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Abstract
Polynomial time dynamic programming algorithms play a crucial role in the design, analysis and
engineering of nucleic acid systems including DNA computers and DNA/RNA nanostructures.
However, in complex multistranded or pseudoknotted systems, computing the minimum free energy
(MFE), and partition function of nucleic acid systems is NP-hard. Despite this, multistranded and/or
pseudoknotted systems represent some of the most utilised and successful systems in the field. This
leaves open the tempting possibility that many of the kinds of multistranded and/or pseudoknotted
systems we wish to engineer actually fall into restricted classes, that do in fact have polynomial
time algorithms, but we’ve just not found them yet.

Here, we give polynomial time algorithms for MFE and partition function calculation for a
restricted kind of multistranded system called the 1D scaffolded DNA computer. This model of
computation thermodynamically favours correct outputs over erroneous states, simulates finite state
machines in 1D and Boolean circuits in 2D, and is amenable to DNA storage applications. In
an effort to begin to ask the question of whether we can naturally compare the expressivity of
nucleic acid systems based on the computational complexity of prediction of their preferred energetic
states, we show our MFE problem is in logspace (the complexity class L), making it perhaps one of
the simplest known, natural, nucleic acid MFE problems. Finally, we provide a stochastic kinetic
simulator for the 1D scaffolded DNA computer and evaluate strategies for efficiently speeding up
this thermodynamically favourable system in a constant-temperature kinetic regime.
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1 Introduction

Efficient algorithms play a crucial role in the design, analysis and engineering of nucleic
acid systems including DNA computers and DNA nanostructures. Some decades ago the
beautiful relationship between pseudoknot-free nucleic acid secondary structures1 and dy-
namic programming algorithms was established [28, 17, 33]. For just one or more DNA/RNA
strands, there are asymptotically exponentially many (in number of bases) distinct secondary
structures those strands may adopt. Despite this, for the case of a single DNA or RNA strand,
dynamic programming can be used to efficiently, in polynomial time, predict important
global properties of the system, such as its pseudoknot-free minimum free energy (MFE) or
partition function. Intuitively, the MFE is the energy of the most favoured2 structure(s) of
the system, and the partition function is the sum of the Boltzmann-weighted energy of each
secondary structure of the system.

Background. The free energy ∆G(S) =
∑

l∈S ∆G(l) + (n − 1)∆Gassoc of an n-strand
secondary structure S is a sum of empirically-obtained [22] free energies ∆G(l) of a set of
loop features of the secondary structure such as stack loops, bulge loops, and many others [7].
∆Gassoc > 0 is an entropic penalty for bringing strands together. The MFE of a set Ω of
unpseduoknotted secondary structures is simply minS∈Ω ∆G(S), and the partition function
is a (typically large positive) number Q =

∑
S∈Ω e−∆G(S)/kBT where kB is Boltzmann’s

constant in units of kcal/(mol ·K) and T is temperature in Kelvin. Q is typically used as a
normalisation factor to calculate the probability of any pseudoknot-free secondary structure
S at equilibrium: p(S) = (e−∆G(S)/kBT )/Q.

Dynamic-programming based MFE and partition function algorithms provide a firm basis
for some sophisticated DNA sequence design tasks. For example, we might use partition
function calculations in a design feedback loop with the goal of lowering the probability
of unwanted (“off-target”) secondary structures, and we may use MFE and/or partition
function to improve the design of desired (“on-target”) secondary structures [31, 10, 3, 7, 20].

As noted, there are fast MFE and partition function algorithms for systems consisting of
a single strand. But for the case of multiple interacting strands, even unpseudoknotted, the
situation is more nuanced: if we have a constant number (independent of input length) of
strands, there is a polynomial time dynamic programming partition function algorithm [7],
although, somewhat surprisingly, we don’t know of one for MFE [4], since there are over-
counting complications when there are multiple copies of the same strand. But if the system
is multistranded in the most general sense, where the number of strands is given as part of
the input (i.e. non-constant), unpseudoknotted MFE was recently shown to be both NP-hard
and hard to approximate (APX-hard) and so is unlikely to have a polynomial time algorithm,
even for a simple energy model (partition function is unknown for this case) [4]. Furthermore,
if pseudoknots are permitted, MFE determination becomes NP-hard for a large class of
reasonable energy models, even for a single strand [1, 15].

1 We have an ordered list of DNA strands, where each strand is a sequence of DNA bases ordered in 5’ to
3’ direction, giving a total order on all DNA bases in the system. Then, a secondary structure is simply
a set of pairs of the form (i, j) interpreted as “base i is paired with base j” (by convention i < j). We
may permute the order of the strands, and a structure is called unpsedoknotted if there exists a strand
order where such base pairs “do not cross”, i.e. a strand ordering where there are no two pairs (i, j) and
(i′, j′) such that i′ ∈ [i, . . . , j] and j′ ̸∈ [i, . . . , j]. This point is more intuitively explained using polymer
graphs (see Figure 1).

2 In physics and chemistry, more negative free energy generally means more favoured.
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Figure 1 (a) Polymer graph for a secondary structure over the strand set {1, 2, 3, 4} with strand
ordering 1324. Some crossings are shown. (b) By simply reordering to 1234 we get another polymer
graph for the same strand set and secondary structure, but without crossings. The existence
of a strand ordering that yields a crossing-free diagram implies that this secondary structure is
unpseudoknotted.

Despite the theoretical road-block of algorithmic hardness, multistranded and pseudoknot-
ted self-assembly systems are some of the most successful DNA nanostructure and DNA
computing paradigms: examples include DNA origami [21], RNA origami [12], and single-
stranded tile systems [29, 31]. In these cases the design process has not been via full de novo
algorithmic simulation of the thermodynamics, but by other methods including decomposition
into smaller pieces more amenable to analysis [31], or by intuition-based whiteboard drawings,
or some other method. Another key point is that such systems, and many others, are typically
designed at a domain level of abstraction, where we ignore the details of DNA sequences and
imagine a set of strands, each with one or more domains, and where several domains are
imagined to have identical free energy, and domains that should not bind never in fact bind.

Motivation. But perhaps many engineered multistranded and/or pseudoknotted systems
make use of design concepts, such as modularity, abstraction, principled thermodynamics, or
some other intuitively-attractive principles that make their design and analysis algorithmically
tractable? In other words, despite the above-cited algorithmic hardness results, we may
ask if there are sub-classes of multistranded and/or pseudoknotted DNA systems, that on
the one hand are interesting (experimentally implementable, make complex nanostructures,
are capable of computation, etc.) yet on the other hand allow for efficient, e.g. polynomial
time, MFE and partition function algorithms? Digging further into a computational nuance:
since the ability to calculate MFE and/or partition function seems to require detailed
(combinatorial/ enumerative) knowledge of a system one may wonder if there is a hierarchy of
nucleic acid computing systems, classified according to difficulty of computing MFE and/or
partition function, where higher levels corresponds to more expressive molecular computers
capable of stronger computation than lower-level systems?

