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Abstract
Molecular computation involving promiscuous, or non-orthogonal, binding interactions between
system components is found commonly in natural biological systems, as well as some proposed human-
made molecular computers. Such systems are characterized by the fact that each computational
unit, such as a domain within a DNA strand, may bind to several different partners with distinct,
prescribed binding strengths. Unfortunately, implementing systems of molecular computation that
incorporate non-orthogonal binding is difficult, because researchers lack a robust, general-purpose
method for designing molecules with this type of behavior. In this work, we describe and demonstrate
a process for the rational design of DNA sequences with prescribed non-orthogonal binding behavior.
This process makes use of a model that represents large sets of non-orthogonal DNA sequences
using fixed-length binary strings, and estimates the differential binding affinity between pairs of
sequences through the Hamming distance between their corresponding binary strings. The real-world
applicability of this model is supported by simulations and some experimental data. We then select
two previously described systems of molecular computation involving non-orthogonal interactions,
and apply our sequence design process to implement them using DNA strand displacement. Our
simulated results on these two systems demonstrate both digital and analog computation. We hope
that this work motivates the development and implementation of new computational paradigms
based on non-orthogonal binding.
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1 Introduction

The vast majority of prior work with DNA-based molecular computation has dealt with
the design and use of orthogonal DNA domains, which are intended to bind only to their
perfect complements and to exhibit minimal cross-talk interactions with other domains
in a system. This eases the design and analysis of large DNA-based molecular circuits,
because it reduces the number of interactions that must be considered, allowing the scalable
implementation of circuits with many more components [14, 20, 23]. Comparatively little
research has attempted to solve the problem of designing non-orthogonal DNA sequences,
that is, sets of DNA domains such that each sequence can bind to several partners with
prescribed binding affinities. This gap in our abilities exists despite several well-documented
examples of naturally occurring biological networks that make use of non-orthogonal binding
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behavior [1,15], computing problems that would benefit from non-orthogonal sequence design
like similarity search in large databases [2, 17], and nanostructure fabrication strategies that
rely on promiscuous binding between structural subunits [16,30].

Very recently, some researchers have attempted to use machine learning for the design of
non-orthogonal sequence designs, for example for DNA memory storage [3, 27], while others
have used exhaustive searches or evolutionary approaches to design non-orthogonal DNA
sequences for digital logic and analog computing circuits [18]. While promising, these attempts
have been characterized by design inaccuracies and, in some cases, the need for extensive
experimental trial and error. Further, some preliminary evidence suggests that computational
predictions of strand binding thermodynamics may be less accurate for sequences that are
highly non-complementary, although additional data to support this observation is warranted
[18]. Currently, the field of molecular computing lacks a general-purpose and efficient method
for non-orthogonal DNA sequence design, capable of handling the variety of potential use
cases in DNA-based molecular circuits, nanostructure fabrication, and data storage.

In this work, we describe a method for the rational design of non-orthogonal DNA
sequences, which is based on two main contributions: the identification of a subset of DNA
sequence space for which a simple model accurately predicts binding affinities between pairs
of DNA sequences, and the application of a process called isometric graph embedding to
the sequence design process. In Sections 3 and 4, we demonstrate our design process in the
context of two previously described molecular computation systems involving non-orthogonal
interactions [1, 18]. Through simulations of these systems, we demonstrate both digital and
analog computation using our sequence designs.2

2 Rational design of non-orthogonal DNA domains

Our ultimate goal will be to design for the differential binding affinities between pairs of DNA
sequences, that is, we will consider the quantities ∆G(x, y∗) − ∆G(w, z∗) for DNA sequences
x, y, w, z. In Section 2.1, we define a model for the binding affinity between sequences, which
will be applicable to a well-defined subset of the overall DNA sequence space. In Section 2.2,
we show how this model enables rational design of DNA sequences via isometric graph
embeddings.

2.1 Model of binding between non-orthogonal domains
In general, accurate estimation the binding affinity between two arbitrary DNA strands
requires involved computation, and our goal is not to address this task for any two DNA
strands. Instead, we first focus on defining a subset D of sequence space with properties that
are amenable to efficient and accurate DNA sequence design for prescribed binding affinities.
The main idea behind defining D will be to identify a set of substitution mutations that may
be applied in any combination to some sequence, and whose cumulative effect on binding
affinity is approximately additive. This will justify the model that we introduce at the end
of this subsection.

Let Dn = {A, T, C, G}n be the set of all n-nt DNA sequences using only canonical
nucleotides, where all sequences are written from 5′ to 3′. For an n-nt DNA sequence x ∈ Dn,
its perfect complement is denoted x∗. The nucleotides are referenced by subscripts, so that

2 This work incorporates material from my doctoral thesis [4], which describes the sequence design process
(Section 2) and one of the analog computing gates (part of Section 3).
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Figure 1 a) The binding affinity of a DNA duplex can be estimated by summing the contributions
of each pair adjacent of base pairs. A single point substitution affects the contributions from two
of these terms, reflecting the decreased favorability of the two stacking bonds next to a mismatch.
A subsequent substitution at a nonadjacent nucleotide will affect two additional terms in the sum.
However, under the nearest neighbor model, its effect will be independent of the presence or absence
of the first substitution. b) To aid design, we proposed restricting the substitutions to those for which
various metrics of its effect on binding affinity agree. For example, mutating the top strand (δi,A,T (x))
or bottom strand (δ∗

i,A,T (x)) should have a similar effect. c) Because the effect of a substitution is
determined only by local interactions, we can enumerate all combinations of nucleotides that satisfy
our constraints. This makes it very easy to identify sites on a candidate DNA sequence that may be
mutated. d) Candidate substitution sites on a DNA site must be filtered to satisfy non-adjacency
and interiority requirements.

xi ∈ {A, T, C, G} is the i-th nucleotide of x. For 1 ≤ i ≤ n and a, a′ ∈ {A, T, C, G}, we define
a substitution σi,a,a′ : Dn → Dn as a function such that σi,a,a′(x) is the sequence generated
by substituting the nucleotide a at position i in x with the nucleotide a′.

Fix an x ∈ Dn, and consider the binding affinity of x to x∗. Under the nearest-neighbor
model for DNA strand binding [22], this binding affinity may be estimated from the additive
contributions of all pairs of neighboring base pairs in the duplex.3 For a substitution σi,a,a′ ,
1 < i < n and xi = a, let y = σi,a,a′(x). Note that the constraint 1 < i < n implies that
the substitution occurs at an interior position of x. Under the nearest-neighbor model, the
binding affinity of y to x∗ differs from that of x to x∗ due to the contributions of exactly
two affected pairs of adjacent base pairs (Figure 1a).4 With these assumptions the change
in binding affinity ∆G(y, x∗) − ∆G(x, x∗) depends only on the values of a, a′, xi−1, and
xi+1. We will write δi,a,a′(x) := ∆G(y, x∗) − ∆G(x, x∗), the change in binding affinity from
mutating x and leaving x∗ unchanged. The corresponding change in binding affinity with x∗

mutated and x unchanged will be written δ∗
i,a,a′(x) := ∆G(x, y∗) − ∆G(x, x∗). Note that

δ∗
i,a,a′(x) = δn−i+1,a∗,a′∗(x∗).

