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Abstract
This paper studies the (discrete) chemical reaction network (CRN) computational model that
emerged in the last two decades as an abstraction for molecular programming. The correctness of
CRN protocols is typically established under one of two possible schedulers that determine how the
execution advances: (1) a stochastic scheduler that obeys the (continuous time) Markov process
dictated by the standard model of stochastic chemical kinetics; or (2) an adversarial scheduler whose
only commitment is to maintain a certain fairness condition. The latter scheduler is justified by
the fact that the former one crucially assumes “idealized conditions” that more often than not, do
not hold in real wet-lab experiments. However, when it comes to analyzing the runtime of CRN
protocols, the existing literature focuses strictly on the stochastic scheduler, thus raising the research
question that drives this work: Is there a meaningful way to quantify the runtime of CRNs without
the idealized conditions assumption?

The main conceptual contribution of the current paper is to answer this question in the affirmative,
formulating a new runtime measure for CRN protocols that does not rely on idealized conditions.
This runtime measure is based on an adapted (weaker) fairness condition as well as a novel
scheme that enables partitioning the execution into short rounds and charging the runtime for each
round individually (inspired by definitions for the runtime of asynchronous distributed algorithms).
Following that, we turn to investigate various fundamental computational tasks and establish (often
tight) bounds on the runtime of the corresponding CRN protocols operating under the adversarial
scheduler. This includes an almost complete chart of the runtime complexity landscape of predicate
decidability tasks.
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1 Introduction

Chemical reaction networks (CRNs) are used to describe the evolution of interacting molecules
in a solution [20] and more specifically, the behavior of regulatory networks in the cell [7].
In the last two decades, CRNs have also emerged as a computational model for molecular
programming [24, 14]. A protocol in this model is specified by a set of species and a set
of reactions, which consume molecules of some species and produce molecules of others.
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3:2 On the Runtime of CRNs Beyond Idealized Conditions

In a (discrete) CRN computation, inputs are represented as (integral) molecular counts
of designated species in the initial system configuration; a sequence of reactions ensues,
repeatedly transforming the configuration, until molecular counts of other designated species
represent the output. The importance of CRNs as a model of computation is underscored by
the wide number of closely related models, including population protocols [2, 4], Petri nets
[23], and vector addition systems [21].1

The standard model of stochastic chemical kinetics [20], referred to hereafter as the
standard stochastic model, dictates that the execution of a CRN protocol (operating under
fixed environmental conditions) advances as a continuous time Markov process, where the rate
of each reaction is determined by the molecular counts of its reactants as well as a reaction
specific rate coefficient. This model crucially assumes that the system is “well-mixed”, and
so any pair of distinct molecules is equally likely to interact, and that the rate coefficients
remain fixed.2 Under the standard stochastic model, CRNs can simulate Turing machines
if a small error probability is tolerated [14]. The correctness of some protocols, including
Turing machine simulations, depends sensitively on the “idealized conditions” of fixed rate
coefficients and a well-mixed system.

However, correctness of many other CRN protocols, such as those which stably compute
predicates and functions [2, 4, 11, 18, 8, 10], is premised on quite different assumptions:
correct output should be produced on all “fair executions” of the protocol, which means
that the correctness of these protocols does not depend on idealized conditions. These
protocols operate under a notion of fairness, adopted originally in [2], requiring that reachable
configurations are not starved; in the current paper, we refer to this fairness notion as strong
fairness. A celebrated result of Angluin et al. [2, 4] states that with respect to strong fairness,
a predicate can be decided by a CRN if and only if it is semilinear.

As the “what can be computed by CRNs?” question reaches a conclusion, the focus
naturally shifts to its “how fast?” counterpart. The latter question is important as the
analysis of CRN runtime complexity enables the comparison between different CRN protocols
and ultimately guides the search for better ones. Even for CRNs designed to operate on all
(strongly) fair executions, the existing runtime analyses assume that reactions are scheduled
stochastically, namely, according to the Markov process of the standard stochastic model,
consistent with having the aforementioned idealized conditions. However, such conditions
may well not hold in real wet-lab experiments, where additional factors can significantly
affect the order at which reactions proceed [25]. For example, temperature can fluctuate,
or molecules may be temporarily unavailable, perhaps sticking to the side of a test tube or
reversibly binding to another reactant. Consequently, our work is driven by the following
research question: Is there a meaningful way to quantify the runtime of CRNs when idealized
conditions do not necessarily hold?

The Quest for an Adversarial Runtime Measure. We search for a runtime measure
suitable for adversarially scheduled executions, namely, executions that are not subject to the
constraints of the aforementioned idealized conditions. This is tricky since the adversarial
scheduler may generate (arbitrarily) long execution intervals during which no progress can be
made, even if those are not likely to be scheduled stochastically. Therefore, the “adversarial
runtime measure” should neutralize the devious behavior of the scheduler by ensuring that

1 To simplify the discussions, we subsequently stick to the CRN terminology even when citing literature
that was originally written in terms of these related models.

2 We follow the common assumption that each reaction involves at most two reactants.
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the protocol is not unduly penalized from such bad execution intervals. To guide our search,
we look for inspiration from another domain of decentralized computation that faced a similar
challenge: distributed network algorithms.

While it is straightforward to measure the runtime of (idealized) synchronous distributed
protocols, early on, researchers identified the need to define runtime measures also for
(adversarially scheduled) asynchronous distributed protocols [6, 16]. The adversarial runtime
measures that were formulated in this regard share the following two principles: (P1) partition
the execution into rounds, so that in each round, the protocol has an opportunity to make
progress; and (P2) calibrate the runtime charged to the individual rounds so that if the
adversarial scheduler opts to generate the execution according to the idealized benchmark,
then the adversarial runtime measure coincides with the idealized one.

Specifically, in the context of asynchronous message passing protocols, Awerbuch [6]
translates principle (P1) to the requirement that no message is delayed for more than a
single round, whereas in the context of the distributed daemon, Dolev et al. [16] translate
this principle to the requirement that each node is activated at least once in every round.
For principle (P2), both [6] and [16] take the “idealized benchmark” to be a synchronous
execution in which every round costs one time unit.

When it comes to formulating an adversarial runtime measure for CRN protocols, prin-
ciple (P2) is rather straightforward: we should make sure that on stochastically generated
executions (playing the “idealized benchmark” role), the adversarial runtime measure agrees
(in expectation) with that of the corresponding continuous time Markov process. Interpreting
principle (P1), however, seems more difficult as it is not clear how to partition the execution
into rounds so that in each round, the protocol “has an opportunity to make progress”.

The first step towards resolving this difficulty is to introduce an alternative notion of
fairness, referred to hereafter as weak fairness: An execution is weakly fair if a continuously
applicable reaction (i.e., one for which the needed reactants are available) is not starved;
such a reaction is either eventually scheduled or the system reaches a configuration where the
reaction is inapplicable. Using a graph theoretic characterization, we show that any CRN
protocol whose correctness is guaranteed on weakly fair executions is correct also on strongly
fair executions (see Cor. 3), thus justifying the weak vs. strong terminology choice. It turns
out that for predicate decidability, strong fairness is actually not strictly stronger: protocols
operating under the weak fairness assumption can decide all (and only) semilinear predicates
(see Thm. 8).

It remains to come up with a scheme that partitions an execution of CRN protocols into
rounds in which the weakly fair adversarial scheduler can steer the execution in a nefarious
direction, but also the protocol has an opportunity to make progress. A naive attempt
at ensuring progress would be to end the current round once every applicable reaction is
either scheduled or becomes inapplicable; the resulting partition is too coarse though since
in general, a CRN does not have to “wait” for all its applicable reactions in order to make
progress. Another naive attempt is to end the current round once any reaction is scheduled;
this yields a partition which is too fine, allowing the scheduler to charge the protocol’s
run-time for (arbitrarily many) “progress-less rounds”.

So, which reaction is necessary for the CRN protocol to make progress? We do not have
a good answer for this question, but we know who does. . .

Runtime and Skipping Policies. Our adversarial runtime measure is formulated so that it
is the protocol designer who decides which reaction is necessary for the CRN protocol to
make progress. This is done by means of a runtime policy ϱ, used solely for the runtime
analysis, that maps each configuration c to a target reaction ϱ(c). (Our actual definition of
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3:4 On the Runtime of CRNs Beyond Idealized Conditions

runtime policies is more general, mapping each configuration to a set of target reactions; see
Sec. 4.) Symmetrically to the protocol designer’s runtime policy, we also introduce a skipping
policy σ, chosen by the adversarial scheduler, that maps each step t ≥ 0 to a step σ(t) ≥ t.