Scaffolded DNA Computer. Here we look at a specific multistranded system. Stérin,
Eshra and Woods [24] introduced a thermodynamically favoured [8] model of computation
called the Scaffolded DNA Computer (SDC). The model is computationally expressive and
has theoretical thermodynamic benefits over most forms of molecular computing. In one
dimension (1D SDC) the model is capable of simulating finite state automata and transducers,
and in 2D simulates arbitrary Boolean circuits [5] (but proved for a slightly different model).

DNA 29
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Figure 2 Thermodynamic model of the 1D scaffolded DNA computer (SDC) illustrated using a
simple Bit-Copy program (a wire) of length N = 4 and maximum tiles per scaffold position k = 2.
(a) Example Bit-Copy system for a length N = 4 scaffold. The system consists of 7 tiles: 2 per
scaffold position B, C and D and 1 input tile at scaffold position A. (b) An example execution:
starting from the empty scaffold, a tile may bind or displace an existing tile: in both cases the total
number of matching bonds (scaffold-tile or tile-tile) should monotonically increase. 5 bind steps
followed by 2 displace steps are shown. The final configuration has 4 scaffold-tile bonds and 3 tile-tile
bonds, making it the most favourable. (c) Depending on whether input 0 or 1, the Bit-Copy system
eventually reaches the most favoured (all-0 or all-1) configuration. (d) Using our partition function
algorithm to simulate an anneal: simulations, for various scaffold lengths showing probability of target
(correct output for Bit-Copy) with respect to temperature, using experimentally-relevant parameters,
see Appendix E. (e) Schema for converting tiles to domain-level DNA strand abstraction. (f) Domain
level abstraction of Bit-Copy system. 10 programs have been experimentally implemented in this
model [24], the strand diagrams show some implementation features (3-bit domains for data and
computing, as well as fluorescence/quencher reporting complexes).

Figure 2(a–c) describes the model at an abstract tile-level of abstraction suited to
programming and theoretical analysis (see Section 2.1 for a domain-level model definition).
This computational model borrows key principles from DNA origami [21] (low concentration
scaffold, high concentration strands that bind to the scaffold), but breaks one origami
principle by allowing non-scaffold strands to bind to each other, albeit somewhat weakly (no
stronger than scaffold-tile binding). These principles yield a thermodynamically favoured
model of molecular computation where the target (output) structure, is most favoured.

The SDC has been implemented experimentally [24] in 1D, showcasing a total of 10
programs that solve problems such as Addition of two 4-bit numbers, Parity of an 8-bit
input (is the number of 1s odd?), and Graph Reachability (is there a path in an input
graph from a source node s to a target node t). One future aim is to scale up to significantly
larger 1D and 2D systems, by exploiting the thermodynamic favourability of the scaffolded
design principle. However, to do that we need new algorithmic design tools since these
systems are multistranded in 1D and 2D, and pseudoknotted in 2D.
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Main results. We prove a number of results for the domain-based 1D SDC model. The
following two theorems are respectively proven in Sections 3 and 4 (see Figure 2 for N, k).

▶ Theorem 1. There is an O(k2N) time algorithm to determine the domain-level MFE for
a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

▶ Theorem 2. There is an O(k2N) time algorithm for the domain-level partition function
for a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

Our third result opens a door to the research direction of classifying the complexity
of (computational or not) nucleic acid systems based on the computational complexity of
computing MFE/partition function for those systems (proof in Appendix D):

▶ Theorem 3. Given a 1D SDC S of length N ∈ N, with k = O(1) computing strands
per scaffold domain and bounded domain energies (∆G(d) ∈ O(1), for a domain d binding
to its complement), and a finite-precision decimal r, the problem of deciding whether the
domain-level MFE of S is ≤ r is in the complexity class L.

Our fourth contribution is exploratory: In Section 5 we give a stochastic kinetic simulator
for 1D SDC systems. We evaluate the kinetics of the 1D SDC, and go on to test two strategies
to speed up kinetics, the first using extra components and the second exploiting varying
concentrations, both showing some speed-up. This initiates the kinetic study of the 1D
SDC model, where one imagines operating the system at a fixed temperature allowing the
system to move towards equilibrium via designed kinetic pathways. This stands in contrast
to previous work [24] which focused on using the 1D SDC thermodynamically: heat it up,
cool it down!

1.1 Related work
The SDC leverages thermodynamic favourability principles from DNA origami [21], and
computational abilities from self-assembly [31] and strand displacement systems such as the
scaffolded SIMD||DNA system [26, 27] as well as theory-based systems [8]. We wish to create
computational tools to evaluate future strategies for both thermodynamic computation,
and constant-temperature (kinetic) computation. But the SDC has a unique combination
of self-assembly and strand displacement features that make direct use of existing tools
problematic and led us to design bespoke thermodynamic (MFE and partition function)
prediction algorithms, and a kinetic simulator, all built on the same energy model.

SDC self-assembly features include: growth of large target structures, a large
combinatorically-described set of intermediate structures, hassle-free scaffold-mediated seeded
growth with in-built avoidance of unwanted off-scaffold nucleation (computational domains
bind weakly, hence enumeration/simulation of all complexes is not desired nor even relev-
ant). SDC strand-displacement features include: use of toeholds, and displacement domains
which are sometimes desired to work along standard toehold-mediated strand displacement
style pathways, but other times not, depending on our choice of operating mode – so far
experimental work used a simple, fast anneal [24], without needing careful kinetic control!

Related work on MFE and partition function was already discussed above. Multistranded
MFE is NP-hard [4], a result that holds in a simple domain-level model. Our polynomial
time MFE algorithm (Theorem 1) is also for a multistranded domain-level system; however,
we exploit the 1D SDC binding structure to side-step the general-case hardness result of [4].

DNA 29
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Related work on kinetic simulators. There are a variety of simulators suited to strand-
displacement systems and self-assembly based systems. One goal is to scale up to large scaffold
lengths, both in 1D and 2D (with pseudoknots), which may require new features not seen in
existing fine/coarse-grained strand displacement simulators [25, 2, 19, 23, 32]. Also, our use of
toehold mediated strand displacement, as well as future goals to handle displacement through
helices (in 2D), require features that go beyond existing self-assembly simulators [30, 9, 11].
Our kinetic model uses rates from the peppercorn reaction enumerator [2]. In future work
we could use oxDNA [25] to further inform and calibrate rates.