For a second substitution σj,b,b′ , 1 < j < n and xj = b, let z = σj,b,b′(y). δj,b,b′(y) =
∆G(z, y∗)−∆G(y, y∗) is determined only by the two affected pairs of base pairs. Furthermore,
if |i − j| > 1, then the base pairs affected by σi,a,a′ are disjoint from those affected by σj,b,b′ ,
and we may estimate ∆G(z, x∗) − ∆G(x, x∗) = δi,a,a′ + δj,b,b′ . More generally, given a set

3 This model is biochemically justified by the fact that the principal contributor to binding affinity is
the formation of a π-π stacking bond between two adjacent base pairs, and the contribution of each
so-called “stack” is determined by the identities of the neighboring nucleotides [22].

4 This calculation assumes that the substitution occurs in the interior of the sequence, and that “shifted”
binding conformations of y to x∗ may be neglected. This is likely valid when shifted conformations of x
to x∗ are unlikely, and the number of substitutions applied is small.
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of substitutions occurring at non-adjacent interior positions within x, the effect on binding
affinity of applying any subset of these substitutions is the sum of the effects of applying
each substitution individually (Figure 1a).

We are now prepared to construct a subset of sequence space D ∈ Dn. Given x ∈ Dn, we
propose constructing D based on a set of substitutions S satisfying the following requirements:
1. (interiority) For each σi,a,a′ ∈ S, k + 1 ≤ i ≤ n − k and xi = a ̸= a′.
2. (non-adjacency) For any two σi,a,a′ , σj,b,b′ ∈ S, |i − j| > l ≥ 1.
3. (symmetry) For each σi,a,a′ ∈ S, y = σi,a,a′(x), the four values δi,a,a′(x), δi,a′,a(y),

δ∗
i,a,a′(x), δ∗

i,a′,a(y) are within the range (δmin, δmax).
For the interiority requirement, we choose k = 2 because of the observation that substitutions
at terminal or penultimate strand positions have different effects on binding affinity [19]. For
other the non-adjacency requirement, we use l = 1 as the minimal requirement for achieving
additivity in the effects of each substitution. The symmetry requirement is included to aid
subsequent sequence design, and its purpose will become clear by the end of this subsection.
Informally, it implies that the effect of a mutation is consistent across different measures of
its effect on binding affinity (Figure 1b). Because the effect of mutating a nucleotide depends
only on that nucleotide and its neighbors, there are exactly 192 possible substitutions, and
we may enumerate the list of those that satisfy condition (3) (Figure 1c). We use the
range (11.0, 15.3) kJ/mol, with all binding affinities estimated by published nearest neighbor
parameters [22]. In principle, greater design robustness could be achieved by increasing k,
increasing l, or decreasing the range (δmin, δmax), at the cost of reducing the size of the set S.

Given a set of substitutions S (Figure 1d), let D be the set of sequences generated by
applying a subset S′ ∈ S to x, and D∗ be the set of perfect complements to sequences in D.
Each element of D is associated with a binary string of length m := |S| as follows. Number
the elements of S from 1 to m. Assume without loss of generality that the j-th element of S

is a substitution at position i of x. Define f : D → {0, 1}m such that, for y ∈ D, f(y) is the
binary string with a j-th bit of 0 if xi = yi and 1 otherwise. In other words, a bit of f(y) is 1
if and only if the corresponding substitution in S was applied to generate y from x.

We may now model the differential binding affinity between two pairs of sequences taken
from D and D∗. For sequences y, z, u, v from D, we model the differential binding affinity as

∆G(y, z∗) − ∆G(u, v∗) ≈ δmut × [dH(f(y), f(z)) − dH(f(u), f(v))] (1)

where δmut is a proportionality constant approximating the change in binding affinity due
to a single mutation, and dH is the Hamming distance between two binary strings. This
approximation is justified by the fact that the set of substitutions S was chosen so that the
effect of each mutation would be approximately additive, and the number of substitutions
that differentiates x from y equals the Hamming distance between f(x) and f(y). Note that
Equation (1) relates the Hamming distance between f(x) and f(y) to the binding affinities
both of x to y∗ and of y to x∗, which is ensured by the symmetry requirement.

In this way, we model the binding affinity of any sequence of D with any sequence of
D∗. In principle, the number of sequences may be very large (e.g., later we find sets S of 9
substitutions within 25-nt sequences, which generate sets D of 29 = 512 sequences). However,
the distribution of binding affinities is constrained by the corresponding distribution of
Hamming distances, so only a subset of these sequences would likely be used for a particular
application. Note that these sequences contrast with those generated via random mutations
by Nikitin [18] for their designs, because we constrain our substitutions to enable an additive
model. While Nikitin observed that NUPACK predictions were not accurate enough to
avoid significant experimental debugging, we posit that the highly constrained nature of
our substitutions may improve the reliability of the non-orthogonal designs. This claim is
supported by our experimental results, although further validation is warranted.
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2.2 Design process with isometric graph embeddings
This model establishes a relationship between the binding affinities between D and D∗ and
the Hamming distances between binary strings. However, it does not solve the problem of
designing the sequences themselves given desired binding behavior. To accomplish this, we
proposed designing the binary strings for a system directly, and afterwards transforming
these into the sequences themselves. This latter step is trivial given binary strings, an initial
sequence, and an associated set of substitutions.

A specification of the binding affinities between pairs of sequences can be represented in
a matrix A = (aij), where aij represents the binding affinity between sequences xi and x∗

j in
some units. In analogy to Equation (1), our goal will be to design the differential binding
affinities aij − ai′j′ such that

aij − ai′j′ ∝ ∆G(xi, x∗
j ) − ∆G(xi′ , x∗

j′). (2)

To ease design, we chose to consider those design matrices that may be represented in an
undirected graph G such that there is some set of vertices ui ∈ V (G) where V (G) denotes
the vertex set of G. Specifically, we require the existence of a graph such that

aij − ai′j′ ∝ dG(ui, uj) − dG(ui′ , uj′) (3)

where dG is the shortest path metric on pairs of vertices of G. From this equation, we may
immediately conclude the following:

aij − aji ∝ dG(ui, uj) − dG(uj , ui) = 0 =⇒ aij = aji (4)
aii − ajj ∝ dG(ui, ui) − dG(uj , uj) = 0 =⇒ aii = ajj (5)

Thus, representation in an undirected graph implies that the design matrix must be symmetric
with all diagonal entries identical. In addition, because the shortest path metric is a
metric space, the design matrix must also represent a metric space (i.e., satisfy the triangle
inequality).

Next, we proposed using a mapping between graphs called an isometric graph embedding,
which is a mapping ϕ : V (G) → V (G′) between the vertex sets of two graphs that preserves
the distances between vertices. That is, for all u, v ∈ V (G),

dG(u, v) = dG′(ϕ(u), ϕ(v)). (6)

We are particularly interested in isometric graph embeddings into hypercube graphs, or
hypercube embeddings. A hypercube graph of dimension m is a graph of 2m vertices, with
each vertex associated with a binary string and two vertices adjacent if and only if their
binary strings differ at a single position. These graphs are of interest to us because they
naturally represent the Hamming distance between two binary strings in the graph distance
between the corresponding hypercube vertices.