These two policies partition a given execution η into successive rounds based on the
following inductive scheme: Round 0 starts at step t(0) = 0. Assuming that round i ≥ 0
starts at step t(i), the prefix of round i is determined by the adversarial skipping policy σ so
that it lasts until step σ(t(i)); let ei denote the configuration in step σ(t(i)), referred to as
the round’s effective configuration. Following that, the suffix of round i is determined by
the protocol designer’s runtime policy ϱ so that it lasts until the earliest step in which the
target reaction ϱ(ei) of the round’s effective configuration ei is either scheduled or becomes
inapplicable. That is, in each round, the adversarial scheduler determines (by means of the
skipping policy) the round’s effective configuration, striving to ensure that progress from this
configuration is slow, whereas the runtime policy determines when progress has been made
from the effective configuration. This scheme is well defined by the choice of weak fairness;
we emphasize that this would not be the case with strong fairness.

The partition of execution η into rounds allows us to ascribe a runtime to η by charging
each round with a temporal cost and then accumulating the temporal costs of all rounds
until η terminates.3 The temporal cost of round i is defined to be the expected (continuous)
time until the target reaction ϱ(ei) of its effective configuration ei is either scheduled or
becomes inapplicable in an imaginary execution that starts at ei and proceeds according
to the stochastic scheduler.4 In other words, the protocol’s runtime is not charged for the
prefix of round i that lasts until the (adversarially chosen) effective configuration is reached;
the temporal cost charged for the round’s suffix, emerging from the effective configuration, is
the expected time that this suffix would have lasted in a stochastically scheduled execution
(i.e., the idealized benchmark).

The asymptotic runtime of the CRN protocol is defined by minimizing over all runtime
policies ϱ and then maximizing over all weakly fair executions η and skipping policies σ.
Put differently, the protocol designer first commits to ϱ and only then, the (weakly fair)
adversarial scheduler determines η and σ.

Intuitively, the challenge in constructing a good runtime policy ϱ (the challenge one faces
when attempting to up-bound a protocol’s runtime) is composed of two, often competing,
objectives (see, e.g., Fig. 1): On the one hand, ϱ(c) should be selected so that every execution
η is guaranteed to gain “significant progress” by the time a round whose effective configuration
is c ends, thus minimizing the number of rounds until η terminates. On the other hand,
ϱ(c) should be selected so that the temporal cost of such a round is small, thus minimizing
the contribution of the individual rounds to η’s runtime. In the typical scenarios, a good
runtime policy ϱ results in partitioning η into nΘ(1) rounds, each contributing a temporal
cost between Θ(1/n) and Θ(n), where n is η’s initial molecular count.

To verify that our adversarial runtime measure is indeed compatible with the afore-
mentioned principle (P2), we show that if the (adversarial) scheduler opts to generate the
execution η stochastically, then our runtime measure coincides (in expectation) with that of
the corresponding continuous time Markov process (see Lem. 5). The adversarial scheduler
however can be more malicious than that: simple examples show that in general, the runtime
of a CRN protocol on adversarially scheduled executions may be significantly larger than on
stochastically scheduled executions (see Fig. 2 and 3).

3 The exact meaning of termination in this regard is made clear in Sec. 2.
4 Here, it is assumed that the stochastic scheduler operates with no rate coefficients and with a linear

volume (a.k.a. “parallel time”), see Sec. 2.
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While runtime analyses of CRNs in the presence of common defect modes can be insightful,
a strength of our adversarial model is that it is not tied to specific defects in actual CRNs
or their biomolecular implementations. In particular, if the adversarial runtime of a CRN
matches its stochastic runtime, then we would expect the CRN to perform according to
its stochastic runtime even in the presence of defect modes that we may not anticipate.
Moreover, in cases where stochastic runtime analysis is complex (involving reasoning about
many different executions of a protocol and their likelihoods), it may in fact be easier to
determine the adversarial runtime since it only requires stochastic analysis from rounds’
effective configurations. For similar reasons, notions of adversarial runtime have proven to be
valuable in design of algorithms in both centralized and decentralized domains more broadly,
even when they do not capture realistic physical scenarios. Finally, while the analysis task of
finding a good runtime policy for a given CRN may seem formidable at first, our experience
in analyzing the protocols in this paper is that such a runtime policy is quite easy to deduce,
mirroring intuition about the protocol’s strengths and weaknesses.

The Runtime of Predicate Decidability. After formulating the new adversarial runtime
measure, we turn our attention to CRN protocols whose goal is to decide whether the initial
configuration satisfies a given predicate, indicated by the presence of designated Boolean (“yes”
and “no”) voter species in the output configuration. As mentioned earlier, the predicates that
can be decided in that way are exactly the semilinear predicates, which raises the following
two questions: What is the optimal adversarial runtime of protocols that decide semilinear
predicates in general? Are there semilinear predicates that can be decided faster?

A notion that plays an important role in answering these questions is that of CRN
speed faults, introduced in the impressive work of Chen et al. [10]. This notion captures
a (reachable) configuration from which any path to an output configuration includes a
(bimolecular) reaction both of whose reactants appear in O(1) molecular counts. The
significance of speed faults stems from the fact that any execution that reaches such a “pitfall
configuration” requires Ω(n) time (in expectation) to terminate under the standard stochastic
model.5 The main result of [10] states that a predicate can be decided by a speed fault
free CRN protocol (operating under the strongly fair adversarial scheduler) if and only if it
belongs to the class of detection predicates (a subclass of semilinear predicates).

The runtime measure introduced in the current paper can be viewed as a quantitative
generalization of the fundamentally qualitative notion of speed faults (the quest for such a
generalization was, in fact, the main motivation for this work). As discussed in Sec. 4.1, in
our adversarial setting, a speed fault translates to an Ω(n) runtime lower bound, leading to
an Ω(n) runtime lower bound for the task of deciding any non-detection semilinear predicate.
On the positive side, we prove that this bound is tight: any semilinear predicate (in particular,
the non-detection ones) can be decided by a CRN protocol operating under the weakly fair
adversarial scheduler whose runtime is O(n) (see Thm. 8). For detection predicates, we
establish a better upper bound (which is also tight): any detection predicate can be decided
by a CRN protocol operating under the weakly fair adversarial scheduler whose runtime is
O(logn) (see Thm. 9). Refer to Table 1 for a summary of the adversarial runtime complexity
bounds established for predicate decidability tasks; for comparison, Table 2 presents a similar
summary of the known stochastic runtime complexity bounds.

5 The definition of runtime in [10] is based on a slightly different convention which results in scaling the
runtime expressions by a 1/n factor.
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3:6 On the Runtime of CRNs Beyond Idealized Conditions

Paper’s Outline. The rest of the paper is organized as follows. The CRN model used in this
paper is presented in Sec. 2. In Sec. 3, we link the correctness of a CRN protocol to certain
topological properties of its configuration digraph. Our new runtime notion for adversarially
scheduled executions is introduced in Sec. 4, where we also establish the soundness of this
notion and formalize its connection to speed faults. Sec. 5 presents our results for predicate
deciding CRNs. These are accompanied by a generic technique for amplifying the molecular
count of the voter species in the outcome, introduced in Sec. 6.

2 Chemical Reaction Networks

In this section, we present the chemical reaction network (CRN) computational model. For
the most part, we adhere to the conventions of the existing CRN literature (e.g., [14, 12, 9]),
but we occasionally deviate from them for the sake of simplifying the subsequent discussions.
(Refer to Fig. 1a–4a for illustrations of the notions presented in this section.)

A CRN is a protocol Π specified by the pair Π = (S,R), where S is a fixed set of species
and R ⊂ NS × NS is a fixed set of reactions.6 For a reaction α = (r,p) ∈ R, the vectors
r ∈ NS and p ∈ NS specify the stoichiometry of α’s reactants and products, respectively.7
Specifically, the entry r(A) (resp., p(A)) indexed by a species A ∈ S in the vector r (resp.,
p) encodes the number of molecules of A that are consumed (resp., produced) when α is
applied. Species A is a catalyst for the reaction α = (r,p) if r(A) = p(A) > 0.

We adhere to the convention (see, e.g., [11, 17, 15, 10]) that each reaction (r,p) ∈ R is
either unimolecular with ∥r∥ = 1 or bimolecular with ∥r∥ = 2. 8 Note that if all reactions
(r,p) ∈ R are bimolecular and density preserving, namely, ∥r∥ = ∥p∥, then the CRN model
is equivalent to the extensively studied population protocols model [2, 5, 22] assuming that
the population protocol agents have a constant state space.