1.2 Future work
Are there fast thermodynamic prediction algorithms for other engineered multistranded
and/or pseudoknotted systems? Specifically, for DNA strand displacement circuits, or DNA
tile-based self-assembly systems, or even DNA origami systems? Our main motivation for
this question, and in fact for this work, is the idea that designed systems and abstractions
might side-step known hardness results and imply the existence of efficient MFE or partition
function algorithms. Here, for 1D SDC, two things helped: (1) using a domain-based model,
justified by enforcement of domain-level abstraction/interactions with careful sequence design,
and (2) that the set of all 1D SDC configurations have an implicit structure amenable to
divide-and-conquer, despite that set being exponentially large in system size.

Continuing this reasoning a step further, one may ask, beyond the existence of a fast,
polynomial time, thermodynamic prediction algorithm, can one attempt to classify engineered
DNA systems based on the computational complexity of their MFE or partition function?
Theorem 3 shows that MFE for 1D SDC is in the complexity class L(with the assumption
k = O(1); we leave it open to remove/generalise that caveat). Hence, we can say that if we
encode the output of a computation in an MFE configuration then the model solves only
problems in L. We know that (general) multi-stranded systems are NP-complete MFE [4].
Here, we are asking if there are natural systems with MFE that lie in other complexity
classes, for example perhaps the wide variety of engineered domain-based DNA systems have
algorithmic hardness of MFE that are characterised by some of the many complexity classes
within P [16, 14].

More concretely, it remains open to characterise the complexity of predicting, reasonable
domain-level formalisations of, 2D SDC systems.

2 1D Scaffolded DNA Computer (SDC): model definition

Previous work [24] defined the SDC at tile, domain, and sequence levels of abstraction, but
in a mainly experimental context. In this section we formally define the 1D SDC at the
domain level of abstraction, with sufficient extra technical detail to facilitate our proofs.

2.1 A simple domain-based model of 1D SDC
▶ Definition 4 (domain, complement, strand, binding). A domain d is an ordered triple
(name, len, dir), where name is a string over a fixed alphabet, len ∈ N is the length of d, and
dir ∈ {→,←} is the domain direction. The complement of domain d is the equal-length
opposite-direction domain d̄. An n-domain strand s, is an ordered n-tuple of domains
s = (d1, d2, ..., dn) all of the same direction (the strand is said to have that direction). We
say di < dj if i < j. Two strands s1 and s2 may bind at domain d, if one has domain d and
the other d̄.
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▶ Definition 5 (1D Scaffolded DNA Computer (SDC)). A 1D Scaffolded DNA Computer
(Figure 2), S, is an ordered pair (S, T ) where S = (d1, d2, . . . dN ) is an N -domain scaffold
strand with direction ←, with all N scaffold domains being distinct. T is a set of 3-domain
computation strands, of direction →, and each s ∈ T is the form s = (dL, dM

i , dR) where
dL, dM

i , dR are the domains on left, middle and right of s respectively, and where dM
i binds

to a scaffold domain di and dL, dR are called computation domains and they do not bind to
any scaffold domain. S is said to be of length N .

We say a computation strand s competes at scaffold domain di if its middle domain
dM

i = d̄i. The set of di-competing strands is Cdi
= {s | s = (dL, dM

i , dR) ∈ T and dM
i = d̄i}.

Since scaffold domains are distinct, if di ≠ dj then Cdi
∩ Cdj

= ∅ (hence each computation
strand binds at most at one scaffold domain). Sometimes, the first scaffold domain, d1, is
called the input domain. For any two computation strands s ∈ Cdi and s′ ∈ Cdj , we say
s ≺ s′ if di < dj .

▶ Definition 6 (SDC configuration, SDC secondary structure). For a 1D SDC S of length N ,
a configuration X is a sequence of l ≤ N computation strands X = (s1, s2, . . . , sl) such that
si ≺ si+1. X is said to be of size l. We interpret a configuration as a domain-level secondary
structure by binding up all adjacent matching domains, more formally for all i ∈ [1, l]:
(a) we bind the middle domain dM

i of si to si’s associated scaffold domain (since si ∈ Cd for
some d), and

(b) if dR
i = d̄ L

i+1 and si, si+1 are adjacent on the scaffold, i.e. if the right domain of si is
complement to the left of si+1 and if the scaffold indices of si, si+1 differ by exactly 1,
we bind those two domains.

In the previous definition, the condition si ≺ si+1 ensures that a configuration has at
most one competing computation strand per scaffold domain.

A computation is a sequence of configurations ϵ ⊢ X1 ⊢ X2 ⊢ . . . ⊢ Xt that begins with the
empty configuration ϵ (corresponding to a scaffold with nothing bound to it). A computation
step, Xj ⊢ Xj+1, is where a computation strand s binds at some scaffold domain d, where s

is non-deterministically chosen from those d-competing strands Cd that preserve or increase
the total number of bound domains.3 A configuration Xj is final if Xj has the maximum
number of bound domains out of all possible configurations. A final configuration may be
unique or not.4

Figure 2(c) shows an initial configuration (left), and two final configurations (right). A
useful intuition for computation in this model: the selection of a strand (from the finite set
of possibilities for that position) executes a logical step, and step-by-step the system will
moves towards an enthalpically favourable reachable configuration (or a cycle of them).

2.2 Ensemble of secondary structures
An MFE or partition function algorithm computes over an ensemble (i.e. a set) of permissible
secondary structures. In this work, we choose that ensemble to be the set of domain-level
secondary structures, that each include a scaffold strand with zero or more computation
strands bound to that scaffold and also to each other, or more formally:

3 Note that off-scaffold interactions are forbidden in this formalism. In Section 2.3 we will define a
free-energy based condition that more closely matches experimental implementation.

4 In the Bit-Copy example in Figure 2 the system eventually reaches one of two polymers (all 0 or all 1),
depending on the input (0 or 1). Other example SDC systems have multiple equal-energy polymers,
and there may or may not be a cycle (of length > 1) of steps between elements of a set of polymers. A
cycle can happen where there are several polymers (each with an identical number of unbound domains)
and the system transitions between these.

DNA 29
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Figure 3 A small example 1D SDC and its ensemble of configurations. (a) An example 1D SDC S
of length 3 showing its scaffold and four computation strands. At scaffold positions 1, 2 and 3 there
are respectively 1, 2 and 1 competing computation strands. (b) The ensemble of configurations ΩS ,
with A highlighted as the unique MFE configuration of this system (bound domains everywhere).

▶ Definition 7 (ensemble ΩS). The ensemble ΩS of a 1D SDC S is the set of all configurations
of S interpreted as domain-level secondary structures (see Definition 6).