For any graph G, finding a hypercube embedding h : V (G) → V (H) into m-dimensional
hypercube graph H immediately implies an assignment of binary strings to each vertex of the
graph such that the distance between vertices equals the Hamming distance between binary
strings. Given the results of Section 2.1, this completes our stated design goal, assuming we
are able to find an initial sequence and a set of substitutions of size at least m:

aij − ai′j′ ∝ dG(ui, uj) − dG(ui′ , uj′) (7)
= dH(h(ui), h(uj)) − dH(h(ui′), h(uj′)) (8)
= δmut × [∆G(xi, x∗

j ) − ∆G(xi′ , x∗
j′)] (9)

where in the final equality, xi is the sequence associated with binary string h(ui), so
f(xi) = h(ui).
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Figure 2 a) A cyclic graph on 18 nodes. b) The Desargues graph. c) A hypercube embeddable
weighted graph. d-f) NUPACK simulations of designed sequences show a strong linear relationship
between the graph distance and binding affinities of every pair of sequences from D and D∗. g)
Distributions of binding affinities between Dx and other sets of sequences. Binding affinites for
sequences that should not interact are unfavorable, comparable to the weakest binding affinites
observed among the correct pairs of sequences. h) Experimental testing of a subset of the sequences
in Dx and D∗

x (Technical Appendix) shows a linear relationship between melting temperature and
graph distance. Melting temperature is used here as a proxy for binding affinity.

Given a graph G, the difficulty of finding a hypercube embedding varies depending on
the properties of G. For unweighted, undirected graphs, hypercube embeddings were first
characterized by Djoković [8], with several important results later established by Winkler and
Graham [11, 28]. If an unweighted, undirected graph G permits a hypercube embedding it is
called a partial cube, and determining whether a particular graph is a partial cube may be
performed in O(v2) time [9], for a graph with v nodes. In addition, all hypercube embeddings
of G are equivalent up to symmetries of the hypercube graph [28]. While not all graphs
are partial cubes, many important classes of graphs do permit hypercube embeddings. Two
examples are a cyclic graph of 2m, which is embeddable into an m-dimensional hypercube,
and the Desargues graph on 20 nodes, which is embeddable into a 5-dimensional hypercube
(Figure 2ab).

To give an intuition for how such embeddings are constructed, we briefly describe the
algorithm proposed by Graham and Winkler [11], noting that more efficient algorithms exist.
First, a relation θ is defined on the edge set E(G) of the graph G, where uvθu′v′ if and only
if the quantity [d(u, u′) − d(u, v′)] − [d(v, u′) − d(v, v′)] is nonzero. The transitive closure
θ̂ of θ is an equivalence relation, and the equivalence classes of θ̂ partition E(G) into sets
E1, . . . , Em. For set Ei, let Gi be the graph with V (Gi) = V (G) and E(Gi) = E(G) \ Ei

(i.e., formed by removing the edges in Ei from G). If every Gi has exactly two connected
components, then G is hypercube embeddable. In this case, a hypercube embedding may be
constructed by assigning binary strings to each vertex of G such that the i-th bit of a vertex
is 0 if it is one connected component of Gi and 1 if it is in the other.
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When a graph G is weighted, the task of finding a hypercube embedding is NP-hard [7],
so an efficient and generally-applicable solution to the problem is unlikely to exist. However,
methods for efficiently embedding some classes of weighted G exist (Figure 2c) [5, 24, 25].
Characterizing additional classes of weighted graphs for which hypercube embeddings can be
efficiently found remains an open area of research in graph theory, and advances in this area
would improve the utility of this design process.

2.3 Validation via simulation and experiment

We consider three graphs of varying complexity (Figure 2a-c), and construct hypercube
embeddings and sequence designs for each. For the three designs, we denote the designed
sequences as Dx, Dy, and Dz, and the final binary strings and sequences are given in the
Technical Appendix. To show the robustness of our design, each design used a distinct initial
sequence taken from a previously designed set of 240,000 25-nt PCR primers known to be
orthogonal to one another [29]. In each case, the pairwise binding affinities between the
corresponding set of sequences Di and the set of complementary sequences D∗

i , i ∈ {x, y, z}
were simulated with NUPACK at 25 ◦C in an aqueous solution of 1M NaCl. The simulations
show a strong linear correlation between the binding affinities and the original graph distances
(Figure 2d-f), with correlation coefficients of R2 = 0.99, 0.98, and 0.95, respectively for the
three designs.

To test the orthogonality of separately designed sets of non-orthogonal sequences, we
computed binding affinities between sets of sequences that should not interact. Specifically,
we tested the set Dx against the sets Dx, Dy, D∗

y, Dz, and D∗
z , and found weak binding

affinities in all cases (Figure 2g). The binding affinities were comparable with the weakest
binding observed among any of the expected pairs of interacting sequences.

Experimental tests of the first sequence design (Dx and D∗
x) support the validity of our

model. As a proxy for binding affinity, we measured melting temperatures for 25 pairs of
sequences (5 sequences of Dx and 5 sequences of D∗

x), covering a range of graph distances.
Melting temperature was interpreted as a proxy for binding affinity, with higher melting
temperature indicating stronger binding affinity. Melting temperatures plotted against the
expected distance in the cyclic graph showed a strong linear correlation with a correlation
coefficient of R2 = 0.91 (Figure 2h).

3 Analog computation with promiscuous ligand-receptor networks

In naturally occurring biological networks, promiscuous binding between components (non-
orthogonality) is common [1, 15]. Recently, researchers studied the computational abilities of
promiscuous ligand-receptor networks, such as the BMP signaling pathway [1]. In their model
of this pathway, trimers are formed from the binding of a ligand to two receptor halves, with
each trimer having its associated free energy and signal output production rate. The ligand
concentrations, which were assumed to be in excess, affect the formation of trimers and
subsequent signal output, and these concentrations were the network inputs. The receptor
concentrations, binding affinities, and trimer production rates constitute network parameters
that determine the particular function computed by the system. The authors identified
four archetypal response types characteristic of the promiscuous ligand-receptor network
architecture, which they labeled “additive”, “ratiometric”, “balance”, and “imbalance” gates
[1]. In this section, we propose and simulate a DNA strand displacement analogue to the
promiscuous ligand-receptor network.

DNA 29
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Figure 3 a) The dimer model for a promiscuous ligand-receptor network uses a set of Kij binding
affinities between each pair of ligands and receptors, and a set of ϵij reaction rates to represent the
signal activation rates associated with each ligand-receptor pair. b) The signal response of each
receptor is independent of the other receptors, because we assume high ligand concentrations. For
a two-ligand network, the response is sigmoidal in the log-ratio of the two ligand concentrations
(left). This is also seen in a diagonal cross-section (dotted line) of a log-log heatmap (right). c) From
left to right, an additive response, a ratiometric response, an imbalance response, and a balance
response. Below each heatmap are conditions on Kij and εij to achieve each response.

3.1 Dimer model for the promiscuous ligand-receptor network
Here, we present a simplified model of a promiscuous ligand-receptor network, based only
on dimer formation between ligands and receptors. While less biologically pertinent, the
dimer model is capable of computing the same four archetypal response types. The dimer
model considers a system of nR receptors and nL ligands, such that each ligand-receptor
pair may bind and generate signal output with an arbitrary binding affinity and signal
production rate (Figure 3a). For simplicity, we let εij = ϵij

γ . Under the limit of high total
ligand concentration, we may assume that all receptors are bound to some ligand, and the
steady-state network output is given by

[S]ss =
∑

1≤i≤nR

[Ri]0

∑
1≤j≤nL

εijKij [Lj ]0∑
1≤j≤nL

Kij [Lj ]0
, (10)

where [A]0 is the total concentration of species A, bound or unbound. A full mathematical
analysis of the model is given in the Technical Appendix.