For a vector (or multiset) r ∈ NS with 1 ≤ ∥r∥ ≤ 2, let R(r) = ({r} ×NS) ∩ R denote the
subset of reactions whose reactants correspond to r. In the current paper, it is required that
none of these reaction subsets is empty, i.e., |R(r)| ≥ 1 for every r ∈ NS with 1 ≤ ∥r∥ ≤ 2.
Some of the reactions in R may be void, namely, reactions (r,p) satisfying r = p; let
NV(R) = {(r,p) ∈ R | r ̸= p} denote the set of non-void reactions in R. To simplify the
exposition, we assume that if α = (r, r) ∈ R is a void reaction, then R(r) = {α}; this allows
us to describe protocol Π by listing only its non-void reactions. For the sake of simplicity, we
further assume that ∥r∥ ≤ ∥p∥ for all reactions (r,p) ∈ R.

Configurations. A configuration of a CRN Π = (S,R) is a vector c ∈ NS that encodes the
molecular count c(A) of species A in the solution for each A ∈ S.9 The molecular count
notation is extended to species (sub)sets Λ ⊆ S, denoting c(Λ) =

∑
A∈Λ c(A). We refer to

c(S) = ∥c∥ as the molecular count of the configuration c. Let c|Λ ∈ NΛ denote the restriction
of a configuration c ∈ NS to a species subset Λ ⊆ S.

A reaction α = (r,p) ∈ R is said to be applicable to a configuration c ∈ NS if r(A) ≤ c(A)
for every A ∈ S. Let app(c) ⊆ R denote the set of reactions which are applicable to c and
let app(c) = R − app(c), referring to the reactions in app(c) as being inapplicable to c. We

6 Throughout this paper, we denote N = {z ∈ Z | z ≥ 0}.
7 We stick to the convention of identifying vectors in NS with multisets over S expressed as a “molecule

summation”.
8 The notation ∥ · ∥ denotes the 1-norm ℓ1.
9 We consider the discrete version of the CRN model, where the configuration encodes integral molecular

counts, in contrast to the continuous model, where a configuration is given by real species densities.
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restrict our attention to configurations c with molecular count ∥c∥ ≥ 1, which ensures that
app(c) is never empty. For a reaction α ∈ app(c), let α(c) = c − r + p be the configuration
obtained by applying α to c.10

Given two configurations c, c′ ∈ NS , the binary relation c ⇀ c′ holds if there exists a
reaction α ∈ app(c) such that α(c) = c′. We denote the reflexive transitive closure of ⇀ by
∗
⇀ and say that c′ is reachable from c if c ∗

⇀ c′. Given a configuration set Z ⊆ NS , let

stab(Z) ≜
{

c ∈ Z | c ∗
⇀ c′ =⇒ c′ ∈ Z

}
and halt(Z) ≜

{
c ∈ Z | c ∗

⇀ c′ =⇒ c′ = c
}
,

observing that the latter set is a (not necessarily strict) subset of the former.
For the sake of simplicity, we restrict this paper’s focus to protocols that respect finite

density [17], namely, c ∗
⇀ c′ implies that ∥c′∥ ≤ O(∥c∥). We note that density preserving

CRNs inherently respect finite density, however we also allow for reactions that have more
products than reactants as long as the CRN protocol is designed so that the molecular count
cannot increase arbitrarily. This means, in particular, that although the configuration space
NS is inherently infinite, the set {c′ ∈ NS | c ∗

⇀ c′} is finite (and bounded as a function of
∥c∥) for any configuration c ∈ NS .

Executions. An execution η of the CRN Π is an infinite sequence η = ⟨ct, αt⟩t≥0 of
⟨configuration, reaction⟩ pairs such that αt ∈ app(ct) and ct+1 = αt(ct) for every t ≥ 0. It is
convenient to think of η as progressing in discrete steps so that configuration ct and reaction
αt are associated with step t ≥ 0. We refer to c0 as the initial configuration of η and, unless
stated otherwise, denote the molecular count of c0 by n = ∥c0∥. Given a configuration set
Z ⊆ NS , we say that η stabilizes (resp., halts) into Z if there exists a step t ≥ 0 such that
ct ∈ stab(Z) (resp., ct ∈ halt(Z)) and refer to the earliest such step t as the execution’s
stabilization step (resp., halting step) with respect to Z.

In this paper, we consider an adversarial scheduler that knows the CRN protocol Π and
the initial configuration c0 and determines the execution η = ⟨ct, αt⟩t≥0 in an arbitrary
(malicious) way. The execution η is nonetheless subject to the following fairness condition:
for every t ≥ 0 and for every α ∈ app(ct), there exists t′ ≥ t such that either (I) αt′ = α;
or (II) α /∈ app(ct′). In other words, the scheduler is not allowed to (indefinitely) “starve”
a continuously applicable reaction. We emphasize that the mere condition that a reaction
α ∈ R is applicable infinitely often does not imply that α is scheduled infinitely often.

Note that the fairness condition adopted in the current paper differs from the one used in
the existing CRN literature [2, 4, 11, 9]. The latter, referred to hereafter as strong fairness,
requires that if a configuration c appears infinitely often in the execution η and a configuration
c′ is reachable from c, then c′ also appears infinitely often in η. Strictly speaking, a strongly
fair execution η is not necessarily fair according to the current paper’s notion of fairness (in
particular, η may starve void reactions). However, as we show in Sec. 3, protocol correctness
under the current paper’s notion of fairness implies protocol correctness under strong fairness
(see Cor. 3), where the exact meaning of correctness is defined soon. Consequently, we refer
hereafter to the notion of fairness adopted in the current paper as weak fairness.

Interface and Correctness. The CRN notions introduced so far are independent of any
particular computational task. To correlate between a CRN protocol Π = (S,R) and concrete
computational tasks, we associate Π with a (task specific) interface I = (U , µ, C) whose

10 Unless stated otherwise, all vector arithmetic is done component-wise.
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3:8 On the Runtime of CRNs Beyond Idealized Conditions

semantics is as follows: U is a fixed set of interface values that typically encode the input
and/or output associated with the species; µ : S → U is an interface mapping that maps
each species A ∈ S to an interface value µ(A) ∈ U ; and C ⊆ NU ×NU is a correctness relation
that determines the correctness of an execution as explained soon.11

Hereafter, we refer to the vectors in NU as interface vectors. The interface of a configuration
c ∈ NS in terms of the input/output that c encodes is captured by the interface vector

µ(c) ≜ ⟨c ({A ∈ S | µ(A) = u})⟩u∈U .

The abstract interface I = (U , µ, C) allows us to define what it means for a protocol to be
correct. To this end, for each configuration c ∈ NS , let ZI(c) = {c′ ∈ NS | (µ(c), µ(c′)) ∈ C}
be the set of configurations which are mapped by µ to interface vectors that satisfy the
correctness relation with µ(c). A configuration c0 ∈ NS is a valid initial configuration with
respect to I if ZI(c0) ̸= ∅; an execution is valid (with respect to I) if it emerges from a
valid initial configuration. A valid execution η is said to be stably correct (resp., haltingly
correct) if η stabilizes (resp., halts) into ZI(c0). The protocol Π is said to be stably correct
(resp., haltingly correct) if every weakly fair valid execution is guaranteed to be stably (resp.,
haltingly) correct.12

The Stochastic Scheduler. While the current paper focuses on the (weakly fair) adversarial
scheduler, another type of scheduler that receives a lot of attention in the literature is the
stochastic scheduler. Here, we present the stochastic scheduler so that it can serve as a
“benchmark” for the runtime definition introduced in Sec. 4. To this end, we define the
propensity of a reaction α = (r,p) ∈ R in a configuration c ∈ NS , denoted by πc(α), as

πc(α) =


c(A) · 1

|R(r)| , r = A
1
φ ·

(c(A)
2

)
· 1

|R(r)| , r = 2A
1
φ · c(A) · c(B) · 1

|R(r)| , r = A+B,A ̸= B

,

where φ > 0 is a (global) volume parameter.13 Notice that reaction α is applicable to c if
and only if πc(α) > 0. The propensity notation is extended to reaction (sub)sets Q ⊆ R by
defining πc(Q) =

∑
α∈Q πc(α). Recalling that R(r) ̸= ∅ for each r ∈ NS with 1 ≤ ∥r∥ ≤ 2,

we observe that

πc ≜ πc(R) = ∥c∥ + 1
φ ·

(∥c∥
2

)
.

The stochastic scheduler determines the execution η = ⟨ct, αt⟩t≥0 by scheduling a reaction
α ∈ app(ct) in step t, setting αt = α, with probability proportional to α’s propensity πct(α)
in ct. The assumption that the CRN protocol respects finite density implies that η is (weakly
and strongly) fair with probability 1. We define the time span of step t ≥ 0 to be 1

/
πct ,

11 The abstract interface formulation generalizes various families of computational tasks addressed in
the CRN literature, including predicate decision [8, 10, 9] (see also Sec. 5) and function computation
[11, 18, 9], as well as the vote amplification task discussed in Sec. 6, without committing to the specifics of
one particular family. For example, for the CRDs presented in Sec. 5, we define U = (Σ∪{⊥})×{0, 1, ⊥}.
The interface mapping µ then maps each species A ∈ S to the interface value µ(A) = (x, y) ∈ U defined
so that (I) x = A if A ∈ Σ; and x = ⊥ otherwise; and (II) y = v if A ∈ Υv; and y = ⊥ otherwise.