For a 1D SDC S of length N that has k1, k2, ..., kN computation strands competing at the
N scaffold domains, we have |ΩS | = (k1 + 1)(k2 + 1) · · · (kN + 1) since each scaffold domain
di has ki possible strands that bind it plus the possibility of it being unbound. If there are
exactly k competing strands at each scaffold domain, |ΩS | = (k + 1)N .

▶ Example 8. Figure 3 shows a simple 1D SDC of length 3 and its ensemble of twelve
configurations/domain-level secondary structures.

Our choice of secondary structure ensemble is justified as follows: We ignore off-scaffold
interactions by making the assumption that the 1D SDC system is designed so that (a) scaffold
and computational strands do not self-bind, (b) any pair of matching computation domains
are sufficiently weak that a pair of 3-domain strands are unlikely to bind for much time
(even if they bind on two computation domains), (c) by using a principle analogous to DNA
origami [21], we assume the scaffold is at low concentration relative to the computation
strands and that (d) scaffold binding domains are strong ensuring that binding to the scaffold
is highly favoured.

It can be seen that the domain-level secondary structures we consider are unpseudoknotted.
This fact is not required to prove our theorems, so we omit (the straightforward) proof.

2.3 Energy model
We augment each domain d to have an associated negative real-valued free energy ∆G(d) ∈
R, ∆G(d) < 0. Also, we define ∆Gassoc to be a strictly positive real number such that
−∆G(d) > ∆Gassoc. For notation, we let ∆G(d, d′) = ∆G(d) if d = d̄′, and ∆G(d, d′) = 0
otherwise.

For a 1D SDC S of length N , the free energy of a configuration X ∈ ΩS of size l is:

∆GS(X) =
∑
s∈X

∆G(dM(s)) + l ·∆Gassoc +
∑

si,si+1∈X

∆G(dR(si), dL(si+1)). (1)



A. Shalaby, C. Thachuk, and D. Woods 1:9

where the latter summation sums the free energy of bound scaffold-adjacent strand pairs.
Note that since X represents l + 1 strands including the scaffold, the strand association
penalty of l ·∆Gassoc is consistent with previous work on multiple strands, e.g. [7, 4]). The
1D SDC domain-level MFE and partition function are respectively:

MFES = min
X∈ΩS

{∆GS(X)} (2)

QS =
∑

X∈ΩS

e−∆GS(X)/kBT (3)

▶ Example 9. The free energy of configuration B in Figure 3 is:

∆GS(B) = ∆G(dM(s2
2)) + ∆G(dM(s1

3)) + 2∆Gassoc + ∆G(dR(s2
2), dL(s1

3))

Configuration A in Figure 3 has MFE of all configurations, MFES = ∆GS(A), since A has
all scaffold domains bound, and all adjacent computation domains bound.

3 Thermodynamics: polynomial time 1D SDC MFE algorithm

Before proving the main result of this section, Theorem 1, we give some preliminary results.

3.1 Definitions for combining configurations & ensemble partitioning
▶ Definition 10 (X ⊛ Y ). For any two configurations X and Y such that ∀s ∈ X,∀s′ ∈ Y

such that s ∈ Cd =⇒ s′ /∈ Cd, we say X is compatible with Y . The interlacing of two
compatible configurations X and Y is the configuration X ⊛ Y = (s1, s2, . . . , sk) such that
si ≺ si+1, and either si ∈ X or si ∈ Y . The interlacing of a configuration X with the set of
configurations Λ where X is compatible with Λ, is the set X⊛Λ = {X⊛Y | for each Y ∈ Λ}.

▶ Example 11. Configuration B is compatible with configuration C in Figure 3 since they
do not share any common, bound scaffold domain, B ⊛ C = A.

The following definitions will be useful to efficiently partition the (exponentially large)
SDC ensemble ΩS to compute its MFE and partition function.

▶ Definition 12 (ΩS
s ). For a 1D SDC S, ΩS

s denotes the set of all configurations having the
computation strand s as the (rightmost) strand, more formally, ΩS

s = {X | X ∈ ΩS and s ∈
X and ∀s′∈ X such that s′ ̸= s =⇒ s′ ≺ s}.

The intuition behind Lemma 13 comes from: if we have any configuration with final
strand s, we can see it as the interlacing of two smaller configurations one of the two is just
{s} itself and the other ends with a final strand s′ ≺ s.

▶ Lemma 13. In any 1D SDC S, for any computation stand s, ΩS
s = [s ⊛

⋃
s′≺s

ΩS
s′ ]

⋃
{s}

and |ΩS
s | = 1 +

∑
s′≺s

|ΩS
s′ |.

▶ Definition 14 (Ω-associated MFE). For a set of configurations Ω ⊂ ΩS of a 1D SDC S,
the Ω-associated MFE, MFES(Ω) = minX∈Ω{∆GS(X)}. If Ω = ΩS

s for some computation
strand s, then for simplicity we will denote MFES(ΩS

s ) by MFES
s .

▶ Remark 15. To simplify our proofs, from Observation 17 onwards, for any scaffold domain d,
we assume that |Cd| ≠ 0, meaning there is at least one computation strand competing at d.
At the end of this section (Remark 20) we will show how our proposed algorithm can be
easily used to overcome this restriction.
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From Section 2.3, (a) all domain binding energies are negative, and (b) ∆G(s) < −∆Gassoc

for a scaffold-bound strand s. Also, for a configuration Y of length l < N we can add N − l

computation strands to the N − l unbound scaffold positions, lowering the free energy (this
fact is used in the following two lemmas). The following lemma follows from the inclusion
ΩS

s′ ⊂ ΩS
s :

▶ Lemma 16. In any 1D SDC S, for any two different computation strands s and s′ such
that if s′ ≺ s, then MFES

s′ > MFES
s .

▶ Observation 17. For a 1D SDC S of length N , there is a configuration X of size N such
that MFES = ∆GS(X).

▶ Lemma 18. In any 1D SDC S, for any two different computation strands s and s′ such that
if s′ ≺ s, then MFES(ΩS

s′ ⊛ {s}) = MFES(ΩS
s′) + ∆GS(dM(s)) + ∆Gassoc + ∆G(dR(s′), dL(s)).

3.2 Polynomial time 1D SDC MFE algorithm
The main result of this section is the following (restated) theorem:

▶ Theorem 1. There is an O(k2N) time algorithm to determine the domain-level MFE for
a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

Proof. We will prove that Algorithm 1, intuitively illustrated in Appendix A, returns the
recursively-defined quantity MS defined in Equation (4), and does so in O(k2N) steps (we
assume the standard RAM model [6] for algorithm analysis and ∆G = O(1) per domain).