In our case, we are interested in a system of two ligands and two receptors, which is
already capable of generating the four archetypal response types identified in the context of
the BMP signaling pathway [1]. We consider the system response as a function of x = log [L2]

[L1] ,
because in the limit of high ligand concentration, the signal output of a two-ligand system is
a function only of the ratio of the two ligand concentrations. Consider the receptor R1. As
the x increases (L2 dominates L1), the receptor transitions from binding predominantly to
L1 to binding predominantly to L2. This transition follows a sigmoidal function of x, and
the signal output due to R1 is a sigmoid whose minimum and maximum are determined by
the output production rates of R1:L1 and R1:L2 (Figure 3b). Because ligand concentration
is high, the binding of R2 to L1 and L2 is not affected by that of R1, so the total network
output is a sum of the two sigmoidal responses generated by the two receptors.
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Each of the four archetypal response types is generated from a linear combination of two
sigmoids, and different responses may be chosen by transforming the sigmoidal response of
each receptor. The sigmoidal response of a receptor can be shifted horizontally by adjusting
the relative binding affinity of the receptor to each ligand. The response can be shifted
and scaled vertically by adjusting the output production rates of its dimers. Parameter
constraints and dimer model simulations for each response type are shown in Figure 3c. Note
that the additive and ratiometric responses require only a single receptor.

3.2 DNA strand displacement-based implementation

We designed a set of DNA-based “ligands” and “receptors” to implement the behavior of
the dimer model for a promiscuous ligand-receptor network. Each DNA-based ligand and
receptor uses a combination of classical orthogonal domains along with additional domains
taken from two sets of independently designed non-orthogonal sequences (Figure 4a). The
signal output is generated by a fluorophore-quencher FRET pair, so that the fluorophore is
quenched in certain ligand-receptor conformations. Changes in response type are possible
simply by swapping out the choice of non-orthogonal domains on each DNA-based ligand
and receptor.

a)

b) c)

aj’nj mj
5T 5T

aj*

bj’

bj*t*

ai bit
ligand

receptor

Kt
Kb

ij Kb
ij

Ka
ij
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Figure 4 a) A proposed DNA strand displacement implementation of a promiscuous ligand-
receptor network. b) For a balance gate, NUPACK simulations of the concentrations of the four
ligand-receptor pairs as well as the signal response from each. The signal response is estimated from
the probability that the 3′-most nucleotide of the ligand is bound to its corresponding nucleotide on
the bottom strand of the receptor. c) Heatmaps from NUPACK simulations of our sequence designs
for each of the four archetypal response types.

The steady-state output of this network is given by the following equation

∑
1≤i≤nR,1≤j≤nL

[(Ri:Lj)∗] =
∑

1≤i≤nR

[Ri]0
∑nL

j=1 Kt(1 + Ka
ij)[Lj ]0∑nL

j=1 Kt(1 + Ka
ij)(1 + Kb

ij)[Lj ]0
, (11)
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where [(Ri:Lj)∗] is the concentration of the ligand-receptor pair in a fluorescent (i.e., not
quenched) state (see the Technical Appendix for a full derivation). This equation can be
made formally equivalent to Equation (10) via the following substitutions

Kij = Kt(1 + Ka
ij)(1 + Kb

ij) (12)

εij = 1
1 + Kb

ij

(13)

which relate the parameters of this DNA strand displacement system (Kt, Ka
ij , and Kb

ij) to
the parameters of the dimer model of the previous section (Kij and εij). In this way, it is
possible in principle to implement a wide variety of dimer model parameters, limited mainly
by a discretization of the energy landscape due to δmut (the change in binding affinity due to
a single substitution mutation).

We describe our implementation of the balance gate in detail. Implementation of the other
three gates follows similarly. For our design, we used the binary strings and corresponding
sequences from the first two designs in Section 2.3, Dx and Dy. To achieve the network
parameters for the balance gate (Figure 3c), we chose 2 binary strings from the Dx design
and 4 binary strings from the Dy set of sequences. Sequences corresponding to each binary
string were designed, and NUPACK simulation was used to estimate Kij and εij using these
particular sequences and Equations (12) and (13), with Kt set to 1 as it did not affect the
relative values of the Kij) (Table 1). Complete lists of sequences are given in the Technical
Appendix.

Table 1 Table of estimated Kij and εij values for the balance gate.

Kij L1 L2

R1 4.0 1.5 × 105

R2 1.8 × 104 4.0

εij L1 L2

R1 0.5 1.0
R2 1.0 0.5

NUPACK does not allow direct simulation of the fluorophore or quencher modifications, so
the concentration of colocalized fluorophore-quencher pairs was estimated from the probability
that the rightmost nucleotide of the y domain on a ligand would be bound to its corresponding
nucleotide on a receptor. Note that hydrophobic interactions in an actual experiment could
stabilize this conformation further. Using NUPACK, we simulated the concentration of
each ligand-receptor pair for a fixed total ligand concentration [L1]0 + [L2]0 = 2 µM and
varying ligand concentration ratio (Figure 4b, top). This data shows the two transitions
corresponding to replacement of L1 by L2 on each receptor. The computed network output
was also computed, as well as the output from each ligand-receptor complex, showing the
expected balance gate behavior (Figure 4b, bottom). Finally, a heatmap was generated
showing the network output with initial receptor concentrations [R1]0 = [R2]0 = 5 nM and
ligand concentrations ranging from 10−9 to 10−1 M. This heatmap shows that at high ligand
concentration the signal output is high when the ligand concentrations are similar and low
otherwise. Note that at low ligand concentrations, receptors remain unbound and the signal
output will be low regardless of the ligand concentration ratio.

For the other three archetypal response types, the binary strings were selected based
on the constraints for each response type in Figure 3c, and DNA sequences and response
heatmaps were computed using NUPACK simulation (Figure 4c). Results show successful
implementation of each response type. Note that the additive and ratiometric gates required
only a single receptor for their implementations because their response profile consisted of a
single sigmoid.
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4 Digital logic computation with non-orthogonal DNA hairpins

Next, we wished to demonstrate the utility of our design process for digital logic computation.
We were motivated by recent work due to Nikitin illustrating digital logic gates based on
the binding of short ssDNA strands optimized for particular binding affinities [18]. Notably,
Nikitin used sequences that were freely mutated and subsequently tested with NUPACK
to achieve particular binding affinities, and additional optimization of the affinities and
strand concentrations was needed for successful circuit function. The author also found that
NUPACK predictions for sequences mutated in this manner were not accurate enough to avoid
significant experimental trial and error [18]. This contrasts with our approach of carefully
selecting the locations of each mutation and the nucleotide identities in order to achieve
consistent and predictable effects on binding affinity within the population of sequences
of our design. In addition, strand concentrations were largely determined from the circuit
connectivity, with only a single global working concentration that required optimization.

In Section 4.1, we begin by describing the basic structure of these logic gates, which is
based off of a fan-in design for a NOR gate, and our hairpin-based implementation, which
we call a “hairpin logic circuit”. Section 4.2 describes the application of our design process
to logic circuits of varying complexity. This process is based on the construction of an
interaction graph for which a hypercube embedding may be found as in Section 2.2.