12 Both notions of correctness have been studied in the CRN literature, see, e.g., [9].
13 In the standard stochastic model [20], the propensity expression is multiplied by a reaction specific rate

coefficient. In the current paper, that merely uses the stochastic scheduler as a benchmark, we make
the simplifying assumption that all rate coefficients are set to 1 (c.f. [11, 10]).
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i.e., the normalizing factor of the reaction selection probability.14 Given a step t∗ ≥ 0, the
stochastic runtime of the execution prefix η∗ = ⟨ct, αt⟩0≤t<t∗ is defined to be the accumulated
time span

∑t∗−1
t=0 1

/
πct .

We adopt the convention that the volume is proportional to the initial molecular count
n = ∥c0∥ [17]. The assumption that the CRN protocol respects finite density ensures that
φ = Θ(∥ct∥) for every t ≥ 0 which means that the volume is sufficiently large to contain all
molecules throughout the (stochastic) execution η. This also means that the time span of
each step t ≥ 0 is

1/πct = φ

φ·∥ct∥+(∥ct∥
2 ) = Θ(1/∥ct∥) = Θ(1/n) , (1)

hence the stochastic runtime of an execution prefix that lasts for t∗ steps is Θ(t∗/n).

3 Correctness Characterization via the Configuration Digraph

It is often convenient to look at CRN protocols through the lens of the following abstract
directed graph (a.k.a. digraph): The configuration digraph of a protocol Π = (S,R) is a
digraph, denoted by DΠ, whose edges are labeled by reactions in R. The nodes of DΠ are
identified with the configurations in NS ; the edge set of DΠ includes an α-labeled edge from
c to α(c) for each configuration c ∈ NS and reaction α ∈ app(c) (thus the outdegree of
c in DΠ is | app(c)|). Observe that the self-loops of DΠ are exactly the edges labeled by
(applicable) void reactions. Moreover, a configuration c′ is reachable, in the graph theoretic
sense, from a configuration c if and only if c ∗

⇀ c′. For a configuration c ∈ NS , let DΠ
c be

the digraph induced by DΠ on the set of configurations reachable from c and observe that
DΠ

c is finite as Π respects finite density. (Refer to Fig. 1b–4b for illustrations of the notions
presented in this section.)

The (strongly connected) components of the configuration digraph DΠ are the equivalence
classes of the “reachable from each other” relation over the configurations in NS . We say
that a reaction α ∈ R escapes from a component S of DΠ if every configuration in S admits
an outgoing α-labeled edge to a configuration not in S; i.e., α ∈ app(c) and α(c) /∈ S for
every c ∈ S (see, e.g., Fig. 1b). The notion of escaping reactions allows us to express the
stable/halting correctness of CRNs in terms of their configuration digraphs.

▶ Lemma 1. A CRN protocol Π = (S,R) is stably (resp., haltingly) correct with respect to
an interface I = (U , µ, C) under a weakly fair scheduler if and only if for every valid initial
configuration c0 ∈ NS , every component S of DΠ

c0 satisfies (at least) one of the following
two conditions: (1) S admits some (at least one) escaping reaction; or (2) S ⊆ stab(ZI(c0))
(resp., S ⊆ halt(ZI(c0))), where ZI(c0) = {c ∈ NS | (µ(c0), µ(c)) ∈ C}.

To complement Lem. 1, we also express the stable/halting correctness of CRNs in terms
of their configuration digraphs under a strongly fair scheduler.

▶ Lemma 2. A CRN protocol Π = (S,R) is stably (resp., haltingly) correct with respect to
an interface I = (U , µ, C) under a strongly fair scheduler if and only if for every valid initial
configuration c0 ∈ NS , every component S of DΠ

c0 satisfies (at least) one of the following two
conditions: (1) S admits some (at least one) edge outgoing to another component; or (2)
S ⊆ stab(ZI(c0)) (resp., S ⊆ halt(ZI(c0))), where ZI(c0) = {c ∈ NS | (µ(c0), µ(c)) ∈ C}.

14 The time span definition is consistent with the expected time until a reaction occurs under the continuous
time Markov process formulation of the standard stochastic model [20] with no rate coefficients.
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Combining Lem. 1 and 2, we obtain the following corollary.

▶ Corollary 3. If a CRN protocol Π = (S,R) is stably (resp., haltingly) correct with respect
to an interface I under a weakly fair scheduler, then Π is also stably (resp., haltingly) correct
with respect to I under a strongly fair scheduler.

4 The Runtime of Adversarially Scheduled Executions

So far, the literature on CRN protocols operating under an adversarial scheduler focused
mainly on computability, leaving aside, for the most part, complexity considerations. 15 This
is arguably unavoidable when working with the strong fairness condition which is inherently
oblivious to the chain of reactions that realizes the reachability of one configuration from
another. In the current paper, however, we adopt the weak fairness condition which facilitates
the definition of a quantitative measure for the runtime of adversarially scheduled executions,
to which this section is dedicated. (Refer to Fig. 1c–4c for illustrations of the notions
presented in this section.)

Consider a stably (resp., haltingly) correct CRN protocol Π = (S,R). We make extensive
use of the following operator: Given a weakly fair execution η = ⟨ct, αt⟩t≥0, a step t ≥ 0,
and a reaction (sub)set Q ⊆ R, let τ(η, t,Q) be the earliest step s > t such that at least one
of the following two conditions is satisfied:
(I) αs−1 ∈ Q; or
(II) Q ⊆

⋃
t≤t′≤s app(ct′).

(This operator is well defined by the weak fairness of η.)
Intuitively, we think of the operator τ(η, t,Q) as a process that tracks η from step t

onward and stops once any Q reaction is scheduled (condition (I)). This by itself is not well
defined as the scheduler may avoid scheduling the Q reactions from step t onward. However,
the scheduler must prevent the starvation of any continuously applicable reaction in Q, so
we also stop the τ -process once the adversary “fulfills this commitment” (condition (II)).

The Policies. Our runtime measure is based on partitioning a given weakly fair execution
η = ⟨ct, αt⟩t≥0 into rounds. This is done by means of two policies: a runtime policy ϱ,
determined by the protocol designer, that maps each configuration c ∈ NS to a non-void
reaction (sub)set ϱ(c) ⊆ NV(R), referred to as the target reaction set of c under ϱ; and a
skipping policy σ, determined by the adversarial scheduler (in conjunction with the execution
η), that maps each step t ≥ 0 to a step σ(t) ≥ t.

Round i = 0, 1, . . . spans the step interval [t(i), t(i+1)) and includes a designated effective
step t(i) ≤ te(i) < t(i+ 1). The partition of execution η into rounds is defined inductively by
setting

t(i) =
{

0 , i = 0
τ

(
η, te(i− 1), ϱ

(
cte(i−1)))

, i > 0
and te(i) = σ(t(i)) .

Put differently, for every round i ≥ 0 with initial step t(i), the adversarial scheduler first
determines the round’s effective step te(i) = σ(t(i)) ≥ t(i) by means of the skipping policy
σ. Following that, we apply the runtime policy ϱ (chosen by the protocol designer) to the
configuration ei = cte(i), referred to as the round’s effective configuration, and obtain the

15 The one exception in this regard is the work of Chen et al. [10] on speed faults – see Sec. 4.1 and 5.
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target reaction set Q = ϱ(ei). The latter is then plugged into the operator τ to determine
t(i+ 1) = τ(η, te(i), Q). Round i is said to be target-accomplished if αt(i+1)−1 ∈ Q; otherwise,
it is said to be target-deprived.
▶ Remark. Our definition of the runtime policy ϱ does not require that the reactions included
in the target reaction set ϱ(c) are applicable to the configuration c ∈ NS . Notice though
that if all target reactions are inapplicable to c (which is bound to be the case if c is halting),
then a round whose effective configuration is c is destined to be target deprived and end
immediately after the effective step, regardless of the reaction scheduled in that step. In
the full version [13], we investigate several other “natural restrictions” of the runtime policy
definition, including fixed policies and singleton target reaction sets, showing that they all
lead to significant efficiency loss.