MS = min
s∈CdN

{MS
s } (4)

MS
s = ∆G(dM(s)) + ∆Gassoc + min

s′∈Ls

{MS
s′ + ∆G(dR(s′), dL(s))} (5)

where CdN
is the set of strands competing at the final/rightmost scaffold domain (Section 2.1),

Ls is the set of strands that bind to the domain immediately “to the left” of s on the scaffold
(i.e. if s ∈ Cdi

then Ls = Cdi−1 , and where Ls = ∅ if s ∈ Cd1), and the remaining notation is
given in Section 2.3.

To prove the time bound: The for loops in Lines 3 and 5 iterate over all strands s in
the system, iteratively implementing the recursion in Equation (5), with each iteration (for
s) representing a corresponding Ls (Equation (5)). Then the min over s′ (Equation (5)) is
executed by Line 10 (as a min over m). There are ≤ Nk strands, and the min requires O(k)
steps, giving O(Nk2) time. Finally, Line 14 executes Equation (4) in an additional O(k)
steps, yielding the claim.

It remains to show that MS (Equation (4)) equals MFES (see Equation (2)): By Lemma 19
(below), for any computation strand s, MS

s = MFES
s , thus it is immediate that the same

strand s satisfies both mins∈T MS
s = mins∈T MFES

s . Since an MFE configuration has size N ,
there is some s ∈ CdN

, based on the assumption in Remark 15, such that MFES
s = MFES ,

and hence for that s, MS
s = MFES . ◀

▶ Lemma 19. For any 1D SDC S, for any computation strand s, MS
s = MFES

s (where MS
s

is from Equation (5) and MFES
s is from Definition 14).

Proof. We will prove the statement by induction on x, such that x is the domain index
where the computation strand s is competing. Formally if s ∈ Cdi

, then x = i.
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Algorithm 1 1D SDC MFE algorithm. The proof of Theorem 1 proof shows that this algorithm
returns the value MS defined in Equation (4). Note that arrays are indexed from 1. Notation:
k1, . . . , kN are the counts of competing strands at scaffold domains d1, . . . , dN . Let sj

i be the jth

strand competing at domain di.

1: Mcurr = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ) for current MFEs
2: Mprev = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ) for previous MFEs
3: for i← 1 . . . N do ▷ index scaffold domains
4: Mprev ←Mcurr
5: for j ← 1 . . . ki do ▷ index computational strands at scaffold domain di

6: if i = 1 then ▷ first scaffold domain, has no left neighbour
7: Mcurr[j]← ∆G(dM(sj

i ))
8: else
9: ▷ O(k) steps to choose min and bind scaffold + entropic penalty

10: Mcurr[j]←
[
minm∈{1,2,...,ki−1}

(
Mprev[m] + ∆G

(
dR(sm

i−1), dL(sj
i )

))
+ ∆G(dM(sj

i )) + ∆Gassoc]
11: end if
12: end for
13: end for
14: MS ← mink′∈{1,2,...,kN } Mcurr[k′] ▷ O(k) steps implement Equation (4) giving MS

15: return MS

Base step: if x = 1, then this means that s is a strand competing at the first scaffold
domain, then using Lemma 13 there is only one configuration X ∈ ΩS

s , and X = s. Then we
have MS

s = ∆G(dM(s)) + ∆Gassoc = ∆GS(X) = MFES
s , and this completes the base step.

Induction step: assume the induction hypothesis is valid for all x < y, in other words
that MS

s′ = MFES
s′ (the former from Equation (5), the latter from Definition 14) because

x, y are domain indices and s′ ≺ s.
Then, if x = y, we can replace MS

s′ in Equation (5) by MFES
s′ , we get the following: MS

s =
∆G(dM(s)) + ∆Gassoc + mins′∈Ls{MFES

s′ + ∆G(dL(s), dR(s′))}. As ∆G(dM(s)) + ∆Gassoc

is just a constant, and using the basic properties of the min operator, we get the following:
MS

s = mins′∈Ls{MFES
s′ + ∆G(dM(s)) + ∆Gassoc + ∆G(dL(s), dR(s′))}. Using Lemma 18,

we will get the following: MS
s = min

s′∈Ls

{MFES(ΩS
s′ ⊛ {s})}. Using Definition 14, we get:

MS
s = min

s′∈Ls

{ min
X∈(ΩS

s′⊛{s})
{∆GS(X)}}. For each distinct computation strand s′, it is easy to

show that each set of configurations [ΩS
s′ ⊛{s}] is disjoint. Let Ω′ =

⋃
s′∈Ls

[ΩS
s′ ⊛{s}], so again

we use another property of the min operator to get the following: MS
s = min

X∈Ω′
{∆GS(X)}.

From Observation 17 we know that if Y is the configuration that has the MFE of the
partition ΩS

s , then Y must be of length l if s ∈ Cdl
, in other words Y must have computation

strands only on scaffold domains 0, 1 . . . , l. Any configuration of size l that ends in s

is contained in ΩS
s , and is also contained in Ω′, and hence Y ∈ Ω′, and we get that

MS
s = min

X∈Ω′
{∆GS(X)} = min

X∈ΩS
s

{∆GS(X)}. So MS
s = min

X∈ΩS
s

{∆GS(X)} = MFES
s . ◀

▶ Remark 20. Now, we can easily remove the assumption in Remark 15 by dividing the
scaffold into pieces separated by domains d such that Cd = ∅ and running MFE on each such
region, and then summing each MFE.

Finally, Appendix D gives an analysis of Algorithm 1 that yields the proof of Theorem 3.
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Algorithm 2 1D SDC partition function algorithm. The proof of Theorem 2 argues that this
algorithm returns ZS as defined in Equation (6). Note that arrays are indexed from 1, and recall
that k1, . . . , kN are the counts of competing strands at scaffold domains d1, . . . , dN , and we let sj

i

be the jth strand competing at domain di. See Figure 9.

1: Zcurr = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ), current (partial) partition function
2: Zprev = [0, 0, . . . , 0] ▷ size k =max(k1, . . . , kN ), previous (partial) partition function
3: ZS ← 1; suma ← 0
4: for i← 1 . . . N do
5: suma ← suma +

∑
i∈{1,...,k} Zprev[i] ▷ suma: rightmost summation Equation (7)

6: Zprev ← Zcurr
7: Zcurr = [0, 0, . . . , 0]
8: for j ← 1 . . . ki do ▷ each iteration computes Equation (7) for a strand
9: t1 = e−(∆G(dM(sj

i
))+∆Gassoc)/kBT

10: if i = 1 then ▷ first domain where is no neighbors at all
11: Zcurr[j] = t1
12: else
13: t2 ← 0
14: for m← 1 . . . ki−1 do
15: t2 ← t2 +

(
e−(∆G(dR(sm

i−1),dL(sj
i
)))/kBT

)
· Zprev[m]

16: end for
17: Zcurr[j]← t1 + t2 + suma

18: end if
19: ZS ← ZS + Zcurr[j] ▷ computing Equation (6)
20: end for
21: end for
22: return ZS

4 Thermodynamics: polynomial time 1D SDC partition function

▶ Definition 21 (Ω-associated partition function). For a 1D SDC S, for any set of configurations
Ω ⊂ ΩS , the Ω-associated partition function is QS(Ω) =

∑
X∈Ω e−∆GS(X)/kBT . If Ω = ΩS

s

for some computation strand s, then for simplicity we will denote QS(ΩS
s ) by QS

s .