4.1 Structure of the hairpin logic circuit
The gates proposed by Nikitin [18] use sequences of NOR gates implemented by controlled
binding between single strands of DNA. For each NOR gate, any one of a set of input strands
may bind to the output strand, preventing it from binding to any downstream strands. In
contrast to Nikitin’s proposed design, our sequence designs are intended for control of the
differential binding affinities of distinct double-stranded DNA complexes, rather than the
change in free energy associated with two single strands forming a duplex. Thus, we proposed
a hairpin-based circuit design in which each hairpin stem consists of two non-orthogonal
domains that may either bind to each other (stem closed) or to another hairpin (stem
open) (Figure 5a). For hairpin signal X, we denote the non-orthogonal stem domains with
lowercase x and x̄∗. The structure of our circuits is identical to those of Nikitin, except for
the substitution of each single-stranded signal molecule with one of our hairpin molecules.
For example, the NOT gate is simply a single-input NOR gate (Figure 5b), whose output
signal is high when the input is low using a FRET pair to modulate fluorescence. Other
examples of simple gates constructed from the NOR-gate primitive are shown in Figure 5c.

The favorability of two hairpins A and B opening and binding to each other is dependent
on several factors. These include the degree of sequence complementarity in their stems,
the favorability of opening up the hairpin loop, and the entropic penalty of replacing two
freely moving molecules with a single molecule. Our sequence design process controls the
first factor (i.e., the affinity of a to b̄∗ and b to ā∗ relative to the affinity of a to ā∗ and
b to b̄∗). The latter two factors are dependent on system parameters, such as the strand
concentrations and the design of the hairpin loop, and are expected to be approximately
equal for all hairpin signal binding reactions.

For each circuit, we assume a working concentration c, which can be increased or decreased
to tune the global favorability of a free (closed) hairpin state against the sequestered (open)
hairpin state in which it is bound to another (open) hairpin signal. Because some hairpin
signals must bind to multiple downstream signals as part of their function, the concentration
of each signal was set to the total concentration of the downstream signals to which it must
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Figure 5 a) The hairpin logic circuit uses signal strands that form either a closed hairpin when
isolated or an open conformation when bound to another signal. b) Example operation of a NOT
gate. Each Q hairpin has a quencher label that reduces fluorescence from S when they are bound.
c) Each layer of the circuit is a NOR gate, allowing the implementation of any other logic gate.
Circuits for an OR and an AND gate are shown. d) To design the domains for each hairpin stem, a
stem similarity graph is constructed that represents the desired binding relationships between each
pair of stem domains. Each circuit connection corresponds to two edges in the stem similarity graph,
to ensure that the domains on the two hairpins can bind to each other. e-f) Stem similarity graphs
and hypercube embeddings for the NOT and AND gates. g) NUPACK simulations of circuit output
for each gate. Performance is within 5% of the expected output (dotted lines) for all inputs.

bind. In principle, this means some hairpins will be at higher concentration and thus more
likely to bind to other hairpins; however, in practice, this did not materially affect the circuit
behavior (free energy of binding is affected by the logarithm of concentration, so orders of
magnitude change would likely be required to affect the circuit).

4.2 Sequence design for the hairpin logic circuit

From the connectivity of a circuit diagram, we can graphically represent the desired similarity
between hairpin stem domains. For a circuit C, the hairpin stem similarity graph H(C)
represents each hairpin stem domain with a vertex (i.e., two vertices per hairpin signal).
If two hairpin signals A and B are connected in the circuit diagram, then ab̄ and āb are
(unweighted, undirected) edges in H(C) (Figure 5d). This implies that a and b̄ should differ
by only a single mutation, and similarly for ā and a. The stem similarity graph for a NOT
gate is shown in Figure 5e. In this simple case, the stem similarity graph has two connected
components, which means that the graph distance for the domains in each hairpin stem can
be freely chosen (i.e., a to ā for hairpin signal A). For the NOT gate, we assign a graph
distance of 4 between every pair of domains on a single hairpin, which corresponds to 4
mutations within each hairpin stem. The implications of this choice are discussed further
later.
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When a circuit has at least 3 layers, it becomes necessary to adjust the stem similarity
graph so that the output signals bind less strongly to their connected signals. This ensures
that the output signal will only bind to any preceding signals if those signals have no other
binding partners. To accomplish this with the AND gate, we apply a weight of 2 to each
edge incident to a non-orthogonal domain of the output hairpin signal (Figure 5f).

Given a stem similarity graph, a hypercube embedding can be found in O(|V |2) time if
one exists, for a graph with |V | vertices. Hypercube embeddings for the NOT and AND
gates are shown in Figure 5ef. A unitless binding affinity of two hairpin signals, neglecting
factors other than stem loop complementarity, can be estimated with the equation

δ(A, B) = d(a, b̄) + d(b, ā) − d(a, ā) − d(b, b̄) (14)

Note that two hairpins that are intended to bind are guaranteed will always have the lowest
binding affinities because each stem domain was separated by only a single edge in the stem
similarity graph. This is true even for the output signal domains when they have incident
edge weights of 2.

Corresponding sequences for the NOT and AND gate designs are taken from the sequence
set Dy (Section 2.3; see the Technical Appendix for full set of sequences). When fewer than
9 substitutions were needed, such as with the NOT gate, a subset of the 9 substitutions
available with this design was selected. In addition, the order of the substitutions was
randomized, in order to distribute the mutations more evenly across the sequence. This
randomization was performed for the other gates as well. Using NUPACK, the circuit output
for high and low initial input concentration was computed as the concentration of the closed
hairpin S (Figure 5g), showing performance within 5% of the optimal values.

To ensure that only desired hairpin pairs would bind, we modulated the working concen-
tration for each circuit so that binding between undesired hairpin pairs was less favorable
than the hairpins remaining free (closed). Previously, we chose a graph distances of 4 (NOT
gate) or 3 (AND gate) between pairs of domains corresponding to the same hairpin signal,
to demonstrate the effect of this design choice. With the NOT gate, a working concentration
of 10−6 M was most effective, while with the AND gate, a significantly higher working
concentration of 10−4 M was used. In general, this graph distance can be increased at
the cost of additional bits in the hypercube embedding, in order to allow a lower working
concentration to correctly balance the open and closed hairpin states. This flexibility can be
useful, for instance, if the working concentration is fixed by other experimental factors and
cannot be independently modulated.

For some circuits, the stem similarity graph constrains the graph distance between the
two domains on each hairpin signal. The simplest feedforward circuit for which this occurs
is the logically false circuit for NOR(A, ¬A), which can be implemented with 3 signals A,
B = ¬A, and C = NOR(A, ¬A) (Figure 6a). In this case, the corresponding stem similarity
graph constrains the distance between a and ā to be 3 (similarly for B and C). Situations
such as this occur whenever the circuit is not bipartite, when viewed as a graph on the
hairpin signals themselves. This becomes increasingly common with larger circuits, and in
such cases, the working concentration must be chosen based on the constraints implied by
the stem similarity graph.

As a final example, we consider the square root circuit first considered by Qian and
Winfree [20], which was also implemented by Nikitin [18] (Figure 6b). The stem similarity
graph for this circuit is significantly more complex than the previous examples (Figure 6c),
consisting of 30 vertices and 34 edges. As with the AND gate, a weight of 2 was assigned to
the edges incident to the domains of the output signals S1 and S2. This stem similarity graph
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Figure 6 a) When a stem similarity graph is connected, the graph distance between domains
on the same hairpin is constrained. This is a circuit for A NOR NOT A, which is logically false.
b) Circuit connections for the square-root circuit. This is the same circuit that was constructed
by Nikitin [18]. c) Stem similarity graph for the square root circuit. Domains on the input and
output hairpins are colored for clarity. d) NUPACK simulations of circuit output for all 16 input
combinations (inputs are listed in the order I1I2I3I4). Outputs remain within 10% of the correct
values for all inputs, and within 5% (dotted lines) for all but 2 of the inputs (0001 and 0011).

is not exactly hypercube embeddable. For this case, we introduce the notion of a k-hypercube
embedding, or an isometric embedding into a hypercube that preserves all distances up to a
distance of k. Precisely, ϕ : V (G) → V (H) is a k-hypercube embedding if for all u, v ∈ V (G):
1. dG(u, v) = dH(ϕ(u), ϕ(v)) if dG(u, v) ≤ k

2. dG(u, v) > k if dG(u, v) > k

This notion is a generalization of the k-snake, which is a k-hypercube embedding of a linear
graph [13,26].