Temporal Cost. We define the temporal cost of a configuration c ∈ NS under a runtime
policy ϱ, denoted by TCϱ(c), as follows: Let ηr = ⟨ctr, αtr⟩t≥0 be a stochastic execution
emerging from the initial configuration c0

r = c and define

TCϱ(c) ≜ E
(∑τ(ηr,0,ϱ(c))−1

t=0 1/πct
r

)
= Θ(1/∥c∥) · E (τ(ηr, 0, ϱ(c))) ,

where the expectation is over the random choice of ηr and the second transition is due to
(1). That is, the temporal cost of c under ϱ is defined to be the expected stochastic runtime
of round 0 of ηr with respect to the runtime policy ϱ and the identity skipping policy σid
that maps each step t ≥ 0 to σid(t) = t (which means that the effective step of each round is
its initial step).

Execution Runtime. Consider a runtime policy ϱ and a skipping policy σ. Let η = ⟨ct, αt⟩t≥0
be a weakly fair valid execution and let t(i), te(i), and ei = cte(i) be the initial step, effective
step, and effective configuration, respectively, of round i ≥ 0 under ϱ and σ. Fix some step
t∗ ≥ 0 and consider the execution prefix η∗ = ⟨ct, αt⟩0≤t<t∗ . We define the (adversarial)
runtime of η∗ under ϱ and σ, denoted by RTϱ,σ(η∗), by taking i∗ = min{i ≥ 0 | t(i) ≥ t∗}
and setting

RTϱ,σ(η∗) ≜
∑i∗−1
i=0 TCϱ

(
ei

)
.

The stabilization runtime (resp., halting runtime) of the (entire) execution η under ϱ and σ,
denoted by RTϱ,σstab(η) (resp., RTϱ,σhalt(η)), is defined to be RTϱ,σ (⟨ct, αt⟩0≤t<t∗), where t∗ ≥ 0
is the stabilization (resp., halting) step of η. In other words, we use ϱ and σ to partition η

into rounds and mark the effective steps. Following that, we charge each round i that starts
before step t∗ according to the temporal cost (under ϱ) of its effective configuration ei.

Looking at it from another angle, using the skipping policy σ, the adversarial scheduler
determines the sequence e0, e1, . . . of effective configurations according to which the temporal
cost TCϱ(ei) of each round i ≥ 0 is calculated. By choosing an appropriate runtime policy ϱ,
the protocol designer may (1) ensure that progress is made from one effective configuration
to the next, thus advancing η towards round i∗ = min{i ≥ 0 | t(i) ≥ t∗}; and (2) bound the
contribution TCϱ(ei) of each round 0 ≤ i < i∗ to the stabilization runtime RTϱ,σstab(η) (resp.,
halting runtime RTϱ,σhalt(η)). The crux of our runtime definition is that this contribution
depends only on the effective configuration ei, irrespectively of how round i actually develops
(see, e.g., Fig. 1c).
▶ Remark. Using this viewpoint, it is interesting to revisit the definitions of [6] and [16] for
the runtime of an asynchronous distributed protocol P. Following the discussion in Sec. 1,
this runtime is defined as the length of the longest sequence e0, e1, . . . , ei∗−1 of “non-terminal”
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configurations (of P) such that ei is reachable from ei−1 by an execution interval that lasts
for at least one round (according to the respective definitions of [6] and [16]). Our adversarial
runtime is defined in the same manner, taking e0, e1, . . . , ei∗−1 to be the first i∗ effective
(CRN) configurations, only that we charge each configuration ei according to its temporal
cost (rather than one “runtime unit” as in [6] and [16]). This difference is consistent with
the different “idealized benchmarks”: a synchronous schedule in [6] and [16] vs. a stochastic
execution in the current paper. The skipping policy σ plays a key role in adversarially
generating the sequence e0, e1, . . . , ei∗−1 as it “decouples” between the last step of round i,
determined by the runtime policy ϱ, and the effective configuration ei+1 of round i+ 1 (see,
e.g., Fig. 4c).

The Runtime Function. For n ≥ 1, let F(n) denote the set of weakly fair valid executions
η = ⟨ct, αt⟩t≥0 of initial molecular count ∥c0∥ = n. The stabilization runtime (resp., halting
runtime) of the CRN protocol Π for executions in F(n), denoted by RTΠ

stab(n) (resp.,
RTΠ

halt(n)), is defined to be

RTΠ
x (n) ≜ minϱ maxη∈F(n), σ RTϱ,σx (η) ,

where x serves as a placeholder for stab (resp., halt). This formalizes the responsibility of
the protocol designer to specify a runtime policy ϱ, in conjunction with the protocol Π, used
for up-bounding Π’s stabilization (resp., halting) runtime (see, e.g., Fig. 1c).

The following two lemmas establish the soundness of our adversarial runtime definition:
Lem. 4 ensures that the stabilization (resp., halting) runtime function is well defined.16

In Lem. 5, we show that if the scheduler generates the execution stochastically, then our
(adversarial) runtime measure agrees in expectation with the stochastic runtime measure.

▶ Lemma 4. Consider a stably (resp., haltingly) correct protocol Π = (S,R). There exists a
runtime policy ϱ such that for every integer n ≥ 1, execution η ∈ F(n), and skipping policy
σ, the stabilization runtime RTϱ,σstab(η) (resp., halting runtime RTϱ,σhalt(η)) is up-bounded as a
function of n.

▶ Lemma 5. Consider a stably (resp., haltingly) correct protocol Π = (S,R). Let ηr =
⟨ctr, αtr⟩t≥0 be a stochastic execution emerging from a valid initial configuration c0

r and let
t∗ ≥ 0 be the stabilization (resp., halting) step of ηr. Then,

minϱ Eηr (maxσ RTϱ,σx (ηr)) = Eηr

(∑t∗−1
t=0 1

/
πct

r

)
,

where x serves as a placeholder for stab (resp., halt).

4.1 Speed Faults
Consider a CRN protocol Π = (S,R) which is stably (resp., haltingly) correct with respect
to an interface I = (U , µ, C). For a valid initial configuration c0 ∈ NS , let ZI(c0) = {c ∈
NS | (µ(c0), µ(c)) ∈ C} and recall that if a weakly fair execution η of Π emerges from c0,
then η is guaranteed to reach stab(ZI(c0)) (resp., halt(ZI(c0))).

Given a parameter s > 0, a configuration c ∈ NS is said to be a stabilization s-pitfall
(resp., a halting s-pitfall) of the valid initial configuration c0 if c0 ∗

⇀ c and every path from
c to stab(ZI(c0)) (resp., halt(ZI(c0))) in the digraph DΠ includes (an edge labeled by) a

16 Note that in Lem. 4 we use a universal runtime policy that applies to all choices of the initial molecular
count n. This is stronger in principle than what the runtime definition actually requires.
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reaction whose propensity is at most s/φ (see, e.g., Fig. 2c and 4c). When s = O(1), we
often omit the parameter and refer to c simply as a stabilization pitfall (resp., halting pitfall).
Following the definition of Chen et al. [10], we say that an infinite family C0 of valid initial
configurations has a stabilization speed fault (resp., halting speed fault) if for every integer
n0 > 0, there exists a configuration c0 ∈ C0 of molecular count ∥c0∥ = n ≥ n0 that admits a
stabilization (resp., halting) pitfall.

▶ Lemma 6. If an infinite family C0 of valid initial configurations has a stabilization (resp.,
halting) speed fault, then for every integer n0 > 0, there exist a configuration c0 ∈ C0

of molecular count ∥c0∥ = n ≥ n0, a weakly fair execution η emerging from c0, and a
skipping policy σ, such that RTϱ,σx (η) ≥ Ω(n) for every runtime policy ϱ, where x serves as a
placeholder for stab (resp., halt).17

5 Predicate Decidability

An important class of CRN protocols is that of chemical reaction deciders (CRDs) whose goal
is to determine whether the initial molecular counts of certain species satisfy a given predicate.
In its most general form (see [10, 9]), a CRD is a CRN protocol Π = (S,R) augmented
with (1) a set Σ ⊂ S of input species; (2) two disjoint sets Υ0,Υ1 ⊂ S of voter species; (3) a
designated fuel species F ∈ S − Σ; and (4) a fixed initial context k ∈ NS−(Σ∪{F}). The CRD
is said to be leaderless if its initial context is the zero vector, i.e., k = 0.

A configuration c0 ∈ NS is valid as an initial configuration of the CRD Π if c0|S−(Σ∪{F}) =
k; to ensure that the initial molecular count ∥c0∥ is always at least 1 (especially when the CRD
is leaderless), we also require that c0(F ) ≥ 1. In other words, a valid initial configuration c0

can be decomposed into an input vector c0|Σ = x ∈ NΣ, the initial context c0|S−(Σ∪{F}) = k,
and any number c0(F ) ≥ 1 of fuel molecules. We emphasize that in contrast to the initial
context, the protocol designer has no control over the exact molecular count of the fuel
species in the initial configuration.

