
Approximation Algorithms for Directed Weighted
Spanners
Elena Grigorescu # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Nithish Kumar #

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Young-San Lin1 #Ñ

Melbourne Business School, Australia

Abstract
In the pairwise weighted spanner problem, the input consists of a weighted directed graph on n

vertices, where each edge is assigned both a cost and a length. Furthermore, we are given k terminal
vertex pairs and a distance constraint for each pair. The goal is to find a minimum-cost subgraph in
which the distance constraints are satisfied.

We study the weighted spanner problem, in which the edges have positive integral lengths of
magnitudes that are polynomial in n, while the costs are arbitrary non-negative rational numbers.
Our results include the following in the classical offline setting:

An Õ(n4/5+ε)-approximation algorithm for the weighted pairwise spanner problem. When the
edges have unit costs and lengths, the best previous algorithm gives an Õ(n3/5+ε)-approximation,
due to Chlamtáč, Dinitz, Kortsarz, and Laekhanukit (Transactions on Algorithms, 2020).
An Õ(n1/2+ε)-approximation algorithm for the weighted spanner problem when the terminal
pairs consist of all vertex pairs and the distances must be preserved exactly. When the edges
have unit costs and arbitrary positive lengths, the best previous algorithm gives an Õ(n1/2)-
approximation for the all-pair spanner problem, due to Berman, Bhattacharyya, Makarychev,
Raskhodnikova, and Yaroslavtsev (Information and Computation, 2013).

We also prove the first results for the weighted spanners in the online setting. Our results include
the following:

An Õ(k1/2+ε)-competitive algorithm for the online weighted pairwise spanner problem. The
state-of-the-art results are an Õ(n4/5)-competitive algorithm when edges have unit costs and
arbitrary positive lengths, and a min{Õ(k1/2+ε), Õ(n2/3+ε)}-competitive algorithm when edges
have unit costs and lengths, due to Grigorescu, Lin, and Quanrud (APPROX, 2021).
An Õ(kε)-competitive algorithm for the online weighted single-source (or single-sink) spanner
problem. Without distance constraints, this problem is equivalent to the online directed Steiner
tree problem. The best previous algorithm for online directed Steiner trees is an Õ(kε)-competitive
algorithm, due to Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP, 2018).

Our online results also imply efficient approximation algorithms for the corresponding offline problems.
To the best of our knowledge, these are the first approximation (online) polynomial-time algorithms
with sublinear approximation (competitive) ratios for the weighted spanner problems.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Routing and network design problems; Theory of computation → Rounding techniques

Keywords and phrases directed weighted spanners, linear programming, junction tree

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2023.8

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2307.02774 [32]

1 Corresponding author.

© Elena Grigorescu, Nithish Kumar, and Young-San Lin;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2023).
Editors: Nicole Megow and Adam D. Smith; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:elena-g@purdue.edu
https://www.cs.purdue.edu/homes/egrigore/
https://orcid.org/0000-0001-9673-4313
mailto:kumar410@purdue.edu
mailto:y.lin@mbs.edu
https://mbs.edu/faculty-and-research/faculty/young-san-lin
https://orcid.org/0000-0002-5719-6708
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.8
https://arxiv.org/abs/2307.02774
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Approximation Algorithms for Directed Weighted Spanners

Funding Elena Grigorescu: Supported in part by NSF CCF-1910659, NSF CCF-1910411, and NSF
CCF-2228814.
Nithish Kumar : Supported in part by NSF CCF-1910411 and NSF CCF-2228814.

Acknowledgements We thank several anonymous reviewers for their valuable comments and sugges-
tions that improved the quality of the writeup.

1 Introduction

We study a multi-commodity problem in directed graphs, which we call the pairwise weighted
spanner problem. In this problem, we are given a directed simple graph G = (V, E) with n

vertices, and a set of k terminal pairs D ⊆ V × V . Each edge e ∈ E is associated with a cost
given by the function c : E → R≥0 and a length given by the function ℓ : E → R≥0. We say
that the graph has unit lengths if ℓ(e) = 1 (respectively, unit costs if c(e) = 1) for all e ∈ E.
Each pair (s, t) ∈ D is associated with a target distance given by a function Dist : D → R≥0.
Let H = (V (H), E(H)) be a subgraph of G and dH(s, t) denote the distance from s to t

in H, i.e., the total length of a shortest s ; t path of edges in E(H). The cost of H is∑
e∈E(H) c(e). The goal is to find a minimum-cost subgraph H of G such that the distance

from s to t is at most Dist(s, t), namely, dH(s, t) ≤ Dist(s, t) for each (s, t) ∈ D.
The pairwise weighted spanner problem captures many network connectivity problems

and is motivated by common scenarios, such as constructing an electricity or an internet
network, which requires not only cost minimization but also a delivery time tolerance for
the demands. Each edge is thus associated with two “weights” in this setting: the cost
and the delivery time. This general formulation has been studied under many variants:
when the edges have general lengths and unit costs, one may ask for sparse subgraphs that
exactly maintain pairwise distances, i.e., distance preservers, or for sparse subgraphs that
approximately maintain pairwise distances, i.e., spanners; when the edges have general costs
and unit lengths, one may ask for cheap subgraphs that maintain pairwise connectivity, i.e.,
Steiner forests. Spanners and distance preservers are well-studied objects, which have found
applicability in domains such as distributed computation [7,49], data structures [4,55], routing
schemes [20, 47, 50, 52], approximate shorthest paths [8, 24, 25], distance oracles [8, 17, 48],
and property testing [6, 11]. Similarly, Steiner forests have been studied in the context
of multicommodity network design [30, 34], mechanism design and games [16, 42, 43, 53],
computational biology [40,51], and computational geometry [9, 13].

A slightly more special case of the pairwise weighted spanner problem was originally
proposed by Kortsarz [44] and Elkin and Peleg [27], where it was called the weighted s-spanner
problem. The precise goal in [27,44] is to find a minimum-cost subgraph that connects all the
pairs of vertices in G, and each Dist(s, t) = s · dG(s, t) for some integer s called the stretch of
the spanner. The work of [27] presents a comprehensive list of inapproximability results for
different variants of sparse s-spanners. Even in the special case where edges have unit costs
(i.e., the directed s-spanner problem defined below), the problem is hard to approximate
within a factor of O(2log1−ε n) unless NP ⊆ DTIME(npolylog n).

In the case when the edges have unit costs, the weighted s-spanner problem is called
the directed s-spanner problem. For low-stretch spanners, when s = 2, there is a tight
Θ(log n)-approximate algorithm [26,44]; with unit lengths and costs, when s = 3, 4, there are
Õ(n1/3)-approximation algorithms [10,23]. For s > 4 with general lengths, the best known
approximation is Õ(n1/2) [10].

The pairwise spanner problem considers graphs with unit edge costs, D can be any subset
of V ×V , and the target distances are general. The state-of-the-art is Õ(n4/5)-approximate for
general lengths [33] and min{Õ(k1/2+ε), Õ(n3/5+ε)}-approximation for unit lengths [19,33].

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:3

When the target distances are infinite and the edges have unit lengths, the pairwise
weighted spanner problem captures the directed Steiner forest problem. For the directed
Steiner forest problem, there is an min{Õ(k1/2+ε), Õ(n2/3+ε)}-approximate algorithm for
general costs [10,18] and an Õ(n4/7)-approximate algorithm for unit costs [1].

1.1 Our contributions
1.1.1 Pairwise weighted spanners
To the best of our knowledge, none of the variants studied in the literature gives efficient
sublinear-factor approximation algorithms for the pairwise weighted spanner problem, even
in the case of unit edge length. Our main result for pairwise weighted spanners is stated as
follows and proved in Section 2.

▶ Definition 1 (Pairwise Weighted Spanner).
Instance: A directed graph G = (V, E) with n vertices and edge costs c : E → Q≥0,

edge lengths ℓ : E → {1, 2, 3, ..., poly(n)}, and a set D ⊆ V × V of vertex pairs and their
corresponding pairwise distance bounds Dist : D → Q≥0 (where Dist(s, t) ≥ dG(s, t)) for
every terminal pair (s, t) ∈ D.

Objective: Find a min-cost subgraph H of G such that dH(s, t) ≤ Dist(s, t) for all
(s, t) ∈ D.

▶ Theorem 2. For any constant ε > 0, there is a polynomial-time randomized algorithm
for Pairwise Weighted Spanner with approximation ratio Õ(n4/5+ε), which succeeds in
resolving all pairs in D with high probability.2

The Pairwise Weighted Spanner problem is equivalent to the problem of finding a
minimum-cost Steiner forest under pairwise distance constraints, and hence our result is
the first polynomial-time o(n)-approximate algorithm for the directed Steiner forests with
distance constraints. This problem is hard to approximate within a factor of O(2log1−ε n)
unless NP ⊆ DTIME(npolylog n) even for the special case when all vertex pairs are required
to be connected and the stretch s ≥ 5 [44].

1.1.2 All-pair weighted distance preservers
When the target distances are the distances in the given graph G, the spanner problem
captures the distance preserver problem. When edges have unit costs, there exists a distance
preserver of cost O(n) if the number of the source vertices is O(n1/3) [12]. When edges have
unit costs and lengths, the state-of-the-art result is Õ(n3/5+ε)-approximate [19]. We consider
the case where the terminal set consists of all vertex pairs and the subgraph is required
to preserve the distances of all vertex pairs. This problem is called All-pair Weighted
Distance Preserver. We prove the following in Section 3.