The use of a k-hypercube embedding has an additional advantage, in that it may allow
the researcher to embed into a hypercube of smaller dimension (i.e., requiring fewer bits).
Unfortunately, an efficient algorithm for finding a k-hypercube embedding is not known,
although for smaller circuits this is often possible to do by hand.

For the square root circuit, we constructed a 2-hypercube embedding of dimension 9,
where k = 2 was chosen because all correct interactions were encoded in the stem similarity
graph with a distance of at most 2 (see Technical Appendix). Any vertices at distance 3
or greater should not interact anyway, and the working concentration will be chosen to
ensure that these interactions are not favorable. Our 2-hypercube embedding has the added
advantage that for every hairpin, its two domains have the same Hamming distance from
each other. This makes it easier to choose a working concentration that correctly tunes the
propensity of each hairpin signal to choose an open conformation (bound to another hairpin)
over a closed one.

To simulate this circuit, sequences corresponding to each binary string were used from
the set Dy from Section 2.3. A working concentration of 10−11 M was used; all signals were
initially present at this concentration except for I1 and I2, which used concentrations of
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2 × 10−11 and 4 × 10−11, respectively. NUPACK simulations were performed over all 16
possible 4-bit inputs, which showed that, for all input combinations, the 2-bit output was
within 10% of the correct value (Figure 6d). All but two inputs (0001 and 0011) achieved
outputs within 5% of the correct values. It is possible that additional circuit optimization
could improve this further.

We make one final comments regarding this application of our sequence design procedure
to digital logic circuits. When some hairpin signals have stems that bind more strongly than
others, choosing a global working concentration can be difficult. In the square root circuit,
we circumvented this problem in the way we compressed our hypercube embedding; however,
this may not always be possible. Handling this scenario remains another open question that
could make it possible to apply our design process to additional circuits.

5 Discussion and Conclusions

In this work, we have presented an effective rational design approach for non-orthogonal
DNA domains, that may be combined with orthogonal domains for complex DNA strand
displacement circuitry. We applied this approach to two previously proposed molecular
computational systems based on non-orthogonal interactions, through which we demon-
strated in silico analog and digital logic computation. This design approach eases the use
of non-orthogonal domains within DNA strand displacement cascades, because it allows
researchers to perform initial designs of non-orthogonal domains using only binary strings.
Experimental implementation requires finding an appropriate starting DNA sequence with
enough substitutions; heuristically, a starting sequence with little secondary structure and
that binds to its perfect complement primarily in a single conformation works well. Once
found, generating the corresponding DNA sequence variants is straightforward, allowing
researchers to quickly design candidate non-orthogonal domains. Thus, a larger portion of
the design process can be done prior to ordering materials. Further experimental testing is
warranted to quantify the accuracy of our design method.

Several areas for further improvements to our method exist. For example, the use of
k-hypercube embeddings was necessary for the more complex square root circuit. Additional
work could address algorithms for efficiently constructing k-hypercube embeddings, which
would also help with compressing the embeddings so they can be implemented on shorter
DNA strands.

The sequence design process we describe here has the potential to be applied in other
contexts. For example, previous DNA strand displacement-based implementations of neural
networks have used “weight complexes,” dedicated auxiliary DNA molecules whose concen-
trations encode the weights between various nodes [6, 21]. However, as the size of a neural
network grows, the number of weights that must be encoded grows quadratically in the
number of nodes, so that the number of distinct DNA molecules that must be designed and
synthesized grows quickly. Using non-orthogonal sequence design, it may be possible to
encode weights in the binding affinities between molecules, which would significantly reduce
the number of system components required, increasing the size of the neural networks that
can feasibly be implemented experimentally.

Recently, researchers have shown that non-orthogonal interactions can also be applied to
nanostructure fabrication, allowing the design of a pool of structural subunits capable of
creating any one of several possible multi-subunit assemblies. The creation of a particular
assembly can be triggered by the presence of a nucleation seed [16] or by the concentrations
of the various subunits [30]. An experimental demonstration of this used a set of 917 unique
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DNA tiles to construct one or more of three target assemblies [10]. This demonstration
used orthogonal interactions between tiles; however, our sequence design method could in
principle be used to allow the construction of a larger number of target assemblies closer to
the theoretical limit [16].

The problem of non-orthogonal sequence design is a complex task, with different ap-
proaches likely to be best suited to different applications. However, there are many potential
use cases for a non-orthogonal sequence design approach that can be applied to a variety
of DNA strand displacement systems. We hope that our non-orthogonal sequence design
method spurs new innovation in both DNA sequence design and the computational uses of
non-orthogonality, and that future improvements to non-orthogonal design techniques will
open the doors to more complex DNA-based computers and new advancements in molecular
computing.
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A Methods

A.1 NUPACK simulation parameters
All NUPACK simulations were performed at 25 ◦C, with 1 M NaCl. NUPACK simulations
for Sections 2 and 3 used material “dna04-nupack3” and ensemble “some-nupack3”. NUPACK
simulations for Section 4 used material “dna” and ensemble “stacking”.

A.2 DNA melting assay
The sequences x0, x1, x3, x6, and x10 and their complements were tested. Because intercalat-
ing dyes such as SYBR Green often affect the binding affinity of DNA strands or have strong
variations in fluorescence with temperature [12], we used a FRET assay with strands labeled
either with cyanine 3 (Cy3) or cyanine 5 (Cy5) dyes. Cy3- or Cy5-labeled strands were
ordered from Integrated DNA Technologies (IDT). Strands were mixed to a concentration
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of 0.25 µM per strand in a solution of 1× TAE and 1 M NaCl. Fluorescence of Cy3 was
measured on a qPCR machine (QuantStudio Flex 6, Applied Biosystems) over a temperature
ramp from 95 ◦C down to 10 ◦C and then back to 95 ◦C, at a rate of 0.5 ◦C/min. This was
repeated three times. Each curve was corrected with the Cy3 fluorescence measured from a
sample of the single strand without any binding partner. Data from the upward ramp was
averaged, and the average rate of change in fluorescence with temperature was computed.
The temperature with highest rate of change was taken as the melting temperature.

B Thermodynamic analysis of the promiscuous ligand-receptor system

B.1 Analysis of the dimer model
The dimer model uses a set of nR receptors Ri and nL ligands Lj and is capable of generating
the four archetypal response types. This requires fewer components than the trimer model
used in by Antebi et al. in their analysis of the BMP signaling pathway [1].

