witness of disconnectedness, a tester would have to query all the disconnecting pixels in the
bridge squares to the left and/or to the right of the black square. Since the positions of
the disconnecting pixels are random, it would have to query Ω(a2

i ) pixels in at least one
relevant bridge square. Since the windows are selected at random, the algorithm would
have to do it for many windows of each level. The key feature of our construction is that
interesting windows of different levels are either disjoint or contained in one another, so
potential witnesses for one window can’t significantly help with another.

4.2 Analysis of the Construction
We start by showing that all images in the support of N are far from connected.

▶ Lemma 4.1. Every image in the support of N is ϵ-far from connected.

Proof. There are (ni/ai)2

2 = 128ϵn2 black regions, each one in a separate connected component
except for the last ni/ai

2 = 8
√

ϵ · n which are connected by the vertical line. Thus, the image
graph has at least 128 · ϵn2 − 8

√
ϵ · n connected components. Changing one pixel from white

to black corresponds to adding a node of degree at most 4 to the image graph. This decreases
the number of connected components by at most 3. Removing a pixel decreases the number
of connected components by at most 1. Consequently, overall, we need to change at least
1
3 (128ϵn2 − 8

√
ϵ · n) pixels. This is at least ϵn2 for sufficiently large n; in particular, it holds

for n > 1
16 ( 1

ϵ )5/8, which was our assumption in the beginning of Section 4.1. ◀

Next we show that if the number of queried pixels is small, then every 1-sided error determ-
inistic algorithm detects a violation of connectedness in an image distributed according to N
with insufficiently small probability.
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▶ Lemma 4.2. Let M be an image distributed according to N . Fix a deterministic nonadaptive
1-sided error algorithm A for testing connectedness of images. Let Q be the set of pixels
queried by A and let q = |Q|. For sufficiently small constant c > 0, if q ≤ c

ϵ log 1
ϵ , then A

detects a violation of connectedness in M with probability less than 1/3.

Proof. We define an event E that must happen in order for the algorithm A to succeed in
finding a witness of disconnectedness in an image distributed according to N . Then we show
that the probability of E is too small. To define E, we define a special group of pixels.

▶ Definition 4.3 (A revealing set and event E). Let M be an image distributed according
to N . The set of all disconnecting pixels from one bridge square of M is called a revealing
set for the window containing the bridge square. Let E denote the event that Q contains a
revealing set for the interesting window of M .

Since the tester A has 1-sided error, it can reject only if it finds a violation of connectedness.
In particular, for an image distributed according to N , in order to succeed, it must find a
revealing set for the interesting window of the image.

▷ Claim 4.4. If the number of queries q ≤ c
ϵ log 1

ϵ for sufficiently small constant c, then
Pr[E] < 1/3.

Proof. An important feature of our construction is that the largest bridge square is smaller
than the smallest window. Indeed, the side length of the largest bridge square is ah = ( 1

ϵ )1/4,
whereas the side length of the smallest window is nℓ = 16

√
ϵ · ( 1

ϵ )1/8n = 16ϵ3/8n. Thus,
ah < nℓ as long as n > 1

16 ( 1
ϵ )5/8, as we assumed in the beginning of Section 4.1. The

consequence of this feature and the fact that both ai’s and ni’s are powers of 2 is that each
bridge square of level i is contained in one window of level j for all levels i and j.

A (potential) bridge square of level i ∈ {ℓ, ℓ + 1, . . . , h} is covered if Q contains at least
a2

i /8 pixels from that square. A window of level i is good if it contains a covered bridge
square of level j ≥ i; otherwise, it is bad. For each good window w, we pick a covered bridge
square of the highest level contained in w and call it the covered bridge square associated
with w. All windows of the same level are associated with different covered bridge squares,
because each bridge square is contained in exactly one window of a given level.

Let G be the event that the interesting window in M is good. Then, by the law of total
probability,

Pr[E] = Pr[E | G] · Pr[G] + Pr[E | G] · Pr[G] ≤ Pr[G] + Pr[E | G].

Next, we analyze event G. For every level i ∈ {ℓ, ℓ + 1, . . . , h}, let gi be the number of good
windows of level i associated with covered bridge squares of level i and let ti be the total
number of good windows of level i. Then gh = th and gi = ti − ti+1 for all i ∈ [ℓ, h − 1].
Observe that, for each level i ∈ [ℓ, h], the covered bridge squares associated with the good
windows of level i are distinct. By definition, each of them contributes at least a2

i /8 towards
Q. Therefore, the number of all pixels in Q satisfies

q ≥
h∑

i=ℓ

a2
i gi

8 = 1
8

(
h−1∑
i=ℓ

a2
i (ti − ti+1) + a2

hth

)
= 1

8

(
h−1∑
i=ℓ

4i(ti − ti+1) + 4hth

)

≥ 3
32

h∑
i=ℓ

(4iti). (5)
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Recall that q ≤ c
ϵ log 1

ϵ , that the total number of levels is h − ℓ + 1 = Θ(log 1
ϵ ), and that the

number of all windows for each level i is ( n
ni

)2 = Θ( 1
4iϵ ). Thus,

Pr[G] = 1
h − ℓ + 1

h∑
i=ℓ

ti

(n/ni)2 = 1
Θ(log( 1

ϵ ))

h∑
i=ℓ

(ti · Θ(4iϵ)) = 1
Θ( 1

ϵ log( 1
ϵ ))

h∑
i=ℓ

(4iti)

<
q

Θ( 1
ϵ log( 1

ϵ ))
< 1/6,

where Equation (5) was used to obtain the first inequality, and the last inequality holds for
sufficiently small constant c.

It remains to analyze Pr[E | G], that is, the probability of E, given that the interesting
window is bad. Consider a bad window of level i ∈ {ℓ, . . . , h}. It has at most q bridge squares
that contain a queried pixel. Consider one of such bridge squares. Recall that this bridge
square has ai/2 − 1 bridges. Number these bridges using integers 1, 2, . . . , ai/2 − 1. Let xk

denote the number of pixels of Q on the bridge number k ∈ [ai/2 − 1] of the bridge square.
Then the probability that this bridge square has a revealing set for the window is

ai/2−1∏
k=1

xk

ai
≤

 1
ai/2 − 1 ·

ai/2−1∑
k=1

xk

ai

ai/2−1

≤
(

ai/8
ai/2 − 1

)ai/2−1
≤
(

1
2

)ai/2−1

≤ 2(
√

2)− 8
√

1
ϵ ,

where the first inequality follows from the inequality between geometric and arithmetic
means, the second inequality holds since

∑ai/2
k=1 xk < a2

i /8, and the third inequality holds
since ϵ is sufficiently small and, consequently, we can assume that the minimum value of ai

is at least 4. By a union bound over all bridge squares in this window that contain a query,

Pr[E | G] ≤ 2(
√

2)− 8
√

1
ϵ · q ≤ 2(

√
2)− 8

√
1
ϵ · c

ϵ
· log 1

ϵ
<

1
6 ,

for sufficiently small ϵ and constant c.
Thus, Pr[E] ≤ Pr[G] + Pr[E | G] < 1

6 + 1
6 = 1

3 , as claimed. This completes the proof of
Claim 4.4. ◁

This concludes the proof of Lemma 4.2. ◀

Theorem 1.3 follows from Lemma 4.2.
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