▶ Definition 3 (All-pair Weighted Distance Preserver).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}.
Objective: Find a min-cost subgraph H of G such that dH(s, t) = dG(s, t), for all

(s, t) ∈ V × V .

2 Throughout our discussion, when we say high probability we mean probability at least 1− 1/n.

APPROX/RANDOM 2023

8:4 Approximation Algorithms for Directed Weighted Spanners

▶ Theorem 4. For any constant ε > 0, there is a polynomial-time randomized algorithm for
All-pair Weighted Distance Preserver with approximation ratio Õ(n1/2+ε), which
succeeds in resolving all pairs in V × V with high probability.

Beside distance preservers, there are other previous special-case results for the all-pair
weighted spanner problem. When edges have unit costs, the state-of-the-art is an Õ(n1/2)-
approximation algorithm [10]. When there are no distance constraints, this problem is
termed the minimum strongly connected subgraph problem and is equivalent to the all-pair
Steiner forest problem. This problem is NP -hard and does not admit a polynomial-time
approximation scheme if NP ̸= P [39]. The best algorithm is a 3/2-approximation [54].

1.1.3 Online weighted spanners
Next, we turn to online weighted spanners. In the online problem, the directed graph, the
edge lengths, and the edge costs are given offline. The vertex pairs and the corresponding
target distances arrive one at a time, in an online fashion, at each time stamp. The algorithm
must irrevocably select edges at each time stamp and the goal is to minimize the cost, subject
to the target distance constraints. We call this problem the Online Pairwise Weighted
Spanner problem. For notation convenience, the vertex pair (si, ti) denotes the i-th pair
that arrives online.

▶ Definition 5 (Online Pairwise Weighted Spanner).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}, and vertex pairs D = {(si, ti) ∈ V × V | i ∈ [k]} (k is
unknown) with their corresponding pairwise distance bounds Dist(si, ti) ∈ Q≥0 (where
Dist(si, ti) ≥ dG(si, ti)) arrive online one at a time.

Objective: Upon the arrival of (si, ti) with Dist(si, ti), construct a min-cost subgraph H

of G such that dH(si, ti) ≤ Dist(si, ti) by irrevocably adding edges from E.

The performance of an online algorithm is measured by its competitive ratio, namely the
ratio between the cost of the online solution and that of an optimal offline solution. With
unit edge costs, the best algorithm is Õ(n4/5)-competitive; with unit edge costs and lengths,
the state-of-the-art is min{Õ(k1/2+ε), Õ(n2/3+ε)}-competitive [33]. Our result for Online
Pairwise Weighted Spanner is stated as follows and proved in Section 4.

▶ Theorem 6. For any constant ε > 0, there is a polynomial-time randomized online
algorithm for Online Pairwise Weighted Spanner with competitive ratio Õ(k1/2+ε),
which succeeds in resolving all pairs in D with high probability.

In a special case of Pairwise Weighted Spanner where the source vertex s ∈ V is fixed,
we call this problem Single-source Weighted Spanner. Without distance constraints,
this problem is equivalent to the directed Steiner tree problem.3 The best algorithm for the
directed Steiner tree problem is O(kε)-approximate [15].

▶ Definition 7 (Single-source Weighted Spanner).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths

ℓ : E → {1, 2, 3, ..., poly(n)}, and a set D ⊆ {s} × V of vertex pairs and their corresponding
pairwise distance bounds Dist : D → Q≥0 (where Dist(s, t) ≥ dG(s, t)) for every terminal
pair (s, t) ∈ D).

Objective: Find a min-cost subgraph H of G such that dH(s, t) ≤ Dist(s, t) for all
(s, t) ∈ D.

3 Throughout the paper, the term without distance constraints means that the target distances are infinity.
This is equivalent to the connectivity problem.

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:5

When D ⊆ {s}×V , a single-source weighted spanner connects s to the sinks. We say that
s is the root of the single-source weighted spanner and the single-source weighted spanner is
rooted at s. The definition for a single-sink weighted spanner where the terminal pairs share
the same sink is defined similarly.

The online version of Single-source Weighted Spanner is termed Online Single-
source Weighted Spanner. For notation convenience, the vertex pair (s, ti) denotes the
i-th pair that arrives online.

▶ Definition 8 (Online Single-source Weighted Spanner).
Instance: A directed graph G = (V, E) with edge costs c : E → Q≥0, edge lengths ℓ :

E → {1, 2, 3, ..., poly(n)}, and vertex pairs D = {(s, ti) | ti ∈ V, i ∈ [k]} (k is unknown) with
their corresponding pairwise distance bounds Dist(s, ti) ∈ Q≥0 (where Dist(s, ti) ≥ dG(s, ti))
arrive online one at a time.

Objective: Upon the arrival of (s, ti) with Dist(s, ti), construct a min-cost subgraph H

of G such that dH(s, ti) ≤ Dist(s, ti) by irrevocably selecting edges from E.

The state-of-the-art result for online directed Steiner trees is Õ(kε)-competitive implied
by a more general online buy-at-bulk network design framework [14]. Our result is stated as
follows and proved in Section 4.

▶ Theorem 9. For any constant ε > 0, there is a polynomial-time randomized online
algorithm for Online Single-source Weighted Spanner with approximation ratio Õ(kε),
which succeeds in resolving all pairs in D with high probability.

Our online framework essentially generalizes the online Steiner forest problem by allowing
distance constraints when edge lengths are positive integers of magnitude poly(n). We
note that the online algorithms also imply efficient algorithms for the corresponding offline
problems with the same approximation ratios.

1.1.4 Summary
We summarize our main results for weighted spanners in Table 1 by listing the approximation
(competitive) ratios and contrast them with the corresponding known approximation (com-
petitive) ratios. We note that offline Õ(k1/2+ε)-approximate Pairwise Weighted Spanner
and offline Õ(kε)-approximate Single-source Weighted Spanner can be obtained by
our online algorithms.

1.2 High-level technical overview
Most of the literature on approximation algorithms for offline spanner problems [10,11,19,
21, 28, 33] partition the terminal pairs into two types: thin or thick. A pair (s, t) ∈ D is
thin if the graph Gs,t induced by feasible s ; t paths has a small number of vertices, and
thick otherwise. To connect each thick terminal pair (s, t), it is sufficient to sample vertices
from the graph G to hit Gs,t, and then add shortest-path in-and-out-arborescences rooted at
the sampled vertices. To connect each thin terminal pair (s, t), one uses a flow-based linear
program (LP) and then rounds the solution.

1.2.1 Pairwise Weighted Spanners
For this problem, the goal is to approximately minimize the total cost while maintaining
the required distances between terminal pairs, so it turns out that the approach for directed
Steiner forests [10, 28] is more amenable to this formulation. The approach for directed

APPROX/RANDOM 2023

8:6 Approximation Algorithms for Directed Weighted Spanners

Table 1 Summary of the approximation and competitive ratios. Here, n refers to the number
of vertices and k refers to the number of terminal pairs. All edge lengths are positive integers in
poly(n) and all edge costs are non-negative rational numbers. We note that Pairwise Weighted
Spanner without distance constraints is equivalent to the directed Steiner forest problem. The
all-pair weighted spanner problem without distance constraints is equivalent to the all-pair Steiner
forest problem or the minimum strongly connected subgraph problem.

Problem Our Results Previous Results

Pairwise
Weighted
Spanner

Õ(n4/5+ε) (Thm 2)
Õ(k1/2+ε) (Thm 6)

Õ(n4/5) (unit edge costs) [33]
Õ(n3/5+ε) (unit edge costs and lengths) [19]
min{Õ(k1/2+ε), Õ(n2/3+ε)} (without distance constraints) [10,18]
Õ(n4/7+ε) (unit edge costs and lengths, without distance
constraints) [1]

All-pair
Weighted
Spanner

Õ(n1/2+ε) (distance
preservers, Thm 4)

Õ(n1/2) (unit edge costs) [10]
3/2 (without distance constraints) [54]

Online
Pairwise
Weighted
Spanner

Õ(k1/2+ε) (Thm 6)
Õ(n4/5) (unit edge costs) [33]
min{Õ(k1/2+ε), Õ(n2/3+ε)} (unit edge costs and lengths) [33]
Õ(k1/2+ε) (without distance constraints) [14]

Single-
Source
Weighted
Spanner

Õ(kε) (also holds
for online, Thm 9)

O(kε) (without distance constraints) [15]
Õ(kε) (online, without distance constraints) [14]

Steiner forests [10,28] is slightly different, namely, thick pairs are connected by adding cheap
paths that contain at least one sampled vertex. In the Steiner forest algorithms, there are
usually three cases for the terminal pairs: 1) pairs that are thick and have low-cost connecting
paths, 2) the majority of the remaining pairs have high-cost connecting paths, and 3) the
majority of the remaining pairs have low-cost connecting paths.

With distance constraints, we have to modify the analysis for all three cases. The actual
implementation of the strategy requires several new ideas and it significantly departs from
the analysis of [10,28] in several aspects, as we describe below.

In our first case, we cannot simply add cheap paths because they might violate the distance
requirement. Instead, we add feasible cheap paths that satisfy the distance requirements, in
order to connect the terminal pairs. For this purpose, we use the restricted shortest path
FPTAS from [37,45] as our subroutine.