4.1 A polynomial time partition function algorithm for 1D SDC
We restate the main result of this section:

▶ Theorem 2. There is an O(k2N) time algorithm for the domain-level partition function
for a 1D SDC of length N with ≤ k computation strands competing at each scaffold domain.

Proof. We will first claim that Algorithm 2, intuitively illustrated in Figure 9 (Appendix B),
returns the recursively-defined quantity ZS (Equation (6)), and does so in O(k2N) steps:

ZS = 1 +
∑
s∈T

ZS
s (6)

ZS
s =

(
e−(∆G(dM(s))+∆Gassoc)/kBT

)
·

1 +
∑

s′∈Ls

Z(s′,s) ∗ ZS
s′ +

∑
s′≺s and s′ ̸∈Ls

ZS
s′

 (7)
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where Z(s′,s) = e−∆G(dR(s′),dL(s))/kBT . Here, ZS
s is an intermediate quantity (that we will

prove is the Ωs-associated partition function), Ls is the set of strands that bind to the domain
immediately “to the left” of s on the scaffold (i.e. if s ∈ Cdi

then Ls = Cdi−1 , and where
Ls = ∅ if s ∈ Cd1).

To see the claim note that Lines 4 and 8 iterate over all s ∈ T (O(kN) iterations), and
each inner-loop iteration calculates ZS

s for some strand s ∈ T . Line 14 for loop iterates O(k)
times and computes the left-hand summation of Equation (7) (giving O(k2N) total steps),
and Line 5 computes the right-hand summation. Line 19 accumulates the value of ZS at
each iteration, and when the algorithm terminates ZS is equal to Equation (6).

Lemma 23 below proves that ZS = QS , which completes the proof. ◀

▶ Lemma 22. For any 1D SDC S, for any computation strand s, ZS
s = QS

s (where ZS
s is

from Equation (7) and QS
s is from Definition 21)

Proof. We will prove it by induction on scaffold domain index x, with the induction hypothesis
being that ZS

s = QS
s for all s at scaffold domain index ≤ x ∈ [1, N ].

Base step, x = 1: This implies that strand s is competing at first scaffold domain d1, then
using Lemma 13 there is only one secondary structure X ∈ ΩS

s , hence X = s, a configuration
of size 1. Then we compete the base step via:

ZS
s = e−(∆G(dM(s)) +∆Gassoc)/kBT = e−(∆GS (X))/kBT = QS

s .

We re-write ZS
s (Equation (7)) as follows:

ZS
s =

(
e−(∆G(dM(s))+∆Gassoc)/kBT

)
·

1 +
∑
s′≺s

Z(s′,s) · ZS
s′

 . (8)

which is equivalent to Equation (7), as Z(s′,s) = 1 if s′ /∈ Ls since ∆G(dR(s′), dL(s)) will
equal 0 as s′, s are not adjacent, i.e. there is no interaction between them.

Induction step: assume the induction hypothesis is valid for all x < y, then if x = y, we
can replace ZS

s′ in Equation (8) by
∑

X∈ΩS
s′

e
− ∆GS (X)

kBT = QS
s (Definition 21), we get

ZS
s =

(
e− ∆G(dM(s)) +∆assoc

kBT

)
·

1 +
∑
s′≺s

Z(s,s′) ·
∑

X∈ΩS
s′

e
− ∆GS (X)

kBT

 . (9)

Using the distributive property of multiplication over addition we get

ZS
s = e− ∆G(dM(s)) +∆Gassoc

kBT +
∑
s′≺s

∑
X∈ΩS

s′

[
e− ∆G(dM(s)) +∆Gassoc

kBT · Z(s,s′) · e
− ∆GS (X)

kBT

]
. (10)

We then apply Lemma 25 since these ΩS
s′ sets, for different s′ are disjoint by Lemma 24, then

we can replace the double summation by only one over
⋃

s′≺s ΩS
s′ and we get

ZS
s = e

− ∆G(dM(s)) +∆Gassoc
kBT +

∑
X∈

⋃
s′≺s

ΩS
s′

[
e

− ∆G(dM(s)) +∆Gassoc
kBT · Z(s′,s) · e

− ∆GS (X)
kBT

]
. (11)

We can rewrite Equation (11) as follows:

ZS
s =

∑
X∈

[
{ϵ}∪

⋃
s′≺s

ΩS
s′

]
[
e

− ∆G(dM(s)) +∆Gassoc
kBT · Z(s′,s) · e

− ∆GS (X)
kBT

]
. (12)
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The latter transition is justified because if X = ϵ, then Z(s′,s) = 1 and ∆GS(X) = 0 since
there are no computation strand s′ to interact with s as X is the empty configuration.

Let Ω1 = [{ϵ}∪
⋃

s′≺s

ΩS
s′ ], Ω2 = ΩS

s , f : Ω1 → R, f ′ : Ω1 → R, g : Ω2 → R and g′ : Ω2 → R.

f ′, f , g′ and g are defined as follows:
f ′(X) = ∆GS(X) + ∆G(dM(s)) + ∆G(dR(sl), dL(s)) + ∆Gassoc,
f(X) = e−f ′(X),
g′(X ′) = ∆GS(X ′), and
g(X ′) = e−g′(X′),

where X is a configuration of length l and sl ∈ X is the final (right-most) strand on the
scaffold of configuration X (which may be at some domain index ≤ N). We know from
Observation 27 that there is a direct one-to-one correspondence, α : Ω1 → Ω2, defined by
α(X) = s ⊛ X. Notice that function f ′ is defined in a way that computes the free energy,
Equation (1), of the configuration that results from X ′ = α(X), so f ′(X) = g′(α(X)) =
g′(X ′). It directly follows that f(X) = e−f ′(X) = e−g′(X′) = g(X ′), then we can apply
Lemma 26 directly on Equation (12) using the previous setup for that lemma and we will
get ZS

s =
∑

X∈ΩS
s

e−∆GS (X)/kBT , and this completes the proof. ◀

▶ Lemma 23. For any 1D SDC S, ZS = QS , where ZS is defined in Equation (6) and QS

is the partition function of S (Equation (3)).

Proof. Since ZS = 1 +
∑

s∈T

ZS
s , and from Lemma 22, we know that ZS

s =
∑

X∈ΩS
s

e
− ∆GS (X)

kBT .