Ri + Lj

Kij−−⇀↽−− Dij (15)

Dij
ϵijk−−→ Dij + S (16)

S
γ−→ ∅ (17)

Let εij = ϵij

γ . Given these reactions, the steady-state level of S is

[S]ss =
∑

1≤i≤nR,1≤j≤nL

εij [Dij ]ss (18)

=
∑

1≤i≤nR

[Ri]0

∑
1≤j≤nL

εijKij [Lj ]ss

1 +
∑

1≤j≤nL
Kij [Lj ]ss

(19)

≈
∑

1≤i≤nR

[Ri]0

∑
1≤j≤nL

εijKij [Lj ]0∑
1≤j≤nL

Kij [Lj ]0
(20)

where [A]0 is the total concentration of species A bound or unbound and the final approxim-
ation is achieved by assuming the total ligand concentration is high.

When there are exactly two ligands, each term of the summation can be individually
expressed as a sigmoid curve:

[S]ss ≈
∑

1≤i≤nR

[Ri]0
εi1Ki1[L1]0 + εi2Ki2[L2]0

Ki1[L1]0 + Ki2[L2]0
(21)

= [R1]0

[
ε11 + ε12 − ε11

K11
K12

ex + 1

]
(22)

where x = log
(

[L1]0
[L2]0

)
. This describes a sigmoid curve that transitions from [Ri]0εi2 to

[Ri]0εi1 with a midpoint at − log Ki1
Ki2

. The “height” of the sigmoid is given by [Ri]0(εi2 −εi1).
Thus, in a two ligand, two receptor system, the signal response is the sum of two sigmoids,

each of which may be independently shifted along the x-axis by changing Ki1
Ki2

, and shifted
and/or stretched along the vertical axis by modifying εi1 and εi2. Note that the steepness of
the sigmoid (i.e. horizontal stretching) is not adjustable under this model; the same is true
of the trimer model presented by Antebi et al. [1].

The additive and ratiometric responses may be generated by a single receptor, while the
balance and imbalance responses require two receptors.
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B.2 DNA strand displacement implementation
Consider the ligands and receptors shown in Figure 4a. Each ligand has two non-orthogonal
domains (ai and bi) as well as a toehold that allows it to bind to each receptor. Once
bound, the two non-orthogonal domains on the receptor that flank its toehold binding
site may be displaced with some free energy change based on the relative affinities of the
incumbent domains (aj and bj) and intruder domains to the bottom domains (ak and bk). A
FRET-based readout is implemented by the addition of a fluorophore-quencher pair, which
is activated only when the right-hand non-orthogonal domain is displaced. The full reaction
diagram is enumerated below:

Ri + Lj
Kt

−−⇀↽−− Ri:Lj (23)

Ri:Lj

Ka
ij−−⇀↽−− (Ri:Lj)a (24)

Ri:Lj

Kb
ij−−⇀↽−− (Ri:Lj)b (25)

(Ri:Lj)a

Kb
ij−−⇀↽−− (Ri:Lj)ab (26)

(Ri:Lj)b

Ka
ij−−⇀↽−− (Ri:Lj)ab (27)

Thermodynamic analysis of this system is straightforward, as long as we neglect any
second-order effects of adjacent domains (note that these effects can in principle be significant).
The presence of the 5T loop on either side of the non-orthogonal domains on the receptor is
intended to reduce the significance of this. The following equations hold at equilibrium

Kt = [Ri:Lj ]
[Ri][Lj ] (28)

Ka
ij = [(Ri:Lj)a]

[Ri:Lj ] = [(Ri:Lj)ab]
[(Ri:Lj)b] (29)

Kb
ij = [(Ri:Lj)b]

(Ri:Lj ] = [(Ri:Lj)ab]
[(Ri:Lj)a] (30)

and some algebra yields the following:∑
1≤i≤nR,1≤j≤nL

[(Ri:Lj)∗] =
∑

1≤i≤nR

[Ri]0
∑nL

j=1 Kt(1 + Ka
ij)[Lj ]

1 +
∑nL

j=1 Kt(1 + Ka
ij)(1 + Kb

ij)[Lj ]
(31)

≈
∑

1≤i≤nR

[Ri]0
∑nL

j=1 Kt(1 + Ka
ij)[Lj ]0∑nL

j=1 Kt(1 + Ka
ij)(1 + Kb

ij)[Lj ]0
(32)

where [(Ri:Lj)∗] = [Ri:Lj ] + [(Ri:Lj)a] is the concentration of fluorescing receptor, noting
that [Ri] ≈ 0 because ligands are in excess so that essentially no receptor will be unbound.

Note the similarity to Equation (20). The two are formally equivalent if we make the
following correspondences

Kij = Kt(1 + Ka
ij)(1 + Kb

ij) (33)

εij = 1
1 + Kb

ij

. (34)

Thus, this system is capable of the same signal responses as the ligand-receptor system of
the previous section, and can in principle implement the four archetypal responses using two
ligands and two receptors.

DNA 29
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C Tables of sequences

Table 2 Base sequence and substitutions for the three designs Dx, Dy, and Dz.

cyclic graph Base sequence GCCTTGTATGTGAATATCCGTGTCA
Fully mutated sequence GCCATGAAAGAGTAAAACCGAGACA

Desargues graph Base sequence GGAGAATGATTAGCACGGAGAGTGG
Fully mutated sequence GGTGTAAGTTAAGCTCGGTGTGAGG

weighted graph Base sequence CGGTGTGCTTTTACTTAAGTAACCG
Fully mutated sequence CGGAGAGCATATTCATTAGAATCCG

Table 3 Sequences for the cyclic graph on 18 nodes (Dx), Desargues graph (Dy), and weighted
graph (Dz).

Design Name Binary string Sequence

cyclic

x0 000000000 GCCTTGTATGTGAATATCCGTGTCA
x1 100000000 GCCATGTATGTGAATATCCGTGTCA
x2 110000000 GCCATGAATGTGAATATCCGTGTCA
x3 111000000 GCCATGAAAGTGAATATCCGTGTCA
x4 111100000 GCCATGAAAGAGAATATCCGTGTCA
x5 111110000 GCCATGAAAGAGTATATCCGTGTCA
x6 111111000 GCCATGAAAGAGTAAATCCGTGTCA
x7 111111100 GCCATGAAAGAGTAAAACCGTGTCA
x8 111111110 GCCATGAAAGAGTAAAACCGAGTCA
x9 111111111 GCCATGAAAGAGTAAAACCGAGACA
x10 011111111 GCCTTGAAAGAGTAAAACCGAGACA
x11 001111111 GCCTTGTAAGAGTAAAACCGAGACA
x12 000111111 GCCTTGTATGAGTAAAACCGAGACA
x13 000011111 GCCTTGTATGTGTAAAACCGAGACA
x14 000001111 GCCTTGTATGTGAAAAACCGAGACA
x15 000000111 GCCTTGTATGTGAATAACCGAGACA
x16 000000011 GCCTTGTATGTGAATATCCGAGACA
x17 000000001 GCCTTGTATGTGAATATCCGTGACA