The remaining two cases are resolved by using an iterative greedy algorithm based on
a density argument. In each iteration, the greedy algorithm constructs a partial solution
E′ ⊆ E with low density. We define the density of E′ to be the ratio of the total edge cost of
E′ to the number of pairs connected by E′. Iteratively adding low-density partial solutions
leads to a global solution of approximately minimum cost.

In the second case, [10,28] use the low-density junction trees (the union of an in-arboresence
and an out-arboresence rooted at the same vertex) from [18] in order to connect pairs
with high-cost paths. However, the junction tree approximation in [18] cannot handle the
distance constraints in our setting. Fortunately, with slight modifications, the junction tree
approximation from [19] can be made to handle our distance requirements.

In the third case, [10,28] formulate an LP where each edge has an indicator variable, then
round the LP solution, and argue that with high probability, one can obtain a low-density
partial solution that connects the terminal pairs with cheap paths. Two challenges arise

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:7

in our setting. First, the LP formulation is different from the one in [10, 28] because we
have to handle both distance and cost requirements. We resolve these constraints by using a
different separation oracle from the previous literature [37,45], namely we use the FPTAS for
the resource-constrained shortest path problem from [38] (see Section A.1 for more details).
Secondly, in order to round the LP solution, we can no longer use the analysis in [10]. This
is because the LP rounding scheme uses a union bound that depends on the number of the
minimal subset of edges whose removal disconnects the terminal pairs (i.e., anti-spanners).
Since we have to handle both lengths and costs in the LP constraints, we consider all possible
subsets of edges and this is sufficient to achieve the Õ(n4/5+ε)-approximation.

1.2.2 All-pair Weighted Distance Preservers
For this problem, the solution takes advantage of the requirement that we have to exactly
preserve the all-pair distances. It turns out that the strategy for the spanner problems
[10,11,19,21,33] is more amenable. Recall that terminal pairs are either thin or thick.

To settle thick terminal pairs, most of the previous work that considers graphs with unit
edge cost samples vertices from the graph G to hit Gs,t, and then adds shortest-path in-and-
out-arborescences rooted at the sampled vertices. Note that the cost of an in-arborescence or
an out-arborescence is always n−1. However, with edge costs, it is not clear how the cheapest
shortest-path in-and-out arborescences can be obtained. Instead, we add cheap single-source
and single-sink weighted distance preservers rooted at the sampled vertices. This approach
requires using the algorithm for Online Single-source Weighted Spanner described
in details in Section 4. The key observation is that the terminal pairs of any single-source
(single-sink) weighted distance preserver is a subset of all vertex pairs. This implies that any
approximately optimal single-source (single-sink) weighted distance preserver must be cheap
compared to the cost of the optimal all-pair weighted distance preserver.

The approach that settles the thin pairs closely follows the algorithm in [10], which rounds
a fractional solution of the LP for all-pair spanners. Different from Pairwise Weighted
Spanner, we only have to handle the lengths in the LP constraints, so the analysis follows [10]
and we can get a better approximation ratio. Ultimately, the costs for settling thick and
thin pairs are both at most an Õ(n1/2+ε) factor of the optimal solution.

1.2.3 Online Weighted Spanners
The main challenge for the online pairwise weighted spanner problem is that the standard
greedy approach, which iteratively extracts low-density greedy solutions partially connecting
terminal pairs, is no longer applicable. Another challenge is to handle the distance constraints
for the terminal pairs that arrive online. Fortunately, the online spanner framework from [33]
already adapts both the approach introduced in [14], which constructs a collection of junction
trees in an online fashion, and the approach of [19], which judiciously handles distance
constraints when edges have unit lengths. Our online results are obtained by extending the
framework of [33] from graphs with unit edge costs to general edge costs.

1.3 Organization
In Section 2, we present the Õ(n4/5+ε)-approximation algorithm for Pairwise Weighted
Spanner. In Section 3, we present the Õ(n1/2+ε)-approximation algorithm for All-pair
Weighted Distance Preserver. In Section 4, we present the Õ(k1/2+ε)-competitive
algorithm for Online Pairwise Weighted Spanner and the Õ(kε)-competitive algorithm
for Online Single-source Weighted Spanner. We refer the reader to Appendix A for a
detailed description of related work and Appendix C for the concluding remarks.

APPROX/RANDOM 2023

8:8 Approximation Algorithms for Directed Weighted Spanners

2 Pairwise Weighted Spanners

In this section, we prove Theorem 2. For ease of presentation, we assume that we have
a guess for the cost of the optimal solution - OPT for that instance as in [10, 28]. Let
τ denote the value of our guess. We set τ0 = mine∈E{c(e) | c(e) > 0}; then we carry
out multiple iterations of our overall procedure setting τ to be equal to an element in
{(τ0, 2 · τ0, 4 · τ0, . . . , 2i · τ, . . . ,

∑
e∈E c(e))} for those iterations. Finally, we take the cheapest

spanner from across all these iterations. Thus, it is sufficient to give the approximation
guarantee for the iteration when OPT ≤ τ ≤ 2 · OPT. We can obtain this guess in
O(log(

∑
e∈E c(e)/τ0)) iterations, which is polynomial in the input size.

We define some notions commonly used in the spanner and Steiner forest literature. Fix
some parameters β = n3/5 and L = τ/n4/5. We say that a path p(s, t) that connects a
specific terminal pair (s, t) is feasible if

∑
e∈p(s,t) ℓ(e) ≤ Dist(s, t). We say that p(s, t) is cheap

if the
∑

e∈p(s,t) c(e) ≤ L. We say that a terminal pair (s, t) ∈ D is thick if the local graph
Gs,t = (V s,t, Es,t) induced by the vertices on feasible s ; t paths of cost at most L has at
least n/β vertices; we say it is thin otherwise. We note that the definitions of thick and thin
pairs are slightly different from how they are defined in [10,28]. We say that a set E′ ⊆ E

settles (or resolves) a pair (s, t) ∈ D if the subgraph (V, E′) contains a feasible s ; t path.

2.1 Resolving thick pairs
Let S = {s | ∃t : (s, t) ∈ D} and T = {t | ∃s : (s, t) ∈ D}. We first settle the thick pairs
with high probability. We do this by sampling some vertices using Algorithm 1 and then
adding some incoming paths and outgoing paths from the samples to the vertices in S and T

respectively using Algorithm 2. We ensure that any path we build is both feasible and cheap
and we do that with the help of a black box for the Restricted Shortest Path problem.

Algorithm 1 Sample(G(V, E)).

1: R← ϕ, k ← 3β ln n.
2: Sample k vertices independently and uniformly at random and store them in the set R.
3: return R.

▷ Claim 10. Algorithm 1 selects a set of samples R such that with high probability any
given thick pair (s, t) has at least one vertex from its local graph in R.

In Algorithm 2, we call Algorithm 1 to get a set of samples R. For each u ∈ R, s ∈ S, t ∈ T ,
we try to add a shortest s ; u path and a shortest u ; v path each of cost at most L.

For this purpose, we use the restricted shortest path (bi-criteria path) problem from [45].

▶ Definition 11 (Restricted Shortest Path).
Instance: A directed graph G = (V, E), edge lengths ℓ : E → R≥0, edge costs c : E →

R≥0, a vertex pair (s, t) ∈ V × V , and a threshold T ∈ R>0.
Objective: Find a minimum cost s ; t path P such that

∑
e∈P ℓ(e) ≤ T .

The following lemma from [37,45] gives an FPTAS for Restricted Shortest Path.

▶ Lemma 12 ([37, 45]). There exists an FPTAS for Restricted Shortest Path that
gives a (1 + ε, 1) approximation, i.e., the path ensures that

∑
e∈P ℓ(e) ≤ T and has a cost at

most 1 + ε times the optimal.

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:9

Using Lemma 12 as our black box, we binary search for a path of length between
mine∈E{ℓ(e)} and n ·maxe∈E{ℓ(e)} that will give us a cheap s ; u path. Since the edge
lengths and thus the path lengths are all integers, this is possible in O(log(n ·maxe∈E{ℓ(e)}))
iterations which is polynomial in the input size. It is possible that we never find an s ; u

path of cost less than L, in which case we just ignore this (s, u) pair. We then do the same
for all the (u, t) pairs. See the full details in Algorithm 2.

Algorithm 2 Thick pairs resolver (G(V, E), {ℓ(e), c(e)}e∈E).

1: R← ϕ, G′ ← ϕ.
2: R← Sample(G(V, E)).
3: for u ∈ R do
4: for s ∈ S do
5: Use RSP to find the shortest s ; u path of cost at most L · (1 + ε) and add it to G′.
6: for u ∈ R do
7: for t ∈ T do
8: Use RSP to find the shortest u ; t path of cost at most L · (1 + ε) and add it to G′.
9: return G′

▶ Lemma 13. With high probability, the set of edges returned by Algorithm 2 resolves all
thick pairs in D with a total cost Õ(n4/5 · τ). Moreover, Algorithm 2 runs in polynomial time.

Proof. If some u ∈ R was originally in the local graph Gs,t, then Algorithm 2 would have
added at least one s ; u ; t path from Gs,t that is feasible and has cost less than 2L(1 + ε).
This is because if u was in the local graph of (s, t), then there exists an s ; u path of cost
less than L of some length ℓ ∈ [n ·maxe∈E{ℓ(e)}]. Since we binary search over the possible
values for ℓ and take the lowest possible one, we will find such a path with distance at most
the minimum length of an s ; t path that is cheap. Note that we could have a smaller
distance because we use a larger bound for cost for our path in comparison to the local
graph. Using Claim 10, such a cheap and feasible path will exist with a high probability for
all (s, t) ∈ D that are thick for some samples u ∈ R.