For v ∈ {0, 1}, let Dv =
{

c ∈ NS | c(Υv) > 0 ∧ c(Υ1−v) = 0
}

be the set of configurations
that include v-voters and no (1 − v)-voters. An input vector x ∈ NΣ is said to be stably
accepted (resp., haltingly accepted) by Π if for every valid initial configuration c0 ∈ NS with
c0|Σ = x, every weakly fair execution η = ⟨ct, αt⟩t≥0 stabilizes (resp., halts) into D1; the
input vector x ∈ NΣ is said to be stably rejected (resp., haltingly rejected) by Π if the same
holds with D0. The CRD Π is stably (resp., haltingly) correct if every input vector x ∈ NΣ

is either stably (resp., haltingly) accepted or stably (resp., haltingly) rejected by Π. In this
case, we say that Π stably decides (resp., haltingly decides) the predicate ψ : NΣ → {0, 1}
defined so that ψ(x) = 1 if and only if x is stably (resp., haltingly) accepted by Π.

By definition, the molecular count of the fuel species F in the initial configuration c0

does not affect the computation’s outcome in terms of whether the execution stabilizes (resp.,
halts) with 0- or 1-voters. Consequently, one can increase the molecular count c0(F ) of
the fuel species in the initial configuration c0, thus increasing the initial (total) molecular
count n = ∥c0∥ for any given input vector x ∈ NΣ. Since the runtime of a CRN is expressed
in terms of the initial molecular count n, decoupling x from n allows us to measure the
asymptotic runtime of the protocol while keeping x fixed. In this regard, the CRD Π is said
to be stabilization speed fault free (resp., halting speed fault free) [10] if for every input vector
x ∈ NΣ, the family of valid initial configurations c0 ∈ NS with c0|Σ = x does not admit a
stabilization (resp., halting) speed fault (as defined in Sec. 4.1).

17 As discussed in [10], a speed fault does not imply an Ω(n) lower bound on the (stochastic) runtime of
stochastically scheduled executions since the probability of reaching a pitfall configuration may be small.
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5.1 Semilinear Predicates
A predicate ψ : NΣ → {0, 1} is linear if there exist a finite set A = A(ψ) ⊂ NΣ and a vector
b = b(ψ) ∈ NΣ such that ψ(x) = 1 if and only if x = b +

∑
a∈A kaa for some coefficients

ka = ka(x) ∈ N, a ∈ A. A predicate ψ : NΣ → {0, 1} is semilinear if it is the disjunction of
finitely many linear predicates. The following theorem is established in the seminal work of
Angluin et al. [2, 4].

▶ Theorem 7 ([2, 4]). Fix a predicate ψ : NΣ → {0, 1}. If ψ is semilinear, then ψ can be
haltingly decided under a strongly fair scheduler by a leaderless CRD. If ψ can be stably
decided by a CRD under a strongly fair scheduler, then ψ is semilinear.

In the full version [13], we extend Thm. 7 to weak fairness which allows us to bound the
adversarial runtime of the corresponding CRDs and establish the following theorem; notice
that the O(n) runtime bound is asymptotically tight – see the speed fault freeness discussion
in Sec. 5.2.

▶ Theorem 8. Fix a predicate ψ : NΣ → {0, 1}. If ψ is semilinear, then ψ can be haltingly
decided under a weakly fair scheduler by a leaderless CRD whose halting runtime is O(n). If
ψ can be stably decided by a CRD under a weakly fair scheduler, then ψ is semilinear.

5.2 Detection Predicates
For a vector x ∈ NΣ, let x↓ ∈ {0, 1}Σ ⊂ NΣ be the vector defined so that x↓(A) = 1 ⇐⇒
x(A) > 0. A predicate ψ : NΣ → {0, 1} is a detection predicate if ψ(x) = ψ(x↓) for all
x ∈ NΣ (cf. [1, 10, 19]). Chen et al. [10] prove that a predicate ψ : NΣ → {0, 1} can be
stably decided under the strongly fair adversarial scheduler by a stabilization speed fault
free CRD if and only if it is a detection predicate. Cor. 3 ensures that the only if direction
translates to our weakly fair adversarial scheduler; employing Lem. 6, we conclude that a
non-detection predicate cannot be decided by a CRD whose stabilization runtime is better
than Ω(n). For the if direction, the construction in [10] yields leaderless CRDs that haltingly
decide ψ whose expected halting runtime under the stochastic scheduler is O(logn). The
following theorem states that the same (asymptotic) runtime upper bound can be obtained
under the weakly fair adversarial scheduler; the theorem is proved in the full version [13],
where we also explain why the promised upper bound is asymptotically tight.

▶ Theorem 9. For every detection predicate ψ : NΣ → {0, 1}, there exists a leaderless CRD
that haltingly decides ψ whose halting runtime is O(logn). Moreover, the CRD is designed
so that all molecules in the halting configuration are voters.

6 Vote Amplification

Recall that CRDs are required to stabilize/halt into configurations c that include a positive
number of v-voter molecules and zero (1 − v)-voter molecules, where v ∈ {0, 1} is determined
by the decided predicate according to the input vector. This requirement alone does not
rule out the possibility of having a small (yet positive) voter molecular count in c. Indeed,
the semilinear predicate CRDs promised in Thm. 8 are designed so that the configuration c
includes a single voter molecule (this is in contrast to the detection predicate CRDs promised
in Thm. 9, where all molecules in c are voters).

In practice though, it may be difficult to obtain a meaningful signal from small molecular
counts. Consequently, we aim for vote amplified CRDs, namely, CRDs that guarantee to
stabilize/halt into configurations in which the voter molecules take all but an ϵ-fraction of
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the total molecular count for an arbitrarily small constant ϵ > 0. These are obtained by
means of a “generic compiler” that can be applied, in a black-box manner, to any existing
CRD, turning it into a vote amplified CRD while preserving the original stabilization/halting
correctness. At the heart of this compiler lies a CRN protocol for a standalone computational
task, referred to as vote amplification (VA), whose runtime dominates the runtime overhead
of the compiler, as stated in the following theorem (proved in the full version [13]).

▶ Theorem 10. Consider a predicate ψ : NΣ → {0, 1} that can be haltingly decided by a
(leaderless) CRD in Tψ(n) time. The existence of a VA protocol that stabilizes (resp., halts)
in Tamp(n) time implies the existence of a (leaderless) vote amplified CRD that stably (resp.,
haltingly) decides ψ in Tψ(O(n)) + Tamp(O(n)) +O(logn) time.

Assuming a stochastic scheduler, Angluin et al. [3] develop a VA protocol that halts
in O(n) time. Unfortunately, the protocol of [3] does not meet the topological conditions
of Lem. 1, hence the (weakly fair) adversarial scheduler can prevent this protocol from
stabilizing (see the full version [13] for more details). Using a completely different technique,
we develop a VA protocol whose guarantees are cast in the following theorem.

▶ Theorem 11. There exists a VA protocol (operating under the weakly fair scheduler) that
stabilizes in O(n) time and halts in O(n logn) time.

Combined with Thm. 10, we obtain a compiler whose stabilization and halting runtime
overheads are O(n) and O(n logn), respectively. Applying this compiler to the CRDs
promised in Thm. 8 results in vote amplified CRDs whose stabilization runtime remains O(n),
however their halting runtime increases to O(n logn). The excessive logn factor would be
shaved by a VA protocol that halts in O(n) time whose existence remains an open question.

Task Formalization. A VA protocol is a CRN protocol Π = (S,R) whose species set S is
partitioned into the pairwise disjoint sets P0 ∪ P1 ∪ F0 ∪ F1 = S, where for v ∈ {0, 1}, the
species in Pv are referred to as permanent v-voters and the species in Fv are referred to as
fluid v-voters. The permanent voters are regarded as part of the task specification and can
participate in the reactions of Π only as catalysts (which means that the molecular count of
each permanent voter remains invariant throughout the execution).

A configuration c0 ∈ NS is a valid initial configuration for the VA task if there exists a
vote v ∈ {0, 1} such that c0(Pv) > 0 and c0(P1−v) = 0, in which case we refer to c0 as a
v-voting initial configuration. A configuration c ∈ NS is an amplification of a v-voting initial
configuration c0 if (1) c(A) = c0(A) for every A ∈ P0 ∪ P1; (2) c(Fv) = c0({F0 ∪ F1}); and
(3) c(F1−v) = 0. In other words, an amplification of a v-voting initial configuration keeps the
original permanent voter molecules and shifts all fluid voter molecules to the v-voting side.

The VA protocol Π is stably (resp., haltingly) correct if every weakly fair valid execution
η = ⟨ct, αt⟩t≥0 stabilizes (resp., halts) into the (set of) amplifications of c0. The typical
scenario involves a small number of permanent v-voter molecules and the challenge is to
ensure that all fluid voter molecules “end up” in Fv. We emphasize that for Π to be correct,
the protocol should handle any initial configuration c0|F0∪F1 of the fluid voters.