Desargues

y0 10100 GGTGAAAGATTAGCACGGAGAGTGG
y1 10110 GGTGAAAGTTTAGCACGGAGAGTGG
y2 10010 GGTGAATGTTTAGCACGGAGAGTGG
y3 11010 GGTGTATGTTTAGCACGGAGAGTGG
y4 01010 GGAGTATGTTTAGCACGGAGAGTGG
y5 01011 GGAGTATGTTAAGCACGGAGAGTGG
y6 01001 GGAGTATGATAAGCACGGAGAGTGG
y7 01101 GGAGTAAGATAAGCACGGAGAGTGG
y8 00101 GGAGAAAGATAAGCACGGAGAGTGG
y9 10101 GGTGAAAGATAAGCACGGAGAGTGG
y10 11100 GGTGTAAGATTAGCACGGAGAGTGG
y11 00110 GGAGAAAGTTTAGCACGGAGAGTGG
y12 10011 GGTGAATGTTAAGCACGGAGAGTGG
y13 11000 GGTGTATGATTAGCACGGAGAGTGG
y14 01110 GGAGTAAGTTTAGCACGGAGAGTGG
y15 00011 GGAGAATGTTAAGCACGGAGAGTGG
y16 11001 GGTGTATGATAAGCACGGAGAGTGG
y17 01100 GGAGTAAGATTAGCACGGAGAGTGG
y18 00111 GGAGAAAGTTAAGCACGGAGAGTGG
y19 10001 GGTGAATGATAAGCACGGAGAGTGG

weighted

z0 000011110 CGGTGTGCTTTTTCATTAGAAACCG
z1 001100110 CGGTGTGCATATACTTTAGAAACCG
z2 010101010 CGGTGAGCTTATACATAAGAAACCG
z3 000000000 CGGTGTGCTTTTACTTAAGTAACCG
z4 011010010 CGGTGAGCATTTTCTTAAGAAACCG
z5 111111110 CGGAGAGCATATTCATTAGAAACCG
z6 000000001 CGGTGTGCTTTTACTTAAGTATCCG
z7 011010011 CGGTGAGCATTTTCTTAAGAATCCG
z8 111111111 CGGAGAGCATATTCATTAGAATCCG
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Table 4 Shared sequences for the DNA strand displacement ligand-receptor networks.

Name Binary string Sequence
t GAGAACT

nR1 GGTCTTGACAAACGTGTGCT
mR1 TATGAGGACGAATCTCCCGC
nR2 CCGATGTTGACGGACTAATC
mR2 GTTTATCGGGCGTGGTGCTC
aR1 111111111 GCCATGAAAGAGTAAAACCGAGACA
aR′

1
111111100 GCCATGAAAGAGTAAAACCGTGTCA

aR2 111111100 GCCATGAAAGAGTAAAACCGTGTCA
aR′

2
111111111 GCCATGAAAGAGTAAAACCGAGACA

bR1 000000000 GGAGAATGATTAGCACGGAGAGTGG
bR′

1
100000000 GGTGAATGATTAGCACGGAGAGTGG

bR2 011111111 GGAGTAAGTTAAGCTCGGTGTGAGG
bR′

2
111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Table 5 Gate-specific sequences for the DNA strand displacement ligand-receptor networks.

Gate Name Binary string Sequence

Balance
aL1 111111100 GCCATGAAAGAGTAAAACCGTGTCA
aL2 111111111 GCCATGAAAGAGTAAAACCGAGACA
bL1 100000000 GGTGAATGATTAGCACGGAGAGTGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Imbalance
aL1 111111110 GCCATGAAAGAGTAAAACCGAGTCA
aL2 111111110 GCCATGAAAGAGTAAAACCGAGTCA
bL1 100000000 GGTGAATGATTAGCACGGAGAGTGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Ratiometric
aL1 111111110 GCCATGAAAGAGTAAAACCGAGTCA
aL2 111111111 GCCATGAAAGAGTAAAACCGAGACA
bL1 100000000 GGTGAATGATTAGCACGGAGAGTGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG

Additive
aL1 111111110 GCCATGAAAGAGTAAAACCGAGTCA
aL2 111111110 GCCATGAAAGAGTAAAACCGAGTCA
bL1 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG
bL2 111111111 GGTGTAAGTTAAGCTCGGTGTGAGG
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Table 6 Sequences for the hairpin logic circuits. The full hairpin sequence is alā∗ for signal A.

Gate Name Binary string Sequence
l TTT

NOT

i 11111111 GGTGTAAGTTAAGCTCGGTGAGAGG
ī 11110000 GGTGAAAGATTAGCACGGTGAGAGG
a 11100000 GGTGAAAGATTAGCACGGAGAGAGG
ā 11101111 GGTGTAAGTTAAGCTCGGAGAGAGG
q 11001111 GGTGTAAGTTAAGCTCGGAGAGTGG
q̄ 11000000 GGTGAAAGATTAGCACGGAGAGTGG
s 00000000 GGAGAATGATTAGCACGGAGAGTGG
s̄ 00001111 GGAGTATGTTAAGCTCGGAGAGTGG

AND

i1 111000000 GGTGAAAGATTAGCACGGAGAGAGG
ī1 111000111 GGTGAAAGATAAGCTCGGAGTGAGG
q1 110000111 GGTGAAAGATAAGCTCGGAGTGTGG
q̄1 110000000 GGTGAAAGATTAGCACGGAGAGTGG
i2 000111000 GGAGTATGTTTAGCACGGTGAGTGG
ī2 000111111 GGAGTATGTTAAGCTCGGTGTGTGG
q2 000110111 GGAGTATGATAAGCTCGGTGTGTGG
q̄2 000110000 GGAGTATGATTAGCACGGTGAGTGG
s 000000000 GGAGAATGATTAGCACGGAGAGTGG
s̄ 000000111 GGAGAATGATAAGCTCGGAGTGTGG

Square Root

i1 001010100 GGAGAAAGTTTAGCACGGAGAGAGG
ī1 110100100 GGAGTATGTTAAGCACGGAGTGTGG
i2 001110000 GGAGTAAGATTAGCACGGAGAGAGG
ī2 110000000 GGAGAATGATAAGCACGGAGTGTGG
i3 010001100 GGTGAATGTTAAGCACGGAGAGTGG
ī3 101111100 GGTGTAAGTTTAGCACGGAGTGAGG
i4 100001100 GGTGAATGTTTAGCACGGAGTGTGG
ī4 011111100 GGTGTAAGTTAAGCACGGAGAGAGG
m1 111100100 GGAGTATGTTAAGCACGGAGTGAGG
m̄1 000010100 GGAGAAAGTTTAGCACGGAGAGTGG
m2 111000000 GGAGAATGATAAGCACGGAGTGAGG
m̄2 000110000 GGAGTAAGATTAGCACGGAGAGTGG
m3 101111000 GGTGTAAGATTAGCACGGAGTGAGG
m̄3 010001000 GGTGAATGATAAGCACGGAGAGTGG
m4 011111000 GGTGTAAGATAAGCACGGAGAGAGG
m̄4 100001000 GGTGAATGATTAGCACGGAGTGTGG
x12 000010000 GGAGAAAGATTAGCACGGAGAGTGG
x̄12 111100000 GGAGTATGATAAGCACGGAGTGAGG
x23 010000000 GGAGAATGATAAGCACGGAGAGTGG
x̄23 101110000 GGAGTAAGATTAGCACGGAGTGAGG
x24 100000000 GGAGAATGATTAGCACGGAGTGTGG
x̄24 011110000 GGAGTAAGATAAGCACGGAGAGAGG
q1 110000100 GGAGAATGTTAAGCACGGAGTGTGG
q̄1 001110100 GGAGTAAGTTTAGCACGGAGAGAGG
q2 111110000 GGAGTAAGATAAGCACGGAGTGAGG
q̄2 000000000 GGAGAATGATTAGCACGGAGAGTGG
s1 001100110 GGAGTATGTTTAGCACGGTGAGAGG
s̄1 110010110 GGAGAAAGTTAAGCACGGTGTGTGG
s2 000000011 GGAGAATGATTAGCTCGGTGAGTGG
s̄2 111110011 GGAGTAAGATAAGCTCGGTGTGAGG
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