Now we analyze the cost of Algorithm 2. The cost from all the edges we add in Algorithm 2
would be O(n · k · L). This is because we pick k samples and each of them needs to add an
incoming and outgoing path of cost L(1 + ε) to at most n vertices. Plugging in the values
for k and L, we can see that the total cost would be Õ(n4/5 · τ). In addition, note that
Algorithm 2 will run in polynomial time because our binary search only needs to search the
integers in [mine∈E{ℓ(e)}, n ·maxe∈E{ℓ(e)}].4 ◀

2.2 Resolving thin pairs
Now we focus on the thin pairs after removing the settled thick pairs from the set D. The
density of a set of edges E′ is the ratio of the total cost of E′ to the number of pairs settled
by E′. We first describe how to efficiently construct a subset K of edges with density
Õ(n4/5+ε)τ/|D|. Then we iteratively find edge sets with that density, remove the pairs, and
repeat until we resolve all thin pairs. This gives a total cost of Õ(n4/5+ε · τ). We construct
K by building two other sets K1 and K2 and picking the smaller density of them. Let H be

4 Note that Algorithm 2 will still run in polynomial-time if we use an exhaustive search instead of a
binary search since the edge lengths are in poly(n).

APPROX/RANDOM 2023

8:10 Approximation Algorithms for Directed Weighted Spanners

an optimal solution with cost τ . Let C be the set of demand pairs for which the minimum
cost of a feasible s ; t path in H is at least L (note that the local graph for these pairs
would be empty). We have two cases: 1) |D|/2 ≤ |C| ≤ |D| and 2) 0 ≤ |C| < |D|/2.

2.2.1 When |D|/2 ≤ |C| ≤ |D|

We will use the notion of junction tree as a black box for resolving this case. Informally,
junction trees are trees that satisfy significant demand at low cost. They have a root node r,

a collection of paths into r, and paths out of r to satisfy some of this demand. In our case,
we also need these paths to be cheap and short. The following is a formal definition of a
junction tree variant that fits the needs of our problem.

▶ Definition 14 (Distance-preserving Weighted Junction Tree). Let G = (V, E) be a directed
graph with edge lengths ℓ : E → R≥0, edge costs c : E → R≥0, and a set D ⊆ V × V

of ordered pairs and their corresponding pairwise distance bounds Dist : D → R (where
Dist(s, t) ≥ dG(s, t) for every terminal pair (s, t) ∈ D), and a root r ∈ V . We define
distance-preserving weighted junction tree to be a subgraph H of G that is a union of an
in-arboresences and an out-arboresences both rooted at r containing an s ; t path going
through the root r of length at most Dist(s, t), for one or more (s, t) ∈ D.

The density of a junction tree is defined as the ratio of the sum of costs of all edges in
the junction tree to the number of pairs settled by the junction tree.

▷ Claim 15. If |D|/2 ≤ |C| ≤ |D|, then there exists a distance-preserving weighted junction
tree of density O

(
n4/5 · τ/|D|

)
.

Proof. Let H be an optimal solution subgraph of G that connects all the costly thin pairs.
Take the paths in H connecting the pairs in C. The sum of the costs of all such paths is at
least |C|L. Now, let µ be the maximum number of these paths that any edge in G belongs to.
The sum of the costs of the paths is at most µ · τ and thus there must exist an edge belonging
to µ ≥ |C|L/τ paths. Pick such an arbitrary edge and call it the heavy-enough edge, and
call its source as the heavy-enough vertex, denoted hv. Now, consider a tree made by adding
feasible paths from s ∈ S to hv and hv to t ∈ T that satisfies at least µ pairs. We do not
add an edge if it is not in H. This ensures that the cost of this tree is less than τ . This tree
would connect at least µ pairs, and thus it would have a density at most τ/µ = τ2/(|C|L).

If L = τ/n4/5, then τ2/(|C|L) = n4/5 ·τ/|C|. If |D| > |C| > |D|/2, we have n4/5 ·τ/|C| =
O
(
n4/5 · τ/|D|

)
. We have proved the existence of a junction tree of the required density.

◁

The following lemma is essentially from [19] (Theorem 5.1). But the small yet important
modifications that we need are not covered in [19]. We refer the reader to the full version [32]
for the complete proof.

▶ Lemma 16. For any constant ε > 0, there is a polynomial-time approximation algorithm
for the minimum density distance-preserving junction tree as long as the edge lengths are
integral and polynomial in n. In other words, there is a polynomial time algorithm which,
given a weighted directed n vertex graph G = (V, E) where each edge e ∈ E has a cost
c(e) ∈ R≥0 and integral length ℓ(e) ∈ {1, 2, ..., poly(n)}, terminal pairs P ⊆ V × V , and
distance bounds Dist : P → N (where Dist(s, t) ≥ dG(s, t)) for every terminal pair (s, t) ∈ P ,
approximates the following problem to within an O(nε) factor:

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:11

Find a non-empty set of edges F ⊆ E minimizing the ratio:

min
r∈V

∑
e∈F c(e)

|{(s, t) ∈ P |dF,r(s, t) ≤ Dist(s, t)}| (1)

where dF,r(s, t) is the length of the shortest path using edges in F which connects s to t while
going through r (if such a path exists).

▶ Lemma 17. When |D|/2 ≤ |C| ≤ |D|, we can get a set of edges K1 that has density at
most Õ(n4/5+ε · τ/|D|)

Proof. From Claim 15, there exists a distance-preserving weighted junction tree of density
at most O(n4/5 · τ/|D|). We use Lemma 16 to get a distance-preserving weighted junction
tree with density at most Õ(n4/5+ε · τ/|D|) and store the edges returned by it in K1. ◀

2.2.2 When 0 ≤ |C| < |D|/2
To handle this case, we build a linear program (LP) that fits our problem’s requirements,
solve it approximately with the help of a separation oracle, and finally round it to get a
set of edges with density Õ(n4/5+ε) · τ/|D|. The linear program is quite similar to the
one used in [10,28], but it has a subtle distinction that significantly changes the tools and
proof techniques we have to use. We will be referring to [28] quite frequently in this section
because [10] does not directly present a way to solve the LP (it relies on [28] for this).

2.2.2.1 Building and solving the linear program

We will need the following definition in order to set up a relevant LP. For (s, t) ∈ D, let
Π(s, t) be the set of all feasible s ; t paths of cost at most L, and let Π = ∪(s,t)∈DΠ(s, t).
Each edge e has a capacity xe, each path p ∈ Π carries fp units of flow, and ys,t is the total
flow through all paths from s to t. Define a linear program as follows:

min
∑
e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2 ,

∑
Π(s,t)∋p∋e

fp ≤ xe ∀(s, t) ∈ D, e ∈ E,

∑
p∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(2)

LP (2) tries to connect at least |D|/2 pairs from D using paths of cost at most L while
minimizing the total cost of the used edges. It is almost identical to the corresponding LP
in [10,28] for Steiner forests, except that we consider only feasible paths that are cheaper than
L, while they consider all paths that are cheaper than L. The crucial part of our approach is
the use of an FPTAS for the Restricted Shortest Path problem, which served as an
approximate separation oracle for the dual program. The proof of the following lemma is
provided in Appendix B.1.

▶ Lemma 18. Let OPT be the optimal value of an instance of Pairwise Weighted Spanner.
Then, the optimal value of LP (2) corresponding to that instance is at most OPT. In addition,
a solution for LP (2) of value at most (1 + ε) · OPT can be found in polynomial time.

APPROX/RANDOM 2023

8:12 Approximation Algorithms for Directed Weighted Spanners

2.2.2.2 Rounding our solution

Now we need to round the solution of LP (2) appropriately to decide which edges we need to
include in our final solution. The overall structure of our rounding procedure is similar to
that of [10], but there are some important differences in the proof techniques we use here
because the nature of our problem prevents us from using some of the techniques used by [10].
Let {x̂e} ∪ {ŷs,t} be a feasible approximate solution to LP (2). Let K2 be the set of edges
obtained by running Algorithm 3 on {x̂e}.

Algorithm 3 Thin pair rounding [LP rounding] (xe).

1: E′′ ← ϕ .
2: for e ∈ E do
3: Add e to K2 with probability min{n4/5 ln n · xe, 1};
4: return E′′

The following lemma is an adaptation of Claim 2.3 from [10].

▷ Claim 19. Let A ⊆ E. If Algorithm 3 receives a fractional vector {x̂e} with nonnegative
entries satisfying

∑
e∈A x̂e ≥ 2/5, the probability that it outputs a set E′′ disjoint from A is

at most exp(−2n4/5 · ln n/5).

Proof. If A contains an edge e which has x̂e ≥ 1/(n4/5 ln n), then e is definitely included in
E′′. Otherwise, the probability that no edge in A is included in E′′ is

∏
e∈A

(1− n4/5 ln n · x̂e) ≤ exp
(
−
∑
e∈A

n4/5 ln n · x̂e

)
≤ exp

(
−2

5n4/5 ln n

)
. ◁

Let us now define anti-spanners which serve as a useful tool to analyze the rounding
algorithm for our LP. Our definition of anti-spanners is slightly different from Definition 2.4
in [10] to account for the fact we also have distance constraints.