Then, we get the following: ZS = 1+
∑

s∈T

∑
X∈ΩS

s
e

− ∆GS (X)
kBT . Again we can apply Lemma 25

directly because these ΩS
s sets, for different s, are disjoint from Lemma 24, then we can

replace the double summation by only one over
⋃

s∈T ΩS
s , and with the aid of Observation 28,

we get the following:

ZS = 1 +
∑

X∈
⋃

s∈T

ΩS
s

e
− ∆GS (X)

kBT = 1 +
∑

X∈ΩS \{ϵ}

e
− ∆GS (X)

kBT =
∑

X∈ΩS

e
− ∆GS (X)

kBT . ◀

5 Kinetics: A simple domain-based kinetic model of 1D SDC

In this section, we first propose a simple kinetic model for the 1D SDC. Second, we implement
a simulator for this model (in java and python languages, as a Gillispie simulation [13]) and
use it to evaluate existing systems. Third, we use the model to evaluate two hypotheses for
improving the kinetics of constant temperature 1D SDC systems.

Model. Our kinetic model for a 1D SDC, Θ = (SN , T ), is a continuous-time Markov chain
(CTMC) that satisfies detailed balance [23]. The initial system state as shown in Figure 4(c)
is the empty configuration, ϵ, then the simplest version of our kinetic model assumes that
the first N steps are merely the binding of N computation strands to the scaffold (no
displacement). This assumption is reasonable since we know empirically that hybridization
reaction rates are much faster than reactions utilising strand displacement (this assumption
can be removed, but we leave it for simplicity). Then any next step will be a sub-step of either
toehold exchange or strand displacement, based on a 3-step and 2-step model, respectively
described in the following equations and shown in Figure 4(a):
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Figure 4 Summary of kinetic 1D SDC model that extends the thermodynamic model in Section 2.1
(and Figure 2). (a) 3 step bind-displace-unbind. (b) 2 step bind-displace. (c) An example computation.
We start with the all-empty scaffold, after some fast hybridization events, we have a random scaffold
configuration whereupon a sequence of strand displacement events eventually yield the unique
thermodynamically-favoured target configuration.

A + B kbind−−−−⇀↽−−−−−
kunbind

C
kdisp−−−⇀↽−−−
kdisp

D kunbind−−−−−⇀↽−−−−
kbind

E + F

A + B kbind−−−−⇀↽−−−−−
kunbind

C kdisp−−−→ D + E

where A, B, C, D, E, F are complex names, and the binding and unbinding rates, rbind and
runbind respectively, are rbind = [s]∗kbind and runbind = kunbind∗e(∆G(dR(s′),dL(s))+∆Gassoc)/kBT ,
where s, s′ are computation strands with matching computation domains, [s] denotes the
concentration of s and kdisp, kbind and kunbind denote the (single, global) displacement,
binding, and unbinding rate, respectively. We used the peppercorn enumerator [2] and
NUPACK [7] to obtain these rates.

Simulator. Our simulator for this model works as follows: If we assume the system is
currently in state x, the rate for each possible next state x′ will be computed, the sum of
these rates will be used as a normalization factor to compute a probability for each such next
state. Then we compute cumulative density function (CDF) of the random variable that is
the next state, and uniformly generate a random number from the interval [0, 1] and use it to
determine which next state, x′, the system will go to. This process will be repeated forever
until the system goes to a halt state, if there is one (which is a state with no next states).

Motivation for two proposals. An interesting challenge for 1D SDC goes thus: suppose we
are in the typical situation where our 1D SDC program has a single computation strand, d1,
competing at the first scaffold domain and several computation strand competing at the rest
of scaffold domains, and that we begin in an otherwise random configuration. On a large
scaffold, there will be many mismatching computational domains, implying many competing
random walks (moving to the left and right), and we will in the worst case need to wait
something like quadratic time in scaffold length for the single strand at d1 to “win” all
competitions leading to the most enthalpically favoured state. The question we ask here: are
there any tricks that we can use to speed up the kinetics?

Note that in this situation the input computation strand, i.e. the leftmost computation
strand, plays a crucial role both in determining the target configuration, and in driving the
system to that target. Hence, our intuition is that there is value in considering kinetic tricks
that push (speed-up) computation in the left-to-right direction. Below, we propose two tricks
that build on this intuition.
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Figure 5 Proposal 1: Scaffold with covers (here at the second, fourth, and sixth scaffold domains).

Proposal 1: Covers. A cover is simply a strand consisting of a single domain d̄ which is
complementary to some scaffold domain d, such that when the cover is at high concentration
relative to computation strands that compete at domain d, the cover out-competes the
computation strand. If we have covers for every scaffold domain, the scaffold gets coated,
or mostly coated, in covers as shown in Figure 5. The key idea here is that covers have
no computation domains, and hence do not send left or right randomly-walking signals,
intuitively making covers faster to displace. We carried out a number of simulations with
various cover excesses. Figure 7 shows the results (scaffold is at 0.1x, computation strands at
1x, and covers at higher excesses).

Proposal 2: Monotonically increasing computation strand concentrations. The intuition
here is that by having higher concentrations of computation strands at higher scaffold domain
indices (i.e. as we move further from the start position we increase computation strand
concentration) the random walk should be biased to move to the right at a higher rate, than
with all equal concentrations. The idea is illustrated in Figure 6: First imagine that we have
a Bit-Copy system, such that at each scaffold position i we have two computation strands
s0

i , s1
i (copying bit 0 or 1, respectively). We set concentrations to be strictly increasing with

respect to i, in other words [s0
i ] = [s1

i ] ≤ [s0
i+1] = [s1

i+1]. Thus, for any choice of bit b ∈ {0, 1},
the strand sb

i+1 has an equal or higher binding rate than sb
i . Figure 7 shows result with

scaffold at 0.1x, and where a computation strand at scaffold position i has concentration i x.