The VA Protocol. We now turn to develop the VA protocol Π = (S,R) promised in
Thm. 11. For simplicity, assume in this extended abstract that P0 and P1 are singleton sets
with P0 = {P0} and P1 = {P1}; the general case is handled in the full version [13]. Protocol
Π is defined over the fluid voter sets F0 = {H0, L0} and F1 = {H1, L1}. Semantically, we
think of the H (resp., L) fluid voters as having a high (resp., low) confidence level in their
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vote. The reaction set R of Π includes the following non-void reactions:
βAv : Pv +A → Pv +Hv for every v ∈ {0, 1} and A ∈ {H1−v, L0, L1};
γ: H0 +H1 → L0 + L1; and
δv: Hv + L1−v → 2Lv for every v ∈ {0, 1}.
Informally, these reactions guarantee that the adversary has little leverage because, as we
show soon, all of the non-void reactions make nontrivial progress in their own different ways.

For the runtime analysis of protocol Π, consider a weakly fair valid execution η = ⟨ct, ζt⟩t≥0
of initial molecular count ∥c0∥ = n. Assume for simplicity that the initial configuration c0

is 1-voting which means that ct(P1) > 0 and ct(P0) = 0 for all t ≥ 0; the case where c0 is
0-voting is analyzed symmetrically. Let m = c0({H0, L0, L1, H1}) be the initial molecular
count of the fluid voters and observe that ct({H0, L0, L1, H1}) = m for every t ≥ 0.

To capture progress , we assign an integral score s(·) to each fluid voter by setting
s(H0) = −4, s(L0) = −1, s(L1) = 1, and s(H1) = 2. Substituting the s(·) scores into each
reaction α ∈ NV(R) reveals that the sum of scores of α’s fluid reactants is strictly smaller
than the sum of scores of α’s fluid products. Denoting the total score in a configuration
c ∈ NS by s(c) =

∑
A∈{H0,L0,L1,H1} c(A) · s(A), we deduce that s(ct+1) ≥ s(ct) and that

ζt ∈ NV(R) =⇒ s(ct+1) > s(ct) for every t ≥ 0. Since −4m ≤ s(ct) ≤ 2m for every t ≥ 0, it
follows that η includes, in total, at most O(m) ≤ O(n) non-void reactions until it stabilizes.

The last bound ensures that progress is made on each non-void reaction. Accordingly, we
choose the runtime policy ϱ so that ϱ(c) = NV(R) for all configurations c ∈ NS .18

Fix some skipping policy σ and let ei be the effective configuration of round i ≥ 0 under
ϱ and σ. Let i∗ = min{i ≥ 0 | ei({H0, L0}) = 0} be the first round whose effective step
appears after η stabilizes. Since the choice of ϱ ensures that each round 0 ≤ i < i∗ is
target-accomplished, ending with a non-void reaction, it follows that i∗ ≤ O(n).

To bound the stabilization runtime of execution η under ϱ and σ, we argue that
πei(NV(R)) ≥ Ω(1) for every 0 ≤ i < i∗; by a simple probabilistic argument (elabor-
ated in the full version [13]), this allows us to conclude that TCϱ(ei) ≤ O(1) for every
0 ≤ i < i∗. To this end, notice that if ei(H1) ≥ m/2, then

πei ({γ, δ1}) = 1
φ · ei(H1) · ei({H0, L0}) ≥ Ω(m/n) = Ω(1) .

Otherwise (ei(H1) < m/2), we know that ei({H0, L0, L1}) > m/2, hence

πei

({
βA1 | A ∈ {H0, L0, L1}

})
= 1

φ · ei({H0, L0, L1}) · ei(P1) ≥ Ω(m/n) = Ω(1) ,

thus establishing the argument. Therefore, the stabilization runtime of η satisfies

RTϱ,σstab(η) =
∑i∗−1
i=0 TCϱ(ei) ≤

∑O(n)
i=0 O(1) = O(n) .

The proof of Thm. 11 is completed by showing that protocol Π halts in O(n logn) time.
This part of the proof is deferred to the full version [13].
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A FIGURES AND TABLES

Table 1 The (adversarial) runtime complexity landscape of predicate decidability CRN protocols
operating under the weakly fair adversarial scheduler. The upper bounds (O-notation) hold with
a universal quantifier over the predicate family and an existential quantifier over the CRD family;
the lower bounds (Ω-notation) hold with a universal quantifier over both the predicate and CRD
families. (As usual, Θ(f(n)) should be interpreted as both O(f(n)) and Ω(f(n)).)

predicates leaderless amplified vote stabilization runtime halting runtime

semilinear (non-
detection)

yes yes Θ(n) Ω(n), O(n log n)
yes no Θ(n) Θ(n)
no yes Θ(n) Ω(n), O(n log n)
no no Θ(n) Θ(n)

detection

yes yes Θ(log n) Θ(log n)
yes no Θ(log n) Θ(log n)
no yes Θ(log n) Θ(log n)
no no Θ(log n) Θ(log n)

Table 2 The (expected stochastic) runtime complexity landscape of predicate decidability CRN
protocols operating under the stochastic scheduler (refer to the full version [13] for details). The upper
bounds (O-notation) hold with a universal quantifier over the predicate family and an existential
quantifier over the CRD family; the lower bounds (Ω-notation) hold with a universal quantifier over
both the predicate and CRD families. (As usual, Θ(f(n)) should be interpreted as both O(f(n))
and Ω(f(n)).)

predicates leaderless amplified vote stabilization runtime halting runtime

semilinear (non-
eventually con-
stant)

yes yes Θ(n) Θ(n)
yes no Θ(n) Θ(n)
no yes Ω(log n), O(n) Ω(log n), O(n)
no no Ω(log n), O(n) Ω(log n), O(n)

eventually
constant (non-
detection)

yes yes Ω(log n), O(n) Ω(log n), O(n)
yes no Ω(log n), O(n) Ω(log n), O(n)
no yes Ω(log n), O(n) Ω(log n), O(n)
no no Ω(log n), O(n) Ω(log n), O(n)

detection

yes yes Θ(log n) Θ(log n)
yes no Θ(log n) Θ(log n)
no yes Θ(log n) Θ(log n)
no no Θ(log n) Θ(log n)

https://doi.org/10.1007/3-540-65306-6_14
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S = {A,B,X,X ′}

β: A+X → 2A
β′: A+X ′ → 2A
γ: A+B → 2A
δ: B +X → B +X ′

δ′: B +X ′ → B +X

(a) The species and non-void reactions of Π. A configuration c0 ∈ NS is valid as an initial configuration
of Π if c0(A) = c0(B) = 1. The protocol is designed so that the molecular count of A is non-decreasing,
whereas the molecular counts of B and of {X, X ′} are non-increasing. Moreover, all weakly fair valid
executions of Π halt in a configuration that includes only A molecules.

aA+B + xX + x′X ′

(a+ 1)A+B + (x− 1)X + x′X ′

aA+B + (x− 1)X + (x′ + 1)X ′

(a+ 1)A+ xX + x′X ′

β
δ

γ

(a+ 2)A+ xX + (x′ − 1)X ′

(a+ 2)A+ (x− 1)X + x′X ′
β

β′

δ′

β′

γ

(b) Part of the configuration digraph DΠ (excluding void reactions). The configuration set S =
{aA + B + (x + z)X + (x′ − z)X ′ | −x ≤ z ≤ x′} forms a component of DΠ. Since reactions β and
β′ are inapplicable in configurations aA + B + (x + x′)X ′ and aA + B + (x + x′)X, respectively, it
follows that these two reactions do not escape from S. Reaction γ on the other hand does escape
from S, ensuring that a weakly fair execution cannot remain in S indefinitely. After the B molecule
is consumed (by a γ reaction), each configuration constitutes a (singleton) component of DΠ and
every applicable non-void reaction is escaping.

ϱ(c) =
{

{β, β′, γ}, c(B) > 0
{β, β′}, c(B) = 0

(c) A runtime policy ϱ for Π. Under ϱ, a round with effective configuration e = aA + B + xX + x′X ′

is target-accomplished and ends upon scheduling one of the reactions β, β′, γ; in particular, it is
guaranteed that the next effective configuration e′ satisfies e′(A) > a (no matter what the adversarial
skipping policy is), i.e., progress is made. The adversary may opt to schedule reactions δ and δ′

many times before the round ends, however the crux of our runtime definition is that this does
not affect the round’s temporal cost. Specifically, since πc({β, β′, γ}) = a(x+x′+1)

φ for every c ∈ S

(recall the definition of component S from Fig. 1b), it follows, by a simple probabilistic argument,
that TCϱ(e) = φ

a(x+x′+1) . A similar (simpler in fact) argument leads to the conclusion that if
e = aA + xX + x′X ′, then TCϱ(e) = φ

a(x+x′) . This allows us to show that RTΠ
halt(n) = O(log n).