▶ Definition 20. A set A ⊆ E is an anti-spanner for a terminal pair (s, t) ∈ E if (V, E \A)
contains no feasible path from s to t of cost at most L. If no proper subset of anti-spanner A

for (s, t) is an anti-spanner for (s, t), then A is minimal. The set of all minimal anti-spanners
for all thin edges is denoted by A.

The following lemma is an analogue of Claim 2.5 from [10].

▶ Lemma 21. Let A be the set of all minimal anti-spanners for thin pairs. Then |A| is
upper-bounded by |D| · 2(n/β)2/2.

Proof. Let PS(s, t) be the power set of all edges in the local graph for a given thin pair (s, t).
Since (s, t) is a thin pair we have at most n/β vertices and (n/β)2/2 edges in the local graph,
therefore |PS(s, t)| ≤ 2(n/β)2/2 for any (s, t) that is a thin pair. Now, every anti-spanner for
a specific demand pair (s, t) ∈ D is a set of edges and therefore corresponds to an element in
PS(s, t). Let PS thin =

⋃
(s,t) PS(s, t) where (s, t) ∈ D are thin pairs. Every anti-spanner

for a thin pair is a set of edges and therefore corresponds to an element in PS thin. We have
|A| ≤ |PS thin | ≤ |D| · 2(n/β)2/2 which proves the lemma. ◀

The rest of this discussion is quite similar to [10] although the exact constants and the
expressions involved are different because of the result in Lemma 21. Lemma 22 is similar to
Lemma 5.2 from [10].

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:13

▶ Lemma 22. With high probability set K2 settles every thin pair (s, t) with ŷs,t ≥ 2/5.

Proof. For every thin pair (s, t) ∈ D with ŷs,t ≥ 2/5, if A is an anti-spanner for (s, t) then∑
e∈A x̂e ≥

∑
P ∈Π(s,t) f̂p ≥ 2/5, where f̂p is the value of the variable fp in LP (2) that

corresponds to the solution {x̂e} ∪ {ŷs,t}.
By Claim 19, the probability that A is disjoint from K2 is at most exp(−2n4/5 · ln n/5).

Further using Lemma 21, we can bound the number of minimal anti-spanners for thin pairs
and then if we apply union bound, we have the probability that K2 is disjoint from any anti
spanner for a thin pair is at most exp

(
−2n4/5 · ln n/5

)
· |D| · 2(n/β)2/2. In the worst case,

|D| is n2. Recall that β = n3/5, we have (n/β)2 = n4/5, so

exp
(
−2

5 · n
4/5 · ln n + ln

(
n2 · 2n4/5/2

))
= exp

(
−Θ(n4/5 ln n)

)
.

Thus we have shown that the probability K2 is disjoint from any anti-spanner for a thin pair
is exponentially small when ŷs,t ≥ 2/5. ◀

▶ Lemma 23. When 0 ≤ |C| < |D|/2, with high probability, the density of K2 is at most

Õ(n4/5 · τ/|D|).

Proof. Firstly notice that the expected cost of K2 would be at most n4/5 ln n · τ . We also
point out that the number of pairs (s, t) ∈ D for which ŷs,t < 2/5 is at most 5|D|/6 because
otherwise the amount of flow between all pairs is strictly less than |D|/2 which violates a
constraint of LP (2). Since with high probability all pairs for which ŷs,t ≥ 2/5 are satisfied,
this means that the expected density of K2 is at most

n4/5 ln n · τ
|D|/6 = 6n4/5 ln n · τ

|D|
= Õ(n4/5 · τ)

|D|
. ◀

Now we are ready to prove Theorem 2.

Proof of Theorem 2. Using Lemma 13 we can resolve all thick pairs with high probability
with cost at most Õ(n4/5+ε). Then, we can make two sets of edges K1 and K2 using a
distance-preserving weighted junction tree and by rounding the approximate solution to LP
(2) respectively. By Lemmas 17 and 23, we can see that at least one of them will have a
density at most Õ(n4/5 · τ/|D|). If we take the cheaper among them and keep iterating we
can resolve all thin pairs with a high probability and with cost at most Õ(n4/5+ε). ◀

3 All-pair Weighted Distance Preservers

In this section, we prove Theorem 4. Our proof structure for this subsection is very similar
to that of [10] except for our use of single sink and single source spanners.

As in Section 2, we assume that we have a guess for the cost of the optimal solution -
OPT for the given instance of All-pair Weighted Distance Preserver. Let τ denote
the value of our guess. Let us set β = n1/2. We say that a terminal pair (s, t) ∈ D is thick if
the local graph Gs,t = (V s,t, Es,t) induced by the vertices on feasible paths from s to t has
at least n/β vertices; we say it is thin otherwise. We note that the definitions of thick and
thin pairs are slightly different from how they are defined in Section 2 as we only care about
the feasibility of a path, not its cost. We say that a set E′ ⊆ E settles (or resolves) a pair
(s, t) ∈ D if the subgraph (V, E′) contains a feasible path from s to t.

APPROX/RANDOM 2023

8:14 Approximation Algorithms for Directed Weighted Spanners

3.1 Thick pairs
We first resolve the thick pairs by randomly sampling vertices and building single-source
and single-sink spanners from the samples using Theorem 9. We then resolve thin pairs by
building a linear program, solving it, and rounding as in [10]. As mentioned earlier, our
definition of thick and thin pairs is different in this section when compared to Section 2, and
this allows us to use a much simpler proof (although one that will be effective only in the
case of weighted distance preservers as opposed to the more general weigthed spanners).

Algorithm 4 Thick pairs resolver - Distance preserver (G(V, E), {ℓ(e), c(e)}e∈E).

1: R← ϕ, G′ ← ϕ.
2: for i = 1 to β ln n do
3: v ← a uniformly random element of V.

4: Ssource
v ← a single-source distance preserver rooted at v with D = {v} × V .

5: Ssink
v ← a single-sink distance preserver rooted v with D = {v} × V .

6: G′ ← G′ ∪ Ssource
v ∪ Ssink

v , R← R ∪ {v}.
7: return G′

▶ Lemma 24. Algorithm 4 resolves all thick pairs for All-pair Weighted Distance
Preserver with high probability and cost Õ(nε · β · OPT) = Õ(n1/2+ε · OPT).

Proof. Let OPT(Ssource
v) be the optimal costs of a single-source distance preserver rooted at

v with D = {v} × V and OPT(Ssink
v) be the optimal costs of a single-sink distance preserver

rooted at v with D = {v} × V .
This theorem also gives an Õ(kδ)-approximation for the offline problem Single-source

Weighted Spanner for any constant δ > 0. Single-sink distance preservers can be obtained
by simply reversing the edges. The number of terminal pairs k = Θ(n2). By setting δ = ε/2
and the target distances to the exact distances in G for all vertex pairs, we observe that the
cost due to one sample in Algorithm 4 is at most Õ(nε(OPT(Ssource

v) + OPT(Ssink
v))). Note

that a distance preserver for all pairs also serves as a distance preserver for any subset of the
pairs and thus we have for any v ∈ V, OPT(Ssink

v) ≤ OPT and OPT(Ssource
v) ≤ OPT. Thus,

using Theorem 9, the cost of the G′ returned by Algorithm 4 is at most |R| · Õ(nε · OPT) ≤
Õ(nε · β · OPT).

Using a hitting set argument very similar to Claim 10, we can see that with high
probability, there is at least one sample v such that there is a s ; v ; t path for every
(s, t) ∈ V × V where dG′(s, v) + dG′(v, t) = dG(s, t).

The single-sink distance preserver gives us a s ; v path of length dG(s, v) and the
single-source distance preserver gives us a v ; t path of length dG(v, t). Thus, thick pairs
are resolved with high probability by the edges in G′. ◀

3.2 Thin pairs
To resolve thin pairs, we start by redefining anti-spanners by ignoring the path costs in
Definition 20.

▶ Definition 25. A set A ⊆ E is an anti-spanner for a demand pair (s, t) ∈ E if (V, E \A)
contains no feasible path from s to t. If no proper subset of anti-spanner A for (s, t) is an
anti-spanner for (s, t), then A is minimal. The set of all minimal anti-spanners for all thin
edges is denoted by A.

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:15

Consider the following LP which is a slightly modified version of a similar LP from [10].

min
∑
e∈E

c(e) · xe subject to
∑
e∈A

xe ≥ 1 ∀A ∈ A and xe ≥ 0 ∀e ∈ E. (3)

Let OPT denote the optimal solution to the LP. We can obtain this in a way identical
to [10] as we only change the objective (which does not affect the separation oracle). Now, if
{x̂e} denotes the vector of xe’s in the solution to LP (3), then add every edge e ∈ E to G′

with probability min{
√

n · ln n · x̂e, 1}. We now state the following claim from [10].

▷ Claim 26. Given a feasible solution to LP (3), the rounding procedure produces a set of
edges E′′ that settles all thin pairs with high probability and has size at most 2OPT ·

√
n · ln n.

▶ Theorem 4. For any constant ε > 0, there is a polynomial-time randomized algorithm for
All-pair Weighted Distance Preserver with approximation ratio Õ(n1/2+ε), which
succeeds in resolving all pairs in V × V with high probability.