Figure 6 Proposal 2: increasing concentration from left to right. Computation strands further to
the right (higher subscript) have higher concentrations than those to the left.
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A Appendix: MFE algorithm illustration

Figure 8 Graphical illustration of Algorithm 1 (and for the proof of Theorem 1). The algorithm
iterates through scaffold domains, with i being the current scaffold domain. The strand si,j is the
jth strand (out of ki strands) at scaffold domain i. Strand si,j has an associated “partial” MFE
denoted Msi,j which is the MFE of all configurations that have strand si,j as their rightmost strand
(and have no strands binding to scaffold domains d>i). Algorithm 1 proceeds, for each of the ≤ ki

strands s at scaffold position i, by populating the list Mcurr, the jth entry of which will contain
the computed value Msi,j . In order to compute Msi,j , Algorithm 1 makes use of a list Mprev that
maintains a similar list for index i − 1, and merely needs to take a min over entries of Mprev added
to the interaction with computation strand si,j (shown as the equation for x at the top).
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B Appendix: Partition function algorithm illustration

Figure 9 Graphical illustration for Algorithm 2 (and Theorem 2). The coloured boxes contain
sets of configurations. The recursive structure in the figure corresponds to the recursive structure of
Equation (7): for example, the top blue box corresponds to the summation of the Ωs-associated
partition function for the following partitions: ϵ (empty scaffold on top), ΩS

s1
1
, ΩS

s2
1
, . . . , ΩS

s
k1
1

(top red

box), ΩS
s1

2
, ΩS

s2
2
, . . . , ΩS

s
k2
2

(lower level k2 red boxes in top blue box). Recursively, the computation
represented by the top blue box, is then used to compute the partition function for all strands s

that compete at domain d3, and so on.

C Thermodynamics: Basic lemmas

Here, we give some lemmas, proofs are straightforward and hence omitted. Lemma 24 gives
a simple method to partition the 1D SDC ensemble ΩS using the identity of the rightmost
(final) strand (the proof is immediate from the two strands s1, s2 being distinct, giving the
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required partition). The proof of Lemma 25 follows from the associative property of addition
and the disjointedness of the involved collection of configuration sets, and Lemma 26 follows
from existence of the one-to-one mapping α and how it is defined.

▶ Lemma 24. In any 1D SDC S, for any two distinct computation strands s1 ≠ s2,
ΩS

s1

⋂
ΩS

s2
= ∅.

▶ Lemma 25. In any 1D SDC S, for any finite collection of disjoint sets of configurations
Ω1, Ω2, ..., Ωn and any real-valued function f : ΩS → R,

n∑
i=1

∑
X∈Ωi

f(X) =
∑

X∈Ω′

f(X) where Ω′ =
n⋃

i=1
Ωi

▶ Lemma 26. In any 1D SDC S, for any two finite sets of configurations Ω1, Ω2 and for
any two real-valued functions f : Ω1 → R and g : Ω2 → R such that there is a one-to-one
correspondence, α, between Ω1 and Ω2, and f(X) = g(α(X)), then

∑
X∈Ω1

f(X) =
∑

X′∈Ω2

g(X ′).

▶ Observation 27. As a direct consequence from Lemma 13, for any 1D SDC S, and for
any computation strand s, we define a one-to-one correspondence α : {ϵ}

⋃
s′≺s ΩS

s′ → ΩS
s , by

interlacing the strand s to each configuration X that belongs to the domain of α, α(X) = X⊛s.

▶ Observation 28. As an important special case of Lemma 13, for any 1D SDC S of
length N , we can show the following ΩS partitioning: ΩS =

[ ⋃
s∈T ΩS

s

] ⋃
{ϵ}. By ordering

computation strands in T based on their domain indices, we can view ΩS as union of a
hierarchy of partitions beginning with {ϵ} then all ΩS

s for all s ∈ Cd1 and so on until all ΩS
s

for all s ∈ CdN
.

D Computational complexity of MFE

We restate and prove the following theorem. Note that MFE values are ≤ 0.

▶ Theorem 3. Given a 1D SDC S of length N ∈ N, with k = O(1) computing strands
per scaffold domain and bounded domain energies (∆G(d) ∈ O(1), for a domain d binding
to its complement), and a finite-precision decimal r, the problem of deciding whether the
domain-level MFE of S is ≤ r is in the complexity class L.

Proof. We assume familiarity with deterministic logarithmic space Turing machines and the
class L [16, 18]. Let n = max(N, len(r)) where len(r) is the number of decimal symbols used
to specify r, ignoring leading and trailing 0s. First, we argue that all variables in Algorithm 1
fit in O(log n) workspace: The MFE value MS produced by the algorithm is a negative
number bounded below by M

def= N · (∆G(dM (s)) + ∆Gassoc) + (N − 1) ·∆G(dR(s′)), where s

is the strand with the minimum ∆G (strongest) middle domain dM , and s′ is the strand with
the minimum ∆G (strongest) right domain dR (i.e. we are taking a min over all domains of
the system to compute a putative free energy that no configuration can be less than). Hence
M ∈ O(N) = O(n), and thus M ≤MS can be written down using O(log n) bits, keeping in
mind that these quantities are all ≤ 0. Mcurr and Mprev in the algorithm are lists of length
k ∈ O(1), and no value stored in these lists is less than M (since M is a lowerbound for
the MFE). Finally, the various operations in the algorithm (minimum of a list, addition,
assignment, and iteration) are all logspace computable. Hence our MFE problem is in L. ◀
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E Application of our partition function algorithm

Armed with a fast partition function algorithm (Algorithm 2) we can analyse 1D SDC systems.
Figure 2(d) shows an example result, where we used our partition function algorithm to
“simulate” an anneal of the Bit-Copy system, for scaffold lengths up to 400 (i.e. 801 strands),
by computing the probability of the target configuration (correct output) at every 2◦ C from
100◦ C down to 20◦ C.5 We used temperature-dependent domain binding energies computed
from DNA sequences from ongoing experimental work [24] (mean ∆G of 24-base scaffold
and 12-base computational domains being -20.7 and -11.2 kcal/mol for intended binding,
respectively, at 55◦ C).

For non-complementary (orthogonal) computational domains at adjacent positions on the
scaffold, we allowed some binding free-energy (16% of intended binding, an approximation
derived from the NUPACK-computed partition function free-energy for a designed sequence
set [24]), and a positive (unfavourable) penalty for two bound computational domains (to
approximate geometric strain of three helices in close proximity/loop closure). With these
minor tweaks, the probability of the target (correct Bit-Copy output) with respect to
temperature showed qualitative agreement with experimental results on an N = 4 1D SDC.

Our partition function algorithm allows for analysis of much longer scaffold lengths,
useful for future scaled-up designs, with Figure 2(d) showing scaffold lengths up to 400
(i.e. Bit-Copy with 801 strands). This test was meant as a speed test for our algorithm,
and not a quantitative prediction of the experimental system, which we leave to future work.
In particular there remains some work to calibrate our domain-level model to experiments.
For example, lowering the sequence orthogonality constraint from 16% to 8% increases the
predicted melting temperature by ≤ 2 degrees for scaffold length ≤ 100, implying that there
is some, albeit low, sensitivity to crucial, and difficult to measure, system parameters.

F Source code

Source code for our algorithms can be found at https://dna.hamilton.ie/software.html.

5 An earlier, brute-force exponential-time algorithm could not go beyond scaffold lengths ≥ 15 on our
hardware). Note that the target (output) is the structure with MFE.

https://dna.hamilton.ie/software.html
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