Figure 1 A CRN protocol Π = (S, R) demonstrating how a carefully chosen runtime policy
guarantees significant progress in each round while up-bounding the round’s temporal cost.
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S = {L0, L1, . . . , Lk+1, C,X, Y } βi: Li+X → L0 +Y for 0 ≤ i ≤ k+1, i ̸= k

γi: Li + C → Li+1 + C for 0 ≤ i ≤ k

(a) The species and non-void reactions of Π, where k is an arbitrarily large constant. A configuration
c0 ∈ NS is valid as an initial configuration of Π if c0(L0) = 1, c0(C) = 1, and c0({L1, . . . , Lk+1}) = 0.
The protocol is designed so that c({L0, L1, . . . , Lk+1}) = 1 for any configuration c reachable from
a valid initial configuration (i.e., L0, L1, . . . , Lk+1 are “leader species”). Species C is a catalyst
for any reaction it participates in and c(C) = 1 for any configuration c reachable from a valid
initial configuration. The execution progresses by shifting all X molecules into Y molecules. We are
interested in the stabilization of Π’s executions into the (set of) configurations c ∈ NS satisfying
c(X) < c(Y ), although the executions actually halt once c(X) = 0 (and c(Lk+1) = 1).

L0 + C + (x− 1)X + (y + 1)Y

L0 + C + xX + yY L1 + C + xX + yY
γ0

β3β0

L3 + C + xX + yY
γ1 γ2

β1

L2 + C + xX + yY

(b) Part of the configuration digraph DΠ (excluding void reactions) for k = 2. Notice that each
configuration constitutes a (singleton) component of DΠ and every applicable non-void reaction is
escaping.

ϱ(c) = app(c) ∩ NV(R)
(c) A runtime policy ϱ for Π. Under ϱ, every round ends once any non-void reaction is applied to
the round’s effective configuration. In the full version [13], we show that RTϱ,σ

stab(η) ≤ O(n2) for any
skipping policy σ and weakly fair valid execution η of initial molecular count n. It turns out that
this bound is tight: The (weakly fair) adversarial scheduler can generate the execution η = ⟨ct, αt⟩
by scheduling αt = γi if ct(Li) = 1 for some 0 ≤ i ≤ k; and αt = βk+1 if ct(Lk+1) = 1. Using the
identity skipping policy σid and assuming that c0(X) = x0 and c0(Y ) = 0, it is easy to show (see the
full version [13] ) that η visits the configuration cy = Lk +C + (x0 −y)X +yY for every 0 ≤ y ≤ x0/2
before it stabilizes and that each such visit constitutes the effective configuration of the corresponding
round, regardless of the runtime policy ϱ′. Since each such configuration cy is a 2-pitfall (recall the
definition from Sec. 4.1), we deduce that TCϱ′

(cy) = Ω(n), which sums up to RTϱ′,σid
stab (η) = Ω(n2).

The interesting aspect of protocol Π is that with high probability, a stochastic execution stabilizes
without visiting the pitfall configurations cy even once, which allows us to conclude that the expected
stochastic stabilization runtime of Π is O(n) – see the full version [13] for details.

Figure 2 A CRN protocol Π = (S, R) demonstrating that the adversarial stabilization runtime
may be significantly larger than the expected stochastic runtime due to (asymptotically many) pitfall
configurations.
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S = {L0, L1, X, Y }

β0: L0 + Y → 2Y
β1: L1 + Y → 2Y
γ0: L0 +X → L1 + Y

γ1: L1 +X → L0 + Y

(a) The species and non-void reactions of Π. A configuration c0 ∈ NS is valid as an initial configuration
of Π if c0({L0, L1}) = 1 and c0(Y ) ≥ c0(X). The protocol is designed so that the molecular counts of
{L0, L1} and of X are non-increasing, whereas the molecular count of Y is non-decreasing. Moreover,
all weakly fair valid executions of Π halt in a configuration that includes zero L0 and L1 molecules.

L0 + xX + yY

L1 + xX + yY

L0 + (x− 1)X + (y + 1)Y

L1 + (x− 1)X + (y + 1)Y

xX + (y + 1)Y (x− 1)X + (y + 2)Y

β0

β1

γ0

γ1

γ0

γ1

(b) Part of the configuration digraph DΠ (excluding void reactions). Notice that each configuration
constitutes a (singleton) component of DΠ and every applicable non-void reaction is escaping.
Furthermore, if c ⇀ c′, then app(c) ∩ app(c′) ∩ NV(R) = ∅.

ϱ(c) =
{
β0, c(L0) = 1
β1, c(L1) = 1

(c) A runtime policy ϱ for Π. Under ϱ, a round whose (non-halting) effective configuration is e ends
once the execution reaches any configuration c ̸= e. This may result from scheduling the target
reaction ϱ(e), in which case the round is target-accomplished; otherwise, the round ends because
ϱ(e) is inapplicable in c, in which case the round is target-deprived. Since πLi+xX+yY (βi) = y/φ
for i ∈ {0, 1}, it follows, by a simple probabilistic argument, that TCϱ(Li + xX + yY ) = φ/y. This
allows us to show that RTΠ

halt(n) = O(n). In the full version [13], it is shown that the O(n) halting
runtime bound is (asymptotically) tight under the (weakly fair) adversarial scheduler; in contrast,
the expected stochastic runtime of Π under the stochastic scheduler is only O(1). This gap holds
despite the fact that the executions that realize the Ω(n) runtime lower bound do not reach a pitfall
configuration.

Figure 3 A CRN protocol Π = (S, R) demonstrating that the adversarial runtime may be
significantly larger than the expected stochastic runtime even though the protocol does not admit a
speed fault.
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S = {A,B,E,X}

β: A+A → 2E
γ: X +X → 2E
δ: B +X → 2B
χZ : E+Z → 2E for every Z ∈ {A,B,X}

(a) The species and non-void reactions of Π. A configuration c0 ∈ NS is valid as an initial configuration
of Π if c0(A) = 2, c0(B) = 1, and c0(E) = 0. The protocol is designed so that once the first (two) E
molecules are produced, species E spreads by means of the χ reactions until it takes over the entire
test tube. The first E molecules can be produced either through reaction β, that remains applicable
as long as E was not produced, or through reaction γ, that may become inapplicable if reaction δ is
scheduled many times. In any case, all weakly fair valid executions of Π halt in a configuration that
includes only E molecules.

2A+ bB + xX 2A+ (b+ 1)B + (x− 1)X

bB + 2E + xX

2A+ bB + 2E + (x− 2)X

(b+ 1)B + 2E + (x− 1)X

2A+ (b+ 1)B + 2E + (x− 3)X

β

γ

δ

β

γ

(b) Part of the configuration digraph DΠ (excluding void reactions). Notice that each configuration
constitutes a (singleton) component of DΠ and every applicable non-void reaction is escaping.

ϱ(c) =
{

{β, γ}, c(E) = 0
{χA, χB , χX}, c(E) > 0

(c) A runtime policy ϱ for Π. Under ϱ, a round whose (non-halting) effective configuration e satisfies
e(E) = 0 ends once (two) E molecules are produced, either through reaction β or through reaction γ
(either way, the round is target accomplished); in particular, there can be at most one such round,
that is, the first round of the execution. To maximize the temporal cost charged for this round,
the adversarial scheduler devises (the execution and) the skipping policy σ so that e(X) < 2 which
means that reaction γ is inapplicable in e (this requires that σ generates a “large skip”). Such a
configuration e is a halting 2-pitfall as reaction β must be scheduled in order to advance the execution
and the propensity of β is 2/φ. We conclude, by a simple probabilistic argument, that TCϱ(e) = φ/2.
A round whose (non-halting) effective configuration e satisfies e(E) > 0 ends once a χ configuration
is scheduled, thus ensuring that the execution’s next effective configuration e′ satisfies e′(E) > e(E).
Using standard arguments, one can prove that the total contribution of (all) these rounds to the
halting runtime of an execution η with initial molecular count n is up-bounded by O(log n). Therefore,
together with the contribution of the first “slow” round, we get RTϱ,σ

halt(η) = Θ(n). Note that the same
runtime policy ϱ leads to a much better halting runtime of RTϱ,σid

halt (η) = Θ(log n) if the adversarial
scheduler opts to use the identity skipping policy σid instead of the aforementioned skipping policy
σ. As a direct consequence of Lem. 6, we conclude that ϱ is asymptotically optimal for Π, hence
RTΠ

halt(n) = Θ(n).

Figure 4 A CRN protocol Π = (S, R) demonstrating that a non-trivial skipping policy results in
a significantly larger runtime, compared to the identity skipping policy.
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