Proof of Theorem 4. Using Lemma 24 we can resolve all thick pairs with high probability
with cost at most Õ(n1/2+ε ·OPT) by running Algorithm 4. Then, using Claim 26, we can solve
and round LP (3) to resolve the thin pairs with high probability and cost Õ(OPT ·

√
n). ◀

4 Online Weighted Spanners

This section is dedicated to proving Theorems 6 and 9. The proof outline is as follows.
1. We first show that there exists an α-approximate solution consisting of distance-preserving

weighted junction trees (see Definition 14). Here, α = O(
√

k) for Pairwise Weighted
Spanner and α = 1 for Single-source Weighted Spanner.

2. We slightly modify the online algorithm from [33] to find an online solution consisting of
distance-preserving weighted junction trees by losing a factor of Õ(kε).

The main difference between the online approach and the offline approach in Section 2 is
that we cannot greedily remove partial solutions to settle the terminal pairs in the online
setting. Instead, we construct a distance-preserving weighted junction tree solution in an
online fashion.

▶ Definition 27. A distance-preserving weighted junction tree solution is a collection of
distance-preserving weighted junction trees rooted at different vertices, that satisfies all the
terminal distance constraints.

We construct a distance-preserving weighted junction tree solution online and compare
the online objective with the optimal distance-preserving weighted junction tree solution
with objective value OPTjunc. The following theorem is essentially from [33] for the case
when the edges have unit costs and lengths. However, the slight yet important modifications
that we need when edges have arbitrary positive costs and integral lengths in poly(n) are not
covered in [33]. We refer the reader to the full version [32] for the complete proof.

▶ Theorem 28. For any constant ε > 0, there exists a polynomial-time randomized online
algorithm for Online Pairwise Weighted Spanner that constructs a distance-preserving
weighted junction tree solution online with a cost at most Õ(kε)OPTjunc with high probability.

With this theorem, we are ready to prove Theorems 6 and 9.

APPROX/RANDOM 2023

8:16 Approximation Algorithms for Directed Weighted Spanners

Proof for Theorems 6 and 9. Let OPT denote the cost of the optimal solution and α denote
the ratio between OPTjunc and OPT. It suffices to show that α = O(

√
k) for Pairwise

Weighted Spanner and α = 1 for Single-source Weighted Spanner because The-
orem 28 implies the existence of an Õ(αkε)-competitive online algorithm.

To show that α = 1 for Single-source Weighted Spanner, let H be an optimal
solution. We observe that H itself is a distance-preserving weighted junction tree rooted at
the source s that is connected to all the k sinks, so α = 1.

To show that α = O(
√

k) for Pairwise Weighted Spanner, we use a density argument
via a greedy procedure which implies an O(

√
k)-approximate distance-preserving weighted

junction tree solution. We recall the density notion in Section 2.2. The density of a distance-
preserving weighted junction tree is its cost divided by the number of terminal pairs that it
connects within the required distances.

Intuitively, we are interested in finding low-density distance-preserving weighted junction
trees. We show that there always exists a distance-preserving weighted junction tree with
density at most a

√
k factor of the optimal density. The proof of Lemma 29 closely follows the

one for the directed Steiner network problem in [18] and pairwise spanners [33] by considering
whether there is a heavy vertex that lies in si ; ti paths for distinct i or there is a simple
path with low density. The case analysis also holds when there is a distance constraint for
each (si, ti). We refer the reader to Appendix B.2 for the complete proof.

▶ Lemma 29. There exists a distance-preserving weighted junction tree J with density at
most OPT/

√
k.

Consider the procedure that finds a minimum density distance-preserving weighted
junction tree in each iteration, and continues on the remaining disconnected terminal pairs.
Suppose there are t iterations, and after iteration j ∈ [t], there are nj disconnected terminal
pairs. Let n0 = k and nt = 0. After each iteration, the minimum cost for connecting the
remaining terminal pairs in the remaining graph is at most OPT, so the total cost of this
procedure is upper-bounded by

t∑
j=1

(nj−1 − nj)OPT
√

nj−1
≤

k∑
i=1

OPT√
i
≤
∫ k+1

1

OPT√
x

dx = 2OPT(
√

k + 1− 1) = O(
√

k)OPT

where the first inequality uses the upper bound by considering the worst case when only one
terminal pair is removed in each iteration of the procedure. ◀

References
1 Amir Abboud and Greg Bodwin. Reachability preservers: New extremal bounds and approx-

imation algorithms. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1865–1883. SIAM, 2018.

2 Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad Javad Latifi
Jebelli, Stephen Kobourov, and Richard Spence. Graph spanners: A tutorial review. Computer
Science Review, 37:100253, 2020.

3 Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general
approach to online network optimization problems. ACM Transactions on Algorithms (TALG),
2(4):640–660, 2006.

4 Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product queries.
Technical report, Tel-Aviv University, 1987.

5 Spyridon Antonakopoulos. Approximating directed buy-at-bulk network design. In Interna-
tional Workshop on Approximation and Online Algorithms, pages 13–24. Springer, 2010.

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:17

6 Pranjal Awasthi, Madhav Jha, Marco Molinaro, and Sofya Raskhodnikova. Testing lipschitz
functions on hypergrid domains. Algorithmica, 74(3):1055–1081, 2016.

7 Baruch Awerbuch. Communication-time trade-offs in network synchronization. In Proceedings
of the 4th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(PODC), pages 272–276, New York, NY, USA, 1985.

8 Surender Baswana and Telikepalli Kavitha. Faster algorithms for all-pairs approximate shortest
paths in undirected graphs. SIAM Journal on Computing, 39(7):2865–2896, 2010.

9 MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Euclidean prize-collecting steiner
forest. Algorithmica, 62(3-4):906–929, 2012.

10 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and directed steiner
forest. Information and Computation, 222:93–107, 2013.

11 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P
Woodruff. Transitive-closure spanners. SIAM Journal on Computing, 41(6):1380–1425, 2012.

12 Greg Bodwin. New results on linear size distance preservers. SIAM Journal on Computing,
50(2):662–673, 2021.

13 Glencora Borradaile, Philip N Klein, and Claire Mathieu. A polynomial-time approximation
scheme for euclidean steiner forest. ACM Transactions on Algorithms (TALG), 11(3):1–20,
2015.

14 Deeparnab Chakrabarty, Alina Ene, Ravishankar Krishnaswamy, and Debmalya Panigrahi.
Online buy-at-bulk network design. SIAM Journal on Computing, 47(4):1505–1528, 2018.

15 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

16 Shuchi Chawla, Tim Roughgarden, and Mukund Sundararajan. Optimal cost-sharing mech-
anisms for steiner forest problems. In International Workshop on Internet and Network
Economics, pages 112–123. Springer, 2006.

17 Shiri Chechik. Approximate distance oracles with improved bounds. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, Proceedings of the 47th Annual ACM Symposium on Theory of
Computing (STOC), pages 1–10. ACM, 2015.

18 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems in
undirected graphs and the directed steiner network problem. ACM Transactions on Algorithms
(TALG), 7(2):1–17, 2011.

19 Eden Chlamtáč, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. Approximating
spanners and directed steiner forest: Upper and lower bounds. ACM Transactions on Algorithms
(TALG), 16(3):1–31, 2020.

20 Lenore Cowen and Christopher G. Wagner. Compact roundtrip routing in directed networks.
Journal on Algorithms, 50(1):79–95, 2004.

21 Michael Dinitz and Robert Krauthgamer. Directed spanners via flow-based linear programs.
In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC), pages
323–332, 2011.

22 Michael Dinitz and Robert Krauthgamer. Fault-tolerant spanners: better and simpler. In
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing (PODC), pages 169–178, 2011.

23 Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Proceedings of the
27th Annual ACM-SIAM Symposium on Discrete algorithms (SODA), pages 821–840. SIAM,
2016.

24 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM Journal on
Computing, 29(5):1740–1759, 2000.

25 Michael Elkin. Computing almost shortest paths. ACM Transactions on Algorithms (TALG),
1(2):283–323, 2005.

APPROX/RANDOM 2023

8:18 Approximation Algorithms for Directed Weighted Spanners

26 Michael Elkin and David Peleg. The client-server 2-spanner problem with applications
to network design. In Francesc Comellas, Josep Fàbrega, and Pierre Fraigniaud, editors,
SIROCCO 8, Proceedings of the 8th International Colloquium on Structural Information and
Communication Complexity, Vall de Núria, Girona-Barcelona, Catalonia, Spain, 27-29 June,
2001, volume 8 of Proceedings in Informatics, pages 117–132. Carleton Scientific, 2001.

27 Michael Elkin and David Peleg. The hardness of approximating spanner problems. Theory of
Computing Systems, 41(4):691–729, 2007.

28 Moran Feldman, Guy Kortsarz, and Zeev Nutov. Improved approximation algorithms for
directed steiner forest. Journal of Computer and System Sciences, 78(1):279–292, 2012.

29 Arnold Filtser. Hop-constrained metric embeddings and their applications. In 2021 IEEE
62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 492–503. IEEE,
2021.

30 Lisa Fleischer, Jochen Könemann, Stefano Leonardi, and Guido Schäfer. Simple cost sharing
schemes for multicommodity rent-or-buy and stochastic steiner tree. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing (STOC), pages 663–670, 2006.

31 Fedor V Fomin, Petr A Golovach, William Lochet, Pranabendu Misra, Saket Saurabh, and
Roohani Sharma. Parameterized complexity of directed spanner problems. Algorithmica,
84(8):2292–2308, 2022.

32 Elena Grigorescu, Nithish Kumar, and Young-San Lin. Approximation algorithms for directed
weighted spanners, 2023. arXiv:2307.02774.

33 Elena Grigorescu, Young-San Lin, and Kent Quanrud. Online directed spanners and steiner
forests. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2021). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021.

34 Anupam Gupta, Amit Kumar, Martin Pál, and Tim Roughgarden. Approximation via
cost-sharing: a simple approximation algorithm for the multicommodity rent-or-buy prob-
lem. In 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2003.
Proceedings., pages 606–615. IEEE, 2003.

35 Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Tree embeddings for hop-
constrained network design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 356–369, 2021.

36 Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R Salavatipour. Approximating
buy-at-bulk and shallow-light k-steiner trees. Algorithmica, 53:89–103, 2009.

37 Refael Hassin. Approximation schemes for the restricted shortest path problem. Mathematics
of Operations research, 17(1):36–42, 1992.

38 Markó Horváth and Tamás Kis. Multi-criteria approximation schemes for the resource
constrained shortest path problem. Optimization Letters, 12(3):475–483, 2018.

39 Samir Khuller, Balaji Raghavachari, and Neal Young. Approximating the minimum equivalent
digraph. SIAM Journal on Computing, 24(4):859–872, 1995.

40 Vikram Khurana, Jian Peng, Chee Yeun Chung, Pavan K Auluck, Saranna Fanning, Daniel F
Tardiff, Theresa Bartels, Martina Koeva, Stephen W Eichhorn, Hadar Benyamini, et al.
Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific
molecular pathways. Cell systems, 4(2):157–170, 2017.

41 Shimon Kogan and Merav Parter. Having hope in hops: New spanners, preservers and lower
bounds for hopsets. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 766–777. IEEE, 2022.

42 Jochen Könemann, Stefano Leonardi, Guido Schäfer, and Stefan van Zwam. From primal-dual
to cost shares and back: a stronger lp relaxation for the steiner forest problem. In International
Colloquium on Automata, Languages, and Programming, pages 930–942. Springer, 2005.

43 Jochen Könemann, Stefano Leonardi, Guido Schäfer, and Stefan HM van Zwam. A group-
strategyproof cost sharing mechanism for the steiner forest game. SIAM Journal on Computing,
37(5):1319–1341, 2008.

https://arxiv.org/abs/2307.02774

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:19

44 Guy Kortsarz. On the hardness of approximating spanners. Algorithmica, 30:432–450, 2001.
45 Dean H Lorenz and Danny Raz. A simple efficient approximation scheme for the restricted

shortest path problem. Operations Research Letters, 28(5):213–219, 2001.
46 Madhav V Marathe, Ravi Sundaram, SS Ravi, Daniel J Rosenkrantz, and Harry B Hunt III.

Bicriteria network design problems. Journal of algorithms, 28(1):142–171, 1998.
47 Jakub Pachocki, Liam Roditty, Aaron Sidford, Roei Tov, and Virginia Vassilevska Williams.

Approximating cycles in directed graphs: Fast algorithms for girth and roundtrip spanners. In
Artur Czumaj, editor, Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
algorithms (SODA), pages 1374–1392. SIAM, 2018.

48 Mihai Patrascu and Liam Roditty. Distance oracles beyond the Thorup-Zwick bound. SIAM
Journal on Computing, 43(1):300–311, 2014.

49 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989. doi:10.1002/jgt.3190130114.

50 David Peleg and Jeffrey D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal
on Computing, 18(4):740–747, 1989.

51 Leila Pirhaji, Pamela Milani, Mathias Leidl, Timothy Curran, Julian Avila-Pacheco, Clary B
Clish, Forest M White, Alan Saghatelian, and Ernest Fraenkel. Revealing disease-associated
pathways by network integration of untargeted metabolomics. Nature methods, 13(9):770–776,
2016.

52 Liam Roditty, Mikkel Thorup, and Uri Zwick. Roundtrip spanners and roundtrip routing in
directed graphs. ACM Transactions on Algorithms (TALG), 4(3):29:1–29:17, 2008.

53 Tim Roughgarden and Mukund Sundararajan. Optimal efficiency guarantees for network
design mechanisms. In International Conference on Integer Programming and Combinatorial
Optimization, pages 469–483. Springer, 2007.

54 Adrian Vetta. Approximating the minimum strongly connected subgraph via a matching lower
bound. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete algorithms
(SODA), pages 417–426, 2001.

55 Andrew Chi-Chih Yao. Space-time tradeoff for answering range queries (extended abstract).
In Proceedings of the 14th Annual ACM Symposium on Theory of Computing (STOC), 1982.

56 Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997.

A Related work

A.1 Resource-constrained Shortest Path
In the resource-constrained shortest path problem [38] for directed networks, each edge is
associated with r non-negative weights. Each type of weight i ∈ [r − 1] is associated with a
budget. The r-th weight denotes the cost of the edge. The goal is to find a minimum-cost
path that connects the single source to the single sink without violating the r − 1 budgets.
The results of [38] show that when r is a constant, there exists an FPTAS that finds a path
with a cost at most the same as the feasible minimum-cost path by violating each budget
by a factor of 1 + ε. When r = 2, this problem is equivalent to the restricted shortest path
problem [37,45], which has been used extensively in the LP formulations for spanners and
directed Steiner forests [10,19,21,28,33]. For our purpose, r = 3 because the LP formulation
implicitly considers whether there exists a feasible path between terminal pairs whose cost
exceeds a given threshold.

A.2 Undirected Bi-criteria Network Design
A general class of undirected bi-criteria network problems was introduced by [46]. A more
related problem to ours is the undirected Steiner tree problem. The goal is to connect a
subset of vertices to a specified root vertex. In the bi-criteria problem, the distance from the

APPROX/RANDOM 2023

https://doi.org/10.1002/jgt.3190130114

8:20 Approximation Algorithms for Directed Weighted Spanners

root to a target vertex is required to be at most the given global threshold. [46] presented a
bi-criteria algorithm for undirected Steiner trees that is O(log n)-approximate and violates
the distance constraints by a factor of O(log n). Following [46], [36] extends this result
to a more general buy-at-bulk bi-criteria network design problem, where the objective is
polylog(n)-approximate and violates the distance constraints by a factor of polylog(n).

Recently, [29, 35] studied the tree embedding technique used for undirected network
connectivity problems with hop constraints. For a positively weighted graph with a global
parameter h ∈ [n], the hop distance between vertices u and v is the minimum weight among
the u-v-paths using at most h edges. Under the assumption that the ratio between the
maximum edge weight and the minimum edge weight is poly(n), the tree embedding technique
allows a polylog(n)-approximation by relaxing the hop distance within a polylog(n) factor for
a rich class of undirected network connectivity problems.

A.3 Other related directed network problems

The more related directed network problems are variants of spanners and Steiner prob-
lems, including directed Steiner trees [15,56], directed Steiner network [18], fault-tolerance
spanners [21,22], and parameterized complexity analysis for directed s-spanners [31]. For a
comprehensive account of the vast literature, we refer the reader to the excellent survey for
spanners [2].

There is an extensive list of other related directed network problems, including distance
preservers [12, 19], approximate distance preservers [41], reachability preservers [1], and
buy-at-bulk network design [5]. One direction along this line of research is to study the
extremal bounds for the optimal subgraph in terms of the input parameters, instead of
comparing the costs of the approximate and optimal solution [1, 12, 41]. Another direction is
to consider the online problem where terminal pairs arrive online and the goal is to irrevocably
select edges so that the cost of the network is approximately minimized [3, 14,33].

B Missing Proofs in Section 2

B.1 Proof for Lemma 18

▶ Lemma 18. Let OPT be the optimal value of an instance of Pairwise Weighted Spanner.
Then, the optimal value of LP (2) corresponding to that instance is at most OPT. In addition,
a solution for LP (2) of value at most (1 + ε) · OPT can be found in polynomial time.

Proof. We recall LP (2):

min
∑
e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2 ,

∑
Π(s,t)∋p∋e

fp ≤ xe ∀(s, t) ∈ D, e ∈ E,

∑
p∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(2)

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:21

Let us consider the dual of LP (2).

max
∑
e∈E

xe +
∑

(s,t)∈D

ys,t −W · |D|2 (4a)

subject to
∑

(s,t)∈D

z(s,t),e + c(e) ≤ xe ∀e ∈ E, (4b)

ys,t + ws,t ≥W ∀(s, t) ∈ D, (4c)

ws,t ≤
∑
e∈p

z(s,t),e ∀(s, t) ∈ D, p ∈ Π(s, t), (4d)

W, xe, ys,t, z(s,t),e ≥ 0 ∀(s, t) ∈ D, e ∈ E. (4e)

Our dual is slightly different from the dual in [10, 28]. Constraints in (4b), (4c), and
(4e) are identical, but constraints in (4d) are slightly different because the set of paths Π
we consider are different from the set of paths considered in [28]. As in [28], we could find
violating constraints for (4b), (4c), and (4e) in polynomial time. The only constraints that
require care are the constraints in (4d), which may be exponentially many.

When we consider a single (s, t) pair, [28] pointed out that their variant of constraints
in (4d) are equivalent to Restricted Shortest Path which is NP -hard, see [37, 45]. [28]
then uses an FPTAS [37,45] for Restricted Shortest Path as an approximate separation
oracle for those constraints. But we need a different separation oracle because the set of
paths Π allowed in our LP have two restrictions (as opposed to [28] which has only one) in
addition to an objective. We now define the Resource-constrained Shortest Path
problem that is presented in [38].

▶ Definition 30 (Resource-constrained Shortest Path (k-RCSP)).
Instance: A directed graph G = (V, E), with edge costs c : E → Q≥0, and a pair

(s, t). For each edge e ∈ E, we have a vector re = (r1,e, r2,e, . . . , rk,e) of size k where each
ri,e ∈ Q≥0 ∀i ∈ [k].

Objective: Find a minimum cost s ; t path P such that
∑

e∈P ri,e ≤ Ri, ∀i ∈ [k].

▷ Claim 31. 2-RCSP acts as a separation oracle for those constraints in equation (4d) that
correspond to a specific (s, t) ∈ D.

Proof. We can use one of the resource constraints in 2-RCSP for ensuring that the distance
constraints for (s, t) are satisfied and use the other resource constraint to ensure that
ws,t >

∑
e∈P z(s,t),e. In other words, we use one resource to model the edge lengths and

another to model the dual variable z{s,t},e. We can now try to find a minimum cost s ; t

path in this instance of 2-RCSP where costs for 2-RCSP are equivalent to the costs in our
instance of Pairwise Weighted Spanner. If the minimum cost obtained when we meet
these constraints is less than L, then we have a violating constraint and if not we do not
have one. ◁

The Resource-constrained shortest path problem is NP-hard [38]. So, we instead
get a separation oracle for an approximate variant of LP (4). Now, given resource constraints
R1, R2, . . . , Rk for the Resource-constrained shortest path problem, let OPTRCSP

be the cost of the minimum cost s ; t path that satisfies the resource constraints. An
(1; 1+ε, . . . , 1+ε)-approximation scheme finds an s ; t path whose cost is at most OPTRCSP ,
but the resource constraints are satisfied up to a factor of 1 + ε for that path.

APPROX/RANDOM 2023

8:22 Approximation Algorithms for Directed Weighted Spanners

▶ Lemma 32 (RCSP – [38]). If k is a constant then there exists a fully polynomial time
(1; 1 + ε, . . . , 1 + ε)-approximation scheme for the k-RCSP that runs in time polynomial in
input size and 1/ε.

We have to be careful in our usage of Lemma 32. The FPTAS for the Restricted Shortest
Path problem from [45] cleanly serves the requirements of [28] as it is a (1+ε; 1) approximation
and it can strictly satisfy the constraints. [28] then uses these constraints to ensure that the
weight requirements are strictly met. But the FPTAS given by [38] does not strictly satisfy
the constraints since we need both the length and weight constraints to be satisfied strictly.

We overcome this obstacle by re-purposing the objective to handle the edge weights and by
carefully ensuring that any error in the path length caused by using the 1 + ε approximation
from [38] does not make us use an incorrect path. To ensure that we do not select an incorrect
path, it is sufficient to ensure that the potential error from [38] is less than any error that
is possible in our given input graph. Since the edge lengths are positive integers, observe
that for any two s ; t paths with different lengths, the length difference is at least one. In
addition, the path lengths are at most n ·maxe∈E{ℓ(e)}. Since all edge lengths are integral
and of magnitude poly(n), it is sufficient to have ε ≤ 1/(n ·maxe∈E{ℓ(e)}). Thus, we can fix
ε such that 1/ε = O(n · poly(n)) to ensure that the running time will remain polynomial in
input size and strictly satisfy the distance constraints.

Now, we take an approximate version of LP (4) which is the following LP

max
∑
e∈E

xe +
∑
s,t

ys,t −W · |D|2

subject to
∑
s,t

z(s,t),e + c(e) ≤ xe ∀e ∈ E,

ys,t + ws,t ≥W ∀(s, t) ∈ D,

(1 + ε) · ws,t ≤
∑
e∈p

z(s,t),e ∀(s, t) ∈ D, p ∈ Π(s, t),

W, xe, ys,t, z(s,t),e ≥ 0 ∀(s, t) ∈ D, e ∈ E.

(5)

We can exactly solve LP (5) using [38] and thus we can also exactly solve the dual of LP
(5) which would be:

min
∑
e∈E

c(e) · xe

subject to
∑

(s,t)∈D

ys,t ≥
|D|
2 ,

∑
Π(s,t)∋P ∋e

fp ≤ xe · (1 + ε) ∀(s, t) ∈ D, e ∈ E,

∑
P ∈Π(s,t)

fp = ys,t ∀(s, t) ∈ D,

0 ≤ ys,t, fp, xe ≤ 1 ∀(s, t) ∈ D, p ∈ Π, e ∈ E.

(6)

Let OPT(ε) and OPT be the optimal values to (6) and (2) respectively. Observe that
OPT(ε) ≤ OPT because the constraints in LP (6) are slacker than the constraints in (2) and
both these LPs are minimization LPs. Also note that if x̂(ε) is a feasible solution to (6),
then by replacing the value of every variable xe in x̂(ε) by min(1, xe · (1 + ε)), we get a new
solution x̂ which is a feasible solution to (2). The value of the optimal solution then is at
most (1 + ε) · OPT(ε) ≤ (1 + ε) · OPT. ◀

E. Grigorescu, N. Kumar, and Y.-S. Lin 8:23

B.2 Missing proof for Lemma 29
▶ Lemma 29. There exists a distance-preserving weighted junction tree J with density at
most OPT/

√
k.

Proof. Let G∗ (a subgraph of G) be the optimal pairwise weighted spanner solution with
cost OPT. The proof proceeds by considering the following two cases: 1) there exists a vertex
r ∈ V that belongs to at least

√
k si ; ti paths of distance at most Dist(si, ti) in G∗ for

distinct i, and 2) there is no such vertex r ∈ V .
For the first case, we consider the union of the si ; ti paths in G∗, each of distance at

most Dist(si, ti), that passes through r. This subgraph in G∗ contains an in-arborescence
and an out-arborescence both rooted at r, whose union forms a distance-preserving weighted
junction tree. This distance-preserving weighted junction tree has cost at most OPT and
connects at least

√
k terminal pairs, so its density is at most OPT/

√
k.

For the second case, each vertex r ∈ V appears in at most
√

k si ; ti paths in G∗. More
specifically, each edge e ∈ E also appears in at most

√
k si ; ti paths in G′. By creating√

k copies of each edge, all terminal pairs can be connected by edge-disjoint paths. Since
the overall duplicate cost is at most

√
k · OPT, at least one of these paths has cost at most√

k ·OPT/k. This path constitutes a distance-preserving weighted junction tree whose density
is at most OPT/

√
k. ◀

C Conclusion

In this paper, we presented algorithms for a variant of directed spanners that could also
handle costs on edges, in addition to the more standard setting of edge lengths. The proof
strategy for Theorem 2 follows a high-level structure that is similar to other results for
directed Steiner forests, but involves significant obstacles in each part of the proof due to the
addition of distance constraints. We overcome these obstacles by using the proper approaches.
For example, the Resource-constrained Shortest Path problem from [38] is carefully
adapted for our specifics. We also needed to carefully adapt many other parts of the proof,
such as the analysis of our junction-tree approximation and our rounding algorithm for the
LPs, to fit the addition of distance constraints.

We also present online algorithms for Online Pairwise Weighted Spanner and
Online Single-source Weighted Spanner. We use our result for Online Single-
source Weighted Spanner to solve a special case of Pairwise Weighted Spanner,
namely, All-pair Weighted Distance Preserver, and obtain a significantly better
approximation for that case.

We propose the following directions for future work:
Is it possible to get a better analysis for the rounding algorithm for Theorem 2 as in [10]?
This should improve the overall approximation factor for Pairwise Weighted Spanner
in Theorem 2.
Is there a hardness bound for Pairwise Weighted Spanner that is greater than the
existing hardness bounds for Steiner forests and unit-cost spanners?
Is there a better approximation factor for all-pair weighted spanners, i.e., an instance of
Pairwise Weighted Spanner where D = V × V ?
Can we get a result for pairwise weighted distance preserver that is better than using the
Pairwise Weighted Spanner results in Theorem 2?

APPROX/RANDOM 2023

	1 Introduction
	1.1 Our contributions
	1.1.1 Pairwise weighted spanners
	1.1.2 All-pair weighted distance preservers
	1.1.3 Online weighted spanners
	1.1.4 Summary

	1.2 High-level technical overview
	1.2.1 Pairwise Weighted Spanners
	1.2.2 All-pair Weighted Distance Preservers
	1.2.3 Online Weighted Spanners

	1.3 Organization

	2 Pairwise Weighted Spanners
	2.1 Resolving thick pairs
	2.2 Resolving thin pairs
	2.2.1 When |D|/2 < = |C| < = |D|
	2.2.2 When 0 < = |C| < |D|/2

	3 All-pair Weighted Distance Preservers
	3.1 Thick pairs
	3.2 Thin pairs

	4 Online Weighted Spanners
	A Related work
	A.1 Resource-constrained Shortest Path
	A.2 Undirected Bi-criteria Network Design
	A.3 Other related directed network problems

	B Missing Proofs in Section 2
	B.1 Proof for Lemma 18
	B.2 Missing proof for Lemma 29

	C Conclusion

